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Abstract. Plant-animal mutualistic interactions such as frugivory and seed dispersal display great
variation in time due to fluctuations in fruit abundance, animal abundance, and behavior. In particular,
some species participate in interactions with other species only transiently, while other species are active for
longer periods of time. Species with a longer period of activity are able to interact with more species, and
thus engage in constant participation in an interaction network. Species with high constancy would thus be
expected to help maintain the biodiversity of a community; however, the manner in which constant species
link to their partners may be critical to species coexistence. Because species that interact with many
partners concurrently could create more competition compared to those species that interact sequentially
with many partners, evaluating the concurrence in an interaction network sheds light on how the network
can maintain biodiversity. In this study, we investigate how phenological patterns of fruit production and
frugivore presence affect the temporal variation of a plant-frugivore network, and focus on the manner in
which high degree species collect their interactions over time. We found a clear separation of activity
periods: most species appeared only briefly and participated in relatively few interactions, or showed
activity for longer time periods and participated in more interactions. Species that were active for longer
time periods often shifted interactions, resulting in a sequential collection of their partners in time, rather
than concurrence. For the seed dispersal mutualism in particular, sequential accumulation of partners may
allow plant species more opportunities to disperse their seeds compared to concurrence. We suggest that
for temporally and spatially heterogeneous landscapes, sequential accumulation of partners would serve to
reduce competition and facilitate coexistence of species.
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INTRODUCTION

Network analyses of mutualistic plant-animal
interactions reveal that certain network proper-
ties of these communities remain invariant,
though interactions are inherently dynamic and
change over time (Jordano et al. 2003, Basilio et
al. 2006, Medan et al. 2006, Bascompte and
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Jordano 2007, Olesen et al. 2008, Petanidou et
al. 2008, Burkle and Alarcon 2011). Intra-annual
temporal dynamics have been documented in
several plant-pollinator networks (e.g., Basilio et
al. 2006, Medan et al. 2006, Alarcon et al. 2008,
Olesen et al. 2008) and a few plant-seed disperser
networks (e.g., Carnicer et al. 2009, Gonzalez-
Castro et al. 2012). The dynamics of mutualistic

December 2013 %¢ Volume 4(12) %* Article 147



animal-plant interactions are in part driven by
temporal changes in the abundances of animals
and the plant resources they use, such as fruits
for frugivores (e.g., Carnicer et al. 2009) and
flowers for pollinators (e.g., Olesen et al. 2008).
Availability of flowers and fruits, in turn, is
largely controlled by species-specific phenologi-
cal patterns and its interaction with supra-annual
weather patterns. Phenology, by influencing
patterns of interaction (i.e.,, edges) among spe-
cies, can have a large role in determining the
properties of networks as a whole.

Phenological drivers of the interactions be-
tween plant and animal species may also have
implications for the stability of communities.
Species that are highly abundant and/or active
for longer periods of time have a greater
opportunity to interact with many other species,
and therefore should engage in a high number of
mutualistic interactions relative to species that
are transient and/or rare (Olesen et al. 2008,
Olesen et al. 2010). For example, newly active
species interact with partners that already have
many partners over the course of a year (Olesen
et al. 2008); thus some mutualistic networks
appear to grow by preferential attachment
(Barabasi and Albert 1999). If species of greater
constancy support many other species (i.e., act as
generalists), then they would be expected to
maintain the biodiversity of the community
(Bascompte and Jordano 2007).

The realization of this expectation, however,
could depend on how interactions between
species are formed over time. Interactions of a
generalist species that are concurrent may have
different ecological consequences from those
interactions occurring in a non-overlapping
fashion. Specifically, how the partners of gener-
alist species are accumulated over time could
translate into different regimes of inter- and
intraspecific competition. For example, generalist
frugivores could interact with the majority of
fruiting species available at any moment, or the
occurrence of pairwise interactions could be
affected by competition and facilitation between
fruiting species (Carlo 2005, Carlo et al. 2007).
How competition takes place within the network
is important to evaluate because classic theoret-
ical models (May 1973, Pimm 1979) and field
experiments (e.g., Tilman 1996) predict that
population dynamics of individual species in a
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community become progressively unstable as the
number of competing species increases. Interspe-
cific competition, however, could be reduced if
interactions between species are structured in
certain ways. For example, theory suggests that
competition between species is minimized if they
share generalist mutualistic partners; this re-
duced competition increases the number of
species that can coexist in the community
(Bastolla et al. 2009). In other words, the benefit
from sharing a mutualistic partner can counteract
competition for other resources (e.g., soil nutri-
ents for plants). An assessment of how species
interact with their mutualistic partners through-
out the entire season, specifically how those
partners are accumulated over time, could be
critical to our understanding of how interaction
networks affect biodiversity, particularly for
dispersal-limited plant species (e.g., Howe and
Miriti 2004).

