
University of Massachusetts School of Law University of Massachusetts School of Law

Scholarship Repository @ University of Massachusetts School of Scholarship Repository @ University of Massachusetts School of

Law Law

Faculty Publications

2020

Brief of Brief of Amicus Curiae Interdisciplinary Research Team On Interdisciplinary Research Team On

Programmer Creativity In Support Of Respondent Programmer Creativity In Support Of Respondent

Ralph D. Clifford

Firas Khatib

Trina Kershaw

Kavitha Chandra

Jay McCarthy

Follow this and additional works at: https://scholarship.law.umassd.edu/fac_pubs

 Part of the Computer Law Commons, and the Intellectual Property Law Commons

https://scholarship.law.umassd.edu/
https://scholarship.law.umassd.edu/
https://scholarship.law.umassd.edu/fac_pubs
https://scholarship.law.umassd.edu/fac_pubs?utm_source=scholarship.law.umassd.edu%2Ffac_pubs%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/837?utm_source=scholarship.law.umassd.edu%2Ffac_pubs%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/896?utm_source=scholarship.law.umassd.edu%2Ffac_pubs%2F207&utm_medium=PDF&utm_campaign=PDFCoverPages

No. 18-956

IN THE

Supreme Court of the United States

GOOGLE LLC,

Petitioner

v.

ORACLE AMERICA, INC.,

Respondent

ON WRIT OF CERTIORARI TO THE UNITED STATES COURT

OF APPEALS FOR THE FEDERAL CIRCUIT

BRIEF OF AMICUS CURIAE

INTERDISCIPLINARY RESEARCH TEAM ON

PROGRAMMER CREATIVITY

IN SUPPORT OF RESPONDENT

Ralph D. Clifford

 Counsel of Record for Amicus Curiae

University of Massachusetts School of Law

333 Faunce Corner Road

North Dartmouth, MA 02747

rclifford@umassd.edu

(508) 985-1137

Dated: February 13, 2020

BATEMAN & SLADE, INC. STONEHAM, MASSACHUSETTS

i

Table of Contents

Table of Cited Authorities .. iii

Interest of the Amicus Curiae1

Summary of Argument ...3

I. Creativity ...4

II. Idea/Expression Dichotomy5

Argument ...7

I. The Court Should Clarify the

Definition of the “Creativity”

Needed Under Feist to Provide

an Objective Test Based on the

Author Having Had Available

Multiple Variations of

Expression from Which an

Intellectual Choice Was Made7

II. The Court Should Interpret the

Idea/Expression Dichotomy, 17

U.S.C. § 102(b), so that the

Expressive Nature of Computer

Software Remains Protected by

Copyright ... 14

ii

A. The Court Should Adopt

the Abstraction-Filtration-

Comparison Test to

Separate Ideas from

Expressions in a Computer

Program 15

B. Guidance is Needed from

the Court on What

Matters are Properly

Filtered out of the

Expression Within a

Computer Program 16

1. Proper Filtering

Recognizes the

Expressive Nature

of Computer

Programs 16

2. Proper Filtering

Does Not Establish

Improper Barriers

to Protecting

Programming

Expressions 20

Conclusion ... 23

iii

Table of Cited Authorities

Cases

Apple Computer, Inc. v. Microsoft Corp.,
 35 F.3d 1435 (9th Cir. 1994)6

Bateman v. Mnemonics,

 79 F.3d 1532 (11th Cir. 1996) 14

Bleistein v. Donaldson Lithographing Co.,
 188 U.S. 239 (1903) 4, 6, 22

Boisson v. Banian, Ltd.,
 273 F.3d 262 (2d Cir. 2001)8

Computer Assocs. Int’l, Inc. v. Altai, Inc.,
 982 F.2d 693 (2d Cir. 1992) 6, 14–16, 20, 21

Downing v. Abercrombie & Fitch,

 265 F.3d 994 (9th Cir. 2001) 11

Feist Publications, Inc. v. Rural Tel. Serv. Co.,
 499 U.S. 340 (1991) 4, 5, 7–10, 13

Gates Rubber Co. v. Bando Chem. Indus., Ltd.,
 9 F.3d 823 (10th Cir. 1993) 14

Herbert Rosenthal Jewelry Corp. v. Kalpakian,

 446 F.2d 738 (9th Cir. 1971) 19

Holmes v. Hurst,
 174 U.S. 82 (1899) .. 14

iv

Nichols v. Universal Picture Corp.,
 45 F.2d 119 (2d Cir. 1930) 5, 14

Oracle Am., Inc. v. Google Inc.,
 750 F.3d 1339 (Fed. Cir. 2014)

 (case below) 5, 6, 8, 13, 14, 19, 22

Oracle Am., Inc. v. Google Inc.,
 872 F. Supp. 2d 974 (N.D. Cal. 2012),

 rev’d, 750 F.3d 1339 (Fed. Cir. 2014)

