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A. Introduction 

Artificial limbs, often called prosthetics, are unique devices designed to help regain the functions of 

missing limbs. Worldwide, there are millions of individuals who have gone through at least one 

amputation, which can be all or only part of a limb, who would greatly benefit from owning prosthetics 

(“Limb Loss,” 2019). The cost of one prosthetic leg can range from $5,000 to $50,000, while an arm is 

$3,000 to $30,000 (Turner, 2018). However, even the best and most expensive only last three to five years 

of usage. This means they may have to be replaced several times during one’s life. Prosthetics are not a 

one-time cost, so thousands of dollars are needed for each replacement (Mohney, 2013). More 

replacements or adjustments may be necessary for other reasons, such as weight change. Since children 

are continuously growing, they need more frequent replacements, usually every two years or less until the 

age of 18. This leads to a much higher cost, which can range from $21,000 to $300,000 if the prosthetic is 

replaced six times. Unfortunately, health insurance rarely covers the full cost of children’s prosthetics 

because of a limit on how much is allowed to be spent on devices (Sharington, 2017).  

In addition, they must be specially made for every patient, which contributes to the high price. Glenn 

Garrison, director of prosthetics and orthotics at Hospital for Special Surgery in New York pointed out 

that the price greatly varies depending on what components one chooses to include. He also commented 

that "[t]hey're probably in line with a cost of a car” (Mohney, 2013). As seen, it is often very difficult for 

individuals and families to afford prosthetics. Although, individuals can apply for financial assistance, 

including nonprofit organizations, children’s and young adult services, and state and federally funded 

sources (Amputee Coalition, 2019). 

Currently, prosthetics are in very high demand. According to The American Board for Certification in 

Orthotics and Prosthetics, over 1 million limb amputations take place every year worldwide. To put it in a 

different perspective, an amputation occurs somewhere in the world about every 30 seconds (Frost & 

Sullivan, 2018). In Virginia alone, almost 1.5 million veterans sought prosthetics-related care in only one 

year (Veterans Health Administration, 2009). Besides these individuals, there are many other causes of 

limb amputation, meaning the numbers of those seeking care are much greater. Common reasons are 

cancer, diabetes, or birth defects. Due to rising rates of obesity in the United States, more people are 

developing diabetes and atherosclerosis. Therefore, the current statistic of 0.5% Americans having 

amputations is likely to continue to increase and consequently so will the need of prosthetic limbs (Baird, 

2015). In 2005, about 541,000 Americans experienced limb loss of the upper extremity. This number is 

predicted to double by 2050 (Cordella et al., 2016).  
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Prosthetics are needed in order for amputees to perform daily activities independently and comfortably 

(Baird, 2015). This encompases actions such as walking, dressing, feeding, or gripping and manipulating 

other objects. Hands and fingers may be considered the greatest necessity due to their role in sensing 

environmental conditions and performing sophisticated movements and precision tasks. In some cases, 

people feel they need prosthetics to improve their appearance and confidence as well (Cordella et al., 

2016).  

Moving forward, the need of low cost and limited function devices will continue to grow for the majority 

who cannot afford the normal cost ones mentioned above. Similarly, new materials and applications are 

helpful for amputees in developing countries due to their low prices and high availability. Meanwhile, 

advanced new technologies can  be incorporated to help better mimic a real limb. However, the need and 

demand for these devices are much less since they are mostly used for very active individuals and are 

more costly. Similar techniques are eventually able to be added to moderate-cost prosthetics. Still, there is 

a significant need to discover ways to fund widespread innovations (Marks & Michael, 2001). 

This project aims to improve 3D printed prosthetics with simple sensors and motors to keep the cost 

minimal. I plan to conduct research and design circuits that include the sensors and motors. I will 

construct a 3D printed hand model to demonstrate how a tilt sensor combined with digital circuitry and 

servo motors can be used at the wrist joint. Similarly, another servo motor will control the opening and 

closing of the fingers by pulling their artificial tendons. Another sensor that will be incorporated is a force 

sensitive resistor, which will allow the person to detect the amount of pressure they are applying as 

indicated by an LED. All of these components will be powered by a battery pack, and everything will be 

self-contained on the hand and arm. One goal is to discover how combining digital circuitry and computer 

programming may be incorporated into low cost 3D printed prosthetics while keeping the price low and 

availability high. All materials are “off the shelf,” meaning they are available for purchase at places like 

Amazon.com and hardware stores at affordable prices. Adding these elements would help fine-tune hand 

movements and responses, as well as provide individuals with information from their environment. Also, 

I hope to create useful feedback mechanisms for each circuit component. In other words, the information 

received from the sensors will be processed and cause a specific response for the device and its user. 

These functions would otherwise not be possible for 3D printed prosthetics without the addition of circuit 

elements.  

Lastly, this project faces a few limitations such as the supplies and equipment available for use due to the 

price constraint and sophistication of other options. Also, due to the structure and size of the equipment, 

there are only a handful of ways to use them in the design of the model. Likewise, since the model has 
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restricted space, there is a limited amount of equipment that can be attached. Next, the time period 

allotted to complete the research limits how much progress can be accomplished and how many details 

can be included. There are always uncertainties as well when using digital electronics in circuits. The 

devices, in this case sensors, motors, and the Arduino board, may not be one hundred percent accurate 

when taking in or using information or during other operations. As a result, outputs, calculations, and 

feedback responses cannot be as precise. Similarly, these components are limited in their performance 

capabilities. For example, the motors are only able to pull a certain amount of force and they likely do not 

move as smoothly as more expensive and complex motors. Another instance is that the Arduino boards 

are only able to be programmed with one code at a time, so multiple functions cannot happen 

simultaneously unless they are combined within a single code. Furthermore, resistors are essential in 

some circuits, but their resistance can vary from what they are supposed to be. This means there is a 

possibility that resistors will affect other circuit components and slightly alter outputs, calculations, and 

feedback responses again. In addition, the codes used might limit these computations and responses due to 

any rounding or approximations done throughout the equations or other parts of the code. If these 

calculations are done by hand, they would likewise face a similar uncertainty because of rounding. 

 

B. Equipment 

B.1 Arduino UNO 

Arduino is a method to integrate hardware and software for making interactive projects. Its main 

advantages are the low cost and strong support. The Arduino boards use inputs from sensors to take in 

environmental information and then create responses accordingly. The Arduino software uses its own 

coding language to communicate with the board to tell it what to do, which is based on Java programming 

language (Arduino, 2019). For this project, the Arduino Uno board will be used as well as various codes. 

It contains a microcontroller chip, which has a microprocessor with several features such as timers, 

counters, interrupts, and more. Also, the board includes 14 digital input/output pins and 6 analog inputs 

for assembly to any circuit. There is a  USB connection for receiving power from a computer, or it can be 

powered by other external sources. The USB connection also allows the Arduino board to be programmed 

by writing and compiling the code on a computer and then uploading it to the board. This connection 

allows for  serial communication with the computer as well while the Arduino is running. Next, the 

Arduino Uno has an on-board voltage regulator and can provide 5V and 3.5V to other electrical 

components. There are numerous other pins on the board, including Vin for supplying voltage, reset to 



7 

reset the program that is running, IOREF for providing reference voltage to the board, Serial Peripheral 

Interface (SPI) communication pins, Analog Reference (AREF) to provide reference voltage to the analog 

inputs, Two-wire Interface (TWI) communication pins, serial communication pins, and pins to provide 

external interrupts through a low or changing value (Aqeel, 2018). 

 

B.2 MEMS Gyroscope-Accelerometer (MPU-6050) 

This 6-axis MPU-6050 chip includes a 3-axis accelerometer and a 3-axis gyroscope, meaning they obtain 

values in the x, y, and z directions. The accelerometer is used to measure non-gravitational acceleration, 

or change in velocity. It is designed to respond to the vibrations associated with these movements. 

(Goodrich, 2018). The structure of an accelerometer includes plates to measure capacitance, which 

changes when acceleration is applied. This capacitance change corresponds to acceleration values 

(Hamza, 2019). Moreover, it has precise and accurate motion tracking ability, so it can be very beneficial 

in various applications, such as fitness monitors, laptops, cars, and earthquake detectors. These are 

possible due to its small size, low power consumption, high accuracy and shock tolerance, and ability to 

be programmed (InvenSense, 2013).  

