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Try to make sense of what you see and wonder about what makes the universe
exist. Be curious, and however difficult life may seem, there is always something
you can do, and succeed at. It matters that you do not just give up.

Stephen Hawking






Abstract

Nowadays, Wireless Sensor Networks (WSNs) are widely considered in many fields
of application, such as intensive agriculture, industrial control, environmental mon-
itoring, and robotics, among many others. Traditionally, a WSN is composed of
a set of sensors, capturing information about the environment, and a sink node,
which collects all the information provided by the network. The sensors have some
interesting features, encouraging the use of this technology, e.g. they are small,
power-autonomous, cheap, and wireless. These features allow considering WSNs
in environments, where the deployment of other technologies would be impossible
or really expensive. In fact, this is one of the great contributions of this technology.

Nevertheless, WSNs also have shortcomings, affecting critical features, such as
energy consumption and quality of service. Traditionally, the sensors are powered
by batteries to assume cheap devices and avoid wires. Thus, WSNs are particularly
sensitive to energy cost. This problem is increased further if the network considers
an usual multi-hop routing protocol, where the devices send data to each other’s.

In recent years, a new device specialised in communication tasks and called Relay
Node (RN) is added to traditional WSNs as a possible way to address this issue,
resulting in the Relay Node Placement Problem (RNPP), which is defined as an NP-
hard optimisation problem in the literature. In this thesis, we tackle three different
approaches of the RNPP, divided into two groups: outdoor and indoor networks.

In the first approach, we study how to efficiently deploy energy-harvesting RNs
in previously-established static outdoor WSNs for optimising average energy con-
sumption and average coverage. The second approach is a more realistic version of
the previous deployment problem, where we also optimise network reliability. Both
approaches are solved by applying a wide range of MultiObjective (MO) meta-
heuristics. Specifically, we implement Non-dominated Sorting Genetic Algorithm
II (NSGA-II), Strength Pareto Evolutionary Algorithm 2 (SPEA2), Multiobject-
ive Variable Neighbourhood Search Algorithm (MO-VNS), Multiobjective Artifi-
cial Bee Colony Algorithm (MO-ABC), Multiobjective Firefly Algorithm (MO-
FA), Multiobjective Gravitational Search Algorithm (MO-GSA), and Multiobject-
ive Evolutionary Algorithm Based on Decomposition (MOEA/D).

In the third approach and based on the knowledge obtained from the outdoor prob-
lem, we propose a new line of research not considered before in the literature: the
deployment of low-cost static indoor WSNss, trying to leverage existing infrastruc-
ture. This new MO problem derives from the need to deploy low-cost networks for
providing indoor localisation services, e.g. for domestic and industrial robots.






Resumen

Hoy en dia, las Redes de Sensores Inaldmbricas (WSNs, del inglés Wireless Sen-
sor Networks) son usualmente utilizadas en campos como la agricultura intensiva,
el control industrial, la monitorizacién ambiental y la robética, entre otros. Tra-
dicionalmente, una WSN se compone de un conjunto de sensores, que capturan
informacion sobre el entorno, y un nodo central, que recolecta toda la informacién
proporcionada por la red. Los sensores presentan algunas interesantes caracteristi-
cas que incitan el uso de esta tecnologia, ej. son pequefios, auténomos, baratos e
inaldmbricos. Estas caracteristicas permiten que las WSNs puedan ser utilizadas en
entornos, donde para otras tecnologias seria imposible o tendria un elevado coste.
De hecho, ésta es una de las grandes contribuciones de esta tecnologia.

No obstante, las WSNs también presentan inconvenientes, que afectan factores co-
mo el consumo energético y la calidad de servicio. Habitualmente, los sensores
se alimentan mediante baterias para evitar el uso de cables y obtener dispositivos
econémicos. En consecuencia, las WSNs son particularmente sensibles al consu-
mo energético. Este problema se acrecienta ain mas al considerar protocolos de
enrutado multi-salto, donde todos los dispositivos pueden comunicarse entre si.

Recientemente, un nuevo dispositivo especializado en tareas de comunicacién y de-
nominado Nodo Repetidor (RN, del inglés Relay Node), fue afiadido a las WSNs
tradicionales como una posible via de abordar esta cuestiéon, dando lugar al Pro-
blema del Posicionamiento de Nodos Repetidores (RNPP, del inglés Relay No-
de Placement Problem), el cual es definido como un problema de optimizacién
NP-completo en la literatura. En esta tesis abordamos tres diferentes versiones del
RNPP, divididas en torno a dos grupos: WSNs exteriores y WSNs interiores.