In this study, we first assess the temporal
variability in interactions between species in a
plant-frugivore community. We then focus on the
extent to which interactions are constant vs.
transient in the network of interactions, as well as
how concurrent vs. sequential are interactions
that involve generalist species. We explore the
role of phenological abundance in driving pat-
terns of constancy and concurrence, and discuss
the implications of constancy and concurrence
for the dispersal of plant species and the stability
of communities.

METHODS

The plant-frugivore network

In a plant-frugivore network, plant and bird
species are the nodes, and a frugivorous interac-
tion between a bird-plant pair constitutes an
edge. We analyzed the plant-frugivore interac-
tion data in Carlo et al. (2003) focusing on the
Cialitos study site, a continuous 9-ha area
composed of a near even mixture of rustic shade
coffee (sensu Moguel and Toledo 1999) and 50-
year old secondary forest patches. Here we will
briefly describe the methodology, but for full
details we refer readers to the original paper.
Fruiting plant phenology in Cialitos was record-
ed once a month from February to September of
1998 from a sample of 190 trees belonging to 29
species of plant that included fleshy-fruited
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epiphytes, parasites (mistletoes), shrubs, and
trees. Plants were visited in a monthly schedule
and the number of ripe fruit estimated using
abundance categories that increased quasi-loga-
rithmically. We used the average of the ripe fruit
abundance categories’ midpoints as our estima-
tor of fruit abundance for each species within
sites. We multiplied each of these species’ ripe
fruit mean estimates by the corresponding plant
species density/ ha at each site to obtain an
estimate of ripe fruit/ha for each fruiting plant
species per month. The density of fruiting plant
species was obtained by surveying 24 indepen-
dent circular vegetation plots (11 m radius)
evenly spaced throughout the plot. Bird abun-
dance was also recorded once a month (always in
the same week when fruits were counted) using
nine permanent point count stations. Bird forag-
ing observations were conducted for 5 hours each
day, twice per week. Observations started each
morning in a randomly selected area of the site, a
point from which observers moved, following
the nearest bird foraging activity. Observations
(edges) were strictly independent from one
another, and individual birds were observed
until a feeding bout took place, a point at which
a different individual was followed. For logistical
reasons, a few plant species, such as the similar
mistletoes Phoradendron pipperoides and Phoraden-
dron hexastichum, were not distinguished in the
field, and thus are considered a single node (e.g.,
Phoradendron spp.).

These observation methods produced data of a
high enough resolution to detect the preferences
of frugivores for fruiting plants of both short (<1
month) and long (>8 months) periods (Carlo et
al. 2003). In addition, our separate assessment of
species abundance allows us to estimate the
reliability of our network representation of the
true community. We estimated our network’s
reliability by first counting the frequency of co-
occurrence of species for which edges are
possible (an edge exists during any of the
observation periods). We then examined our set
of observations for mismatches of no edges when
an edge is possible. We assumed that the absence
of an edge when the abundance of both species
was relatively high is a true zero. The remaining
cases, when one or both species’ abundances are
lower than the lowest abundance in which an
edge was observed, constitute 18 out of the 216
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possible edges (8% of cases), and for these we
may have lacked power to detect rare interac-
tions.

Temporal measures of network structure

We initially analyzed our network with con-
ventional network measures that are adjusted to
include a temporal perspective. We then devel-
oped several measures to encapsulate constancy
and concurrence of species and their interactions
within our community. Except where noted,
these measures use unweighted edges, thus
capturing interaction diversity among species
rather than interaction frequency. In addition,
we define the number of different partners of a
node (i.e., degree) as the amount of participation
of a species in the network, rather than the level
of generalization of a species. For birds, ‘gener-
alists’ could be either frugivores that eat many
fruiting plant species, or omnivores (dietary
generalists that eat more than fruit). This
distinction reduces the potential for confusion
(Bliithgen et al. 2008).