Next, the gyroscope measures or maintains orientation and angular velocity based on Earth’s gravity. It is 

able to measure the rate of rotation around an axis. Gyroscopes are most often used to help with stability 

in navigation (Goodrich, 2018). Both the accelerometer and gyroscope use three 16-bit analog-to-digital 

converters (ADCs) for digitizing their outputs. To precisely track slow and fast motions, both can also be 

programmed on their full-scale range; the gyroscope’s is ±250, ±500, ±1000, and ±2000°/sec (dps) and 

the accelerometer’s is ±2g, ±4g, ±8g, and ±16g. These correspond to their sensitivity; lower range means 

higher sensitivity, which obtains measurements more easily than low sensitivity (InvenSense, 2013). 

Additionally, the chip has a Digital Motion Processor (DMP) to process complex algorithms based on the 

information from the accelerometer, gyroscope, and other sensors. To accomplish this 9-axis 

MotionFusion output, it has an  sensor bus that directly accepts inputs from other external sensors.CI2  

Furthermore, the chip contains a 1024 Byte FIFO buffer that reduces power consumption through 

allowing the system processor to read data in bursts and run in a low-power mode while continuing to 

collect information. Similarly, the MPU chip permits decreased processing requirements for the system 

processor. With the MotionFusion output, the DMP is able to minimize the need for constantly measuring 

the motion sensor output. Other features are a temperature sensor and an oscillator with ±1% variation 

over the operating temperature range (InvenSense, 2013). 
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B.3 Servo Motors 

Servo motors allow for precise control of rotating or pushing an object, such as by specific angles or 

distances. One motor is composed of a DC motor, a gearbox, a potentiometer, and a control circuit. The 

DC motor has low torque and high speed, but the gear box increases torque and decreases speed 

(Apoorve, 2015). Usually, these motors operate at 2.5kg/cm torque, meaning the motor can pull 2.5kg 

when it is suspended 1cm away (Components101, 2017). 

When coupled with a sensor, the motor is provided with information on how to adjust its position through 

electrical pulses. This means it uses positive feedback to control its motion and final position, and the 

motor is a closed-loop system. The feedback signal is produced by comparing the reference output and 

input signals, and the feedback signal is the input that controls the device. For example, the difference 

between the potentiometer’s output signal and a signal from another source are processed in this feedback 

mechanism at the control circuit. The output is in the form of an error signal, which is the motor’s input 

signal as well. This causes the motor to rotate and consequently the potentiometer too. As the 

potentiometer moves, a signal is generated; this output signal corresponds to the change in angular 

position of the potentiometer. The motor stops rotating when there is no difference between the 

potentiometer’s signal and the external applied signal (Apoorve, 2015). 

In addition, there are 3 wires coming from the servo motor: power (red), ground (brown), and signal 

(orange). Power is connected to +5V, ground is connected to the ground of the system, and signal is 

connected to, for instance, a digital output so that it can be used to drive the DC motor (Components101, 

2017). Servo motors are controlled by pulse width modulation (PWM), meaning the rotation angle is 

determined by the pulse duration that is applied to its control pin. The shaft can turn 90 degrees in both 

directions from its neutral position. Pulses occur approximately every 20 milliseconds, or at a frequency 

of 50 Hz. If the pulses last 0.5-1 millisecond, the shaft will rotate to 180 degrees, and if they are 2-2.5 

milliseconds, it will rotate to 0 degrees (Apoorve, 2015). 

 

B.4 Force Sensitive Resistor 

A force sensitive resistor (FSRs) is a sensor that detects pressure, squeezing, and weight. It is considered a 

resistor that alters its resistance based on the amount of force applied to it. The sensor is made of a 

semiconductor and electrodes. As pressure increases, more electrodes touch the semiconductor, increasing 

the conductance and decreasing the resistance. With no pressure, the sensor resembles an infinite resistor, 
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or open circuit (Adafruit Learning System, 2019). For this project, the ADA 166 (Interlink 402) FSR will 

be used. 

 

B.5 Micro Limit Switch 

Micro limit switches are smaller than other switches, allowing them to be used in small spaces. They have 

an actuating plunger (a long straight lever arm in this project) that move a small amount to activate the 

contact sequence. The contact positions alternate when a spring-loaded mechanism causes movable 

contacts to snap from one position to the other. These contacts either break or form an electrical 

connection. When in the active position, it regulates the circuit that controls a machine and its moving 

parts (Thomas Publishing Company). One advantage to using a micro limit switch is that it changes state 

in response to a specific actuator trip, whereas contacts in other switches move from any actuator 

movement. Also, they have a fast switching speed, which reduces damage done to contact surfaces. 

Lastly, micro limit switches have reliable and predictable switching due to the speed and movement of the 

contacts being independent to the speed and movement of the actuator (TEMCo Industrial). 

 

C. Methods 

C.1 Arduino Programming Language 

Arduino boards have the ability to interface with other boards, microcontrollers, and computers. The 

boards use an Integrated Development Environment (IDE), which can be programmed using Java C and 

C++ languages. The microcontroller within the board has a bootloader that allows code to be uploaded to 

the board from a computer without needing an external hardware programmer. Also provided with the 

IDE software is the serial monitor, which allows data to be sent from the  board to a computer (Aqeel, 

2018). The monitor can be opened in a separate window to view the output. Since it is an IDE, the editor, 

compiler, and burner are all integrated in the same software (Mirza, 2019). In addition, the software has 

libraries for users to access that include premade codes for carrying out certain tasks and communications.  

 

C.2 Calculation of Pitch and Roll Angles 

Pitch and roll angles help describe the orientation of an object with respect to a coordinate system. 

Orientation is accomplished through rotating about the axes. The pitch angle is defined by the rotation 

around the y axis, and the roll angle is defined by the rotation around the x axis. In order to obtain these 
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values, the acceleration in the x, y, and z directions must be known. An accelerometer is a simple method 

to measure this acceleration. When paired with an Arduino, the raw values for acceleration are displayed 

on the serial monitor. Therefore, prior to calculating the angles, the raw values must be converted to their 

respective desired values in grams based on the accelerometer’s acceleration limit. These limits have 

corresponding sensitivity scale factors that are used in the raw value conversions. In this project, the 

acceleration limit is 2 g and the sensitivity is 16,384 LSB/g. The equation for this required value is:  

  Gp = sensitivity
raw value  

(Kaulics, 2015). 

Furthermore, the pitch and roll angles have their own formulas that are derived through using an initial 

position and rotation matrices for each direction. These matrices depend on the order in which the 

rotations of the different directions are applied. Most commonly, the order xyz or yxz is used to determine 

the individual formulas because this allows the angle in the z direction, yaw angle, to be eliminated. 

Normalizing the accelerometer reading  can be related to the matrices and then used to solve for theGp  

pitch and roll angles in both the xyz and yxz orders. The resulting equations are listed below, where pitch 

angle is denoted by  and roll angle is denoted by .θ  ϕ  

rctan  θxyz = a −Gpx

√G +G2
py

2
pz

 

rctan( )ϕxyz = a Gpz

Gpy  

θyxz = rctan( )a Gpz

−Gpx  

ϕyxz = rctan  a Gpy

√G +G2
px

2
pz

 

(Pedley, 2013). 

There are also Arduino codes that calculate these angles and display them on the serial monitor after 

receiving data from an accelerometer chip. The one used in this project can be referenced to in the 

Appendix, and the equations within the code can be referenced to in section C.3. In the code I used for the 

final version of the model, the angles are calculated using information from the gyroscope. The equation 

for the angle of the motors combines both angle measurements from the accelerometer and gyroscope. 

The gyroscope angle is found using an update equation, which requires the starting angle, raw value, and 

elapsed time. The accelerometer angle is determined using the equations above.  
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C.3 Arduino-Accelerometer Control 

There are numerous ways in which the Arduino and MPU-6050 chip can be combined. For this project, 

codes focused on the raw values and roll and pitch angles will be utilized. Firstly, the accelerometer must 

be connected to the Arduino’s power and ground pins. The SCL and SDA pins on the chip are also 

connected to analog inputs 5 and 4, respectively. This creates the interface between the two and allows 

them to use the  Protocol. SDA is the data line and SCL is the clock line that synchronizes dataCI2  

transfers over the  bus. Finally, the accelerometer’s INT should be connected to digital pin 2. INT isCI2  

the interrupt pin, which is used to tell the Arduino when the 1024 Byte FIFO buffer is full of data waiting 

to be read (Ravi, 2017). 