 (case below) ... 19

Satava v. Lowry,

 323 F.3d 805 (9th Cir. 2003) 8, 21-22

Whelan Assoc., Inc. v. Jaslow Dental
 Laboratory, Inc.,
 797 F.2d 1222 (3d Cir. 1986) 6, 14, 15, 16

Statutes

17 U.S.C. § 102(b) (2012) 3, 5, 14, 15

Secondary Authority

Sarah Boslaugh & Paul Andrews Watters,

Statistics in a Nutshell (2008) 18

Ralph D. Clifford, Creativity Revisited, 59

IDEA 25 (2018) ...1

v

Ralph D. Clifford, Intellectual Property in the
Era of the Creative Computer Program:
Will the True Creator Please Stand
Up?, 71 Tul. L. Rev. 1675 (1997)1

Ralph D. Clifford, Random Numbers, Chaos
Theory and Cogitation: A Search for the
Minimal Creativity Standard in
Copyright Law, 82 Denver L. Rev. 259

(2004) .. 1, 4, 10

Karen DeWitt, Tappan Zee Bridge Set to
Open, https://www.northcountry

publicradio.org/news/story/34544/20170

824/tappan-zee-bridge-set-to-open-

questions-remain-on-future-tolls 20-21

Encyclopedia of Comp. Sci. (Anthony Ralston

et al. ed. 4th ed. 2000) 22

Josh Hodas, What are the main problems with
the Y2K computer crisis and how are
people trying to solve them?, Sci. Am.,

June, 1999, https://www.scientific

american.com/article/what-are-the-

main-problem/... 21

IBM Corp., OS/VS-VM/370 Assembler
Programmer’s Guide (5th ed. 1982) 22

vi

Trina Kershaw et al., A Decision Tree Based
Methodology for Evaluating Creativity
in Engineering Design, Frontiers in

Psychology (2019), https://doi.org/

10.3389/fpsyg.2019.000322

Firas Khatib et al., Players, Algorithm
Discovery by Protein Folding Game
Players, Proc. of the Nat’l Acad. of Sci.

U.S.A. (2011), https://doi.org/

10.1073/pnas.11158981082

Donald E Knuth, Fundamental Algorithms

§ 1.2.10 (2d ed. 1975) 21

Jay McCarthy, A Programmable
Programming Language, Comm. of the

ACM (Mar. 2018) ..3

Jay McCarthy, Cryptographic Protocol
Explication and End-Point Projection,

European Symp. on Research in Comp.

Sec. (2018) ...3

Jay McCarthy, Model Checking Task Parallel
Programs for Data-Race, NASA Formal

Methods Symp. (2018)3

Random House Unabridged Dictionary

 (2d Ed. 1993) ... 10

Mary Sweeney, Visual Basic for Testers

 (2001) .. 22

1

Interest of the Amicus Curiae1

 The amicus is comprised of five individuals who

are an interdisciplinary team that is researching

programmer creativity (“Research Team”). Each

member is a professor with the expertise described

below:

• Ralph D. Clifford, the principal

investigator, is a professor of law at the

University of Massachusetts School of

Law who specializes in intellectual

property and cyberlaw issues,

specifically including the requisite

creativity needed for copyright. See

Ralph D. Clifford, Intellectual Property
in the Era of the Creative Computer
Program: Will the True Creator Please
Stand Up?, 71 Tul. L. Rev. 1675 (1997);

Ralph D. Clifford, Random Numbers,
Chaos Theory and Cogitation: A Search
for the Minimal Creativity Standard in
Copyright Law, 82 Denver L. Rev. 259

(2004) [hereinafter Clifford, Random
Numbers]; Ralph D. Clifford, Creativity
Revisited, 59 IDEA 25 (2018). Before

obtaining his law degree, he studied

computer science at the undergraduate

1 This brief was written exclusively by the amicus’s

counsel with the exclusive generous financial support of the

University of Massachusetts—Dartmouth. No counsel for a

party authored any portion of this brief. The institutional

affiliation of the individuals comprising the Amicus are for

identification only and do not represent the position of their

institutions.

This brief is submitted with the blanket consent of

Google LLC and the written consent of Oracle America, Inc.

2

level and practiced computer

programming professionally for ten

years.

• Firas Khatib is an Assistant Professor of

Computer and Information Science at

the University of Massachusetts—

Dartmouth who specializes in

bioinformatics and citizen science. See

Firas Khatib et al., Players, Algorithm
Discovery by Protein Folding Game
Players, Proc. of the Nat’l Acad. of Sci.

U.S.A. (2011), https://doi.org /10.1073/

pnas.1115898108.

