
Computing and Informatics, Vol. 38, 2019, 1009–1038, doi: 10.31577/cai 2019 5 1009

A MORE FAITHFUL FORMAL DEFINITION
OF THE DESIRED PROPERTY FOR DISTRIBUTED
SNAPSHOT ALGORITHMS TO MODEL CHECK
THE PROPERTY

Ha Thi Thu Doan, Kazuhiro Ogata

School of Information Science
Japan Advanced Institute of Science and Technology
1-1 Asahidai, Nomi,
Ishikawa, 923-1292, Japan
e-mail: {doanha, ogata}@jaist.ac.jp

Abstract. The first distributed snapshot algorithm was invented by Chandy and
Lamport: Chandy-Lamport distributed snapshot algorithm (CLDSA). Distributed
snapshot algorithms are crucial components to make distributed systems fault tol-
erant. Such algorithms are extremely important because many modern key software
systems are in the form of distributed systems and should be fault tolerant. There
are at least two desired properties such algorithms should satisfy: 1) the distributed
snapshot reachability property (called the DSR property) and 2) the ability to run
concurrently with, but not alter, an underlying distributed system (UDS). This
paper identifies subtle errors in a paper on formalization of the DSR property and
shows how to correct them. We give a more faithful formal definition of the DSR
property; the definition involves two state machines – one state machine MUDS that
formalizes a UDS and the other MCLDSA that formalizes the UDS on which CLDSA
is superimposed (UDS-CLDSA) – and can be used to more precise model checking
of the DSR property for CLDSA. We also prove a theorem on equivalence of our
new definition and an existing one that only involves MCLDSA to guarantee the
validity of the existing model checking approach. Moreover, we prove the second
property, namely that CLDSA does not alter the behaviors of UDS.

Keywords: Distributed snapshot algorithm, reachability, state machine, property
specification, model checking

Mathematics Subject Classification 2010: 68N30

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Computing and Informatics (E-Journal - Institute of Informatics,...

https://core.ac.uk/display/304918498?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1010 H. Doan, K. Ogata

1 INTRODUCTION

Many modern key software systems are in the form of distributed systems [1, 2],
which consist of many components coordinating their actions by passing messages
and working together to achieve a common goal. The modern distributed applica-
tions, such as cloud computing [3] and web search [4], are getting more complicated.
Such systems should be fault tolerant because they need to run for a long time,
keeping on providing services to users, other systems, etc. To make distributed sys-
tems fault tolerant, it is necessary to use many non-trivial distributed algorithms,
such as snapshot algorithms and self-stabilizing algorithms. Distributed snapshot
algorithms (DSAs) deal with a significant problem, recording global states of a dis-
tributed system, which helps solving others, such as recovering from faulty states
and detecting stable properties. Therefore, DSAs become the core of many fault
tolerant distributed systems. However, the challenge is how to determine a consis-
tent global state. To clearly record consistent global states, a DSA should satisfy
two properties:

1. the distributed snapshot reachability property (called the DSR property) and

2. the ability to run concurrently with, but not alter, an underlying distributed
system (UDS).

Considered as the most important desired property of the algorithm, the DSR prop-
erty is as follows: Let s1 be the state in which a DSA initiates, s2 be the state in
which DSA terminates, and s∗ be the snapshot taken, then s∗ is reachable from s1
and s2 is reachable from s∗.

Because distributed systems are usually complicated and it is hard to ensure
their reliability, the formal verification of distributed systems is essential. Model
checking [5, 6] is a popular automatic formal technique for verifying state transition
systems. Many model checkers, such as Spin [7], NuSMV[8], and TLA+ [9], have
been developed in order to formally verify various kinds of software and hardware
systems. Model checking is highly suitable for formally verifying distributed systems.
Many researchers [10, 11, 12] are interested in model checking of distributed systems.
However, the application of model checking to verification of DSAs has not been fully
investigated due to the specific characteristic of DSAs (they are superimposed on,
but do not interfere with UDSs).

This paper focuses on Chandy-Lamport distributed snapshot algorithm
(CLDSA) [13] that is the first such algorithm. Several variants of CLDSA, such
as Spezialetti-Kearns algorithm [14] and Venkatesans incremental snapshot algo-
rithm [15], have been proposed. In an attempt to formally analyze CLDSA, the
authors in [16] have used Maude [17] to model check that CLDSA enjoys the DSR
property. Maude is a language and a system supporting executable specification
and declarative programming in rewriting logic. Two model checking facilities
equipped with Maude are the LTL model checker and the search command. In [16],
the Maude search command is used. However, the DSR property is encoded in

A More Faithful Formal Definition of the DSR Property 1011

terms of the Maude search command and the encoding does not reflect the informal
description of the property originally given in [13]. We recognize that the infor-
mal description of the DSR property involves both a UDS and the UDS on which
CLDSA is superimposed (UDS-CLDSA), while their definition of the property in-
volves only the UDS-CLDSA. Consequently, we do not think that the existing study
provides a good foundation for meaningful model checking of the DSR property
for CLDSA. Therefore, it is necessary to express the DSR property accurately and
then consider the equivalence between the new formal definition and the existing
one.

The challenge is that the DSR property relates to two different systems: a UDS
and the UDS-CLDSA. It is not straightforward to express the property in typical
existing temporal logics, such as linear temporal logic (LTL) and computation tree
logic (CTL) because such a temporal logic only takes into account one state ma-
chine or a Kripke structure. The authors of the technical paper [18] attempt to
find a way to express the DSR property more faithfully. However, the technical
report [18] has not been reviewed. We detected flaws lurking in their formaliza-
tion.

The informal description of the DSR property
• Involving two state machines.

Theorem 1
• Saying that the two definitions are equivalent.

 • Allowing to model check the new definition by the existing approach.

The existing definition
• Involving only one state machine.
• Cannot be used for other DSAs
• Being able to be model checked with Maude.

A more faithful formal definition
• Faithfully expressing the informal description.
• Can be used for other DSAs.
• Can be used to more faithfully model check the

property for CLDSA.

Our contributions
Formalize Formalize

Theorem 2
• Guaranteeing that CLDSA does not alter the behaviours of the UDS.

Figure 1. The contributions of the paper

This paper is an extended and revised version of the paper [19], which shows
a thorough study on formal expression of the DSR property. We have pointed
out mistakes in [18] in detail. Correcting these mistakes, we formalize a UDS
and the UDS-CLDSA as state machines more precisely. Carefully investigating
the informal description of the DSR property, we give a formal definition of the
property, which is more likely to faithfully express the informal description and
can be used to more precisely model check of the CLDSA property. The essen-
tial of our method to formalize a UDS and the UDS-CLDSA is that the formal-
ization of a UDS-CLDSA is generated from the one of the UDS. This is because

1012 H. Doan, K. Ogata

we take into account an important aspect of the algorithm, namely that the al-
gorithm runs concurrently with, but does not alter, the behaviors of UDS. Not
only snapshot algorithms but also many other distributed algorithms (called con-
trol algorithms [21]), such as checkpointing algorithms and termination detection
algorithms, do not alter the behaviors of the UDS. These algorithm executions are
superimposed on the underlying application execution, but do not interfere with
the application execution. Therefore, one considerable contribution of our research
is a method by which the class of these algorithms can be precisely formalized,
and then any of their desired properties that are related to both a UDS and the
UDS on which these algorithms are superimposed could be formally expressed. Fur-
thermore, we prove that our new definition is equivalent to the existing one in
[16] to confirm the validity of the model checking approach. It is not straightfor-
ward to directly model check the new definition with an existing model checker
because two different state machines should be taken into account, while existing
model checkers, such as Spin, NuSMV, and TLC, support model checking for sys-
tems that can be formalized as only one state machine. The equivalence of the
two definitions suggests we can use an existing model checker to tackle the DSR
property. Moreover, we prove that CLDSA runs concurrently, but does not alter,
a UDS as the second property. More on our contributions are depicted in Fig-
ure 1.

The rest of the paper is organized as follows. The next section introduces some
preliminaries. Section 3 describes how to formalize a UDS and the UDS-CLDSA as
state machines. Section 4 gives the new definition of the DSR property. Section 5
presents the theorem that guarantees the validity of the existing model checking
approach. Section 6 proves the theorem on simulation between MCLDSA and MUDS

to confirm the second property. Section 7 mentions related work, and Section 8
concludes the paper.

2 PRELIMINARIES

2.1 Chandy-Lamport Distributed Snapshot Algorithm (CLDSA)

CLDSA works by using control messages called markers. Each process can record
its local state when it has not yet received any marker from its incoming channels.
It then sends one marker along each of its outgoing channels. Because the channel is
FIFO, the marker acts as a separator for the messages in the channel to determinate
the sequence of messages that should be recorded in the state of the channel. There
are two rules by which a process will execute the marker-sending rule on recording
its local state and the marker-receiving rule on receiving a marker, respectively. The
outline of the algorithm is as follows:

Marker-Sending Rule for a process p: for each its outgoing channel c, p sends
one marker along c after recording its state and before sending further messages
along c.