Next, codes should be uploaded to the Arduino in order to take advantage of the MPU-6050’s functions. 

One simple code used to test the accelerometer is one that gives raw values based on its different 

movements in addition to the temperature. The accelerometer provides acceleration information, and the 

gyroscope provides angular rate information. These values can then be used to calculate and determine 

more sophisticated data, such as roll and pitch angles mentioned above. It may be observed that the raw 

values fluctuate a lot; one reason is that the default sensitivity is high (Arduino, 2019b). Other useful 

codes make calculations from the raw values, especially those two angles, determined similar to how one 

would by hand.  

After discovering this particular method does not work when the accelerometer chip is attached to the 

hand, an altered code had to be used. It is similar, but the angles are calculated using information from the 

gyroscope. The equation for the angle of the motors combines both angle measurements from the 
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accelerometer and gyroscope. The gyroscope angle is found using an update equation to prevent 

gyroscope drift, which requires the starting angle, raw value, and elapsed time. The accelerometer angle is 

determined using the equations from section C.2. 

 

yroXAngle XAngle gyroXrate lapsedT imeg =  +  * e   

yroXrate gx / 131g =   

lapsedT ime (currentT ime previousT ime) / 1000e =  −   

ccXAngle (atan(ay / sqrt(pow(ax, 2) pow(az, 2))) 180 / P I)a =   +   *   

Angle (ap gyroXAngle) ((1 p) accXAngle)X =  *  +  − a *   

 

 

 

C.4 Arduino-Servo Motor Control 

For the purpose of this project, the servo motors of the wrist joint will be controlled based on feedback 

from the accelerometer. Therefore, the accelerometer should be hooked up to the Arduino as specified in 

the previous section. The corresponding wires of the servo motors must be connected to power, ground, 

and a digital output. The Arduino does not supply enough power for multiple motors, so an external 

source must be used; I will be using a +7.4 V battery. The wrist motors must be connected to two 

different digital outputs. This allows one to move when the accelerometer is tilted in the x direction and 

the other to move when it is tilted in the y direction. Within the Arduino code, two motors must be 

defined as well as which pins they will be connected to. Similarly, the acceleration in the x and y 
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directions need to be defined, mapped, and used separately in the code. Lastly, it is important to connect 

all the circuit components to the same ground, including the Arduino, accelerometer, and motors. This 

ensures the correct amount of power is distributed throughout the circuit, which prevents overload too. 

In order to move, the motors use the accelerometer values (-17000 to 17000) and map them from 0 to 180. 

This means when the sensor is moved upward the sensor output is 180, and when it is moved downward 

the output is 0 (Hamza, 2019). For my model, I reversed the 0 and 180 so that the motors will move in the 

opposite direction of the accelerometer’s tilt. Within the code, there should be a defined duration and 

frequency of the pulses generated for the digital output. It is also possible to specify how far the motor 

should rotate in terms of an angle from 0 to 180.  

Furthermore, the tendon servo motor can be controlled by a push button that when pressed, will turn the 

motor’s lever arm, pull the tendons, and close the fingers. When the button is pressed again, the motor, 

tendons, and fingers will return to the starting position. It is hooked up the same way as the other motors, 

except the signal wire is connected to the button, which is then connected to a digital output pin. The 

button is also connected to the Arduino’s power, and a 1k  resistor. The resistor is connected to groundΩ  

and a PMW digital output pin (Ghosh, 2017).  

An additional way to make the fingers open and close is through the use of a limit switch. There are three 

different metal bars, NC, NO, and COM. NC means normally closed, NO is normally open, and COM is 

the common. In the circuit, the COM is connected to ground, and the NO is connected to a resistor and 

then to a digital pin on the Arduino. When the plunger touches something, it causes the motor to move so 

the fingers close. When contact is made again, the motor returns to its starting position and the fingers 

open back up. Within the switch, the NO will be shorted with the COM and the NC will be open with 

respect to the COM (Albbg, 2014). 
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C.5 Arduino-FSR Control 

When the FSR is used in a circuit with an Arduino, a 10k  pulldown resistor can be included, whichΩ  

contributes to the total resistance. The FSR is connected to power and an analog pin, and a 10k  resistorΩ  

is connected to the same analog pin and ground. As the total resistance decreases, the current increases 

and subsequently the voltage across the 10k  resistor increases as well. This makes resistance close toΩ  

linear but not voltage due to voltage being proportional to the inverse of the FSR resistance in the 

equation . This particular code uses the analog reading and converts it to ( R / ( R F SR) )V O = V CC +   

voltage. Then, the voltage value can be converted to resistance (both the FSR resistance and 

conductance). Lastly, the resistance is used to calculate force in Newtons (Adafruit Learning System, 

2019).  

In addition, there is another Arduino code that uses an LED as an indicator of how much force is being 

applied. Greater pressure corresponds to a brighter LED, and less pressure makes it dimmer. A PWM 

digital pin is used for the LED so this can work properly. Besides the digital pin, the LED is connected to 

a 220  resistor, which is then connected to ground (Adafruit Learning System, 2019).Ω  
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C.6 Hand Model and Installation 

My own model for this project started with a pre-existing design for a 3D printed prosthetic hand. This 

one was created to utilize a person’s mechanical movement in order to make the wrist bend. These 

bending motions cause artificial tendons to pull the fingers closed (Thomas, 2016). I used the palm of that 
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hand and all the fingers, along with several additions. First off, I created a thumb from the middle finger 

joints and added a place for it on the palm, again using the middle finger post. I also had to make a hole in 

the palm for the thumb’s tendon to go through. Next, I measured the motors’ brackets and screw holes, 

and I used these measurements to design the 3D printed parts so they could be connected together. I then 

determined how to attach the two wrist motors so that their motions mimic the roll and pitch rotations.  

Acoustic guitar D strings are used for the artificial tendons, which begin at the fingertip, feed through the 

rest of the finger and palm, and end at a motor. At the fingertips, the guitar strings are held in place by 

cord end caps that act as clamps. These clamps are hooked onto eye pins, which must be heated so they 

can push through the fingertip filament. The pins and guitar strings can be reinforced by glue too. On top 

of the hand, elastic cord is attached to the fingertips and palm so that the fingers open back up from the 

closed position. The elastic is pulled by the motor, similar to the guitar strings, in order to obtain the 

necessary force to open them. In addition to the elastic, graphite lubricant may be used to make the 

individual finger joints looser and move more freely. Filing the plastic where it makes contact with the 

elastic helps reduce friction as well by smoothing the rough parts.  

At the other end of the wrist motors is a 3D printed cuff that allows individuals to put it on their arm. I 

also modified this cuff from another design, which was originally made as a ski pole grip for a prosthetic 

arm (Wolf, 2019). I added an attachment site for the second wrist motor and screw holes for the tendon 

motor. Also, this piece was lengthened to have enough space for the circuit components, and I removed 

the hexagon peg from the original design. 

In order to have a self-contained device, the other electronic components must be attached to the model as 

well. This required soldering the sensors and wires onto small circuit boards that were glued to the model. 

Once this was completed, the accelerometer chip was installed on the hand below the thumb and sitting 

vertically while the palm is facing down. It must be vertical since this is its horizontal position when the 

hand is facing thumb-up. If the force sensor was used, it would be located on the middle fingertip so one 

can determine how much pressure they are applying. The Arduino, resistors, LED, push button, and the 

other circuitry pieces are attached to the side of the arm cuff. 
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D. Troubleshooting  
D.1 Accelerometer with Arduino 

When first learning how to use the Arduino with the MPU-6050 chip, it is necessary to see and 

understand the raw values it provides based on its motion. The code from Arduino’s playground worked 

very well. There was one issue with the output from acceleration in the x direction. Instead of changing 

when the chip was tilted, the value remained constant at 32767, or 1.9999g. Running this code on a new 

accelerometer/gyroscope fixed this problem. 