• Trina Kershaw is an Associate Professor

of Psychology at the University of

Massachusetts—Dartmouth who

specializes in cognitive processes, the

creative process, and creativity

measurement in laboratory settings and

in engineering design. See Trina

Kershaw et al., A Decision Tree Based
Methodology for Evaluating Creativity
in Engineering Design, Frontiers in

Psychology (2019), https://doi.org/

10.3389/fpsyg.2019.00032.

• Kavitha Chandra is the Associate Dean

and Professor of Electrical and

Computer Engineering at the Francis

College of Engineering, University of

Massachusetts—Lowell who specializes

in computational acoustics and

creativity in engineering.

3

• Jay McCarthy is an Associate Professor

of Computer Science, University of

Massachusetts—Lowell who specializes

in the analysis of computer programs

and programming languages, especially

for the purposes of verifying the

correctness and equivalence of different

programs that attempt to do the same

thing. See Jay McCarthy, A
Programmable Programming Language,

Comm. of the ACM (Mar. 2018); Jay

McCarthy, Model Checking Task
Parallel Programs for Data-Race, NASA

Formal Methods Symp. (2018); Jay

McCarthy, Cryptographic Protocol
Explication and End-Point Projection,

European Symp. on Research in Comp.

Sec. (2018).

Summary of Argument

 This brief answers the two primary issues that

are associated with the first question before the

Court. First, the programmers’ expression of the

Java-based application programmer interfaces

(“APIs”) are sufficiently creative to satisfy that

requirement of copyright law. Second, the idea-

expression limitation codified in Section 102(b) of

Copyright Act does not establish that the APIs are

ideas. Both of these assertions are supported by the

empirical research undertaken by the Research

Team.

 This brief expresses no opinion on the

resolution of the fair use question that is also before

the Court.

4

I. Creativity

 Feist Publications, Inc. v. Rural Tel. Serv. Co.,
499 U.S. 340 (1991), teaches that all works must be

the result of creative expression in order to qualify for

a copyright. However, as Feist specifically addressed

the white pages of the classic telephone book, id. at

342, little guidance is provided for dealing with more

expressive works such as computer programs.

Further, language in Feist instructs that copyrighted

works should be based on “creative spark.” Id. at 345.

Unfortunately, this direction does little to explain

how the “spark” is to be identified, a problem that is

compounded by the dual expressive-functional

characteristics of a computer program.

 As a practical matter, without turning Feist’s
creativity requirement into a subjective analysis of

how the particular author functioned during the

work’s creation, or allowing it to become an excuse for

the judicial censorship much feared by this Court

more than a hundred years ago in Bleistein v.
Donaldson Lithographing Co., 188 U.S. 239, 251–52

(1903).2 an objective measurement is needed.

Consequently, “creativity” should be found where it is

apparent that the author had many different ways a

particular idea could have been expressed, from

which the author made an intellectually-based

selection. See Clifford, Random Numbers at 295–96.

2 “It would be a dangerous undertaking for persons

trained only to the law to constitute themselves final judges of

the worth of pictorial illustrations, outside of the narrowest and

most obvious limits. ... At the other end, copyright would be

denied to pictures which appealed to a public less educated than

the judge.”

5

 When this is applied to the APIs in question in

this litigation (“Oracle’s APIs”), it is clear that the

Feist creativity requirement is met. See Oracle Am.,
Inc. v. Google Inc., 750 F.3d 1339, 1354 & 1356–57

(Fed. Cir. 2014) (case below). As our research

demonstrates, even the simplest computer program is

capable of being expressed in many ways.3 As

programs become more complex, the number of

unique solutions also increases.4 Consequently, as

there are clearly choices for a programmer to make

from a wide variety of expressions, Feist creativity

exists for the vast majority of computer programs

including Oracle’s APIs.

II. Idea/Expression Dichotomy

 Section 102(b) of the Copyright Act codifies the

requirement that a copyright’s protection be limited

to the expression created by the author, expressly

excluding the ideas that underlie the creation.

Separating ideas from expressions has never been

easy; indeed, courts have long struggled with

establishing guidance on how to make this

distinction. See, e.g., Nichols v. Universal Picture
Corp., 45 F.2d 119, 121 (2d Cir. 1930) (L. Hand, J.).

When applied to the technical writing that is

programming, drawing the distinction becomes more

3 The Research Team’s preliminary study involves

correctly functioning code submitted by multiple programmers

to solve the same problem. The simplest program in our research

set—searching for the most frequent character pattern within a

larger string—demonstrated a large variety of solutions: 20

unique solutions were created by the 27 programmers.

4 On the most complex program in the research set, 23

unique solutions were submitted by the 26 programmers who

solved the problem.

6

difficult as those defining the line rarely have

sufficient technological background to inherently

understand what the programmer has written.