A More Faithful Formal Definition of the DSR Property 1013

Marker-Receiving Rule for a process p: when the process p gets a marker from
one of its incoming channels c,

• if p has not yet recorded its state then p records its state according to
Marker-Sending Rule for p and the state of channel c as an empty sequence

• else p records the state of c as the sequence of messages received along c
after recording p’s state and before receiving the marker along c.

The algorithm will terminate when each process has already recorded its state and
the states of all of its incoming channels. The global snapshot is made by combining
those recorded process and channel states.

2.2 State Machine

A state machine consists of a set of states, some of which are initial states, and
a binary relation over states. The definition is as follows:

Definition 1 (State Machine). A state machine M , 〈S, I, T 〉 consists of

1. a set of states S;

2. a set of initial states I ⊆ S;

3. a total binary relation1 over states T ⊆ S × S.

Elements (s, s′) of the binary relation are called state transitions, where (s, s′)
says that s can change to s′. Since T is total, for each state s ∈ S there exists a state
s′ ∈ S such that (s, s′) ∈ T . The reachable states of a state machine are inductively
defined as follows:

1. each initial state is reachable and

2. for each reachable state s and each state transition (s, s′), s′ is reachable.

A state predicate p is an invariant property of the state machine if and only if p(s)
holds for all reachable states s of the state machine.

2.3 Maude

Maude [17] is a specification and programming language based on rewriting logic.
The basic units of specifications and programs are modules. A module contains
syntax declarations, providing a suitable language to describe a system. A module

1 Standard definitions of state machines do not require that T is total, but it is con-
venient to be able to generate infinite state sequences from state machines for proving
that one state machine can simulate another one and then we assume that T is total.
Note that a Kripke structure, which is used to define semantics of temporal logics and
includes a state machine, requires that T is total and then our assumption would be
reasonable.

1014 H. Doan, K. Ogata

consists of sort, sub-sort, operator, variable, equation and membership declarations,
as well as rewrite rule declarations. Note that membership declarations are not used
at all in this paper.

A sort denotes a set, corresponding to a type in conventional programming
languages. For example, the sort Nat denotes the set of natural numbers. There
is the relation among sorts which is the same as the subset relation. A sort is a
subsort of another sort if and only if the set denoted by the former is a subset of
the one by the latter, and the latter is called a supersort of the former. Let Zero

and NzNat be the sorts denoting {0} and the set of non-zero natural numbers, and
then both of which are subsets of the set of natural numbers. Zero and NzNat are
subsorts of Nat and Nat is a supersort of Zero and NzNat. An operator is declared
as follows: f : S1 . . . Sn → S, where S1, . . . , Sn, S are sorts and n ≥ 0. Note that
-> may be used instead of →. S1 . . . Sn, S and S1 . . . Sn → S are called the arity,
the sort and the rank of f , respectively. When n = 0, f is called a constant. f
takes a sequence of n things of S1, . . . , Sn and makes something of S, where “things”
and “something” are what are called terms and will be described soon. Operators
denote functions or data constructors. Each variable has its own sort. Terms of a
sort S are inductively defined as follows:

1. each variable whose sort is S is a term of S and

2. for each operator f whose rank is S1 . . . Sn → S and n terms t1, . . . , tn of
S1 . . . Sn, f(t1, . . . , tn) is a term of S.

Note that when n = 0, f as it is a term of S. An operator may contain under-
scores, such as _+_ : Nat Nat -> Nat. If that is the case, a different notation than
f(t1, . . . , tn) is used. For example, if X is a variable of Nat, then X + X is a term of
Nat. Use of operators containing underscores allows us to define context-free gram-
mars. An equation declares that two terms are equal. A rewrite rule declares that
a term changes to another one. Equations can be used to define functions, while
rewrite rules can be used to define state transitions. A sort and the set denoted by
the sort are interchangeably used in this paper.

3 THE FORMALIZATIONS OF A UDS AND THE UDS-CLDSA

3.1 Formalizing a UDS as a State Machine

A UDS consists of a finite set of processes that are connected and communicated
by channels. This paper considers snapshot algorithms suited for FIFO channels.
Channels are assumed to deliver messages in the order sent. Messages are delivered
reliably without any error in finite but arbitrary time. There may be more than one
channel from one process to another. A UDS can be described as a labeled, directed
graph in which the vertices represent the processes and the directed edges represent
the channels. Figure 2 describes a UDS consisting of three processes p, q, r and four
channels c1, c2, c3, c4. The channel c4 is used to directly send messages from r to
p, but not vice versa.

A More Faithful Formal Definition of the DSR Property 1015

p q

r

C1

C2

C3
C4

Figure 2. A distributed system with processes p, q, r and channels c1, c2, c3, c4

A global state of a distributed system is a collection of component process and
channel states. The state of a channel is characterized by the sequence of in-trans
messages sent along the channel and have not yet received by the destination process.
The initial global state is one in which each process is in its initial state and the
state of each channel is the empty sequence.

Since state machines are suitable to formalize concurrent systems, they are used
to formalize a UDS and the UDS-CLDSA in our research. In this paper, Maude
notation is used to describe state machines. Let MUDS be the state machine that
formalizes a UDS. We first consider how to express the states of a UDS and the
state transitions of MUDS.

Because our aim is to model check desired properties for CLDSA, we sup-
pose that the reachable states of a UDS are bounded and so are the reachable
states of the UDS-CLDSA. Note that the whole states of a UDS may be un-
bounded and so may be the whole states of the UDS-CLDSA. Because we for-
malize a channel from one process to another as an inductively defined queue, the
whole states of a UDS are unbounded. However, the reachable states of the UDS
could be bounded, for example, by preventing new messages from being gener-
ated.

3.1.1 State Expression

The states of process and channel are described by name: value pairs (called ob-
servable components), where name may have parameters: p-state[]: for process,
where the parameter of name is a process identifier and value is the state of the
process and c-state[, ,]: for channel, where the three parameters are a source pro-
cess, a destination process and a natural number, respectively, and value is the state
of the channel. OCom is the sort for those observable components. These observ-
able components are expressed by the following operators that are constructors as
specified with ctor :

op p-state[]: : Pid PState→ OCom [ctor].

op c-state[, ,]: : Pid Pid Nat MsgQueueP → OCom [ctor].

where Pid, PState, Nat and MsgQueue are the sorts for process identifiers, process

1016 H. Doan, K. Ogata

states, natural numbers and queues of messages for which the sort Msg is used,
respectively.

Let p, q ∈ Pid, ps ∈ PState, n ∈ Nat and ms ∈ MsgQueue. (p-state[p]: ps)
is an observable component whose name is p-state[p] where p is a parameter and
whose value is ps, expressed as a term of OCom that says that the local state of
a process p is ps. (c-state[p, q, n]: ms) is an observable component whose name
is c-state[p, q, n] where p, q, n are parameters and whose value is ms, expressed as
a term of OCom that says that the state of a channel from the process p to the
process q is ms. Since there may be more than one channel from p to q, a nat-
ural number n is used in (c-state[p, q, n]: ms) to identify the channel. We use an
associative-commutative collection (called a soup) to express global states of a UDS.
The corresponding sort is ConFigure. The following operators are prepared to con-
struct the sort.

subsort OCom < Config,

op empConfig : → Config [ctor],

op : Config Config→ Config [ctor assoc comm id:empConfig]

where empConfig denotes the empty soup of observable components. Config is
a super-sort of OCom, which means that each term of OCom is treated as the sin-
gleton soup only consisting of the term. The juxtaposition operator is used to
construct soups of observable components. For c1, c2 ∈ Config, c1c2 ∈ ConFigure.
The juxtaposition operator is associative and commutative as specified with assoc
and comm, and empConfig is an identity of the operator specified with id:empConfig.

3.1.2 State Transitions

Each process in a UDS may do three kinds of actions:

i. Change of Process State: it may change its state without sending or receiving
any message,

ii. Sending of Message: it may send a message by putting the message into one of
its outgoing channels and may change its state (or may not change its state),
and

iii. Receipt of Message: it may get the top message from one of its incoming channels
if the channel is not empty and may change its state (or may not change its
state).

These actions are described as transition rules. A transition rule is described in
the form of rewrite rules2. In the following part, P,Q ∈ Pid, PS1, PS2 ∈ PState,

2 Each rewrite rule (and each equation) should be executable and the rewrite rule
should be split into multiple executable ones so that model checking can be doable with
Maude. Since the main purpose of the paper is to give a more faithful definition of the
DSR property and confirm the validity of the model checking approach used in the existing
study, we make each rewrite rule as general as possible to cover all possible situations.

A More Faithful Formal Definition of the DSR Property 1017

N ∈ Nat, CS ∈ MsgQueue and M ∈ Msg are variables of those sorts.

• Change of Process State is described as the following transition rule:

(p-state[P] : PS1)⇒ (p-state[P] : PS2).

• Sending of Message is described as the following transition rule:

(p-state[P] : PS1)(c-state[P,Q,N] : CS)⇒
(p-state[P] : PS2)(c-state[P,Q,N] : enq(CS, M))

where PS1 may be the same as PS2 and enq is a standard function for queues,
taking a queue q and an element e and putting e into q at bottom.