In addition, it is helpful to use a code for calculating pitch and roll values. The calculations can later be 

implemented in another code for moving servo motors based on these angles. The first library found 

(MPU6050_DMP6) provides yaw, pitch, and roll values. It requires the I2Cdev library, which came back 

with a 2Cdev error stating “undetermined #if I2CDEV_IMPLEMENTATION == 

I2CDEV_BUILTIN_NBWIRE.” Within the code, it mentioned two websites for possible solutions to the 

common issue. Upon looking into this, neither resources, or others, were able to solve this problem 

(Rowberg, 2019). Therefore, similar codes were researched instead, and one was found that successfully 

provided pitch and roll values. The code also includes an attempt to determine the yaw angle, but states 

that it is incorrect. For the purpose of this project, yaw is not needed, so the yaw calculation part of the 

code can be ignored. 

Next, how to hand-calculate the pitch and roll angles was researched. After finding the equations for pitch 

and roll, it was noticed that they use values in units of grams. Therefore, another equation for converting 

the accelerometer’s raw acceleration numbers into grams had to be found. The methods for both equations 
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proved to be accurate because the final answers matched the angles the code calculated. Before the new 

MPU-6050 chip was used, the pitch angle came out to be 66.75° and the roll was 0.4559° on a flat, 

horizontal surface. Both of these should have been zero, which was discovered to be true with the new 

chip. 

 

D.2 Servo Motor and Accelerometer with Arduino 

Once the accelerometer chip was learned how to use and understand the outputs, servo motors needed to 

be integrated with it and the Arduino. The library found that controls the motors based on the chip’s 

movement did not work on the installed Arduino application on the computer due to an error compiling 

the board. Instead, the web version of the software had to be used. It is simple to specify how far the 

motor rotates by changing the angles within the code. Also, by decreasing the delay, the motors run 

smoother and quicker in response to the accelerometer’s changing motions. This was successful until 

more than one motor was added to the circuit. The Arduino does not supply enough power to operate 

multiple motors, so they either would not move at all or would demonstrate a few jerky movements. To 

solve this issue, there was an attempt to use an adapter that plugs into the Arduino for power from a wall 

outlet. This did not help, so an external voltage box was hooked up to the circuit instead. It was able to 

provide the motors with higher voltage and connect all circuit elements to the same ground. Both motors 

moved smoothly and accurately with this additional power source. 

 

D.3 FSR with Arduino 

Another interesting sensor to use for the prosthetic is a force sensitive resistor. A couple ways to use and 

test it were found. Both were easy to setup and worked well with no problems. The serial monitor helped 

to determine this by showing the outputs. When more pressure was applied, the outputs signified this, for 

example, by showing a greater force in Newtons. The second circuit visually displayed this with an LED 

becoming brighter as pressure increased. In addition, two different force sensors were compared to see 

which worked the best. An ADA 166 (Interlink 402) and Tactilus 15mm 0-30 PSI were tested; the ADA 

166 seemed to detect and measure the pressure more accurately and for a wider range. 
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D.4 3D Printed Model  

Ideas for the model came from already existing 3D printed prosthetics. The palm and fingers from the 

first design were useful, but modifications were necessary in order to meet the needs of this project. The 

arm piece needed a few adjustments as well. These changes can be seen in section C.6. It was difficult to 

visualize a design for the prosthetic that would work. At first, the idea was to attach the tendon motor 

close to or on top of the hand so the tendons could be short and avoid interfering with other parts of the 

arm. However, if the motor was on top of the hand, it would not allow the tendons the necessary space 

and leverage to pull the fingers closed. If it was connected to the hand, it would cause the arm to be too 

long or too wide. Therefore, it was decided to screw the tendon motor into the top of the arm cuff. It sits 

higher than the wrist motors, so there is less interference. Also, it is the first object on the arm cuff, so the 

tendons are not excessively long. In general, it took several designing and printing attempts to produce the 

correct sizes of each component. For instance, getting the screw holes to line up correctly took a few tries 

since it would not work if they were off by as little as a half millimeter. Similarly, adjusting the joint sizes 

required multiple trials as well for the same reason.  

 

D.5 Servo and Fingers/Tendons 

There needed to be a way to control when the fingers open and close, so options were explored. One idea 

was to implement a proximity sensor so that when the hand is close to an object, the motor will turn and 

cause the fingers to close around the object. However, the problem was that the sensor would still 
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perceive the object when the fingers need to be opened. This means the object would not be released 

because the sensor must detect nothing close by in order for the fingers to open back up. Similarly, the 

proximity sensor may sense nearby objects that the user does not want to grab, creating further 

inconveniences. The next idea was to use a small button; the first press would turn the motor to close the 

fingers, and the second press would return the motor and fingers to their starting positions. This is a more 

reasonable approach because it allows the individual to determine when he or she wants the fingers to 

open and close. The circuit setup is straightforward, and the beginning and ending angles of the motor can 

easily be adapted for the needs of the fingers. Finally, another option was implemented for controlling the 

fingers: a limit switch. It was placed in the palm of the hand so that the metal bar can make contact with, 

for example, a table. The bar passes through the hand beneath the pinky, which can be accomplished by 

heating the bar and plastic so the plastic melts enough for the bar to be pushed through. In this instance, 

when it touches the table, the fingers can close around a cup in order to pick it up. Similarly, when the 

individual wishes to put the cup down again, the fingers release it by making contact with the table a 

second time.  

 

 

 

 

 

 

 

 

 

 

 

D.6 Fingers and Tendons 

Once the push button method was decided upon and tested, the artificial tendons could be added to the 

fingers. The first step was to decide how the tendons should be hooked to the fingertips. The initial 

thought was to glue them since there was no attachment site, only slits on the underside of the fingertips 
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where the end of the tendons sit. This may not secure them well enough and would make it difficult to test 

different types of materials for the tendons. The solution was to hook clamps to hold the strings onto pins. 

The easiest way to secure the pins in the fingertips was to heat them enough so that they pushed into the 

plastic.  

Next, different types of strings had to be tested to determine the best combination of elasticity and 

flexibility. These included silverwound guitar strings, clear nylon guitar strings, stiff wire, and acoustic 

guitar D strings. The silverwound and nylon ones were able to pull the fingers closed, but would not open 

them back up. There needed to be extra force to push them open, so strong wire was tried. It proved to not 

be flexible enough because it was unable to thread all the way through the fingers. Also, it was noticed 

that the joints seemed too tight, creating the need for more force to open and close them. One idea was to 

resize the joints by a millimeter or two so they could become looser. Rather than taking the time to reprint 

and continue to experiment with other materials, a different approach was taken. Elastic was glued on top 

of the fingers and hand to generate force for pulling the joints open. Again, both guitar strings were tested 

with the elastic; the fingers would not open with the sturdier nylon and opened halfway with the 

silverwound. There was still not enough force to allow the finger to return to the open position, so more 

than one piece of elastic was necessary. For most cases, two pieces was enough, but a couple fingers 

needed a third at a single joint. Another way to assist this problem was to decrease the friction, such as 

using graphite lubricant for stiff joints. Also, the top surface of the fingers was filed down because rough 

parts of plastic caused the elastic to get stuck and create additional friction.  

Now that all the fingers were able to open up on their own, the final guitar strings could be added. 

Acoustic guitar D strings were used, which have a stiffness that is between the silverwound and nylon 

ones. The guitar strings are tied to the motor’s lever arm, but another issue is that they wrap around the 

base of the arm when it pulls them. Other parts of the arm model interfere with the strings too, specifically 

the strings rub against or get caught on the motors. Threading the strings through small metal loops and 

knotting them together guide the strings up away from the motors, prevent them from wrapping around 

the lever arm, and decrease the slack. Even with these improvements, the tendons still get pulled and rub 

against the wrist motors when the wrist motors move. The guitar strings may be too long, so moving the 

tendon motor closer to the hand or onto the hand could eliminate that problem. 

Although the fingers work well on their own, it is difficult for the motor to pull them all closed at the 

same time. The force required to close the fingers is now greater with elastic. It seems to be too much 

force for the motor to pull; the fingers will not close completely and parts of the arm get pulled out of 

alignment, such as the motors and at the screws. Increasing the angle that the motor’s lever arm moves 
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did not seem to help. Also, clamping the strings together then tying only one string to the motor made 

matters worse. Another possible contributing cause of this issue could be that the guitar strings are not 

tied tight. In other words, there may be too much slack at the starting, open fingers position. However, 

attempting to tie them tighter did not help either, but guiding them through loops and knotting them 

together as mentioned above decreased the slack and friction. One last potential problem could be that the 

finger joints were printed too tightly. Making them looser by resizing and reprinting would reduce the 

amount of elastic needed to pull them back open. Consequently, the force required to pull them closed 

would also decrease, which could possibly help this problem.  