 Despite the difficulty of analysis, there is a

developing accord among the circuit courts that the

analytical approach established for literary works in

Nichols is an appropriate approach for separating the

ideas and expressions within a computer program.

See, e.g., Computer Assocs. Int’l, Inc. v. Altai, Inc.,
982 F.2d 693, 706 (2d Cir. 1992); Apple Computer,
Inc. v. Microsoft Corp., 35 F.3d 1435, 1445–46 (9th

Cir. 1994). But see Whelan Assoc., Inc. v. Jaslow
Dental Laboratory, Inc., 797 F.2d 1222, 1232 (3d Cir.

1986). This analytic approach was adopted by the

Federal Circuit in the case at bar, see Oracle, 750 F.3d

at 1357 (applying 9th Circuit precedents), and should

now be established as the appropriate methodology

for all copyright cases, including those that involve

computer software.

 Care and guidance is needed, however, for the

lower courts to properly apply the abstracting and

filtering process to computer programs. First, as

matters are abstracted, care is needed in

distinguishing between public domain ideas and

public domain expressions. Reusing a public domain

idea does not impact the expression’s copyrightability

as all are free to re-express the idea. See Bleistein,
188 U.S. at 249.5 Only if the author is attempting to

recapture a public domain expression should the

courts prevent the attempt. Second, artificial

distinctions should not be imposed on computer

5 “Others are free to copy the original. They are not free

to copy the copy.”

7

programs because they are assertedly the result of

engineering-based rather than artistically-based

human inspiration. As our research demonstrates,

expressive creativity underlies both types of

inspiration at a level sufficient to satisfy Feist. The

conclusion that directly flows from this is that, as with

other literary works protected by copyrights,

computer programs are primarily expressive.

 The secondary conclusion that flows from this

is the limited applicability of the merger doctrine in

evaluating computer software copyrights. Rather

than only having a limited number of expressions

available, the programmer has a large number from

which to choose.

Argument

I. The Court Should Clarify the Definition of the

“Creativity” Needed Under Feist to Provide an

Objective Test Based on the Author Having

Had Available Multiple Variations of

Expression from Which an Intellectual Choice

Was Made

 In Feist Publications, Inc. v. Rural Telephone
Service Co., 499 U.S. 340 (1991), this Court

established that there is a threshold of creativity that

must be contained within a compilation of facts in

order for a copyright to subsist. See id. at 348. The

Court stated:

[T]he work [must be] independently

created by the author (as opposed to

copied from other works), and [must]

possess[] at least some minimal degree

of creativity. To be sure, the requisite

8

level of creativity is extremely low; even

a slight amount will suffice. The vast

majority of works make the grade quite

easily, as they possess some creative

spark, no matter how crude, humble or

obvious it might be. Originality does not

signify novelty; a work may be original

even though it closely resembles other

works so long as the similarity is

fortuitous, not the result of copying.

Id. at 345 (citations and quotation marks omitted).

 While the Court’s Feist opinion suggests that

this creativity requirement is a requisite of all

copyrighted works, not just compilations, see id., the

Court’s discussion of creativity in the context of a

factual compilation provides clouded guidance as to

the nature of the requirement for more fanciful works

such as the computer programs in the case at bar. The

resulting contradictory holdings of the circuit courts

when addressing fanciful works bear witness to the

need for a clarifying ruling on the meaning of

copyright creativity. Compare, e.g., Satava v. Lowry,

323 F.3d 805 (9th Cir. 2003) (disallowing copyright in

an artistic glass jellyfish sculpture) with Boisson v.
Banian, Ltd., 273 F.3d 262 (2d Cir. 2001) (allowing

copyright in much simpler quilt design). This same

confusion concerning the appropriate standard arises

in the evaluation of computer programs as stated by

the court below: “Circuit courts have struggled with,

and disagree over, the tests to be employed when

attempting to draw the line between what is

protectable expression and what is not.” Oracle, 750

F.3d at 1357. Consequently, this Court should clarify

9

the standard of creativity for works such as those at

bar that are more fanciful than the white pages from

a telephone book.

 At its core, Feist seemed most concerned with

the choices that were available to and made by the

author. See Feist, 499 U.S. at 348. The Court stated,

The compilation author typically chooses

which facts to include, in what order to

place them, and how to arrange the

collected data so that they may be used

effectively by readers. These choices as

to selection and arrangement, so long as

they are made independently by the

compiler and entail a minimal degree of

creativity, are sufficiently original that

Congress may protect such compilations

through the copyright laws.

Id.