En la primera versién estudiamos como desplegar RNs en WSNss exteriores estati-
cas previamente establecidas, con el objetivo de optimizar el consumo energético
medio y la cobertura media. La segunda versién aporta un enfoque mas realista
sobre la primera, donde ademds optimizamos la robustez de la red. Ambas versio-
nes se resuelven mediante multiples metaheuristicas multiobjetivo: NSGA-II (del
inglés, Non-dominated Sorting Genetic Algorithm II), SPEA2 (del inglés Strength
Pareto Evolutionary Algorithm 2), MO-VNS (del inglés, Multiobjective Variable
Neighbourhood Search Algorithm), MO-ABC (del inglés, Multiobjective Artifi-
cial Bee Colony Algorithm), MO-FA (del inglés, Multiobjective Firefly Algorithm),
MO-GSA (del inglés, Multiobjective Gravitational Search Algorithm) y MOEA/D
(del inglés Multiobjective Evolutionary Algorithm Based on Decomposition).

En Ia tercera versién y basdndonos en el conocimiento adquirido, proponemos una
novedosa linea de investigacion: el despliegue de WSNss interiores estaticas de bajo
coste, tratando de aprovechar la infraestructura existente. Este nuevo problema de
optimizacion se deriva de la necesidad de desplegar redes interiores de bajo coste
para proporcionar servicios de localizacion, ej. para robdtica doméstica y del hogar.
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Introduction

In the last years, Wireless Sensor Networks (WSNs) are one of the most important emerging
technologies, being considered in many different fields, such as forest fire detection, traffic mon-
itoring, industrial control, military surveillance, intensive agriculture, and robotics [[1]. Tradi-
tionally, these networks are composed of many autonomous low-cost sensing devices, capturing
information about the environment, and a single sink node, collecting all this data.

In this thesis, we study a critical deployment problem for large-scale WSNs: the addition of
Relay Nodes (RNs) to traditional WSNs as a way to optimise such networks, the so-called Relay
Node Placement Problem (RNPP). This issue was defined as a complex optimisation problem
in the literature [2][3]]. This means that traditional exact techniques cannot be considered due to
the computational effort required, when the complexity of the problem raises.

Most problems in the real world are defined as complex, because of the great amount of
factors involved in their resolution. As a potential way to solve this issue, metaheuristics provide
approximate solutions with a good balance between solution quality and computational effort
required. The concept is that, in many cases, a good approximate solution could be almost as
good as the result of the exact technique. This type of solving methodology has shown a good
behaviour in many current state-of-the-art optimisation problems as detailed in [4].

Following this potential way, we propose to apply MultiObjective (MO) metaheuristics for
solving the RNPP, i.e. metaheuristics optimising multiple criteria at the same time. Specifically,
we study the behaviour of eight MO metaheuristics in two different approaches of the outdoor
RNPP from lower to higher problem complexity: two objectives and three objectives. Next and
based on the acquired knowledge, we propose a new line of research of the indoor RNPP for
three objectives. This novel problem is studied by applying two standard MO metaheuristics.

Next we detail the major motivations which led us to tackle the thesis, the planning followed
to conduct the research, and the organisation of the entire document.
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1.1 Motivation

As detailed before, a traditional WSN is composed of a set of sensors and a sink node. The
sensors have some features encouraging the use of this technology, e.g. they are small, power-
autonomous, cheap, and able to capture different types of measures in a same device. In addition,
the use of wireless technologies facilitates the network deployment, so reducing costs. These
features, among others, allow considering WSNs in environments where the deployment of other
technologies would be very expensive or impossible, such as wired networks [].

Figure [I.T compares two different approaches for covering a crop field by assuming Points
of Interest (Pol), points where we are interested in getting a physical measure. In this case,
we consider a Pol in each tree and a single sink node connected to the Internet. If we assume a
traditional wired network as in Figure[I.Ta] we need to deploy a sink node and a device including
a sensor in each Pol, adding the wires needed for providing power supply and connectivity. On
the other hand, if we consider a traditional WSN as in Figure[T.Tb] we have to deploy the same
number of devices, adding only additional sensors if needed for getting a connected network
because of range limitations. The second approach is more interesting, because it is cheaper of
deploying and upgrading without having a previous infrastructure. The inclusion of additional
sensors is not a really serious issue, due to its current reduced price, about 10-20 euro each one.

(a) Wired network. (b) WSN.

Figure 1.1: Comparing two different approaches for covering a crop field.

Nevertheless, WSNs also have unsolved shortcomings, affecting critical features for the in-
dustry, e.g. energy consumption, reliability, and Quality of Service (QoS). The sensors are
powered by batteries to avoid wires and get cheaper devices. This means that WSNs are par-
ticularly sensitive to energy cost, affecting the network behaviour. If the sensors send data to
the sink node by assuming a simple star topology, the energy cost distribution of all the sensors
would be similar as in Figure [[.2a] However, if we assume a habitual multi-hop topology for
larger networks, where the sensors relay data, the workload of all the devices could not be sim-
ilar as in Figure[T.2b] This situation involves the existence of bottlenecks, i.e. sensors subject to
higher energy cost than others, which means that the batteries drain faster.