Still, the elastic would likely create too much force, so the approach of using thinner, stronger elastic 

pulled by the motor to open the fingers was attempted. This requires a different lever arm on the motor so 

that the elastic strings can be tied to the opposite side of the lever. They are attached to the top of the 

finger in the same way the guitar strings are attached. There is also the addition of pins with loops and 

other larger loops to help guide the elastic strings along the hand to the motor. This was not done for the 

thumb because the angle it is at does not aid in gripping objects. The angle creates friction that causes the 

string to not move smoothly too. Both of those problems might be fixed by redesigning and repositioning 

the thumb. Also, removing the original elastic on the hand lessened the amount of force the motor has to 

pull when closing the fingers. 
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D.7 Accelerometer Installation 

After attaching the accelerometer to the hand, there was trouble getting the wrist motors to work properly 

due to the accelerometer detecting acceleration when the hand moves. It tries to compensate for the 

acceleration it is creating, causing the motors to jerk in all directions. There are two possible solutions: 

control the speed of the servo motors so that they do not create significant acceleration when they move 

fast, or use gyroscope angles to detect and adjust the position so that acceleration other than gravity is not 

a factor. The Arduino website suggested using the servo.write() or delay() function for altering the servo 

motors speed, neither of which made a difference (Arduino, 2019c). Similarly, a library for controlling 

servo speed was found but did not work because of an error compiling the board (Hawk, 2017). 

Moving onto the second option, a library for using the gyro to control the servos was tested. It required 

the GY6050.h library, which had an error compiling the board (Iqbal, 2019). Still, the ideal approach 

would be to alter the existing code so that the gyroscope values are used instead of the accelerometer 

values. The first try created a gyroscope drift, meaning the angles are slightly different than what they 

should be. To help fix this, angle update equations were added to the code that combined both the 

gyroscope and accelerometer angle measurements (Dejan, 2019). This code caused the motors to move in 

the same direction as the tilt instead of the opposite direction. The next attempt of changing the Xmove 
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and Ymove equations made the motors move 90 degrees, and they did not move after that. Then, it was 

discovered that the variable ap was defined as an integer when it should have been a float. The motors 

still were not behaving correctly; they moved very slowly up and right when tilted upwards, up when 

tilted right, down when tilted left, and had no movement when tilted downward. Next, the code was 

altered to read the position of the servo and then make an offset. This caused the motors to turn 90 

degrees up and right when tilted right, and 90 degrees down and left when tilted left. Finally, the Xmove 

and Ymove equations were fixed again, which allowed the motors to perform as desired. This final code 

calculates the angles the motors need to move to then resets its angles and time to zero. As a result, there 

is better accuracy in keeping the hand level due to decreased acceleration. Furthermore, the motors were 

moving too slowly and therefore adjusting to the altering orientation too slowly. They need to move 

immediately to keep up with quickly changing needs of the person. To attempt to fix this, the delays were 

reduced so that the motors adjust quicker to the changing position.  
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D.8 Installing all Components 

When preparing for installation of the Arduino board, a single code had to be written to perform 

simultaneous actions since it can store and utilize only one code at a time. All three motors needed to be 

working at the same time so that the hand can remain level and the fingers can open and close. Combining 

these two separate codes was not overly challenging since they use separate control methods (gyroscope 

versus limit switch), and the motors are connected to different pins. The installation of all the other 

equipment onto the hand and arm was tedious when soldering, and the only problem presented was 

occasional loose wire connections, causing the circuits to become disconnected. Deciding where to place 

the equipment on the arm cuff was based on the most efficient use of space. The limit switch was attached 

inside the palm, where it would be most useful as well. All other circuit elements were placed on the 

thumb-side of the arm cuff. Although an external power source was used, a battery could take the place of 

it. It can be glued onto the top of the arm cuff or exist independently and function in the same manner. 

This would decrease the weight and bulk of the arm and increase versatility, which would allow for 

improved function. Lastly, the force sensor was not installed due to running out of time to attach all the 

components and figure out if it is possible to combine its code with the code for the three motors. 
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E. Conclusion 

Overall, this project was successful in improving 3D printed prosthetics while keeping the cost minimal. 

Combining digital circuitry and computer programing with preexisting 3D printed designs allowed this to 

be possible. In the beginning, methods for building different circuits for specific codes were tested and 

learned. Also accomplished was the design of special 3D printed parts based on the hardware 

measurements and needs of the model. Next, the calculations used for determining outputs and creating 

responses were all done within the Arduino codes. Analyzing the serial monitor outputs and comparing 

them to theoretical values ensured the MPU-6050 and FSR were operating correctly with the Arduino 

board and software. Computations used in codes could be checked too, as they were for the pitch and roll 

angles mentioned in section C.2. Similarly, observing how the motors responded to inputs, such as the 

pushbutton and accelerometer chip, determined if they were working. 

All supplies and equipment used for the model can be found on Amazon.com or a hardware store at a low 

price, making it a much more affordable option than non-3D printed prosthetics. The general design of the 

model as a whole seemed to be an excellent option; space was utilized and not wasted and bulk and 

weight were as minimal as possible. Also, it greatly resembled a real hand and arm with multi-jointed 

fingers, a double-axis wrist motion, and an arm piece attachment. After numerous coding trials and errors, 

the accelerometer chip installed on the hand operated the wrist motors to keep the hand level, as desired. 

The fingers, artificial tendons, and elastic strips all worked very well on their own when pulled by the 

motor. Unfortunately, there was trouble pulling all five tendons at the same time. This seemed to be a 

result of too much force required to pull them open as well as tight joints and interference with the strings. 

It could be fixed with more time and alternative ideas and designs. In addition, the force sensor and its 

own circuit elements were not installed on the arm; there was not enough time to install them determine 

how to combine the code with the servos code. Although the project was mostly a success, further 

modifications are necessary and would be very beneficial to future users.  

 

Costs of the Major Components  

Arduino microcontroller ~$15 

Accelerometer/gyroscope ~$5 

Motor bracket $6 

High torque servo motor $30 
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Servo motors (2 x $15) $30 

Limit switch ~$1 

Force sensor ~$10 

Total ~$100 

 

F. Future Improvements 

This preliminary prototype paves way for endless expansions in future research. With more time and 

resources, many components could be improved and added. Regarding the design, it would be beneficial 

to make it less bulky. For example, if possible, incorporating a single motor that allows both of the 

motions demonstrated would make it more compact and better resemble a real arm. Using a small battery 

(rather than the external power source) and smaller Arduino would reduce the weight and space taken up 

as well. Another improvement may include making the arm cuff piece more comfortable, such as through 

the use of padding. Similarly, this arm part could be redesigned to better fit the shape of the user’s arm. 

For example, instead of it being a rectangular shape, it might need to be tapered in certain areas 

depending on the person’s arm. Also to customize it, different sizes of the 3D printed parts could be made 

for individuals of various ages and sizes. For both these improvements, measurements of the person’s 

body would need to be taken. Adjusting the fit and size is another way to increase comfort, compatibility, 

and usefulness.  

In addition, there may be other printer filament to use besides PLA that is stronger and does not wear 

down quickly. This would ensure a longer window of use and therefore less money spent on 

replacements. Also, adding grips on the fingertips or using silicone-like printing material for the fingertips 

would help individuals grip objects more securely. Next, incorporating additional sensors would increase 

the amount of information gained by environmental stimuli. These could include temperature and 

proximity sensors, as well as the force sensor tested in this project. Finding an alternative way to program 

each component would be helpful since the Arduino can only upload and use one code at a time. All the 

pieces need to be able to function at the same time. A second option is to write a single code that 

incorporates all other components including the motors, assuming they would not interfere with one 

another and the board has enough memory. Another important improvement would be to create better 

wire connections. Currently, the wires sometimes come loose, which interrupts the circuits and makes 

them stop working. 
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Another interesting design idea would be to build an elbow joint for those who do not have one. There are 

many different options for this, but it is likely that another motor would be used for the joint. 