 Producing computer programs and other more

fanciful works clearly exceeds the mere “choosing”

and “ordering” found in a factual compilation. To

clarify how the Feist holding applies to these more

fanciful works, the two prerequisites required of a

compilation should be restated and required of any

work, including Oracle’s APIs. Authors of fanciful

works do not choose and order facts; instead, they

choose how to express a concept from the multitude of

ways in which this can be done. This choice-making

can serve as the foundation for an objective creativity

test for non-compilation works. In other words, to be

copyrightable, all works must result from their

authors making choices from a multitude of possible

10

ways of expressing the work. See Clifford, Random
Numbers at 295–96.

 Determining if this has occurred would be

practical as part of the fact-finding of the courts. To

determine if the minimum creativity required is

present, the court would need to examine the work to

determine that the author had choices and made a

decision to express the work in the way it was done.

Fundamentally, to determine if creativity exists

within a work, it must be established that the author

“ma[d]e a judgment, ... determine[d] a preference; [or]

c[a]me to a conclusion,” Decide, Random House
Unabridged Dictionary 517 (2d Ed. 1993), about the

expression used. Only where this decision making is

apparent can the courts be sure that the “modicum of

creativity” required by Feist, 499 U.S. at 362, exists

within the work.

 When this type of test is applied to computer

software, our research shows that the typical program

complies. In our initial research protocol, 27 student

programmers were given four problems to solve that

required them to write software.6 Each submitted

program was tested and successfully solved the

assigned problem before it was included in the

research dataset.

 Having built the dataset, the code generated

was analyzed based on the number of each

“fundamental programming construct” the

6 The students were all in a course that addressed using

computer technology to solve processing problems associated

with DNA research.

11

programmer had used to produce the code.7 By

determining all of the constructs used by each

programmer, expressive differences in the code was

captured based on the different choices of constructs

made by the programmers. As an example, one

programmer might have chosen to write part of the

code based on a “for” loop while another might have

chosen a “while” loop. Ultimately, as both programs

achieved a solution to the same problem, the choice of

which loop type to use becomes expressive as neither

has computational advantage over the other. By

accumulating all of these differences over all of the

different types of constructs, an overall program

description code could be created. If two programs had

the same description code assigned to it, they were

expressively the same;8 if the description code

differed, significantly different ways were used to

express the same programming function.

 The first problem assigned to the programmers

was to determine the most frequent character pattern

of a certain size within a larger string. This problem

is not trivial to code but is also not computationally

complex. Most programmers would be able to

correctly code a solution within a few hours. When the

7 A “programming construct” is a particular instruction

that all programming languages provide. Our research identified

seven of these: subroutines, for loops, while loops, if statements,

else statements, case statements, and go to statements.

8 This excludes differences based on the variables and

other names chosen by the programmer. Our research also

captures these differences, but has discounted them here as a

change in variable name, standing alone, is the kind of trivial

variation that is given little credence in copyright law. Cf.
Downing v. Abercrombie & Fitch, 265 F.3d 994, 1004 (9th Cir.

2001) (“A person’s name ... is not a work of authorship....”).

12

programs solving this problem within our dataset

were analyzed, however, the number of unique

solutions submitted was significantly large. In fact,

there were 20 unique solutions among the 27

programs written to solve the problem, a percentage

of variation of 74.1%.

 As would be expected, more complex problems

had a larger number of unique solutions. A later

assignment given to the programmers required that

they develop code that solves for what is known as a

“greedy motif search with pseudocounts” problem.9

Twenty-three unique solutions were submitted

among the 26 solutions submitted (one programmer

failed to submit a valid program), a percentage of

variation of 88.5%.

 What this demonstrates is that there are a

multitude of programs that can be expressed to solve

even fairly trivial computer programming problems.

More directly, there are a large number of expressive

choices from which each programmer-author can

9 The goal of the “greedy motif search” algorithm is to

find similar motifs in long segments of DNA sequences. A “motif”

is a short string of DNA that denotes the location in the full DNA

string where a regulatory protein should attach in order for the

DNA to carry out its gene expression purpose.

 The search algorithm is complicated because motifs from

similar DNA sequences contain minor variations and are

therefore not identical. This introduces the need for probability

determinations when comparing a potential motif to a DNA

string. As probabilities of zero would cause significant

processing problems, “pseudocounts” are used to mathematically

prevent zeros from occurring.

13

choose an expression of his or her desire.10 Feist’s

standard of creativity based on making choices among

expressions has been established.

 Of course, in the case at bar, the degree of

complexity of the software in litigation far exceeds the

relatively uncomplicated programs in our research

dataset. Oracle’s APIs involve thousands of lines of

code to define the “overall system of organized

names—covering 37 packages, with over six hundred

classes, with over six thousand methods.” Oracle, 750

F.3d at 1351. In creating Oracle’s APIs, the

programmers created at least “thousands of

individual elements” resulting in “7,000 lines of

declaring code” as that was what Google copied. Id. at

1349 & 1353. Within these thousands of methods and

lines of code, numerous expressive decisions were

made. As a de minimus example, even the choice to

call the example function described by the court below

“MAX” rather than “MAXIMUM” or “LARGER,”

represents an expressive choice. See id. at 1349–50.