• Receipt of Message is described as the following transition rule:

(p-state[P] : PS1)(c-state[Q,P,N] : M | CS)⇒
(p-state[P] : PS2)(c-state[Q,P,N] : CS)

where PS1 may be the same as PS2. The operator | is used to construct
queues of messages. For m ∈ Msg and q ∈ MsgQueue, m | q ∈ MsgQueue,
where m is the top message of the queue.

Although three kinds of actions are generally described by only three transi-
tion rules, there may be more than three ground instances of the transition rules.
This is caused by the number of states for each process, the number of chan-
nels, the number of states for each channel, etc. Given a transition rule L ⇒ R,
a ground instance of the transition rule is obtained by replacing each variable
in L ⇒ R with a ground constructor term (or a value) of the sort of the vari-
able.

Definition 2 (TRUDS). Let TRUDS be the set of all ground instances of the three
transition rules.

3.1.3 State Machine MUDS

A UDS is formalized as state machine MUDS , 〈SUDS, IUDS, TUDS〉. SUDS is
the set of all ground constructor terms whose sorts are ConFigure. IUDS is a
subset of SUDS such that for each state s ∈ IUDS, for each channel c in s the
message queue in c is empty, for each process p ∈ Pid there exists at most one p-
state[p] observable component in s, for each (p, q, n) where p, q ∈ Pid and n ∈ Nat,
there exists at most one c-state[p, q, n] observable component in s, and there is
no dangling channel in s. TUDS is the binary relation over SUDS made from
TRUDS.

Definition 3 (MUDS). The state machine formalizing a UDS is MUDS , 〈SUDS,
IUDS, TUDS〉, where

1. SUDS is the set of all ground constructor terms whose sorts are Config;

1018 H. Doan, K. Ogata

2. IUDS is a subset of SUDS such that (∀s ∈ IUDS) (∀c ∈ chans(s)) (msg(c) =
empChan), (∀s ∈ IUDS) (∀p ∈ Pid) (#(s, p) ≤ 1), (∀s ∈ IUDS) (∀p, q ∈ Pid)
(∀n ∈ Nat) (#(s, p, q, n) ≤ 1) and (∀s ∈ IUDS) (∀(c-state[p, q, n] : cs) ∈ s)
((#(s, p) = 1) ∧ (#(s, q) = 1));

3. TUDS is the binary relation over SUDS defined as follows: {(C,C ′) | C, C ′ ∈
Config, L⇒ R ∈ TRUDS, ∃C ′′.(C = LC ′′ ∧ C ′ = RC ′′)}.

Function chans gets all channels of a state s ∈ SUDS, msg gets the state of a chan-
nel c in s, and # counts the number of occurrences of a process or a channel
in s.

3.2 Generating State Machine MCLDSA from State Machine MUDS

LetMCLDSA be the state machine that formalizes the UDS-CLDSA. Because CLDSA
runs concurrently with, but does not alter, the behaviors of a UDS, it is possi-
ble to generate the formalization of the UDS-CLDSA from the UDS’s. The au-
thors in [18] show their way to do that. Carefully investigating, however, we
found mistakes in their formalizations. Our detection of their mistakes will be
presented in the rest of this section, where we focus on how to generate MCLDSA

from MUDS. Let us consider the state expression and the state transition for
MCLDSA.

3.2.1 State Expression

Each state of MCLDSA should consist of the local states of all processes and channels,
the state (called the start state) when CLDSA initiates, the snapshot, the state
(called the finish state) when CLDSA terminates and the information to control the
behaviors of CLDSA.

With superficially observing, we may mistakenly comprehend that the local
states of each process and channel in the UDS-CLDSA are exactly the same as
the one of a UDS. They are, however, different. The key difference is that due
to the working of CLDSA, a channel includes not only the normal data messages
as those of a UDS, but also the control messages, markers. This is an important
point needed to be noticed explicitly when modeling the system. As mistakes, the
authors in [18] did not see this point. They consider the states of a channel in
the system exactly the same as those for a UDS. The same sorts Msg, MsgQueue,
OCom and Config for messages, the sequence of messages, observable components
and a soup of p-state and c-state observable components, respectively, are used
in their formalization of the UDS-CLDSA. Overcoming the problem, we use other
sorts to describe the UDS-CLDSA. In detail, MMsg, a super-sort of sort Msg, is used
for messages and markers. The sorts BOCom and BConfig, replacing OCom and
Config, correspondingly, are used for observable components and a soup of p-state
and c-state observable components. For this end, the following sorts and operators
are defined:

A More Faithful Formal Definition of the DSR Property 1019

subsort Msg < MMsg.

op marker :→ MMsg[ctor].

op empChan :→ MMsgQueue[ctor].

op | : MMsg MMsgQueue→ MMsgQueue[ctor].

op p-state[]: : Pid PState→ BOCom[ctor].

op c-state[, ,]: : Pid Pid Nat MMsgQueue→ BOCom[ctor].

subsort BOCom < BConfig.

op empBConfig :→ BConfig[ctor].

op : BConfig BConfig→ BConfig[ctor assoc comm id:empBConfig].

We use base-state(bc), start-state(sc), snapshot(c©ssc) and finish-state(fc) called
meta configuration components, in which bc, sc, ssc and fc are ground constructor
terms of sort BConfig, to express the local states of all processes and channels, the
start state, the snapshot and the finish state, respectively. The corresponding sort
for those components is MBCom. The information to control behaviors of CLDSA is
expressed as control(ctl) that is also a meta configuration component. ctl is a soup
of cnt, prog, #ms, and done control observable components that will be described
soon. CtlOCom is the sort for those components, and CtlConfig is the sort for soups
of CtlOCom.

ops base-state start-state snapshot finish-state : BConfig→ MBCom[ctor].

op control : CtlConfig→ MBCom[ctor].

The control observable components are as follows.

(cnt : n): n is the number of processes that have not yet completed CLDSA.

(prog[p] : pg): pg is the progress (notYet, started or completed) of a process
p, indicating that the process has not yet started, has started, or completed
CLDSA.

(#ms[p] : n): n is the number of incoming channels to a process p from which
markers have not yet been received.

(done[p, q, n] : b): b is either true or false. If b is true, q has received a marker
from the incoming channel identified by n from p, otherwise, q has not.

Each state ofMCLDSA is expressed as the soup of the meta configuration components,
which is in the form:

base-state(bc) start-state(sc) snapshot(c©ssc) finish-state(fc) control(ctl)

which is called a meta configuration and the corresponding sort is MBConFigure.
We define the following operators for the sort:

subsort MBCom < MBConfig.

1020 H. Doan, K. Ogata

op : MBConfig MBConfig→ MBConfig[ctor assoc comm].

Initially, bc is an initial state of MUDS, and all of sc, ssc and fc are empBConfig.
The number of processes that have not yet completed CLDSA is equal to the number
of processes in the system, the progress of all processes are notYet, and all processes
have not yet received any markers. If fc is not empBConfig, a distributed snapshot
has been taken and then ssc is the snapshot.

3.2.2 State Transitions

Each process in the system preserves the basic actions of those for a UDS, but needs
to do two more kinds of actions for executing CLDSA as follows.

iv. Record of Process State: it may record its state and put markers into all of its
outgoing channels when it has not yet received any markers, and

v. Receipt of Marker: it may get a marker from one of its incoming channels.

In the following part, P , Q ∈ Pid, PS, PS1, PS2 ∈ PState, BC, SSC ∈ BConfig,
MMS ∈ MMsgQueue, CC ∈ CtlConfig, N ∈ Nat, NzN ∈ NzNat and M ∈ Msg are
variables of those sorts, where NzNat is the sort for non-zero natural numbers and
a subsort of Nat.

• Change of Process State is described as the following transition rule:

base-state((p-state[P] : PS1)BC)⇒ base-state((p-state[P] : PS2)BC).

• Sending of Message is described as the following transition rule:

base-state((p-state[P] : PS1) (c-state[P,Q,N] : MMS)BC)⇒
base-state((p-state[P] : PS2) (c-state[P,Q,N] : enq(MMS,M))BC).

• Receipt of Message is split into four subcases:

1. The process has not yet started CLDSA.

base-state((p-state[P] : PS1) (c-state[Q,P,N] : M | MMS)BC)
control((prog[P] : notYet) CC)
⇒
base-state((p-state[P] : PS2) (c-state[Q,P,N] : MMS)BC)
control((prog[P] : notYet)CC).

2. The process has completed CLDSA.

base-state((p-state[P] : PS1) (c-state[Q,P,N] : M | MMS)BC)
control((prog[P] : completed)CC)
⇒
base-state((p-state[P] : PS2) (c-state[Q,P,N] : MMS)BC)
control((prog[P] : completed)CC).

A More Faithful Formal Definition of the DSR Property 1021

3. The process has started CLDSA, not yet completed it, and not yet received
a marker from the incoming channel.

base-state((p-state[P] : PS1) (c-state[Q,P,N] : M | MMS)BC)
snapshot((c-state[Q,P,N] : MMS’)SSC)
control((prog[P] : started)(done[Q,P,N] : false)CC)
⇒
base-state((p-state[P] : PS2)(c-state[Q,P,N] : MMS)BC)
snapshot((c-state[Q,P,N] : enq(MMS’,M))SSC)
control((prog[P] : started)(done[Q,P,N] : false)CC).