Additionally, the users would greatly benefit from a thumb with better range of motion. In this model, it is 

a hinge joint in the model, when in reality it should be a saddle joint to allow for the actions of a normal 

opposable thumb. This would be a tedious and complicated process, but it is doable. Another possibility is 

repositioning the thumb so that it can function more effectively and efficiently. For instance, moving it 

down and in towards the palm area would improve its ability to grip objects. This may also help the 

problem of not being able to pull the thumb open and closed as well as the others due to the strings not 

running parallel to the hand and arm.  

Lastly, one of the most important and necessary changes that should be made is to the fingers and 

artificial tendons. The joints were too tight, causing the need for elastic to pull the fingers open from the 

closed position. After several different attempts, they still did not work as they should. Therefore, other 

approaches need to be tested in order to fix this issue. Resizing and reprinting the fingers to be looser 

would decrease the amount of force that the motor must pull. Another idea to incorporate may be to 

continue exploring other material options instead of the guitar strings and elastic bands, or considering a 

stronger motor. Also, determining a method in which the tendon motor is inside the palm may improve 

the opening and closing actions of the fingers. This is based on the fact that the wrist motors affect the 

length of the tendons, meaning that when the motors move, they pull the guitar strings away from their 

current proper position. Using this idea could also help the thumb’s tendon be pulled more easily by 

decreasing the angle, thus decreasing the friction, it is pulled at with this model. 
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Appendix 

Appendix A: Accelerometer Raw Values Code 

// MPU-6050 Short Example Sketch 

// By Arduino User JohnChi 

// August 17, 2014 

// Public Domain 

#include<Wire.h> 

const int MPU_addr=0x68;  // I2C address of the MPU-6050 

int16_t AcX,AcY,AcZ,Tmp,GyX,GyY,GyZ; 

void setup(){ 

  Wire.begin(); 

  Wire.beginTransmission(MPU_addr); 

  Wire.write(0x6B);  // PWR_MGMT_1 register 

  Wire.write(0);     // set to zero (wakes up the MPU-6050) 

  Wire.endTransmission(true); 

  Serial.begin(9600); 

} 
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void loop(){ 

  Wire.beginTransmission(MPU_addr); 

  Wire.write(0x3B);  // starting with register 0x3B (ACCEL_XOUT_H) 

  Wire.endTransmission(false); 

  Wire.requestFrom(MPU_addr,14,true);  // request a total of 14 

registers 

  AcX=Wire.read()<<8|Wire.read();  // 0x3B (ACCEL_XOUT_H) & 0x3C 

(ACCEL_XOUT_L)  

  AcY=Wire.read()<<8|Wire.read();  // 0x3D (ACCEL_YOUT_H) & 0x3E 

(ACCEL_YOUT_L) 

  AcZ=Wire.read()<<8|Wire.read();  // 0x3F (ACCEL_ZOUT_H) & 0x40 

(ACCEL_ZOUT_L) 

  Tmp=Wire.read()<<8|Wire.read();  // 0x41 (TEMP_OUT_H) & 0x42 

(TEMP_OUT_L) 

  GyX=Wire.read()<<8|Wire.read();  // 0x43 (GYRO_XOUT_H) & 0x44 

(GYRO_XOUT_L) 

  GyY=Wire.read()<<8|Wire.read();  // 0x45 (GYRO_YOUT_H) & 0x46 

(GYRO_YOUT_L) 

  GyZ=Wire.read()<<8|Wire.read();  // 0x47 (GYRO_ZOUT_H) & 0x48 

(GYRO_ZOUT_L) 

  Serial.print("AcX = "); Serial.print(AcX); 

  Serial.print(" | AcY = "); Serial.print(AcY); 

  Serial.print(" | AcZ = "); Serial.print(AcZ); 

  Serial.print(" | Tmp = "); Serial.print(Tmp/340.00+36.53); 

//equation for temperature in degrees C from datasheet 

  Serial.print(" | GyX = "); Serial.print(GyX); 

  Serial.print(" | GyY = "); Serial.print(GyY); 

  Serial.print(" | GyZ = "); Serial.println(GyZ); 

  delay(333); 

} 

(Arduino, 2019b). 
 
Appendix B: Pitch and Roll Angles Code (-180° to +180°) 

#include<Wire.h> 

const int MPU=0x68;  // I2C address of the MPU-6050 

int16_t AcX,AcY,AcZ,Tmp,GyX,GyY,GyZ; 
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double compAngleX,compAngleY,/*gzangle,*/compAnglez,timer; 

  double accXangle ,accYangle,acczangle ,gyroXrate 

,gyroYrate,gyroZrate; 

  double gyroXAngle, gyroYAngle, gyroZAngle; 

  // float rgyro,w; 

  int ap=0.955; 

  void setup() 

{ 

   Serial.begin(115200); 

/////////////////////// SENSOR READING////////// 

 Wire.begin(); 

  Wire.beginTransmission(MPU); 

  Wire.write(0x6B);  // PWR_MGMT_1 register 

  Wire.write(0);     // set to zero (wakes up the MPU-6050) 

  Wire.endTransmission(true); 

  /////////////////////////////////////// 

} 

void loop() 

{ 

  Wire.beginTransmission(MPU); 

  Wire.write(0x3B);  // starting with register 0x3B (ACCEL_XOUT_H) 

  Wire.endTransmission(false); 

  Wire.requestFrom(MPU,14,true);  // request a total of 14 registers 

  AcX=Wire.read()<<8|Wire.read();  // 0x3B (ACCEL_XOUT_H) & 0x3C 

(ACCEL_XOUT_L)  
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  AcY=Wire.read()<<8|Wire.read();  // 0x3D (ACCEL_YOUT_H) & 0x3E 

(ACCEL_YOUT_L) 

  AcZ=Wire.read()<<8|Wire.read();  // 0x3F (ACCEL_ZOUT_H) & 0x40 

(ACCEL_ZOUT_L) 

  Tmp=Wire.read()<<8|Wire.read();  // 0x41 (TEMP_OUT_H) & 0x42 

(TEMP_OUT_L) 

  GyX=Wire.read()<<8|Wire.read();  // 0x43 (GYRO_XOUT_H) & 0x44 

(GYRO_XOUT_L) 

  GyY=Wire.read()<<8|Wire.read();  // 0x45 (GYRO_YOUT_H) & 0x46 

(GYRO_YOUT_L) 

  GyZ=Wire.read()<<8|Wire.read();  // 0x47 (GYRO_ZOUT_H) & 0x48 

(GYRO_ZOUT_L) 

 accXangle = (atan2(AcY, AcZ) * RAD_TO_DEG); 

 accYangle = (atan2(AcX, AcZ) * RAD_TO_DEG); 

acczangle = (atan2(AcX,AcY) * RAD_TO_DEG);/* my attempt to calculate 

yaw but not correct*/ 

 gyroXrate = GyX / 16.5; 

 gyroYrate = GyY / 16.5; 

 gyroZrate = GyZ/ 16.5; 

 timer = millis(); 

 //angular position 

 gyroXAngle += gyroXrate * (millis()-timer)/1000; 

 gyroYAngle += gyroYrate * (millis()-timer)/1000; 

 gyroZAngle += gyroZrate * (millis()-timer)/1000;/* my attempt to 

calculate yaw but not correct*/ 

//---------------------------\\ 

 //COMPLIMENTRY FILTER STARTED\\ 
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 //---------------------------\\ 

 compAngleX = ap * (compAngleX + gyroXAngle) + (1-ap) * accXangle; 

 compAngleY = ap * (compAngleY + gyroYAngle) + (1-ap) * accYangle; 

 compAnglez = ap * (compAnglez + gyroZAngle) + (1-ap) * acczangle; 

/*yaw but not correct*/ 

 //---------------------------\\ 

 //COMPLIMENTRY FILTER ENDED  \\ 

 //---------------------------\\ 

   Serial.print("ypr\t"); 

            Serial.print(compAnglez); 

            Serial.print("\t"); 

            Serial.print(compAngleY); 

            Serial.print("\t"); 

            Serial.println(compAngleX); 

} 

(Ahsanraza, 2015). 