 Consequently, the Court should find that

sufficient creativity exists in Oracle’s APIs to satisfy

the Feist creativity standard. This requires an

examination of the idea/expression dichotomy.

10 If the programmer’s choice of variable names is

included, every program becomes completely unique.

14

II. The Court Should Interpret the

Idea/Expression Dichotomy, 17 U.S.C. § 102(b),

so that the Expressive Nature of Computer

Software Remains Protected by Copyright

 Distinguishing between an idea and its

expression has never been easy. See Nichols v.
Universal Picture Corp., 45 F.2d 119, 121 (2d Cir.

1930) (L. Hand, J.). See also Holmes v. Hurst, 174

U.S. 82, 86 (1899). Despite the analytical difficulty

required, the fundamental approach established by

Judge Hand—abstracting the content of the work at

decreasing levels of detail and searching among these

abstractions for the point where allowing the

copyright would result in the copyright preempting

the underlying idea, see Nichols, 45 F.2d at 121—

provides a compelling and logical solution to the

problem of applying Section 102(b) presented by the

case at bar. Indeed, this abstraction and examination

approach has been widely adopted and is part of the

most widely accepted test among the Circuit Courts of

Appeal for copyright infringement of a computer

program, see, e.g., Computer Assocs. Int’l, Inc. v.
Altai, Inc., 982 F.2d 693 (2d Cir. 1992); Gates Rubber
Co. v. Bando Chem. Indus., Ltd., 9 F.3d 823, 834 (10th

Cir. 1993); Bateman v. Mnemonics, 79 F.3d 1532,

1543–46 (11th Cir. 1996); Oracle, 750 F.3d at 1355–

56 (case below). This analytical approach has not been

universally adopted, however, as the Third Circuit

has endorsed a much more intuitive approach. See
Whelan Assocs., Inc. v. Jaslow Dental Lab., Inc., 797

F.2d 1222 (3d Cir. 1986).

15

A. The Court Should Adopt the

Abstraction-Filtration-Comparison Test

to Separate Ideas from Expressions in a

Computer Program

 Upon examination, the Computer Assocs.
approach—the Abstraction-Filtration-Comparison

Test—is more meritorious than Whelan’s intuitive

approach.11 It is vital that courts scrutinize computer

programs that are claimed for copyright to enforce the

idea/expression dichotomy found in Section 102(b). As

with other fact-based works, the intertwining of

expressions and ideas within a computer program

require a critical examination and dissection of it.

This is made more crucial as computer software both

expresses and implements the programmer’s code.

Further, unlike English language works, computer

programs are not communicative to non-specialists,

limiting the power of an intuitive approach to reach a

valid conclusion.

 Consequently, this Court should adopt the

Abstraction-Filtration-Comparison Test to

implement section 102(b). This approach, described in

Computer Assocs., 982 F.2d at 706–11, provides the

appropriate foundation for understanding the

dividing line between ideas and expressions in

computer programs. Unlike the Whelan approach,

this test requires a careful consideration of the

copyrighted software and insures that its author

11 Whelan is mostly criticized here for its approach and

its limits. The Whelan court quite accurately excluded the basic

business purpose of the software in the case under 17 U.S.C.

§ 102(b), but failed to examine the code for other ideas that

should have also been excluded from the protections of copyright

law.

16

maintains rights to the expression while allowing all

others use of any contained ideas. Whelan does not do

this. Limiting the idea in computer software to what

the overall purpose of the program is designed to

achieve, see Whelan, 797 F.2d at 1236, removes many

ideas (both of business processing and computer

programming) from use by improperly including

these within the copyright.

B. Guidance is Needed from the Court on

What Matters are Properly Filtered out

of the Expression Within a Computer

Program

1. Proper Filtering Recognizes the

Expressive Nature of Computer

Programs

Computer Assocs. was mostly on point about

the details of how to exclude ideas from coverage by

the copyright, expressed in the “filtering” part of the

court’s tripartite test. See Computer Assocs., 982 F.2d

at 707–10. When a particular expression is present

within software only because that expression is

needed in order for the software to operate on the

target hardware, Computer Assocs. was correct in

excluding that statement from consideration as part

of the expression. See id. at 709–10. Indeed, our

research indirectly confirms this as the machine-

oriented programming constructs were excluded from

our dataset as including them mis-characterized the

similarities within the different programmer’s code.

Similarly, the presence or absence of any given

fundamental programming construct in itself should

not be considered expression as these are required to

produce all computer programs written in procedural

languages. As the line moves from the individual

17

statement types to selected combinations of the

constructs, however, the copyright line between idea

and expression has been crossed and the realm of

expressions has been reached. As our research

demonstrates, even simple programming tasks can

result in a wide range of possible expressions,

negating an assertion that computer programs are

mostly ideas rather than the expression of them.