4. The process has started CLDSA, but not yet completed it and it has already
received a marker from the incoming channel.

base-state((p-state[P] : PS1)(c-state[Q,P,N] : M | MMS)BC)
control((prog[P] : started)(done[Q,P,N] : true)CC)
⇒
base-state((p-state[P] : PS2)(c-state[Q,P,N] : MMS)BC)
control((prog[P] : started)(done[Q,P,N] : true)CC).

• Record of Process State is split into two subcases:

1. The process globally initiates CLDSA. This case is further split into three
subcases:

(a) The UDS only consists of the process.

base-state((p-state[P] : PS)) start-state(empBConfig)
snapshot(empBConfig) finish-state(empBConfig)
control((prog[P] : notYet)(cnt : 1)(#ms[P] : 0)CC)
⇒
base-state((p-state[P] : PS)) start-state((p-state[P] : PS))
snapshot((p-state[P] : PS)) finish-state((p-state[P] : PS))
control((prog[P] : completed)(cnt : 0)(#ms[P] : 0)CC).

(b) The system consists of more than one process, and the process does not
have any incoming channels.

base-state((p-state[P] : PS)BC) start-state(empBConfig)
snapshot(empBConfig) finish-state(empBConfig)
control((prog[P] : notYet)(cnt : NzN)(#ms[P] : 0)CC)
⇒
base-state((p-state[P] : PS) bcast(BC,P, marker))
start-state((p-state[P] : PS)BC) snapshot((p-state[P] : PS))
control((prog[P] : completed)(cnt : sd(NzN, 1))(#ms[P] : 0)CC)x
if NzN > 1

where bcast is a function putting markers in all outgoing channels from
process P and sd is a function for natural number taking two natural

1022 H. Doan, K. Ogata

numbers x and y and then returning x − y if x > y and y − x other-
wise.

(c) The system consists of more than one process, and the process has one
or more incoming channels.

base-state((p-state[P] : PS)BC) start-state(empBConfig)
snapshot(empBConfig) finish-state(empBConfig)
control((prog[P] : notYet)(#ms[P] : NzN’)CC)
⇒
base-state((p-state[P] : PS) bcast(BC,P,marker))
start-state((p-state[P] : PS)BC)
snapshot((p-state[P] : PS) inchans(BC,P))
control((prog[P] : started)(#ms[P] : NzN’)CC).

2. The process does not globally initiate CLDSA. This case is further split into
three subcases:

(a) The process does not have any incoming channel, and there are no pro-
cesses except for the process that have not completed CLDSA.

base-state((p-state[P] : PS)BC) start-state(SC) snapshot(SSC)
finish-state(empBConfig)
control((prog[P] : notYet)(cnt : 1)(#ms[P] : 0)CC)
⇒
base-state((p-state[P] : PS)) start-state(SC)
snapshot((p-state[P] : PS)SSC)
finish-state((p-state[P] : PS)BC)
control((prog[P] : completed)(cnt : 0)(#ms[P] : 0)CC)
if (SC 6= empBConfig).

(b) The process does not have any incoming channels, and there are some
other processes that have not completed CLDSA.

base-state((p-state[P] : PS)BC) start-state(SC) snapshot(SSC)
control((prog[P] : notYet)(cnt : NzN)(#ms[P] : 0)CC)
⇒
base-state((p-state[P] : PS) bcast(BC,P,marker))
start-state(SC) snapshot((p-state[P] : PS)SSC)
control((prog[P] : completed)(cnt : sd(NzN, 1))(#ms[P] : 0)CC)
if (SC 6= empBConfig)∧(NzN > 1).

(c) The process has some incoming channels.

base-state((p-state[P] : PS)BC) start-state(SC) snapshot(SSC)
control((prog[P] : notYet)(#ms[P] : NzN’)CC)
⇒
base-state((p-state[P] : PS) bcast(BC,P,marker))
start-state(SC) snapshot((p-state[P] : PS) inchans(BC,P)SSC)
control((prog[P] : started)(#ms[P] : NzN’)CC)
if (SC 6= empBConfig).

A More Faithful Formal Definition of the DSR Property 1023

• Receipt of Marker is split into two subcases:

1. The process has not yet started CLDSA. This case is further split into three
subcases:

(a) The process has only one incoming channel, and there are no processes
that have not yet completed CLDSA except for the process.

base-state((p-state[P] : PS)(c-state[Q,P,N] : marker | MMS)BC)
snapshot(SSC) finish-state(empBConfig)
control((prog[P] : notYet)(cnt : 1)(#ms[P] : 1)
(done[Q,P,N] : false)CC)
⇒
base-state((p-state[P] : PS)(c-state[Q,P,N] : MMS)BC)
snapshot((p-state[P] : PS)(c-state[Q,P,N] : empChan)SSC)
finish-state((p-state[P] : PS)(c-state[Q,P,N] : MMS)BC)
control((prog[P] : completed)(cnt : 0)(#ms[P] : 0)(done[Q,P,N] :
true)CC).

(b) The process has only one incoming channel, and there are some other
processes that have not yet completed CLDSA.

base-state((p-state[P] : PS)(c-state[Q,P,N] : marker | MMS)BC)
snapshot(SSC) control((prog[P] : notYet)(cnt : NzN)(#ms[P] : 1)
(done[Q,P,N] : false)CC)
⇒
base-state((p-state[P] : PS)(c-state[Q,P,N] : MMS)
bcast(BC,P,maker)) snapshot((p-state[P] : PS)(c-state[Q,P,N] :
empChan)SSC)
control((prog[P] : completed)(cnt : sd(NzN, 1))(#ms[P] : 0)
(done[Q,P,N] : true)CC)
if NzN > 1.

(c) The process has more than one incoming channels.

base-state((p-state[P] : PS)(c-state[Q,P,N] : marker | MMS)BC)
snapshot(SSC) control((prog[P] : notYet)(cnt : NzN)
(#ms[P] : NzN’)(done[Q,P,N] : false)CC)
⇒
base-state((p-state[P] : PS)(c-state[Q,P,N] : MMS)
bcast(BC,P,maker)) snapshot((p-state[P] : PS)
(c-state[Q,P,N] : empChan)inchans(BC,P)SSC)
control((prog[P] : started)(cnt : sd(NzN, 1))(#ms[P] : sd(NzN’, 1))
(done[Q,P,N] : true)CC)
if NzN’ > 1.

2. The process has already started CLDSA. This case is further split into three
subcases:

1024 H. Doan, K. Ogata

(a) There is no incoming channel from which markers have not been received
except for the incoming channel, and there are no processes that have
not yet completed CLDSA except for the process.

base-state((p-state[P] : PS)(c-state[Q,P,N] : marker | MMS)BC)
finish-state(empBConfig) control((prog[P] : started)(cnt : 1)
(#ms[P] : 1)(done[Q,P,N] : false)CC)
⇒
base-state((p-state[P] : PS)(c-state[Q,P,N] : MMS)BC)
finish-state((p-state[P] : PS)(c-state[Q,P,N] : MMS)BC)
control((prog[P] : completed)(cnt : 0)(#ms[P] : 0)
(done[Q,P,N] : true)CC).

(b) There are no incoming channels from which markers have not been re-
ceived except for the incoming channel, and there are some other pro-
cesses that have not yet completed CLDSA.

base-state((p-state[P] : PS)(c-state[Q,P,N] : marker | MMS)BC)
control((prog[P] : started)(cnt : NzN)(#ms[P] : 1)
(done[Q,P,N] : false)CC)
⇒
base-state((p-state[P] : PS)(c-state[Q,P,N] : MMS)BC)
control((prog[P] : completed)(cnt : sd(NzN, 1)(#ms[P] : 0)
(done[Q,P,N] : true)CC)
if NzN > 1.

(c) There are some other incoming channels from which markers have not
been received.

base-state((p-state[P] : PS)(c-state[Q,P,N] : marker | MMS)BC)
control((prog[P] : started)(cnt : NzN)(#ms[P] : NzN’)
(done[Q,P,N] : false)CC)
⇒
base-state((p-state[P] : PS)(c-state[Q,P,N] : MMS)BC)
control((prog[P] : started)(cnt : NzN)(#ms[P] : sd(NzN’, 1))
(done[Q,P,N] : true)CC) [] if NzN’ > 1.

There are 18 transition rules described as above. Those transition rules are clas-
sified into three parts: UDS, UDS & CLDSA, and CLDSA. The UDS part consists
of the transition rules describing the actions purely related to the UDS, namely i, ii
and iii-1. The UDS part depends on the UDS concerned, can be constructed from
the three transition rules of the UDS and changes the base-state meta configuration
component of a state of MCLDSA. The UDS & CLDSA part also depends on the
UDS concerned and can be constructed from the three transition rules of the UDS,
but changes the other meta configuration components of a state of MCLDSA as well.
Three transition rules describing actions iii-2, iii-3 and iii-4 are in the UDS & CLDSA
part. The CLDSA part is independent from the UDS concerned, can be constructed
regardless of any UDSs, and does not change the base-state meta configuration com-

A More Faithful Formal Definition of the DSR Property 1025

ponent of a state of MCLDSA. The transition rules describing two kinds of actions
iv and v are in the CLDSA part.