 

Appendix C: Servo Motor and Accelerometer Code: Motion in X-Direction 

#include <Wire.h> 

#include <MPU6050.h> 

#include <Servo.h>  

Servo sg90;  

int servo_pin = 2; 

MPU6050 sensor ; 

int16_t ax, ay, az ; 

int16_t gx, gy, gz ; 
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void setup ( ) 

{  

sg90.attach ( servo_pin ); 

Wire.begin ( ); 

Serial.begin  (9600);  

Serial.println  ( "Initializing the sensor" );  

sensor.initialize ( );  

Serial.println (sensor.testConnection ( ) ? "Successfully Connected" 

: "Connection failed");  

delay (1000);  

Serial.println ( "Taking Values from the sensor" ); 

delay (1000); 

} 

void loop ( )  

{  

sensor.getMotion6 (&ax, &ay, &az, &gx, &gy, &gz); 

ax = map (ax, -17000, 17000, 0, 180) ; 

Serial.println (ax); 

sg90.write (ax);  

delay (200); 

} 

(Hamza, 2019). 

 

Appendix D: Servo Motor and Accelerometer Code: Motion in Y-Direction 

#include <Wire.h> 

#include <MPU6050.h> 
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#include <Servo.h>  

Servo sg90;  

int servo_pin = 2; 

MPU6050 sensor ; 

int16_t ax, ay, az ; 

int16_t gx, gy, gz ; 

void setup ( ) 

{  

sg90.attach ( servo_pin ); 

Wire.begin ( ); 

Serial.begin  (9600);  

Serial.println  ( "Initializing the sensor" );  

sensor.initialize ( );  

Serial.println (sensor.testConnection ( ) ? "Successfully Connected" 

: "Connection failed");  

delay (1000);  

Serial.println ( "Taking Values from the sensor" ); 

delay (1000); 

} 

void loop ( )  

{  

sensor.getMotion6 (&ax, &ay, &az, &gx, &gy, &gz); 

ay = map (ay, -17000, 17000, 0, 180) ; 

Serial.println (ay); 

sg90.write (ay);  

delay (200); 
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} 

(Hamza, 2019). 

 

Appendix E: FSR Advanced Information Code 

/* FSR testing sketch.  

Connect one end of FSR to power, the other end to Analog 0. 

Then connect one end of a 10K resistor from Analog 0 to ground  

For more information see www.ladyada.net/learn/sensors/fsr.html */ 

int fsrPin = 0;     // the FSR and 10K pulldown are connected to a0 

int fsrReading;     // the analog reading from the FSR resistor 

divider 

int fsrVoltage;     // the analog reading converted to voltage 

unsigned long fsrResistance;  // The voltage converted to resistance, 

can be very big so make "long" 

unsigned long fsrConductance;  

long fsrForce;       // Finally, the resistance converted to force 

void setup(void) { 

  Serial.begin(9600);   // We'll send debugging information via the 

Serial monitor 

} 

void loop(void) { 

  fsrReading = analogRead(fsrPin);  

  Serial.print("Analog reading = "); 

  Serial.println(fsrReading); 

  // analog voltage reading ranges from about 0 to 1023 which maps to 

0V to 5V (= 5000mV) 

  fsrVoltage = map(fsrReading, 0, 1023, 0, 5000); 



39 

  Serial.print("Voltage reading in mV = "); 

  Serial.println(fsrVoltage);  

  if (fsrVoltage == 0) { 

    Serial.println("No pressure");  

  } else { 

    // The voltage = Vcc * R / (R + FSR) where R = 10K and Vcc = 5V 

    // so FSR = ((Vcc - V) * R) / V        yay math! 

    fsrResistance = 5000 - fsrVoltage;     // fsrVoltage is in 

millivolts so 5V = 5000mV 

    fsrResistance *= 10000;                // 10K resistor 

    fsrResistance /= fsrVoltage; 

    Serial.print("FSR resistance in ohms = "); 

    Serial.println(fsrResistance); 

    fsrConductance = 1000000;           // we measure in micromhos so  

    fsrConductance /= fsrResistance; 

    Serial.print("Conductance in microMhos: "); 

    Serial.println(fsrConductance); 

    // Use the two FSR guide graphs to approximate the force 

    if (fsrConductance <= 1000) { 

      fsrForce = fsrConductance / 80; 

      Serial.print("Force in Newtons: "); 

      Serial.println(fsrForce);  

    } else { 

      fsrForce = fsrConductance - 1000; 

      fsrForce /= 30; 

      Serial.print("Force in Newtons: "); 
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      Serial.println(fsrForce);  

    } 

  } 

  Serial.println("--------------------"); 

  delay(1000); 

} 

(Adafruit Learning System, 2018). 

 

Appendix F: FSR with LED Code 

/* FSR testing sketch.  

Connect one end of FSR to 5V, the other end to Analog 0. 

Then connect one end of a 10K resistor from Analog 0 to ground 

Connect LED from pin 11 through a resistor to ground  

For more information see www.ladyada.net/learn/sensors/fsr.html */ 

int fsrAnalogPin = 0; // FSR is connected to analog 0 

int LEDpin = 11;      // connect Red LED to pin 11 (PWM pin) 

int fsrReading;      // the analog reading from the FSR resistor 

divider 

int LEDbrightness; 

void setup(void) { 

  Serial.begin(9600);   // We'll send debugging information via the 

Serial monitor 

  pinMode(LEDpin, OUTPUT); 

} 

void loop(void) { 

  fsrReading = analogRead(fsrAnalogPin); 
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  Serial.print("Analog reading = "); 

  Serial.println(fsrReading); 

  // we'll need to change the range from the analog reading (0-1023) 

down to the range 

  // used by analogWrite (0-255) with map! 

  LEDbrightness = map(fsrReading, 0, 1023, 0, 255); 

  // LED gets brighter the harder you press 

  analogWrite(LEDpin, LEDbrightness); 

  delay(100); 

} 

(Adafruit Learning System, 2018). 

 

Appendix G: Final Motor and Gyroscope Code: X- and Y-directions 

#include <Wire.h> 

#include <MPU6050.h> 

#include <Servo.h>  

Servo sg90x;  

int servo_pinx = 3; 

Servo sg90y; 

int servo_piny = 5; 

MPU6050 sensor ; 

int16_t ax, ay, az, accXAngle, accYAngle ; 

int16_t gx, gy, gz ; 

int16_t gyroXrate, gyroYrate, timer, gyroXAngle, gyroYAngle, 

compAngleX, compAngleY, accXangle, accYangle ; 

int16_t Xmove, Ymove ; 



42 

int16_t XAngle, YAngle ; 

int16_t previousTime, currentTime, elapsedTime ;  

float ap=0.90 ; 

int accYOffset = -2 ; 

void setup ( ) 

{  

sg90x.attach ( servo_pinx ); 

sg90y.attach ( servo_piny ); 

Wire.begin ( ); 

Serial.begin  (9600);  

Serial.println  ( "Initializing the sensor" );  

sensor.initialize ( );  

Serial.println (sensor.testConnection ( ) ? "Successfully Connected" 

: "Connection failed");  

delay (1000);  

Serial.println ( "Taking Values from the sensor" ); 

delay (1000); 

} 

void loop ( )  

{  

previousTime = currentTime;        // Previous time is stored before 

the actual time read 

currentTime = millis();            // Current time actual time read 

elapsedTime = (currentTime - previousTime) / 1000; // Divide by 1000 

to get seconds 

sensor.getMotion6 (&ax, &ay, &az, &gx, &gy, &gz); 
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// mx = map (ax, -17000, 17000, 180, 0) ; 

// my = map (ay, -17000, 17000, 180, 0) ; 

accXAngle = (atan(ay / sqrt(pow(ax, 2) + pow(az, 2))) * 180 / PI) ; 

accYAngle = (atan(-1 * ax / sqrt(pow(ay, 2) + pow(az, 2))) * 180 / 

PI) + accYOffset ; 

Serial.print ("Acc  X angle = ") ; 

Serial.print (accXAngle) ; 

Serial.print ("\t Acc  Y angle = ") ; 

Serial.println (accYAngle) ; 

gyroXrate = gx / 131 ; 

gyroYrate = gy / 131 ; 

gyroXAngle = XAngle + gyroXrate*elapsedTime ; 

gyroYAngle = YAngle + gyroYrate*elapsedTime ; 

Serial.print ("Gyro X angle = ") ; 

Serial.print (gyroXAngle) ; 

Serial.print ("\t Gyro Y angle = ") ; 

Serial.println (gyroYAngle) ; 

XAngle = (ap * gyroXAngle) + ((1-ap) * accXAngle) ;  // combine both 

angle measurements 

YAngle = (ap * gyroYAngle) + ((1-ap) * accYAngle) ; 

Serial.print ("X angle      = ") ; 