In the last years and with the goal of reducing these bottlenecks, a new device specialised in
communication tasks was added to traditional WSNs [|6]. This device is called RN and forwards
all the received information to the sink node, so reducing the communication workload of the
sensors. The RNs have higher energy capacity than the sensors, e.g. they could be plugged into
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(a) Star topology. (b) Muti-hop topology.

Figure 1.2: Analysing energy cost in both single-hop and multi-hop WSNs.

the grid, have greater batteries, or be energy-harvesting devices. This way, they are more expens-
ive than the sensors and their deployment must be carefully studied to ensure the investment.
The efficient deployment of these RN is the issue addressed in the RNPP.

As stated before, the efficient deployment of WSNs is defined as a complex optimisation
problem in the literature, specifically a Non-deterministic Polynomial-time hard (NP-hard) prob-
lem [7]. Most papers in the literature solve the problem by assuming heuristics or Single-
Objective (SO) metaheuristics, metaheuristics optimising a single criterion, but not through a
more realistic MO focus. Based on this motivation, the major goal of this thesis is to propose
and solve a more realistic formal statement of the RNPP for both indoor and outdoor scen-
arios, assuming to this end state-of-the-art MO metaheuristics. Moreover, this type of solving-
methodologies usually provides a good behaviour solving such NP-hard problems, getting trade-
off solutions, which facilitates the decision-making task in industrial settings.

1.2 Research Planning

As in any project, designing a good work strategy is crucial to ensure that the objectives pro-
posed at the beginning of the project can be reached. Table shows the initial milestone plan
developed for this PhD thesis, where each task falls within one of the five main phases, i.e. A)
Acquire knowledge, B) First approach: solving the outdoor RNPP for two objectives, C) Second
approach: solving the outdoor RNPP for three objectives, D) Third approach: propose a more
realistic indoor RNPP for three objectives, and E) Dissemination of the work done.

As Figure [I.3] shows, the project starts with the phase A, acquiring the initial knowledge
needed for performing the work. Next in phase B, we assume the optimisation of an outdoor
RNPP for two objectives. In phase C, we complete the model tackled in phase B by adding a
new objective to optimise. In phase D and based on the previous models studied, we propose
to solve a more realistic indoor approach of the RNPP for three objectives. Finally, in phase E,
we disseminate the work done during all the research. As expected, phases A and E coexist for
almost the entire duration of the project and phases B, C, and D are undertaken sequentially.
Note that in phase A, we need to study parallel computing, because we consider this technology
to reduce execute times, when running the algorithms, e.g. for adjusting the metaheuristics. In
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this dissertation, we do not include any analysis while considering parallel computing, because
this is not the main aim of this thesis, instead we consider it as a tool.

STARTING POINT]

Figure 1.3: Relationship between project phases.

Table 1.1: Initial milestone plan.

Phase Milestone Milestone goal
A Acquire knowledge of scientific method Study the methodologies for getting a good research work
Acquire knowledge of WSNs Study the fundamentals of WSNs: technology, shortcomings, etc.
Acquire knowledge of optimisation Study the fundamentals of optimisation algorithms and quality metrics
Acquire knowledge of parallelism Study the fundamentals of parallelism for optimisation algorithms
Study the RNPP for WSNs Perform a current state-of-the-art review about the RNPP for WSNs
Study state-of-the-art metaheuristics Perform a current state-of-the-art review about MO metaheuristics
B Define an outdoor RNPP for two objectives Based on the current definitions of the RNPP, establish a new model
including two relevant objectives for the industry
Implement the RNPP for two objectives Implement the problem definition for two objectives in C++ language
Search data sets for benchmarking purposes Search data sets fitting this problem definition in the literature. If they
are not found, then define a new data set
Search similar works for comparing purposes  Search works solving a similar approach to this new proposal
Implement the two standard metaheuristics Implement two well-known metaheuristics from the literature
Test the approach for two objectives Apply the standard algorithms for solving the RNPP for two objectives.
Perform minor changes in algorithms and problem definition if needed
Implement state-of-the-art metaheuristics Implement current state-of-the-art metaheuristics not assumed to this end
Conduct experiments for solving the approach ~ Solve the RNPP for two objectives through all the metaheuristics
implemented, comparing to standard algorithms
C Enhance the outdoor RNPP definition Include a third objective from the current literature in the RNPP
Implement the RNPP for three objectives Implement the problem definition for three objectives in C++ language
Update standard algorithms Reimplement the standard algorithms by assuming the three objectives
Test the approach for three objectives Apply the standard algorithms for solving the RNPP for three objectives.
Perform minor changes in algorithms and problem definition if needed
Update the other metaheuristics Reimplement all the metaheuristics including the third objective
Conduct new experiments Solve the RNPP for three objectives through all the metaheuristics
implemented, comparing to standard algorithms
D Define an indoor RNPP for three objectives Based on the previous research, define a more realistic model for indoor
WSNs including three relevant objectives for the industry
Implement the new indoor RNPP Implement the problem definition for three objectives in C++ language
Update standard algorithms Reimplement the standard algorithms for the new problem definition
Test the indoor approach for three objectives Apply the standard algorithms for solving the indoor RNPP. Perform
changes in algorithms and problem definition if needed
E Disseminate the results obtained Write papers for relevant conferences and ISI-SCI journals with the goal

Write the PhD thesis

of disseminating this research
Write a full document, including all the details of this research for getting
the degree of Doctor of Philosophy in Computer Science
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1.3 Thesis Outline

This thesis is composed of the eight chapters described below:

Chapter 1: Introduction
This chapter introduces the issue tackled in this research work, providing the motivations
which led us to start this task, the objectives to reach, and the research planning followed
for getting the objectives proposed at the beginning.