Definition 4 (TRCLDSA). Let TRCLDSA be the set of all ground instances of the
18 transition rules.

3.2.3 State Machine MCLDSA

We propose the function CL that takes a state machine MUDS and returns another
state machine MCLDSA. Note that MUDS is the state machine of a UDS and MCLDSA

is the state machine of the UDS-CLDSA. Since the authors in [18] treat the states
of processes and channels of the UDS superimposed by CLDSA as the same as those
of a UDS, the definition of function CL in [18] is incorrect. The definition is as
follows:

For a state machine MUDS , 〈SUDS, IUDS , TUDS〉, CL(SUDS) =
{base-state(bs) start-state(ss) snapshot(sss) c© f-state(fs) control(ctl) | bs ∈
SUDS, ss ∈ Config, sss ∈ Config, fs ∈ Config, ctl ∈ CtlConfig}, where Con-
fig and CtlConfig are used as the sets of terms whose sorts are Config and
CtlConfig, respectively.

They consider that bs is in SUDS. Obviously, this is incorrect since the channels
in bc may contain markers, which do not exist in the channels of a UDS. Hence, bs
cannot be in SUDS. We redefine the function CL as follows:

Definition 5 (CL(MUDS)). For a state machine MUDS , 〈SUDS, IUDS, TUDS〉 for-
malizing a UDS, CL is the function that takes MUDS and returns CL(MUDS) ,
〈CLState(SUDS),CLInit(IUDS),CLTrans(TUDS)〉, where

1. CLState(SUDS) is the set of all ground constructor terms of sort MBConfig;

2. CLInit(IUDS) is {base-state(bc) start-state(empBConfig)
snapshot(c©empBConfig) finish-state(empBConfig) control(ctl) | bc ∈ IUDS, ctl
= InitCtlConfig(bc)};

3. CLTrans(TUDS) ⊆ CLState(SUDS) × CLState(SUDS) is {(MC,MC ′) | MC,
MC ′ ∈ MBConfig, L ⇒ R ∈ TRCLDSA,∃MC ′′.(MC = LMC ′′ ∧ MC ′ =
RMC ′′)}.

Function InitCtlConfig(bc) initializes values for all control information components.
Let MCLDSA be CL(MUDS). Note that SCLDSA is the set of all ground construc-
tor terms of sort MBConfig, although each reachable state from an initial state in
SCLDSA is in the following form:

base-state(bc) start-state(sc) snapshot(ssc) finish-state(fc) control(ctl).

Some functions on SCLDSA are defined for convenience.

1026 H. Doan, K. Ogata

Definition 6 (b-state, s-state, snapshot, f-state, finished). For each s ∈ SCLDSA,

• b-state(s) is bc if there exists exactly one occurrence of the base-state(bc) meta
configuration component in s and empBConfig otherwise,

• s-state(s) is sc if there exists exactly one occurrence of the start-state(sc) meta
configuration component in s and empBConfig otherwise,

• snapshot(s) is ssc if there exists exactly one occurrence of the snapshot(ssc)
meta configuration component in s and empBConfig otherwise,

• f-state(s) is fc if there exists exactly one occurrence of the finish-state(fc) meta
configuration component in s and empBConfig otherwise, and

• finished(s) is false if f-state(s) is empBConfig and true otherwise.

The following is the definition that CLDSA has terminated in a state s in MCLDSA:

Definition 7 (MCLDSA |= terminated(s)). For a state machine MUDS , 〈SUDS,
IUDS, TUDS〉, for each s ∈ SCLDSA, MCLDSA |= terminated(s) if and only if
finished(s).

In the rest of the paper, terminated is abbreviated as trmtd. We have the following
proposition on MCLDSA:

Proposition 1 (No marker in s-state, snapshot and f-state). For each s ∈ SCLDSA,
if MCLDSA |= trmtd(s), then there is no marker in s-state(s), snapshot(s) and
f-state(s), equivalently that the least sort of s-state(s), snapshot(s) and f-state(s)
are ConFigure.

Note that, whenever CLDSA has terminated in a state s, the function s-state(s),
snapshot(s) and f-state(s) return the start state, the snapshot and the finish state,
respectively.

4 A MORE FAITHFUL DEFINITION OF THE DSR PROPERTY

4.1 The Informal Description of the DSR Property

The informal description of the DSR Property is given in [13] as follows. Let s1, s∗
and s2 be the state in which CLDSA initiates, the snapshot taken, and the state
in which CLDSA terminates, respectively. Although the snapshot s∗ may not be
identical to any of the global states that occur in the computation from s1 to s2,
one desired property (called the DSR property) CLDSA should satisfy is that s∗ is
reachable from s1 and s2 is reachable from s∗, whenever CLDSA terminates. Note
that s1, s2 and s∗ are states of the UDS, but not those of the UDS-CLDSA.

4.2 Formal Definition of the DSR Property

Infinite sequences of states called paths are generated from a state machine because
T is total. Paths are defined as follows.

A More Faithful Formal Definition of the DSR Property 1027

Definition 8 (Path). A path π of a state machine M , 〈S, I, T 〉 from a state s0 is
an infinite sequence of states π , (s0, s1, s2, . . .), where (∀i ≥ 0)((si, si+1) ∈ T). πi
denotes the ith state (i.e., si) in π and Π denotes the set of all paths of M .

For a state machine M , M , π |= isReachable(s2, s1) if and only if s2 is reachable
from s1 in a path π in M and then M |= isReachable(s2, s1) if and only if s2 is
reachable from s1 in M .

Definition 9 (Reachabilty in M). For a state machine M , 〈S, I, T 〉, for each π ∈
Π and each s1, s2 ∈ S, M,π |= isReachable(s2, s1) if and only if (∃i, j ∈ Nat) (i ≤
j ∧ s1 = πi ∧ s2 = πj), and M |= isReachable(s2, s1) if and only if (∃π ∈ Π) (M,π |=
isReachable(s2, s1)).

In other words, a state s2 is said to be reachable from a state s1 if and only if s1
can go to s2 by zero or more state transition steps in the state machine M .

In the informal description of the DSR property, it is checked that CLDSA
terminates, and it is checked that some states of a UDS are reachable from some
others in the UDS but not the UDS-CLDSA. Accordingly, the property involves two
systems, a UDS and the UDS-CLDSA, and hence we need to use two state machines
MUDS and MCLDSA to faithfully define the DSR property. Our definition of the DSR
property is as follows.

Definition 10 (The DSR Property). For a state machine MUDS , 〈SUDS, IUDS,
TUDS〉, (∀s ∈ SCLDSA) (MCLDSA |= trmtd(s) ⇒ MUDS |= isReachable(s∗, s1) ∧
MUDS |= isReachable(s2, s∗)), where s1 = s-state(s), s∗ = snapshot(s) and s2 =
f-state(s).

5 THE THEOREM ON EQUIVALENCE OF THE TWO DEFINITIONS
OF THE DSR PROPERTY

Since our new definition of the DSR property is more likely to faithfully express the
informal description of the property, it can be used to more faithfully model check
that CLDSA enjoys the property. However, due to involving two state machines, it
is not straightforward to directly model check the new definition with an existing
model checker. This is because existing temporal logics, such as LTL and CTL, used
for model checking, only consider one state machine, more precisely one Kripke
structure. Because the existing definition of the DSR property has been model
checked in [16], the equivalence of the new definition and the existing one guarantees
that we can use the existing model checking approach to model checking for the
new definition. Therefore, we prove a theorem saying that our new definition is
equivalent to the existing definition, which also confirms the validity of the existing
model checking approach.

Although the DSR property is encoded in terms of the Maude search command
in the existing study, the existing definition can be represented in terms of state
machines. Let us suppose that there are n processes in a UDS and let p1, . . . , pn

1028 H. Doan, K. Ogata

be their identifications, namely that Pid is {p1, . . . , pn}, where n ≥ 1. Let ctl be
(prog[p1] : notYet) . . . (prog[pn] : notYet) in the rest of the paper. The existing
definition of the DSR property is represented in terms of state machines as fol-
lows:

For a state machine MUDS , 〈SUDS, IUDS , TUDS〉, (∀s ∈ SCLDSA) (MCLDSA

|= trmtd(s) ⇒ MCLDSA |= isReachable(base-state(s∗) control(ctl),
base-state(s1) control(ctl)) ∧ MCLDSA |= isReachable(base-state(s2)
control(ctl),base-state(s∗) control(ctl))), where s1 = s-state(s), s∗ =
snapshot(s) and s2 = f-state(s).

Both of the definitions are checking the termination of CLDSA in MCLDSA.
However, the reachability is checked in the other state machine MUDS in the new
definition, while it is checked in the same state machine MCLDSA in the existing
definition. This is the key difference between the two definitions. Although the two
definitions are seemingly different, we realize that the new one coincides with the
existing one [16]. Hence we prove the following theorem saying that two definitions
are equivalent.