Network-level measures.—To adjust convention-
al network measures to include temporal dy-
namics, we first constructed momentary
subgraphs (Morris and Kretzschmar 1995); also
called ‘time-specific sequential webs’ (Basilio et
al. 2006) or ‘temporal networks’ (Kaiser-Bunbury
et al. 2010), for each month of the frugivore
network (Fig. 1b—i; Appendix). Note that we
chose monthly momentary subgraphs, because
Carlo et al. (2003) was able to detect frugivore
preferences (i.e., important determinants of
edges) using this time interval. We then com-
pared these momentary subgraphs to the fully
compiled graph of the entire season (full graph;
Fig. 1a; Appendix). Each momentary subgraph
includes only the edges observed during each
monthly sampling period. Networks were visu-
alized with the plotweb function and conventional
measures calculated with the networklevel func-
tion in the bipartite package in R (Dormann et al.
2008, R Development Core Team 2013). Exclud-
ing inactive nodes (i.e.,, those that do not
participate in an edge), we calculated for each
subgraph several standard network properties,
and then compared subgraph properties to those
obtained from an analysis of the full graph for:
degree (k, number of edges per node), edge
weight (frequency of interactions between two
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Fig. 1. (a) Full and (b-i) momentary network representations of the plant-frugivorous bird community are
dissimilar. Birds are represented in the upper row and plants in the lower row of each network, in the same order
as the full network. For (b) February, (c) March, (d) April, (e) May, (f) June, (g) July, (h) August, and (i) September
momentary graphs, the relative abundance of birds is plotted above each bird node, and the fruit abundance
below each plant node. All species from the full graph are included in each momentary graph. Species that
participate in an interaction are drawn in black; those that do not participate in an interaction are drawn in grey
(note that these inactive species are not considered in the calculations of network and node properties). For each
network graph, the size of each species’ box is proportional to that species’ contribution to the interactions
occurring in the network, and the width of each interaction is proportional to the frequency that this interaction
was observed.
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Table 1. Metrics to quantify temporal variation in ecological networks.

YANG ET AL.

Applicable
network
Temporal metric ~ component Definition Values Interpretation
Momentary degree, nodes Number of partners that species i mk; > 1 Larger values mean greater

mk; (Morris and
Kretschmar 1995)

Average nodes
proportional
momentary
degree, (mk;)/k;
Momentary weight, edges
me,‘}‘
Relative momentary edges
weight, me,—,*
Duration (Russo et nodes,
al. 2013) edges
Fidelity nodes

interacts with during a specific
time interval

Average proportion of partners
that species i interacts with
during a specific time interval
out of the total number of
partners that species i has over
the entire season

Frequency of interactions
between species i and j during
a specific time interval

How frequently the interaction
between species i and j occurs
relative to the average me;; i.e.,

me;; — (meiy)/(mey;)

Number of time intervals in
which species i interacts with
any other species, or in which
edge e; occurs

Average edge duration of species
i, divided by the duration of

0 < (mky)/k; < 1

I’I’ZE,‘/‘ >1

negative to positive
values possible

duration > 1

fidelity > 0

participation in the network of
interactions during a specific
time interval

Smaller values correspond to
species whose participation in
the network is sequential
rather than concurrent

More common interactions have
larger values during a specific
time interval

Values closer to 0 mean that
interactions occur consistently
throughout their periods of
occurrence

Distribution of duration values
shows the temporal variability
in interactions throughout a
community

Larger values correspond to
species who participate reliably

species i

in the same interactions

nodes), connectance (proportion of realized
edges in the network, Jordano 1987), number of
connected components (isolated clusters of
nodes, also called compartments), and nested-
ness (hierarchical structure, Bascompte et al.
2003). Although several nestedness metrics are
currently available, we chose to use NODF,
because it has been demonstrated to be robust
to network size and thus allowed us to make
comparisons between networks (Almeida-Neto
et al. 2008). Nestedness may arise from specific
species behavior or simply from random inter-
actions between synchronously active species
(Bascompte et al. 2003). The oecosimu function
in the vegan package (Oksanen et al. 2012) was
used to test whether the nestedness in the
observed network was random or not. We
constructed 200 random replicates of each
network using the quasiswap simulation method
(nonsequential swaps only within rows or
columns, Miklés and Podani 2004). Then, as an
additional comparison across networks, we
calculated relative NODF nestedness for each
network as NODF* = (NODF — (NODF))/
(NODFg), where (NODFy) is the mean NODF
for the 200 random replicates of the network (see
Bascompte et al. 2003). For additional network
properties and other information about the sub-
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and full graphs, see the Appendix.

Node and edge measures.—The following mea-
sures (summarized in Table 1) quantify the
temporal patterns of nodes and edges:

1. Momentary degree, mk;, —A node’s momen-
tary degree is the number of interactions that this
node participates in during a particular momen-
tary subgraph (Morris and Kretzschmar 1995). In
a plant-frugivore network, larger values denote
greater participation in the network of interac-
tions during a specific time interval. Average
momentary degree of a node is calculated over
all subgraphs (of the 8 possible in our case) in
which the node was active. The average propor-
tional momentary degree of species i, (mk;)/k;
equals its average momentary degree divided by
the total number of partners that species i has
over the entire season. Species of smaller average
proportional momentary degree are species
whose participation in the network is sequential
rather than concurrent.