Chapter 2: Background and Fundamentals
In this chapter, we discuss the background for the work assumed in this thesis. Including
optimisation problems and solving methods, parallel computing, scientific methodology,
WSN fundamentals, and a review of deployment strategies in WSNs.

Chapter 3: Multiobjective Metaheuristics

This chapter provides a general description of the MO metaheuristics assumed in this
dissertation for solving the RNPP. We include the standard Non-dominated Sorting Ge-
netic Algorithm IT (NSGA-II) [8] and Strength Pareto Evolutionary Algorithm 2 (SPEA2)
[9], the state-of-the-art MultiObjective Evolutionary Algorithm based on Decomposition
(MOEA/D) [10]], and MO variants of the SO Variable Neighbour Search Algorithm (VNS)
[[L1]], Gravitational Search Algorithm (GSA) [12], Firefly Algorithm (FA) [13]], and Arti-
ficial Bee Colony (ABC) [[14].

Chapter 4: Solving the RNPP: bi-objective Outdoor Approach

In this chapter, we propose and solve a bi-objective outdoor approach of the RNPP, where
we optimise both Average Energy Cost (AEC) and Average Sensitivity Area (ASA). To
this end, we consider the wide range of MO metaheuristics presented in Chapter [3] This
chapter includes a description of the WSN model considered, a formal problem state-
ment, a detailed description of the data set considered for solving the problem, specific
considerations for implementing the metaheuristics, experimental results, and scientific
achievements obtained from performing this research task.

Chapter 5: Solving the RNPP: three-objective Outdoor Approach
This chapter proposes and solve a three-objective outdoor approach of the RNPP, where
we optimise AEC, ASA, and Network Reliability (NR). To this end, we consider the
wide range of MO metaheuristics presented in Chapter 3] This chapter presents a similar
structure to the bi-objective approach discussed in Chapter [4]

Chapter 6: Solving the RNPP: a Novel three-objective Indoor Approach
In this chapter, we propose a novel approach of the RNPP for indoor environments, where
we try to leverage existing infrastructures, while three objectives are optimised: AEC,
ASA, and Average Network Reliability (ANR). As an initial approach, we consider the
two classic MO metaheuristics, NSGA-II and SPEA2, presented in Chapter@ The struc-
ture of this chapter is similar to the bi-objective approach discussed in Chapter 4]

Chapter 7: Conclusions and Future Works
This chapter includes the conclusions obtained after performing this research task and the
future lines of work. Moreover, a summary of the major contributions to the science is
included at this point.
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Chapter 8: Scientific Production
This thesis ends with a summary of all the scientific achievements obtained, directly and
indirectly, while performing this PhD dissertation.

In addition to these seven main chapters, we incorporate three appendix, including additional
information. They are described below:

Additional Information for Implementing MOEA/D
This appendix includes four mathematical developments needed for implementing MOE-
A/D in the two approaches: bi-objective and three-objective.

Additional Information for Solving the RNPP: bi-objective approach
This appendix incorporate all the p-values and set coverage metrics obtained, while com-
paring the metaheuristics in the bi-objective approach. A summary of this information is
presented in Chapter {4

Additional Information for Solving the RNPP: three-objective approach
This appendix includes all the p-values and set coverage metrics obtained, while compar-
ing the metaheuristics in the three-objective approach. A summary of this information is
presented in Chapter 3]



Background and
Fundamentals

In this chapter, we introduce the background and fundamentals for the research task assumed
in this PhD thesis. This chapter is structured as follows. In Section[2.1] we discuss main concepts
of optimisation problems and solving methods. Section defines some important terms of
parallel computing. In Section 2.3, we describe the scientific methodology considered in this
work. WSN technology is introduced in Section 2.4. Finally, we provide a state-of-the-art in
WSN deployment strategies in Section 2.5.

2.1 Optimisation Problems and Solving Methods

In this section, we start by providing a formal statement of optimisation problems regarding the
number of objectives assumed, with particular emphasis on the most important MO concepts.
Next, we discuss about the main types of solving methods based on the accuracy of the solu-
tions obtained, including both exact and approximate techniques. Finally, we describe different
performance tools for defining the quality of the solutions obtained in MO terms.