Theorem 1 (Equivalence of the Two Definitions). For a state machine MUDS ,
〈SUDS, IUDS, TUDS〉, (∀s ∈ SCLDSA) (MCLDSA |= trmtd(s) ⇒ MUDS |=
isReachable(s∗, s1) ∧ MUDS |= isReachable(s2, s∗)) ⇔ (MCLDSA |= trmtd(s) ⇒
MCLDSA |= isReachable(base-state(s∗) control(ctl), base-state(s1) control(ctl))∧
MCLDSA |= isReachable(base-state(s2) control(ctl), base-state(s∗) control(ctl))),
where s1 = s-state(s), s∗ = snapshot(s) and s2 = f-state(s).

The only difference between the new definition and the existing one is the conclusion
part of the implications, in which the different state machines are used to check
the reachability in each definition. If we can prove that the conclusion parts are
equivalent, then the two definitions are equivalent. The equivalence of the conclusion
parts means that reachability is preserved between MUDS and MCLDSA. Therefore,
to prove Theorem 1, we prove Lemma 1 on reachability preservation. Lemma 1
asserts that reachability is preserved between MUDS and MCLDSA. The lemma is as
follows.

Lemma 1 (Reachability Preservation). For a state machine MUDS , 〈SUDS,
IUDS, TUDS〉, (∀s1, s2 ∈ SUDS) (MUDS |= isReachable(s2, s1) ⇔ MCLDSA |=
isReachable(base-state(s2) control(ctl), base-state(s1) control(ctl))).

We first prove as Lemma 2 and Lemma 3 that one-step reachability is preserved
between MUDS and MCLDSA to prove Lemma 1. The two lemmas are as follows.

Lemma 2 (One-step Reachability Preservation from MUDS to MCLDSA). ∀s1, s2
∈ SUDS such that s1 goes to s2 with one state transition step in MUDS,
base-state(s1) control(ctl) goes to base-state(s2) control(ctl) with one state tran-
sition step in MCLDSA.

A More Faithful Formal Definition of the DSR Property 1029

Lemma 3 (One-step Reachability Preservation from MCLDSA to MUDS). ∀ s1, s2
∈ SUDS such that base-state(s1) control(ctl) goes to base-state(s2) control(ctl)
with one state transition step in MCLDSA, s1 goes to s2 with one state transition
step in MUDS.

For each UDS, TUDS is constructed from the three transition rules and TCLDSA is
constructed from the 18 transition rules. Therefore, all we have to do is to take
into account the three transition rules and the 18 transition rules to discuss TUDS

and TCLDSA, respectively. In the following proofs, p, q ∈ Pid, ps1, ps2 ∈ PState,
cs ∈ MsgQueue, m ∈ Msg, bc ∈ Config and n ∈ Nat are fresh constants of those
sorts.

Proof. (Proof Sketch of Lemma 2.) Assume that s1 goes to s2 by a state transi-
tion t in MUDS. Our proof shows that there exists a state transition t′ in MCLDSA

that moves base-state(s1) control(ctl) to base-state(s2) control(ctl). Let us consider
the case in which t is constructed from the transition rule that describes Sending of
Message in MUDS. It suffices to consider s1 as an arbitrary state (p-state[p] : ps1) (c-
state[p, q, n] : cs)bc in SUDS to which the transition rule can be applied. There-
fore, s2 is (p-state[p] : ps2) (c-state[p, q, n] : enq(cs,m))bc. Then, base-state(s1)
control(ctl) is base-state((p-state[p] : ps1)(c-state[p, q, n] : cs)bc) control(ctl), and
base-state(s2) control(ctl) is base-state((p-state[p] : ps2) (c-state[p, q, n] : enq(cs,m))
bc) control(ctl). The transition rule that describes Sending of Message in MCLDSA

can be applied to base-state(s1) control(ctl) and obtains base-state(s2) control(ctl).
Hence, there exists t′. The case has been discharged. We can deal with the other
two cases that correspond to Change of Process State and Receipt of Message, re-
spectively. �

Proof. (Proof Sketch of Lemma 3.) Assume that base-state(s1) control(ctl) goes to
base-state(s2) control(ctl) by a state transition t in MCLDSA. Because s1 ∈ SUDS,
there is no marker in s1. Moreover, ctl is (prog[p1] : notYet) . . . (prog[pn] : notYet).
This is why any of the transition rules that describe Record of Process State and Re-
ceipt of Marker in MCLDSA cannot be applied to base-state(s1) control(ctl). There-
fore, t is not a state transition constructed from those transition rules. Any of the
transition rules that describe the 2nd, 3rd and 4th sub-cases of Receipt of Message
in MCLDSA cannot be applied to base-state(s1) control(ctl), neither. Therefore, t is
not a state transition constructed from those transition rules, neither. Then, all we
have to do is to consider the transition rules that describe Change of Process State,
Sending of Message and the 1st part of Receipt of Message in MCLDSA. The same
proof strategy used in the proof of Lemma 2 can be used to show that there exists
a state transition that moves s1 to s2 in MUDS for each state transition that moves
base-state(s1) control(ctl) to base-state(s2) control(ctl) in MCLDSA. �

Proof. (Proof of the “if” part of Lemma 1.) We prove that ∀s1, s2 ∈ SUDS,
if MCLDSA |= isReachable(base-state(s2) control(ctl), base-state(s1) control(ctl)),
then MUDS |= isReachable(s2, s1).

1030 H. Doan, K. Ogata

Assume that MCLDSA |= isReachable(base-state(s2) control(ctl), base-state(s1)
control(ctl)) and then there must be a natural number k such that base-state(s1)
control(ctl) goes to base-state(s2) control(ctl) by k state transition steps in MCLDSA.
The proof is done by induction on k.

Base case: Since base-state(s1) control(ctl) is the same as base-state(s2)
control(ctl) in this case, s1 is the same as s2. So, this case is discharged.

Induction case: Suppose that base-state(s1) control(ctl) moves to base-state(s2)
control(ctl) by k + 1 transition steps and the k + 1 transitions taken are t1, . . . ,
tk+1. As shown in Figure 5, base-state(s′) control(ctl) is the state to which
base-state(s1) control(ctl) moves by the first k transition steps, namely that
MCLDSA |= isReachable(base-state(s′) control(ctl), base-state(s1) control(ctl)).
From the induction hypothesis, MUDS |= isReachable(s′, s1). Since base-state(s′)
control(ctl) moves to base-state(s2) control(ctl) by one transition step in
MCLDSA, s′ also moves to s2 by one transition step in MUDS from Lemma 3.
Then, this case is also discharged. Figure 5 shows the correspondence between
the transitions in MCLDSA and MUDS.

�

t1 t2 tk
tk+1

base-state(s’)
control(ctl)

base-state(s1)
control(ctl)

base-state(s2)
control(ctl)

s1 s2s’

Figure 3. The correspondence between the transitions in MCLDSA and MUDS

Proof. (Proof Sketch of the “only if” part of Lemma 1.) We prove that ∀s1, s2 ∈
SUDS, if MUDS |= isReachable(s2, s1), then (MCLDSA |= isReachable(base-state(s2)
control(ctl), base-state(s1) control(ctl)).

Assume that MUDS |= isReachable(s2, s1) and then there must exist a natural
number k such that s1 goes to s2 by k state transition steps in MUDS. The proof is
done by induction on k. Note that Lemma 2 is used in this proof. �

Proof. (Proof of Theorem 1.) Proof of Theorem 1 follows from Proposition 1 and
Lemma 1. �

6 CLDSA DOES NOT ALTER THE BEHAVIORS OF A UDS

As control algorithms [21], DSAs should run concurrently but not interfere with the
behaviors of a UDS. The behaviors of the algorithms are transparent to a UDS. It is

A More Faithful Formal Definition of the DSR Property 1031

necessary to prove that CLDSA does not alter the behaviors of a UDS to guarantee
the correctness of the algorithm. We will prove that any original actions of each
process of a UDS, namely sending a message, receiving a message and changing its
state, are preserved by CLDSA.

If we prove that MCLDSA simulates MUDS and vice versa, we can state that the
behaviors of a UDS are preserved by CLDSA. We propose a binary relation r between
MUDS and MCLDSA, and then prove Theorem 1 saying that r is a bi-simulation
relation between MUDS and MCLDSA. In the following part, for all states s, s′ in
state machine M , s M s′ denotes that state s moves to states s′ by one state
transition of M , and s ∗M s′ denotes that state s moves to state s′ by zero or more
state transitions of M . Simulation from one state machine to another is defined as
follows:

Definition 11 (Simulation from MA to MB). Given two state machines MA ,
〈SA, IA, TA〉 and MB , 〈SB, IB, TB〉, r : SA SB → Bool is called a simulation
from MA to MB if it satisfies the following conditions:

1. For each sA ∈ IA there exists sB ∈ IB such that r(sA, sB).

2. For each sA, s
′
A ∈ SA and sB ∈ SB such that r(sA, sB) and sA MA

s′A, there
exists s′B ∈ SB such that r(s′A, s

′
B) and sB ∗MB

s′B.

r is a bi-simulation if and only if it is a simulation from MA to MB and vice versa.
We recognize that with the exception of putting markers into the channels of

a UDS, the algorithm does not change any original behavior of processes in the
system. We propose a binary relation r between MUDS and MCLDSA saying that for
each s1 ∈ SUDS and each s2 ∈ SCLDSA, r(s1, s2) if and only if s1 is the same as the
state obtained by deleting all markers from s2. The functions to delete all markers
from one state of a UDS on which CLDSA is superimposed is implemented as the
function delM as follows:

op delM: BConfig→ Config.

eq delM(empBConfig) = empConfig.

eq delM((p-state[P] : PS) BCF) = (p-state[P] : PS)delM(BCF).

eq delM((c-state[P,Q,N] : MMS)BCF) =

(c-state[P,Q,N] : delMchan(MMS)) delM(BCF).