2. Momentary weight, me;;. —Edge weight is the
frequency of observing an edge between two
nodes; an edge’s momentary weight is then the
frequency of observing this edge during a
particular subgraph. More common interactions
have larger values during a specific time interval.
The average momentary weight (me;;) is calcu-
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lated over all subgraphs in which the edge was
observed (i.e., its frequency is non-zero). Relative
momentary weight, me;*, shows how frequently
the interaction between species i and j occurs
relative to the average me;, i.e., me;* = (me; —
(mejj))/(me;;). Values closer to zero mean that
interactions occur consistently throughout their
periods of occurrence.

3. Duration.—We defined duration as the total
number of subgraphs in which a node is active or
an edge is observed (i.e., sum of occurrences;
Russo et al. 2013). Like the distribution of node
degree, which encapsulates the participation of
nodes in an ecological network, the distribution
of node durations reflects the overall phenology
within the network. Although related, node
duration differs from phenophase (Olesen et al.
2008), in that node duration includes only the
time periods in which the focal node participates
in an interaction, whereas phenophase encom-
passes the entire interval between the initiation
and cessation of plant resource availability or
animal visitation (Olesen et al. 2008). The
distinction between duration and phenophase is
important, because when frugivores exhibit
strong preferences for a transiently fruiting plant
species, they can cease interacting with less
desirable, yet still available, fruiting plants (Carlo
et al. 2003). Similarly, omnivorous animals may
not always eat fruit (Herrera 1982, Wheelwright
1988, Carnicer et al. 2009). Furthermore, duration
may not be continuous. To distinguish between
continuous and interrupted duration, we plotted
the longest continuous length of occurrence
against the total number of segments of occur-
rence. For example, two nodes with duration of 5
months may differ in continuity. The first node,
continually active for 5 sequential months, would
be plotted at (5, 1). The second node, active for
two separate segments of 2 months and 3
months, would be plotted at (3, 2). Note that
discontinuity in duration may also be a result of
insufficient sampling of rare interactions, rather
than a true cessation of activity. Incomplete
sampling is unlikely to be the cause of disconti-
nuity in node duration in our dataset because all
instances of discontinuous node duration oc-
curred for highly abundant species.

4. Node fidelity.—Some nodes may more reli-
ably participate in the same edges (interactions).
We defined the fidelity of a node to its partners as
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the average edge duration of species i, divided by
the duration of species i. Larger values corre-
spond to increasing participation in the same
interactions over the entire season, or greater
fidelity.

Species availability and interaction structure
Fruiting phenology can strongly influence the
preferences of birds for certain fruiting plant
species (Carlo et al. 2003), and can explain
whether birds forage for fruit or invertebrates
(Carnicer et al. 2009). We used general linear
models to examine how temporal patterns in
species abundance affect node properties and
when edges are observed. We conducted sepa-
rate analyses for birds and plants. For each
model, the response variable was the species’
average momentary degree, species full degree,
proportional momentary degree, species dura-
tion, or node fidelity. The independent variable
for each model was the relative abundance of
species (number of individuals of a species/total
number of individuals of all species). To model
the presence or absence of edges, the model
included bird abundance, plant abundance, and
the bird X plant abundance interaction as factors.
These tests were conducted using the glm.nb
function in R, with the exception of the glm
function with binomial errors for proportional
momentary degree and edge presence, and the
Im function for arcsine-transformed node fidelity
(R Development Core Team 2013). The best-fit
models were chosen using AIC (Akaike 1974).
We hypothesized that species with longer
durations would also have higher degree, be-
cause they have more opportunity to interact
with other species throughout the season, com-
pared to species with shorter durations. We
classified nodes into four groups: high duration
and high participation, high duration and low
participation, low duration and high participa-
tion, and low duration and low participation. We
defined high or low participation of nodes with
respect to the average node degree of the
network, k¥* = (k — (k))/(k), such that k¥* > 0.1
for high participation nodes, and k* < —0.1 for
low participation nodes. Likewise, high or low
duration was determined with duration* =
(duration — (duration))/{duration), such that
duration* > 0.1 for high duration nodes and
duration* < —0.1 for low duration nodes.
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Concurrent vs. sequential interactions
in species with high degree

In plant-pollinator networks, species with high
degree appear to accumulate partners through-
out a season (Olesen et al. 2008). However, the
extent to which interactions are concurrent and/
or sequential is less known. Thus, we counted the
number of partners gained, continued, and lost
from one momentary subgraph to the next for the
three plants and three birds of highest full graph
degree (plants: Schefflera morototoni, Cecropia
schreberiana, and Phoradendron spp.; birds: Neso-
spingus speculiferus, Spindalis portoricensis, and
Loxogilla portoricensis).