Instead, our research establishes that computer

programs are highly expressive with significant

variations existing in how even the simplest program

is written. Our research has established this in two

ways.

 First, we examined the number of unique

versions of each program that were submitted.12

These calculations showed that almost 75% of the

simplest programs were different from all of the

others and almost 90% of the more complicated

programs varied. Based on this, we determined that

variation was the norm, not the exception.

 Second, to confirm our preliminary findings,

the Research Team subjected the multiple versions of

the four programs to formal statistical analysis. By

examining the average number of times each

fundamental programming construct was used in

comparison to each’s standard deviation, the large

degree of variation was clear. Surprisingly, for three

of the constructs (subroutines, for loops, and else

statements), the standard deviation was actually

larger than the average. While the inherent meaning

of this is limited, it does suggest that the data points

12 The methodology used to make this determination is

set forth above. See supra pp. 10–13.

18

are widely scattered and may exist without a defining

pattern. In other words, the programmers do not

choose to use the constructs based on any defined

underlying rule; rather, they are making

intellectually-based choices among the possible

expressions. To test this, we assumed the opposite

and performed an univariate ANOVA (analysis of

variance) based on the constructs each example

program used. An ANOVA procedure is a way to test

if there are significant mean group differences on a

variable of interest. See Sarah Boslaugh & Paul
Watters, Statistics in a Nutshell 232–38 (2008). For

example, an ANOVA can determine if the number of

“for” loops used by each programmer was compelled

by a factor such as the algorithm rather than

individual choice. In other words, a non-significant

ANOVA test would establish that there was no

expressive creativity used in the programming effort.

 In fact, our analysis established a high degree

of variation among the choices made by the

programmers with F-test scores ranging from 11.97

through 39.51.13 Values this high on an F-test is

consistent with a large degree of variation in the code

and rejects the null hypothesis that there is an

underlying common justification for the choice of

which set of programming constructs to use. To

summarize the statistical analysis, it shows that the

choice of programming constructs by each

programmer are unconstrained by a common

variable. Consequently, programmers are making

creative expressive choices.

13 The p-test score for these results were less than .0001,

far smaller than the minimum (.05) required for statistical

significance.

19

 Because of this kind of difference being found

within computer code, it is unlikely that the copyright

merger concept, see Herbert Rosenthal Jewelry Corp.
v. Kalpakian, 446 F.2d 738 (9th Cir. 1971), will

provide any help for evaluating computer software. As

a result, the district court’s reliance on the merger

doctrine to invalidate the Oracle copyright, see Oracle
Am., Inc. v. Google Inc., 872 F. Supp. 2d 974, 998

(N.D. Cal. 2012) (case below), was misplaced and the

Federal Circuit was correct to overrule the lower

court’s decision on this ground. Oracle, 750 F.3d at

1360. Our research has established that even for the

simplest code in the dataset (programs that are 25 to

50 lines in length), so many alternative methods of

expression existed that asserting that the idea and

expression have merged in any computer program—

except the most trivial—is unsustainable. When the

degree of coding variation found within computer code

is scaled up to software on the scope of Oracle’s APIs,

merger is impossible.

 The fact that the copyrighted expression in

litigation is only the declaring code rather than the

operational or implementing code, see Oracle, 750

F.3d at 1349, does not change this analysis. While

there were obviously considerably more choices made

by the programmers who created the operable aspects

of Oracle’s APIs, more than enough creative choices

were made by them in creating the 7,000 lines of

declaring code, see id. at 1349 & 1353, to satisfy the

copyright requirements.

 In summary, when Oracle’s APIs are

examined, it is clear that there were thousands of

different ways the APIs could have been written when

20

they were created. As a result, the Federal Circuit

was correct to determine that they are protected from

copying by the Copyright Act.

2. Proper Filtering Does Not

Establish Improper Barriers to

Protecting Programming

Expressions

 Although our research established the viability

of the abstraction-filtration-comparison test, the

Computer Assocs. court made a significant mistake

when it attempted to address the overall efficiency of

a computer algorithm. According to the Second

Circuit, the more efficient a computer program is, the

more likely it is to be an idea rather than an

expression. See Computer Assocs., 982 F.2d at 707–

09 (treating efficiency as an idea as a matter of law).

This holding is based on a mistaken view of efficiency

both within computer programming and within the

broader engineering disciplines in which it resides

and is inconsistent with our research.