Where function delMchan deletes all markers in a sequence of messages.
The binary relation r is defined as follows:

Definition 12 (Binary relation r). Given two state machines MUDS , 〈SUDS,
IUDS, TUDS〉 and MCLDSA , 〈SCLDSA, SCLDSA, TCLDSA〉,∀sUDS ∈ SUDS and
∀sCLDSA ∈ SCLDSA, the binary relation r : SUDSSCLDSA → Bool is defined as
follows:

r(sUDS, sCLDSA) , (sUDS = delM(b-state(sCLDSA))).

1032 H. Doan, K. Ogata

!
"
#∈#$

%&'()##

!
"
#∈#$

*'(#!

!
%&'()

#

!
*'(

!+
*'(

,

!+
%&'()

#

- -

Figure 4. The binary relation r is a simulation from MCLDSA to MUDS

Theorem 2 (Bi-simulation relation r). Binary relation r is a bi-simulation relation
between MUDS and MCLDSA.

We will prove that r is a simulation from MCLDSA to MUDS and vice versa. It
suffices to only consider states reachable from the initial states in the proof. Initial
states have a specific form of configuration and no observable component will be
added to and/or deleted from initial states by any transition. The proof uses this
fact.

Simulation from MCLDSA to MUDS. We will prove that r satisfies the following
conditions. Figure 6 shows the diagrams corresponding to the two conditions.

Condition 1. For each sCLDSA ∈ SCLDSA there exists sUDS ∈ IUDS such that
r(sUDS, sCLDSA).

Proof. For each sCLDSA ∈ CLInit(IUDS), according to the definition of CL, sCLDSA

is in form of base-state(bc) start-state(empBConfig) snapshot(empBConfig) finsh-
state(empBConfig) control(ctl), where bc ∈ IUDS. Since b-state(sCLDSA) = bc and
bc ∈ IUDS, let us choose sUDS is bc. Because delM(b-state(sCLDSA)) = bc, sUDS =
delM(b− state(sCLDSA)). We have r(sUDS, sCLDSA). This condition is satisfied. �

Condition 2. For each sCLDSA, s′CLDSA ∈ SCLDSA and sUDS ∈ SUDS such that
r(sUDS, sCLDSA) and sCLDSA MCLDSA

s′CLDSA, there exists s′UDS such that
r(s′UDS, s

′
CLDSA) and sUDS ∗MUDS

s′UDS.

Proof. (Proof sketch.) The configuration of a state of MCLDSA is as follows.

base-state(bc) start-state(sc) snapshot(ssc) finish-state(fc) control(ctl),

where bc, sc, ssc, fc ∈ BConfig and ctl ∈ CtlConFigure.
Because of r(sUDS, sCLDSA), sUDS = delM(b-state(sCLDSA)) = delM(bc). Let

us assume that sCLDSA MCLDSA
s′CLDSA by state transition t. The same as what

we have mentioned above, we only take into account the three transition rules and
the 18 transition rules to discuss TUDS and TCLDSA, respectively. Because the 18
transition rules are classified into three parts: UDS, UDS & CLDSA, and CLDSA,
the state transitions can be also classified into the three parts. In what follows,

A More Faithful Formal Definition of the DSR Property 1033

p, q ∈ Pid, ps1, ps2 ∈ PState, cs ∈ MsgQueue, m ∈ Msg, bc, sc, ssc ∈ BConfig,
ctl ∈ CtlConfig and n ∈ Nat are fresh constants of those sorts.

1. Let us consider the first case in which t is in the UDS part and the UDS & CLDSA
part.

Our proof shows that for any state transition t in the UDS and the UDS &
CLDSA parts that moves sCLDSA to s′CLDSA, there exists s′UDS to which sUDS

moves by one state transition such that r(s′CLDSA, s
′
UDS) holds. We can find

a state transition t′ in MUDS that can move sUDS = delM(b-state(sCLDSA)) to
s′UDS = delM(b-state(s′CLDSA)). The existence of t′ corresponding to t is shown
in Figure 5 a).

!
"#$%&

'

!
($%

!)
($%

!)
"#$%&

'

* *

+

+)

!
"#$%&

' !)
"#$%&

'
+

!
($%''

,'!)
($%

(a) (b)

a) b)

Figure 5. Existing t′ in MUDS corresponding to t

Let us consider the case in which t is constructed from the transition rule that
describes Change of Process State in MCLDSA. It suffices to consider sCLDSA

as base-state((p-state[p] : ps1)bc) start-state(sc) snapshot(ssc) finish-state(fc)
control(ctl) to which the transition rule can be applied. Because of r(sUDS,
sCLDSA), sUDS = delM((p-state[p] : ps1)bc) = (p-state[p] : ps1) delM(bc) from
the definition of function delM. Since sCLDSA goes to s′CLDSA by t, s′CLDSA

is base-state((p-state[p] : ps2)bc) start-state(sc) snapshot(ssc) finish-state(fc)
control(ctl). Let t′ be the state transition that is constructed from the tran-
sition rule that describes Change of Process State in MUDS. Let s′UDS be
(p-state[p] : ps2) delM(bc). Then sUDS can move to s′UDS by t′. Because
s′UDS = (p-state[p] : ps2) delM(bc) and delM(b-state(s′CLDSA)) = (p-state[p] :
ps2) delM(bc), s′UDS = delM(b-state(s′CLDSA)). Therefore, r(s′UDS, s

′
CLDSA)

and sUDS MUDS
s′UDS by t′. The case has been discharged. We can deal with

the other two cases that correspond to Sending of Message and the 1st of Receipt
of Message, respectively, likewise.

2. The last case in which t is constructed from the transition rule in the CLDSA
part.

Since CLDSA part does not change the base-state meta configuration component
of a state of MCLDSA. Our proof shows that we can choose as s′UDS the same
as sUDS then sUDS goes to s′UDS by zero step and r(s′UDS, s

′
CLDSA). This is

shown in Figure 5 b).

1034 H. Doan, K. Ogata

From what have been proved above, we can see that relation r satisfies the two
conditions of simulation from MCLDSA to MUDS. Therefore, r is a simulation relation
from MCLDSA to MUDS. �

Simulation from MUDS to MCLDSA We will prove that r is a simulation from
MUDS to MCLDSA.

Proof. (Proof Sketch.) Our proof shows that r satisfies the two conditions of
simulation from MCLDSA to MUDS. It is straightforward to show that for each s in
IUDS there exists s′ in ICLDSA such that r(s, s′) holds. To show the second condition,
we need to consider the three (kinds of) transition rules of MUDS and then it suffices
to consider the rules of the UDS part and some rules of the UDS & CLDSA part in
MCLDSA. The proof can be conducted like we have done for the proof of simulation
from MCLDSA to MUDS. �

7 RELATED WORK

Many researches [10, 11, 12] have been conducted to formally verify various dis-
tributed systems. Among them, [10] concentrates on model checking for distributed
systems. The main contribution of the research is the design and implementation of
the fair linear temporal logic of rewriting (LTLR) model checker, a model checker
under localized fairness assumptions for Maude system. LTLR is an extension of
LTL. So the Fair LTLR model checker is basically an extension of Maude LTL
model checker dealing with fairness assumptions. Although the model checker tries
to deal with several distributed algorithms, it has not yet considered DSAs. The
authors in [11] deal with the problem of verification of asynchronous consensus al-
gorithms, a fault-tolerant distributed algorithm. The challenge of the problem is
that the state space is huge. Dealing with this problem, they have proposed a semi-
automatic verification approach based on model checking technique. In their ap-
proach the problem of verification of asynchronous consensus algorithms is reduced
to small model checking problems, namely the set of bounded model checking prob-
lems that can be solved efficiently by using bounded model checking with an SMT
(Satisfiability Modulo Theories) solver. In detail, they adopt a round-based model
called the Heard-Of (HO) model [20] to alleviate the problem. Their method can
be used to model check several consensus algorithms up to around 10 processes.
However, the method can only be applied to some consensus algorithms but not to
DSAs.