REsuLTS

Cumulative addition of species and interac-
tions increases the size of the full network over
time. The latest bird species, the mainly insectiv-
orous Todus mexicanus, is added in July, whereas
the latest plant species, the small vine Momordica
charantia, is added in September, the final month
of the study. In general, edges varied across the
momentary subgraphs, and later momentary
subgraphs had fewer active nodes than earlier
ones (Fig. 1).

Temporal changes in network structure

As the season progressed, species tended to
interact with fewer partners in each momentary
subgraph (i.e., momentary degree decreased; Fig.
2a), and maximum edge weights declined over
time (Fig. 2b). Because we consider only the
active nodes in our calculations, connectance was
higher for each momentary subgraph (except for
June, month 6) than for the full graph (Fig. 2c).
The number of connected components for the
momentary subgraphs (active nodes only) also
varied, with fewer components than the full
graph earlier in the season, and more compo-
nents than the full graph later on (Fig. 2d).
Nestedness decreased with time, with earlier
momentary subgraphs having greater nestedness
than the full graph compared to later momentary
graphs (Fig. 2e). None of the subgraphs or full
graph had statistically significantly more nested-
ness than the randomly simulated networks (Fig.
2f); however, June had statistically significantly
less nestedness than the random simulated
networks (p = 0.05).
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The duration of the 54 species in this network
varied from only one month to the full length of
the season, 8 months (no plants, only birds:
Euphonia musica, S. portoricensis, Vireo altiloquous),
though intermediate durations appeared to be
lacking (Fig. 3a, b). The most frequent duration is
one month only, especially for plants (Fig. 3a).
The continuity of active participation in network
also varied (Fig. 3¢, d). Most of the species were
continuously active (68% of plants and 75% of
birds); however, several species participated in
the network in two or more separate time
segments (32% of plants and 25% of birds; Fig.
3¢, d). With the exception of species with degree
of k=1 (in the full network), Vireo flavirostris
(bird, k=2), Buchenavia capitata (plant, k=2), and
Dendroica tigrina (bird, k = 3), species did not
participate in the same interactions over time, as
shown by node fidelity (Fig. 3e, f). Furthermore,
there is a decrease in interaction concurrence, as
shown by the average proportional node degree
({(mk;)/k;), with increased duration (Fig. 3g, h).

Most of the 81 edges in this network had very
low momentary weight (Fig. 4a), that is, a
particular interaction was observed infrequently
during each month. About half of the edges (85/
175) occurred at a frequency equal to their
average momentary edge weights (i.e., me;* = 0;
Fig. 4b). However, edges that occurred during
only one month comprise the majority of the
edges where me;* =0, and only 15% of edges (27/
175) occur consistently throughout durations of
longer than one month. Although a third of the
observed interactions (58/175) occurred only
during one month, a few, such as that between
E. musica and Phoradendron, L. portoricensis-
Guarea guidonia, and S. portoricensis-Ficus (7
months) were present for longer time periods
(Fig. 4c). The edge duration continuity for the
edges revealed some discontinuity (Fig. 4d), like
for the nodes (Fig. 3c, d). For example, the E.
musica-Phoradendron and S. portoricensis-C. schre-
beriana interactions were in two segments.

The highest momentary edge weights be-
longed to the edges of longest duration, with
the exception of the 2-month interaction between
S. portoricensis and Cordia sulcata (Fig. 5a). In
addition, species’ average momentary edge
weight does not appear to have a strong
relationship with full graph degree (Fig. 5b);
thus, the contribution of high-degree species to
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connectance, (d) number of connected components, and (e) nestedness of momentary graphs do not always
match that of full graphs. With the exception of June (6), whose nestedness was significantly less than the
randomly simulated networks, nestedness was no different from the random expectation (f).

an interaction network is not necessarily via
consistently frequent interactions with the same
partners.

Species availability and interaction structure

We expected phenological differences between
plant species to have an influence on network
structure, as fruiting plant phenology affects
frugivore foraging behavior (Carlo et al. 2003,
Carnicer et al. 2009, Gonzalez-Castro et al. 2012).
The relative abundance of species was constant
for some nodes, but highly variable for other
nodes (Fig. 1). Relative abundance was not a
significant predictor of proportional node degree
(birds, p = 0.593; plants, p = 0.612). However,
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higher relative abundance did correspond to
higher average momentary degree (birds: p =
0.00219, plants: 0.0124), higher full degree (birds:
p=0.0003; plants: p=0.0006), and to higher node
duration (birds: p = 0.001; plants: p = 0.027).
Edges were more likely to be observed when
plant abundance was high (p = 0.001) and bird
abundance was high (p = 0.002), though there
was also a bird X plant abundance statistical
interaction (p = 0.04). Higher relative abundance
corresponded to lower node fidelity for plants
but not for birds (bird X plant abundance, p =
0.011).