2.1.1 A Formal Statement: Multiobjective vs Singleobjective

There are two main types of optimisation problems regarding the number of objectives assumed,
i.e. Singleobjective Optimisation Problems (SOPs) and Multiobjective Optimisation Problems
(MOPs), optimising a single criterion and several ones, respectively. The definition of an SOP
is straightforward, but not for an MOP. While in an SOP the optimal solution is usually clearly
defined and unique, in a MOP the objectives are in conflict, and then they cannot be optimised
simultaneously. Instead, a satisfactory optimal trade-off has to be found [15].

Definition 2.1.1 (MOP). Let x and y be the decision vector and the objective vector, respect-
ively, and let X and Y be the decision space and the objective space, respectively. A general
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MOHT] is composed of k conflicting objective functions f1(x), fa(x), ..., fx(x) , n decision

variables, and m constraints e1(x), ea(x), . .., em (), where y is optimised as
maximise y = f(x) = (fi(z) , fo(x), ..., fu(@))
subjectto  e(x) = (e1(x) , ea(x), ..., en(x)) <0
where z=(x1, T2, ..., x,) €X ’
y=W1, 92, .., )€Y

Definition 2.1.2 (Feasible set). The feasible set X is the set of decision vectors satisfying the
m constraints, which is expressed as

Xy={zeX : e(x) <0}.

Definition 2.1.3 (Feasible region). The image of Xy is the feasible region Yy in the objective
space, that is given by

Yy=rxp= | {r@)

z€Xy

In an SOP, X is totally ordered according to the objective function f(z). For any two
decision vectors a, b € Xy, itholds that f(a) > f(b) or f(a) < f(b) with the purpose of finding
the solution or solutions maximising f(z). However, if several objectives are considered, as in
an MOP, X is partially ordered. We express this new situation by extending the relations =, >,
and > to objective vectors, analogously to the single-objective case.

Definition 2.1.4 (> relation for MOPSs). Let u,v be any two objective vectors in Yy. The
relations =, >, and > for a maximisation problem are given byE]

u=v <= Vie{l,2,...,k} :u=uv;
u>v <= Vie{l,2,....k} :u;>v; .
u>v = u>vAuFv

According to this relation, if we analyse the solutions C', D, and F in Figure@ it holds that
C > F and D > E. However, comparing C and D, neither can be considered superior, because
of C' # D and D % C. Thus, we have three different situations with MOPs according to the >
relation in contrast to two with SOPs, i.e f(a) > f(b), f(a) < f(b), or f(a) # f(b) A f(b) #
f(a). A new notation called Pareto dominance is included for a better relationship identification.

Definition 2.1.5 (Pareto dominance relation). Let a and b be any two decision vectors in X ;.
The Pareto dominance is denoted b

a > b (a dominates b) = f(a) > f(b)
a > b (a weakly dominates b) <= f(a) > f(b) . 2.1
a ~ b (a is indifferent to b) <~ fla) # fO)AfO) ¥ fla)

The optimality criterion for MOPs is based on the Pareto dominance. A solution is optimal
if it cannot be improved in any objective without causing a degradation in at least one other
objective. In such a case, it is called a Pareto-optimal solution.

"Without loss of generality, we assume a maximisation problem here. For minimisation or mixed maximisa-
tion/minimisation problems the definitions presented in this section are similar.

2For a minimisation problem it is similar (=,<,<).

3For a minimisation problem the definitions are analogous (<,=,~).
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feasible region
Goal: maximise both f} and f,

local Pareto-optimal solutions: A,B,C,H
Pareto-optimal solutions: D
dominated solutions: E,F,G

Figure 2.1: Concepts of MO optimisation.

Definition 2.1.6 (Pareto-optimal and local Pareto-optimal solutions). Let x be a decision
vector in Xy, such that it is non-dominated regarding a given set A C Xy, that is expressed as

x € Xy is non-dominated in A <= Jac A :a>z. 2.2)

If A equals Xy, then x is a Pareto-optimal solution. Otherwise, x is a local Pareto-optimal
solution in A.

Definition 2.1.7 (Pareto-optimal set, Pareto-optimal front, local Pareto-optimal set, and
local Pareto-optimal front). Let p(A) be the function providing the set of non-dominated solu-
tions in A C Xy, that is given by

p(A) ={a € A : aisnon-dominated in A}, (2.3)

and let f(p(A)) be its image. If A equals Xy, then p(Xy) is denoted as the Pareto-optimal
set and f(p(Xy)) is called the Pareto-optimal front (or the optimal front). Otherwise, they are
denoted as local Pareto-optimal set and local Pareto-optimal front (or simply front), respectively.

In practice, both the Pareto-optimal set and the Pareto-optimal front of an MOP are unknown.
This way, when the problem is solved through any technique, we get a local Pareto-optimal set
and its corresponding local Pareto-optimal front.

Below, we include a discrete MO optimisation problem example from [16], showing some
of the previously discussed concepts. This example will be considered in the next sections.