 The Computer Assocs. court misunderstood

efficiency as it exists within an engineering discipline

such as computer science. Unlike the court’s view,

there is no single point of efficiency that programs

attempt to reach with success meaning that an idea

has been reached. Instead, all programming efforts

result in the programmer balancing a multitude of

considerations that are often contradictory.14 In

14 This same thing is true in all other engineering

disciplines. Recently, for example, the Tappan Zee bridge across

the Hudson River in New York was replaced. See Karen DeWitt,

Tappan Zee Bridge Set to Open, https://www.northcountry

publicradio.org/news/story/34544/20170824/tappan-zee-bridge-

21

programming, for example, greater speed can often be

achieved, but only as an escalating cost. Even speed

of operation, itself, may not be the most important

criteria; indeed, in earlier programming efforts,

limiting the amount of storage space that was needed

by the program was typically far more critical than

achieving blinding processing speed.15 Furthermore,

when applied to something as complex as computer

software, determining efficiency becomes

extraordinarily difficult as most times the evaluation

has to be reduced to probabilities as the data being

processed can radically affect the resulting speed. See
Donald E. Knuth, Fundamental Algorithms § 1.2.10

(2d ed. 1975). In summary, achieving some type of

efficiency within a computer program does not

transform it into an idea.

 Similarly, the courts below have often failed to

carefully distinguish between public domain

expressions which should be filtered out of a work and

public domain ideas which should not. See, e.g.,
Computer Assocs., 982 F.2d at 714–15; Satava, 323

set-to-open-questions-remain-on-future-tolls. Determining

which of the two bridges is the more “efficient” one makes no real

sense. Does that analysis focus on cost? The number of cars that

can be carried? The size of the largest truck that can safely cross?

The bridge’s attractiveness? Clearly, “efficiency” is not a single

point.

15 This need for storage efficiency lead to a problem that

was known as the “Y2K” problem as programmers, for years, had

saved storage space by not storing the “19" that was associated

with the year; instead,1965 would be stored as 65, thus saving ½

of the needed space. See Josh Hodas, What are the main
problems with the Y2K computer crisis and how are people
trying to solve them?, Sci. Am., June, 1999,

https://www.scientificamerican.com/article/what-are-the-main-

problem.

22

F.3d at 810. As this Court best expressed it in

Bleistein, 188 U.S. at 249, “[o]thers are free to copy

the original. They are not free to copy the copy.” In the

case at bar, Google was free to re-express the idea of

APIs in general, including the functional

characteristics needed by application programmers.16

Google was not free merely to copy Oracle’s

expression.

 Finally, as the Federal Circuit ruled below,

Google’s desire to achieve interoperability—or more

accurately, its goal to reduce the chance that its

programmers would be confused by a different API

system—is not relevant to whether Oracle’s APIs

were ideas. See Oracle, 750 F.3d at 1371.17 Ideas exist

independently of how another may wish to use it. By

analogy, many may wish to use the Hogwarts world

created by J.K. Rowling or the Middle-Earth world

created by J.R.R. Tolkien, but both are creative

expressions of their authors and, thus, are protectable

by copyright. Of course, neither author’s copyright

protects the idea of having a world of magic, so future

16 Indeed, the general concept of an API has existed by

that name since at least the early 2000s. See Mary Sweeney,

Visual Basic for Testers 211 (2001) (discussing the “APIs” used

in Microsoft Windows). Of course, the concept without the name

existed for decades before that. See Macro Assemblers,

Encyclopedia of Comp. Sci. 99–100 (Anthony Ralston et al. ed.

4th ed. 2000) (describing achieving standard programming tasks

by using the macro system available with 1960–1980-era IBM

computers); IBM Corp., OS/VS-VM/370 Assembler
Programmer’s Guide 69 (5th ed. 1982) (defining “library macro

definition” as “IBM-supplied ... macro definitions”).

17 As the Federal Circuit acknowledged, interoperability

may be relevant to a fair use analysis. See id. at 1369–70. This

brief takes no position on this question.

23

authors can always express their own versions.

Similarly in the case at bar, Oracle was free to express

its own “world” of APIs. If Google wants one too, it is

free to create one. Google should not be free, however,

to appropriate what Oracle had already expressed.

Conclusion

 For the reasons discussed above, the Court

should affirm the decision of the Federal Circuit that

the Respondent’s software APIs are protected by valid

copyrights. The APIs are creative expressions worthy

of copyright protection. Providing this protection will

not stop others, including Google, from developing its

own set of APIs.

Respectfully submitted,

Interdisciplinary Research Team on

Programmer Creativity

Ralph D. Clifford

 Counsel of Record for Amicus Curiae

University of Massachusetts School of Law

333 Faunce Corner Road

North Dartmouth, MA 02747

rclifford@umassd.edu

(508) 985-1137

Dated: February 13, 2020

	Brief of Amicus Curiae Interdisciplinary Research Team On Programmer Creativity In Support Of Respondent
	tmp.1582753632.pdf.lw5do