When we assessed node degree and duration
simultaneously (Fig. 6), we found that most
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species were categorized as low duration and
low participation (13 birds and 19 plants),
followed by high duration and high participation
(5 birds and 11 plants), and only a few species
exhibited high duration and low participation (1
bird: Melanerpes portoricensis; 3 plants: Andira
inermis, Anthurium scandens, and Syzigium jambos)
or low duration and high participation (1 bird:
Margarops fuscatus and 1 plant: Musa acuminata).
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Concurrent vs. sequential interactions
in species with high degree

The highest full degree (k;) plants and birds
gained, continued, and lost interactions in nearly
equal amounts from month to month (Fig. 7). A
few interactions were maintained from month to
month, but each species’ losses across the entire
season approached or exceeded each species’ full
degree (season losses: S. morototoni 10, C.
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schreberiana 11, Phoradendron 8, N. speculiferus 19,
S. portoricensis 17, L. portoricensis 15). Total losses
can exceed full degree because of the disconti-
nuity of edge duration. These six species have the
lowest values of average proportional node
degree ((mk;)/k; see Fig. 3g, h) because they
regularly gain and lose many interactions with
other species each month.
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DiscussioN

The activity period of the species, as well as the
interactions that these species participate in,
range from transient to constant. The combina-
tion of transience and constancy is reflected in
the fluctuations we found in the structural
properties of our interaction network over the
season. Species that were active for a longer
period of time and participated in relatively more
interactions did not necessarily participate in the
same interactions for their entire active period.
Changes in the presence and relative abundance
of fruits and frugivores explained the number of
interactions of both plants and birds, as well as
the length of their active period, but not whether
interactions were concurrent or sequential. The
group of species with the highest degrees (k) did
maintain a number of concurrent interactions
from month to month, but also displayed a
substantial turnover in interactions. We first
discuss the causes of temporal variability in our
network, and then identify the consequences of
sequential accumulation of interactions for plant-
frugivore communities.

Causes of temporal variability

In general, most of the observed temporal
variation in network interactions is primarily
driven by the diverse phenological patterns of
fruiting plant species in Cialitos, which is typical
of most fruiting plant communities. Plant species
can show striking differences in their patterns of
producing and ripening fruit, especially in
tropical regions (Frankie et al. 1974). Plant
species like C. sulcata fruit synchronously in one
month, which limits the number of partners it
can have, while others like C. schreberiana bear
ripe fruit for more than 7 months (Carlo et al.
2003), and thus has more opportunity to interact
with more partners. To add complexity to this
scenario, species with extended fruiting seasons
can vary in how prolonged fruiting is accom-
plished, with some species having a single
extended peak preceded by a single flowering
event (e.g., S. morototoni), while others have
several, smaller fruiting peaks that are the
product of multiple consecutive flowering epi-
sodes (e.g., G. guidonia). Thus, the presence of
fruit resources at different times within the
sampling period serves as a primary filter for

December 2013 %¢ Volume 4(12) %* Article 147



YANG ET AL.

o ' .
plants birds |
[
1 12 1 10|
o 4 l [ ] [ ]
I °
[
A
X [
V
! [
0
[
[
| °
ol _— _ _ _ _ _ _ ole _ _ _ _ _ _ _ |
o |o
° °
° o o
° ol
l
-4 - 0 2 4

duration, - <duration>

Fig. 6. Most species in this network were of low duration and low participation, or high duration and high
participation. Upper left quadrant: low node duration, high participation. Upper right quadrant: high node
duration, high participation. Lower left quadrant: low node duration, low participation. Lower right: high node
duration, low participation. See Methods for calculation of relative k (k*) and relative duration (duration*). The
color of each data point corresponds to the number of overlapping data points.

the presence or absence of edges in temporal
networks.

In turn, patterns of frugivory are commonly
conditioned by both the relative abundance of
fruiting species, and by preferences and physiol-
ogy of frugivores due to differences in nutritional
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qualities of fruit among species (Herrera 1982,
Moermond and Denslow 1983, Martinez del Rio
et al. 1988). For example, frugivory rates can
show type III functional responses (sensu Holling
1959) to the abundance of different fruiting
species at any one time, resulting in frugivores
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Fig. 7. The highest full degree (k;) plants (a) and birds (b) continued interactions from month to month, but also

exhibited turnover in the identity of their interactions.
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temporally specializing on the most abundant
species. This type of foraging response may also
explain why most edges are of short duration.
However, the occurrence and duration of some
edges appear independent of relative fruit
abundances (e.g., E. musica—Phoradendron, L.
portoricensis—G. guidonia), which could be ex-
plained by the existence of hierarchical choices
governing frugivory. Hierarchical choices of
frugivores can also explain why nodes (species)
show different fidelities, duration, and continuity
even when present at similar abundances and/or
for similar lengths of time. Indeed, in the
analyses we found that a high-degree frugivore
continually shifts its foraging focus among
different fruit resources (Fig. 7).