Example 2.1.1. Assume a maximisation problem having two objectives given by
fl (a7 b) =a+ b

and

fa(a,b) =c—b+a,

where ¢ € N and a,b € 0,1,...,c. Thus, the decision space consists of all pairs (a,b) €
{0,1,...,¢} x{0,1,...,c}. The Pareto-optimal set is denoted as

So ={(¢,b):b€0,1,...,¢}
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Figure 2.2: Decision and objective space of a bi-objective optimisation problem.

and the Pareto-optimal front is given by
Fo={(z,y):x+y=3-cAz,y€{0,1,...,c}.

Figure[2.2d| shows the decision space for c equals 10, including the Pareto-optimal set and two
local Pareto-optimal sets A and B. On the other hand, Figure shows the objective space
and the corresponding images of the three sets.

2.1.2 Solving Complex Problems: Complete vs Approximate Algorithms

There are two main types of solving methods regarding the accuracy of the solutions obtained,
i.e. complete and approximate algorithms. Complete algorithms guarantee to find the optimal
solution for every finite size instance in bounded time. This type of algorithms is not suitable for
solving NP-hard optimisation problems, because no polynomial time algorithm exists, instead
computation time raises in an exponential way, which is not appropriate for practical purposes.
Some examples of complete algorithms are integer linear programming [17] and finite domain
constraint programming [18]]. On the contrary, approximate algorithms sacrifice finding optimal
solutions for the sake of getting approximate ones in a significant reduced time. Such approx-
imate algorithms are suited for tackling NP-hard optimisation problems [19].

We find two main traditional approximate algorithms, which are also called heuristics: con-
structive and local search methods. The first ones generate solutions from scratch by adding
components to a solution until it is completed. This is the fastest approximate method, but the
solution quality is often inferior compared to local search methods. Local search methods start
from some initial solution, which is iteratively replaced by a better solution in its neighbourhood.

In the last decades, a more intelligent approximate method called metaheuristic has acquired
a great relevance [20]. It combines basic heuristic methods and effectiveness exploring the
search space. Next, we quote some of the definitions of metaheuristics in the literature:

10
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"A metaheuristic is formally defined as an iterative generation process which guides
a subordinate heuristic by combining intelligently different concepts for exploring
and exploiting the search space, learning strategies are used to structure informa-
tion in order to find efficiently near-optimal solutions." [21]].

"A metaheuristic is an iterative master process that guides and modifies the opera-
tions of subordinate heuristics to efficiently produce high-quality solutions. It may
manipulate a complete (or incomplete) single solution or a collection of solutions
at each iteration. The subordinate heuristics may be high (or low) level procedures,
or a simple local search, or just a construction method." [22]].

"Metaheuristics are typically high-level strategies which guide an underlying, more
problem specific heuristic, to increase their performance. The main goal is to avoid
the disadvantages of iterative improvement and, in particular, multiple descent by
allowing the local search to escape from local optima. This is achieved by either
allowing worsening moves or generating new starting solutions for the local search
in a more intelligent way than just providing random initial solutions. Many of
the methods can be interpreted as introducing a bias such that high quality solu-
tions are produced quickly. This bias can be of various forms and can be cast as
descent bias (based on the objective function), memory bias (based on previously
made decisions) or experience bias (based on prior performance). Many of the
metaheuristic approaches rely on probabilistic decisions made during the search.
But, the main difference to pure random search is that in metaheuristic algorithms
randomness is not used blindly but in an intelligent, biased form."[23]].

"A metaheuristic is a set of concepts that can be used to define heuristic methods
that can be applied to a wide set of different problems. In other words, a meta-
heuristic can be seen as a general algorithmic framework that can be applied to
different optimization problems with relatively few modifications." [24]].

In general, the authors agree on some properties characterising most metaheuristics:
o They are non-deterministic and non-problem specific high level search strategies.
e The purpose is to efficiently explore the search space to find near-optimal solutions.

e They consider a wide range of different techniques from simple constructive methods
to complex learning processes. It is possible to include domain-specific knowledge for
designing these techniques, which are controlled by an upper level strategy.

e It is usual to include mechanisms to avoid getting trapped in local optima.
e It is increasingly common to assume memory for including search experience knowledge.
e They perform a dynamic balance between diversiﬁcatiorﬂ and intensiﬁcatiorﬂ

e The basic concepts of metaheuristics permit an abstract level description.

!Exploration of the search space.
2Exploitation of the accumulated search experience.

11
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Step 1: Initial population

Generate a population of
random individuals
Ending point

4

Step 2: Evaluation

Step 4: Natural selection

Only the best-fit individuals | .
survive at the end of the
generation

Evaluate adaptability of each
individual in the population:
fitness function evaluation

Step 3: Reproduction

Generate new individuals
by reproduction operators:
crossover and mutation

Figure 2.3: Traditional scheme followed by EAs.