CLDSA and its desired properties were initially introduced in [13]. In this, the
DSR property is given in an informal way. Several studies are motivated by verifica-
tion of snapshot algorithms. Among them, [7, 12] consider directly CLDSA. In [7],
CLDSA is modelled in PROMELA, and then the model is simplified to be verifi-
able. However, only the UDS-CLDSA is modelled, and a property that is different
from the DSR property is model checked for CLDSA. The authors in [12] focus on
developing snapshot algorithms with formal proofs that guarantee the correctness

A More Faithful Formal Definition of the DSR Property 1035

of the algorithms. Some existing snapshot algorithms, such as CLDSA and Lai-
Yang, are re-developed by using the Event B framework and refinement. Starting
with a model providing an abstract view of a system and its behaviors, the model
then is enriched more concretely by many refinement steps to derive the algorithms.
To capture the complete and desired behaviors of snapshot algorithms, each refine-
ment step must preserve essential desired properties ensuring a consistent cut. The
properties are implemented as invariant conditions. This is also to ensure that the
snapshot recorded by the deriving algorithm is consistent. Their experiments are
conducted on fixed networks. Moreover, any of the properties they have considered
are not necessarily the same as the DSR property.

8 CONCLUSION

The authenticity of a model checking relies on the faithfulness of the specifications of
desired properties. It is expected that the desired properties are faithfully expressed
in the specifications. Attempting to more faithfully model check the DSR property
for CLDSA, we have given a more faithful formal definition of the DSR property.
Our definition involves two state machines in which the termination is checked in
the state machine MCLDSA formalizing the UDS-CLDSA and the reachability is
checked in the other state machine MUDS formalizing a UDS. The checking of the
reachability is different between the new definition and the existing definition. To
guarantee that it suffices to model check the definition used in the existing study for
CLDSA and the existing model checking approach can be used for this end, we have
proved Theorem 1 saying that our formalization of the DSR property is equivalent
to the existing one for each MUDS. Moreover, we have proved Theorem 2 saying
that MCLDSA simulates MUDS and vice versa to guarantee that CLDSA does not
alter the behaviors of a UDS.

In the existing work [16], it is necessary to specify the UDS on which CLDSA
is superimposed for each UDS in Maude to model check that the UDS on which
CLDSA is superimposed enjoys the DSR property with the Maude search command.
Moreover, the way to model check means to compare the numbers of solutions ob-
tained by three search experiments. Therefore, it is not straightforward to construct
a counterexample when the property is not fulfilled. The specification techniques
described in the paper make it possible to specify CLDSA as a meta-program in
Maude. Such a meta-program as a specification of CLDSA takes a concrete UDS
as an actual parameter and generates the specification of the UDS-CLDSA. It is
also possible to directly model check the faithful formalization of the DSR property
based on the specification of the UDS-CLDSA and construct a counterexample if
the property is not fulfilled.

Acknowledgement

This work was partially supported by Kakenhi 23220002, 26240008, 30272991. The
authors are grateful to the anonymous reviewers who carefully read an earlier version

1036 H. Doan, K. Ogata

of the paper and gave us useful comments that made it possible for us to complete
the present paper.

REFERENCES

[1] Coulouris, G. F.—Dollimore, J.—Kindberg, T.—Blair, G.: Distributed
Systems: Concepts and Design. 5th Edition. Addison-Wesley, 2011.

[2] Raynal, M.: Distributed Algorithms for Message-Passing Systems. Springer, 2013,
doi: 10.1007/978-3-642-38123-2.

[3] Rittinghouse, J. W.—Ransome, J. F.: Cloud Computing: Implementation, Ma-
nagement, and Security. CRC Press, 2009.

[4] Spink, A.—Zimmer, M. (Eds.): Web Search: Multidisciplinary Perspectives.
Springer, Information Science and Knowledge Management, Vol. 14, 2008, doi:
10.1007/978-3-540-75829-7.

[5] Baier, C.—Katoen, J.-P.: Principles of Model Checking (Representation and
Mind Series). The MIT Press, 2008.

[6] Clarke, E. M.—Grumberg, O.—Peled, D. A.: Model Checking. MIT Press,
1999.

[7] Holzmann, G. J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, 2003.

[8] Cimatti, A.—Clarke, E.—Giunchiglia, E.—Giunchiglia, F.—
Pistore, M.—Roveri, M.—Sebastiani, R.—Tacchella, A.: NuSMV 2:
An OpenSource Tool for Symbolic Model Checking. In: Brinksma, E., Larsen, K. G.
(Eds.): Computer Aided Verification (CAV 2002). Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, Vol. 2404, 2002, pp. 359–364, doi: 10.1007/3-
540-45657-0 29.

[9] Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Professional, 2002.

[10] Konnov, I.—Veith, H.—Widder J.: On the Completeness of Bounded Model
Checking for Threshold-Based Distributed Algorithms: Reachability. In: Baldan, P.,
Gorla, D. (Eds.): CONCUR 2014 – Concurrency Theory. Springer, Berlin, Heidelberg,
Lecture Notes in Computer Science, Vol. 8704, 2014, pp. 125–140, doi: 10.1007/978-
3-662-44584-6 10.

[11] Tsuchiya, T.—Schiper, A.: Verification of Consensus Algorithms Using Satisfi-
ability Solving. Distributed Computing, Vol. 23, 2011, No. 5-6, pp. 341–358, doi:
10.1007/s00446-010-0123-3.

[12] Andriamiarina, M. B.—Méry, D.—Singh, N. K.: Revisiting Snapshot Algo-
rithms by Refinement-Based Techniques. Computer Science and Information Systems,
Vol. 11, 2014, No. 1, pp. 251–270, doi: 10.2298/CSIS130122007A.

[13] Chandy, K. M.—Lamport, L.: Distributed Snapshots: Determining Global States
of Distributed System. ACM Transactions on Computer Systems (TOCS), Vol. 3,
1985, No. 1, pp. 63–75, doi: 10.1145/214451.214456.

https://doi.org/10.1007/978-3-642-38123-2
https://doi.org/10.1007/978-3-540-75829-7
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/978-3-662-44584-6_10
https://doi.org/10.1007/978-3-662-44584-6_10
https://doi.org/10.1007/s00446-010-0123-3
https://doi.org/10.2298/CSIS130122007A
https://doi.org/10.1145/214451.214456

A More Faithful Formal Definition of the DSR Property 1037

[14] Spezialetti, M.—Kearns, P.: Efficient Distributed Snapshots. Proceeding of the
6th International Conference on Distributed Computing Systems (ICDCS 1986), 1986,
pp. 382–388.

[15] Venkatesan, S.: Message-Optimal Incremental Snapshots. The Journal of Com-
puter and Software Engineering, Vol. 27, 1993, pp. 211–231.

[16] Ogata, K.–Huyen, T. T. P.: Specification and Model Checking of the Chandy
and Lamport Distributed Snapshot Algorithm in Rewriting Logic. In: Aoki, T.,
Taguchi, K. (Eds.): Formal Methods and Software Engineering (ICFEM 2012).
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 7635, 2012,
pp. 87-102, doi: 10.1007/978-3-642-34281-3 9.

[17] Clavel, M.—Durán, F.—Eker, S.—Lincoln, P.—Mart́ı-Oliet, N.—
Meseguer, J.—Talcott, C.: All About Maude – A High-Performance Logi-
cal Framework: How to Specify, Program and Verify Systems in Rewriting Logic.
Springer, Berlin, Heidelberg, Lecture Notes in Computer Science, Vol. 4350, 2007,
doi: 10.1007/978-3-540-71999-1.

[18] Zhang, W.—Ogata, K.—Zhang, M.: A Consideration on How to Model Check
Distributed Snapshot Reachability Property. IEICE Technical Report, Vol. 114, 2015,
No. 416, pp. 49–54. ISSN 0913-5685.

[19] Doan, H. T. T.—Zhang, W.—Zhang, M.—Ogata, K.: Model Checking
Chandy-Lamport Distributed Snapshot Algorithm Revisited. Proceeding of the
2nd International Symposium on Dependable Computing and Internet of Things
(DCIT), IEEE, 2015, pp. 30–39, doi: 10.1109/DCIT.2015.13.

[20] Charron-Bost, B.—Schiper, A.: Harmful Dogmas in Fault Tolerant Dis-
tributed Computing. ACM SIGACT News, Vol. 38, 2007, No. 1, pp. 53–61, doi:
10.1145/1233481.1233496.

[21] Kshemkalyani, A. D.—Singhal, M.: Distributed Computing: Principles, Algo-
rithms, and Systems. Cambridge University Press, 2008.

https://doi.org/10.1007/978-3-642-34281-3_9
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1109/DCIT.2015.13
https://doi.org/10.1145/1233481.1233496

1038 H. Doan, K. Ogata

Ha Thi Thu Doan got her Ph.D. degree from the Japan Ad-
vanced Institute of Science and Technology (JAIST) in 2019.
She was Lecturer at the Vietnam National University of Agricul-
ture. She received her M.Sc. degree from the Information Science
School, JAIST. Her research interests include formal methods,
distributed systems, especially formal verification of distributed
systems. She has been currently working on formal verification
of distributed snapshot algorithms and distributed mobile robot
algorithms.

Kazuhiro Ogata is Professor at the School of Information
Science, Japan Advanced Institute of Science and Technology.
He got his doctoral degree of engineering from the Graduate
School of Science and Technology, Keio University, in 1995.
Among his interesting research topics are formal methods and
their application to systems, such as distributed systems.