Further, the temporal variation of frugivore
participation in the network can be influenced by
factors other than fluctuations in fruit abundanc-
es and hierarchical interactions among fruiting
species. For example, diets of omnivores can shift
away from fruit when entering breeding and/or
migratory seasons, thus reducing their seasonal
involvement in the frugivory network (Herrera
1982, Wheelwright 1988). Fig. 6 shows that the
most omnivorous species (e.g., Tyrannus domini-
censis, Dendroica tigrina) tend to participate with
low duration and also low participation in the
network (see also Fig. 1). Interestingly, other
omnivores (i.e., M. portoricensis) may also have
low network participation but show high dura-
tion. These differences in omnivory could signify
different roles in the community. For example,
some omnivores in this community (e.g., T.
dominicensis) have been shown to be more
effective than heavily frugivorous species (e.g.,
S. portoricensis, L. portoricensis) in dispersing
seeds into deforested habitats (Carlo and Yang
2011).

Interaction concurrence and outcomes
of mutualism

The temporal pattern by which high degree
species become “generalists” has been described
as an accumulation of partners (Olesen et al.
2008) or “preferential attachment” (Barabdsi and
Albert 1999), but these terms incompletely
describe the dynamics in our system. The high-
degree species in our network do gain a
substantial number of interactions each month,
but they also maintain a relatively low fraction of
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concurrent interactions and lose interactions each
month (i.e., they participate in both concurrent
and sequential interactions). In these species,
specialization is thus possible over the scale of a
few months, which is analogous to the observa-
tion that species specialize locally but are
generalists when considered across biogeograph-
ical scales (Thompson 1999).

We propose that this dual (partly concurrent,
partly sequential) network growth has conse-
quences for how species of high degree contrib-
ute to ecological outcomes in temporally variable
networks. In our system, species of high duration
and network participation connect the subgraphs
into the full season-long graph through the
constancy of their activity; however, they do
not necessarily participate in the same interac-
tions continuously. In temporally variable net-
works, “generalists” can serve as the “backbone
of the community” (Jordano et al. 2003, Bas-
compte and Jordano 2007) through their long
durations or phenophases (see also Olesen et al.
2008, Olesen et al. 2010), and not through
maintaining specific stabilizing interactions. In-
deed, if high degree species do not substantially
differ from lower degree species with respect to
their average momentary edge weight (Fig. 5b),
what is the role of these generalist species during
shorter time scales? In the context of seed
dispersal, seed predation and recruitment com-
monly vary over a season, and therefore the set of
interactions that exists at one point in time could
lead to different demographic outcomes com-
pared to another point in time (Fig. 1). These
consequences may or may not be captured in the
temporally correspondent structure of the inter-
actions (Fig. 2). Thus, we suggest that the
importance of generalists vs. specialists during
short time scales needs more attention. It may be
that for seed dispersal outcomes, the distribution
of interactions in a community is more important
than the number of interactions that a particular
species participates in (Berlow et al. 1999,
Bascompte and Jordano 2007, Kaartinen and
Roslin 2012).

In Cialitos, we found lower concurrence of
interactions in species that had longer duration
(periods of activity). Generalists that accumulate
their interactions concurrently, rather than se-
quentially, may create situations of high compe-
tition, specifically if mutualistic partners are a
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limited resource. For example, if fruiting plants
must compete for the services of generalist
frugivores, fewer seeds are dispersed from each
species at any one moment. If this competition is
very fierce, plants risk wasting resources in fruit
production. Generalist frugivores with sequen-
tially acquired interactions, on the other hand,
arise if plants produce fruits asynchronously,
rather than synchronously. With this time parti-
tioning, competition for generalist frugivores is
reduced and the likelihood of occurrence of seed
dispersal events for each plant species is in-
creased. From the plant point of view, those that
sequentially acquire their frugivorous partners
over a long time period would perhaps have
fewer seed dispersal events at any one point in
time compared to plants that maintain interac-
tions with many partners simultaneously over a
short time period. This strategy, however, would
be expected to be more advantageous in unpre-
dictable, heterogeneous landscapes because seed
dispersal events have an opportunity to occur
during a favorable time interval or into appro-
priate locations for establishment. Indeed, when
many seeds are dispersed over a short time span,
they disperse to fewer locations, which has
consequences for the pattern of spatial spread
and destination of seeds (Carlo et al. 2013,
Morales et al. 2013). Overall, even in the absence
of network nestedness (see Bastolla et al. 2009), a
pattern of sequential, not concurrent, accumula-
tion of interactions by generalists could create
stability through reducing competition at any
single point in time, as well as through facilitat-
ing the successful establishment of future gener-
ations of their partners.