Serial.print (XAngle) ; 

Serial.print ("\t Y angle      = ") ; 

Serial.println (YAngle) ; 

Serial.println ("-------------------------") ; 

Serial.print ("Servo X pos  = ") ; 
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Serial.print (sg90x.read()) ; 

Serial.print ("  Servo Y pos = "); 

Serial.println (sg90y.read()) ; 

Xmove = sg90x.read() + YAngle ; 

Ymove = sg90y.read() + XAngle ; 

if (Xmove > 91) { 

  sg90x.write (Xmove) ; 

  Serial.print ("Rotate motor X to "); 

  Serial.println (Xmove);  

  delay (50); 

  Serial.println ("Assuming it is now level in x, reset angle") ; 

} 

else if (Xmove < 89) { 

  sg90x.write (Xmove) ; 

  Serial.print ("Rotate motor X to ") ; 

  Serial.println (Xmove); 

  delay (50) ; 

} ; 

if (Ymove > 91) { 

  sg90y.write (Ymove) ; 

  Serial.print ("Rotate motor Y to "); 

  Serial.println (Ymove);  

  delay (50); 

} 

else if (Ymove < 89) { 

  sg90y.write (Ymove) ; 
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  Serial.print ("Rotate motor Y to ") ; 

  Serial.println (Ymove); 

  delay (50) ; 

} ; 

delay (50); 

Serial.println ("-------------------------") ;  

} 

(Hamza, 2019). 

 

Appendix H: Servo Motor and Push Button Code 

#include <Servo.h>  

 const int servoPin = 8;  // Servo pin 

 const int buttonPin = 9;  // Pushbutton pin 

 int buttonState = 0;  

 int directionState = 0;  

 Servo myservo;  

 int pos = 0; 

void setup() { 

   myservo.attach(8); 

   pinMode(buttonPin, INPUT); 

 } 

 void loop(){ 

   buttonState = digitalRead(buttonPin); 

   if (directionState == 0){ 

     if (buttonState == HIGH) { 

       directionState = 1; 



46 

       for(pos = 0; pos < 90; pos += 1) 

       { 

         myservo.write(pos);  

         delay(15);  // waits 15ms to reach the position  

       } 

     } 

   } else if (directionState == 1) { 

     if (buttonState == HIGH) { 

       directionState = 0;  

      for (pos = 90; pos>=1; pos -=1) 

       { 

         myservo.write(pos); 

         delay(15); 

       } 

     } 

   } 

 } 

(Ghosh, 2017). 

 

Appendix I: Combined Code for all Motors 

#include <Wire.h> 

#include <MPU6050.h> 

#include <Servo.h>  

Servo sg90x;  

int servo_pinx = 5; 

Servo sg90y; 
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int servo_piny = 3; 

Servo handservo;  

const int handservoPin = 7; 

const int buttonPin = 9 ; 

int buttonState = 0 ;  

int handState = 0 ; // 0 = open;  1 = close 

int buttonDelay = 0 ; //  

MPU6050 sensor ; 

int16_t ax, ay, az, accXAngle, accYAngle ; 

int16_t gx, gy, gz ; 

int16_t gyroXrate, gyroYrate, timer, gyroXAngle, gyroYAngle, 

compAngleX, compAngleY, accXangle, accYangle ; 

int16_t Xmove, Ymove ; 

int16_t XAngle, YAngle ; 

int16_t previousTime, currentTime, elapsedTime ;  

float ap=0.80 ; 

int accYOffset = 0 ; 

int accXOffset = -10 ; 

void setup ( ) 

{  

sg90x.attach ( servo_pinx ); 

sg90y.attach ( servo_piny ); 

handservo.attach ( handservoPin ) ; 

sg90x.write(90) ; 

sg90y.write(90) ; 

handservo.write(135) ; 
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pinMode(buttonPin, INPUT) ; 

Wire.begin ( ); 

Serial.begin  (9600);  

Serial.println  ( "Initializing the sensor" );  

sensor.initialize ( );  

Serial.println (sensor.testConnection ( ) ? "Successfully Connected" 

: "Connection failed");  

delay (1000);  

Serial.println ( "Taking Values from the sensor" ); 

delay (1000); 

} 

void loop ( )  

{ 

buttonState = digitalRead(buttonPin); // read the button state  

previousTime = currentTime;        // Previous time is stored before 

the actual time read 

currentTime = millis();            // Current time actual time read 

elapsedTime = (currentTime - previousTime) / 1000; // Divide by 1000 

to get seconds 

sensor.getMotion6 (&ax, &ay, &az, &gx, &gy, &gz); 

// mx = map (ax, -17000, 17000, 180, 0) ; 

// my = map (ay, -17000, 17000, 180, 0) ; 

accXAngle = (atan(ay / sqrt(pow(ax, 2) + pow(az, 2))) * 180 / PI) + 

accXOffset ; 

accYAngle = (atan(-1 * ax / sqrt(pow(ay, 2) + pow(az, 2))) * 180 / 

PI) + accYOffset ; 

Serial.print ("Acc  X angle = ") ; 
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Serial.print (accXAngle) ; 

Serial.print ("\t Acc  Y angle = ") ; 

Serial.println (accYAngle) ; 

gyroXrate = gx / 131 ; 

gyroYrate = gy / 131 ; 

gyroXAngle = XAngle + gyroXrate*elapsedTime ; 

gyroYAngle = YAngle + gyroYrate*elapsedTime ; 

Serial.print ("Gyro X angle = ") ; 

Serial.print (gyroXAngle) ; 

Serial.print ("\t Gyro Y angle = ") ; 

Serial.println (gyroYAngle) ; 

XAngle = (ap * gyroXAngle) + ((1-ap) * accXAngle) ;  // combine both 

angle measurements 

YAngle = (ap * gyroYAngle) + ((1-ap) * accYAngle) ; 

Serial.print ("X angle      = ") ; 

Serial.print (XAngle) ; 

Serial.print ("\t Y angle      = ") ; 

Serial.println (YAngle) ; 

Serial.println ("-------------------------") ; 

Serial.print ("Servo X pos  = ") ; 

Serial.print (sg90x.read()) ; 

Serial.print ("  Servo Y pos = "); 

Serial.println (sg90y.read()) ; 

Ymove = sg90y.read() - YAngle ; 

Xmove = sg90x.read() + XAngle ; 

if (abs(XAngle) > 1) { 
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  sg90x.write (Xmove) ; 

  Serial.print ("Rotate motor X to "); 

  Serial.println (Xmove);  

  delay (50); 

  Serial.println ("Reset angle") ; 

  XAngle = 0; 

  currentTime = millis();  

} 

else { 

  delay (10) ; 

} ; 

if ((abs(YAngle) > 1) && (abs(sg90y.read()-90) <= 35)) { 

  sg90y.write (Ymove) ; 

  Serial.print ("Rotate motor Y to "); 

  Serial.println (Ymove);  

  delay (50); 

  Serial.println ("Reset angle") ; 

  YAngle = 0; 

  currentTime = millis(); 

} 

else if ((sg90y.read() > 125) && (YAngle > 0)) { 

  sg90y.write (Ymove) ; 

  Serial.print ("Rotate motor Y to "); 

  Serial.println (Ymove);  

  delay (50); 

  Serial.println ("Reset angle") ; 
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  YAngle = YAngle / 4; 

  currentTime = millis(); 

} 

else if ((sg90y.read() < 65) && (YAngle < 0)) { 

  sg90y.write (Ymove) ; 

  Serial.print ("Rotate motor Y to "); 

  Serial.println (Ymove);  

  delay (50); 

  Serial.println ("Reset angle") ; 

  YAngle = YAngle / 4; 

  //currentTime = millis(); 

}; 

if ((buttonDelay <= 0) && (buttonState == HIGH)) { 

  if (handState == 0) { 

    handState = 1 ; 

  } else if (handState == 1) { 

    handState = 0 ; 

  }  

  Serial.println ("--> Button Pressed") ;  

  buttonDelay = 3 ; 

} else if (buttonState == LOW) { 

  buttonDelay = buttonDelay - 1 ; 

} 

if ((handState == 1) && (handservo.read() > 60)) { 

  handservo.write(handservo.read() - 15) ; 

} else if ((handState == 0) && (handservo.read() < 135)) { 
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  handservo.write(handservo.read() + 15) ; 

} 

} 
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