2.1.3 Classification of Metaheuristics

There are a wide variety of metaheuristics because of its high level conception. Therefore,
making a classification is not a trivial issue. In this thesis, we consider a usual classification
splitting metaheuristics into three large groups:

Evolutionary Algorithms (EAs)

EAs are inspired by nature’s capability to evolve adapting to the environment. Thus, they
consider mechanisms from the Darwin’s theory of evolution, such as crossover, mutation,
and natural selection. EAs follow the well-known scheme shown in Figure [2.3] Initially,
the algorithm starts from a population of random individuals, where each individual is a
possible solution to the optimisation problem (step 1). In step 2, the fitness of each indi-
vidual in the population is evaluated, getting its adaptability to the environment. Next, the
best-fit individuals of the population are selected to be the parents of the next generation,
resulting in a new offspring population through both crossover and mutation reproduction
operators (step 3). Note that crossover is assumed to recombine two individuals in a new
one and mutation is for including random changes in the new individual, increasing di-
versity. Then, only the strongest individuals survive at the end of the generation, i.e. the
least-fit individuals are replaced by the best-fit ones (step 4). At this point, the algorithm
returns to step 2. This loop ends when a stop condition is reached, such as a maximum
number of generations or elapsed time [25]].

There are two standard algorithms in EAs, NSGA-II and SPEA2. Both belong to a sub-
type of EAs called Generic Algorithms (GAs), which are characterised by encoding their
individuals as chromosomes, where a chromosome is composed of several genes. These
two standard GAs and a current state-of-the-art EA known as MOEA/D are considered in
this thesis and will be discussed in the next section.

12
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Parent 1 Parent 1 ‘ ‘
I I I
(a) One-point crossover. (b) Two point crossover.
parent 1 || | parent 1 [ [ [ [ [] [ LLTTTL]

(¢) Cut and splice. (d) Uniform crossover.

Figure 2.4: Crossover strategies assuming two parents of equal length as input.

Regarding reproduction operators, crossover is assumed to recombine two parents with
the hope of creating a better individual. We find many different strategies in the literature
[23]]. Below, we describe some of them, assuming two parents of equal length as input:

e One-point crossover: A single crossover point is selected to generate a new child
as follows. The data before that point is taken from the first parent, the remaining
data after the point is taken from the second parent. See Figure [2.4a]

e Two point crossover: Two crossover points are selected to generate a new child as
follows. The data before the first point is taken from the first parent, the data between
the two points is taken from the second parent, and the data after the second point is
taken from the fist parent again. See Figure 2.4b

e Cut and splice: This strategy generates a new child of variable length as follows.
A crossover point is selected in each parent. Then, the data before the point in the
first parent is taken from such first parent and the data after the point in the second
parent is taken from such second parent. See Figure 2.4c]

e Uniform crossover: For each gene of the new child, this strategy evaluates if the
gene is taken from the first or the second parent with a given probability. Thus, with
a probability of 0.5, the child will have about 50% of genes from the first parent and
50% of genes from the second parent. See Figure

On the other hand, mutation is considered to increase diversity. After generating a new in-
dividual through crossover, a mutation is performed in such new individual. The changes
can be more or less pronounced regarding the strategy followed. The most common
strategy is the uniform gene mutation: each gene is changed with a given probability.
This change could be an inversion if a binary encoding is considered, as in Figure[2.5a] or
replacing the previous value for a random number in an interval, as in Figure 2.5

Swarm Intelligence Algorithms (SIAs)
SIAs are inspired by the behaviour of self-organised systems, where individuals interact
with each other and with the environment, such as colonies of ants, schools of fish, flocks

13
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Figure 2.5: Uniform gene mutation for two types of encoding.

of birds, and herds of land animals. Typical SIAs are Particle Swarm Optimisation (PSO)
[26] and Ant Colony Optimisation (ACO) [27]. In PSO a possible solution to the problem
is represented by a particle in the search space. Each particle searches for better positions
by modifying its velocity according to some rules inspired by the social behaviour of
flocks of birds. In ACO, a set of agents, called artificial ants, search for better solutions.
The ants generate solutions by moving for a weighted graph to find the best path by
assuming the pheromone model, i.e. each time an ant traverses an edge, it deposits a
small amount of pheromone. Subsequent ants consider the pheromone information as a
guide towards more promising paths.

In this thesis, we consider some novel SIAs: GSA, FA, and ABC, which are based on the
behaviour of gravitational forces, fireflies, and honey bees, respectively. These algorithms
will be described in depth in the next section.

Trajectory Algorithms (TAs)
TAs are characterised by following a trajectory during the search. The optimisation starts
from an initial solution, which dynamically describes a trajectory in the search space. This
trajectory is more or less complex depending on the strategy of the algorithm.