Conclusion

Although many species in an interaction
network may be present only transiently, other
species participate with greater constancy. High
duration species do not necessarily interact
continuously with the same partners, and instead
may switch their partners as the season pro-
gresses. The occurrence of sequential, rather than
concurrent, interactions creates the possibility of
generalists whose importance for network stabil-
ity is context-dependent. Functionally, generalist
species that accumulate interactions sequentially
may play a different role in the community than
species that maintain a similar number of
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partners concurrently. The patterns of how
species connect to other species in an interaction
network can also have potential implications for
the stability of communities. The concurrence of
interactions within a network may reflect the
inherent temporal and spatial heterogeneity of
the landscape, and translate to how members of a
community adjust to accommodate for competi-
tion for limited resources.
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SUPPLEMENTAL MATERIAL

APPENDIX

Detailed information for the full
and momentary networks

An alternative, matrix representation of Fig. 1
is provided here. Matrix representations of full
and momentary subgraphs (Figs. A1-A9) were
drawn using the visweb function in the bipartite
package (Dormann et al. 2008) of R (R Develop-
ment Core Team 2013). Each cell contains the
frequency of interactions between a plant (rows)

and a bird (columns).

Full graph and momentary subgraph proper-
ties are summarized in Table Al. Metrics were
calculated using R (R Development Core Team
2013). All metrics except number of edges, mean
edge weight, maximum edge weight, and fre-
quency of edge weight =1 were calculated with
the networklevel function (Dormann et al. 2009) of
the bipartite package (Dormann et al. 2008).

Table Al. Summary of full graph and momentary subgraphs.

Network Full Feb Mar Apr May Jun Jul Aug Sep
Size (number of active nodes) 54 25 23 24 16 28 17 12 12
Number of active birds 20 9 12 9 6 12 6 6 4
Number of active plants 34 16 11 15 10 16 11 6 8
Number of edges (interaction links) 95 37 30 32 15 29 15 8 9
Mean edge weight (interaction frequency) 6.62 3.76 2.30 2.44 2.40 2.41 2.87 1.75 2.22
Maximum edge weight 56 26 12 15 9 13 8 5 6
Frequency of edge weight = 1 (singletons) 40 18 17 16 8 19 5 5 6
Connectance 0.14 0.26 0.23 0.24 0.25 0.15 0.23 0.22 0.28
Average unweighted degree, (k) 1.76 1.48 1.30 1.33 0.94 1.04 0.88 0.67 0.75
Number of compartments 2 1 1 2 1 2 3 4 3
NODF nestedness 4439 5142 5332 4158 2389 1694 1857 1333  10.29
Web asymmetry -0.26 —0.28 0.04 -025 -025 014 029 000 —033
Linkage density 5.03 3.59 3.59 3.24 2.12 2.61 2.05 1.52 1.53
Shannon diversity 3.66 297 3.02 3.09 2.40 2.93 2.47 1.87 1.85
Interaction evenness 0.56 0.60 0.62 0.63 0.59 0.56 0.59 0.52 0.53
Dependence asymmetry -0.09 -011 -009 -008 001 005 038 0.00 —0.04
Specialization asymmetry 0.22 0.18 0.09 0.08 0.09 0.05 0.18 0.00 0.20
Bird niche overlap 0.18 0.27 0.38 0.15 0.11 0.21 0.08 0.12 0.02
Plant niche overlap 0.27 0.35 0.28 0.26 0.25 0.15 0.16 0.12 0.21
Togetherness 0.06 0.11 0.20 0.11 0.06 0.08 0.07 0.08 0.04
C-scoref 0.54 0.39 0.30 0.53 0.76 0.68 0.81 0.80 0.89

T Mean checkerboard combinations across all birds.
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Fig. Al. Full graph.
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Fig. A2. February momentary subgraph.
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Fig. A3. March momentary subgraph.
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Fig. A4. April momentary subgraph.
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Fig. A5. May momentary subgraph.
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Fig. A6. June momentary subgraph.
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Fig. A7. July momentary subgraph.
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Fig. A8. August momentary subgraph.
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Fig. A9. September momentary subgraph.
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