We find three main traditional TAs. Basic local search, where a movement is only per-
formed if the resulting solution is better than the current one, stopping if a local optimum
is found. Simulated annealing [28l], which follows an approach analogous to the annealing
process of metals and glass. The fundamental idea of this algorithm is to allow moving to
worse solutions to escape from local optima attending to a given probability, which is de-
creased during the search. And fabu search [29]], which allows moving to worse solutions
if no improvement is available. To this end, it includes the search history concept to avoid
selecting previously visited solutions, which are marked as forbidden (tabu).

There are some recently proposed TAs assuming general explorative strategies. They are
called explorative local search methods. Some of the most important are Greedy Random-
ised Adaptive Search Procedure (GRASP) [30], VNS, Guided Local Search (GLS) [31]],
and Iterated Local Search (ILS) [32]. GRASP combines greedy randomized heuristics
and local search: assuming that a solution is composed of several elements, the algorithm
generates a solution step-by-step by randomly adding elements from a list of candidates
ranked by a greedy function. VNS applies a strategy based on dynamically changing the
neighbourhood structures, which delimit how getting a neighbourhood solution, i.e. a
solution which is similar to another except for some minor details. This algorithm will be
studied in depth in the next section. GLS assumes a different strategy, which dynamically
changes the landscape of the objective function with the purpose of moving away from
local optima. ILS applies local search to an initial solution until a local optimum is found.
Then, a small perturbation is performed and the procedure is restarted again.
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Swarm intelligence algorithms

Figure [2.6| shows the classification of solving method discussed in Section including
the metaheuristics described before. There are many other different ways to classify metaheur-
istics depending on the features selected, see Figure[2.7] Below, we briefly summarize some of
the most significant in the literature [33} |34} 35]:

Nature inspired vs. non-nature inspired
Nature inspired algorithms include all the metaheuristics, which are fully or partially in-
spired by a process found in nature. As may be expected, EAs and SIAs are part of nature
inspired algorithms. Moreover, there are some algorithms from TAs, which are usually
included in this group, such as tabu search and simulated annealing.

Population-based vs. single-solution
This classification is based on the number of solutions assumed at each step. Population-
based algorithms perform search processes determining the evolution of a set of points
in the search space. There are two main types EAs and SIAs. On the contrary, single-
solution algorithms work on a unique solution to perform the process, such as TAs.

Dynamic vs. static objective function
This classification is according the way the objective functions are considered. Static
algorithms keep the objective functions as they were given, while dynamic ones modify
them during the search by adding information collected during the optimisation process.
An example of dynamic algorithm is GLS.

One vs. various neighbourhood structures
Most metaheuristics do not change the fitness landscape in the curse of the optimisation.
However, other algorithms, such as VNS, consider neighbourhood structures to dynam-
ically swap between different fitness landscapes, giving the possibility of increasing the
diversity of the results.

Serial vs. hybrid vs. parallel metaheuristics
In addition to the serial metaheuristics described above, there are hybrid and parallel al-
gorithms. A hybrid metaheuristic combines a metaheuristic with other optimisation ap-
proaches, such machine learning, constraint programming, or even other metaheuristics.
A parallel metaheuristic considers parallel tools to execute several metaheuristic processes
in parallel, interacting among them to improve the overall solution.
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Figure 2.7: Classification of metaheuristics attending to several features.

2.1.4 Performance Assessment for Multiobjective Optimisation

The notion of performance assessment involves both quality of the solutions found and the
time needed to obtain them. In the case of stochastic optimisers the relation between quality
and time is not fixed, instead it is described by a probability density function. Consequently,
the performance of a stochastic search algorithm is probabilistic in nature. Moreover, there is
another difficulty in the case of MO optimisers, because the outcome is usually not a single
solution, but a trade-off. Thus, we find two main issues: how to define quality and how to
represent the outcome of several runs in terms of a probability density function [16]].

There are two main approaches to tackle such issues: attainment functions and quality in-
dicators. Given the outcome of an optimiser, an attainment function shows the outcome as a
probability density function in the objective space. On the contrary, a quality indicator provides
a quantitative measure of the outcome, which can be considered to perform a statistical analysis
of the measure along executions. Statistical testing will be discussed in Section 2.3.1.

Definition 2.1.8 (Quality indicator). A quality indicator I is defined as a mapping from the set
of approximate results §2 to the set of real numbers, that is

I1:Q—R.

Thus, given two sets of non-dominated solutions Z, H € ), the difference between the quality
indicators of both sets I(Z) and I(H) reveals the difference in terms of quality.

Definition 2.1.9 (Pareto compliant). A quality indicator I is Pareto compliant if and only if
VZ,HeQ:Z = H=I1(Z)>1(H)

for a maximisation pmblenﬂ This means that 1 is an order-preserving function from (£, =) to
(R, >), which is a desirable feature for any quality indicator. However, many of them do not
meet this requirement and are called Pareto non-compliant indicators [36)].

It is widely accepted to classify quality indicators based on if needed to know the Pareto-
optimal front or not to calculate the measure. Firstly, we introduce some quality indicators

!For a minimisation problem the definition is similar (<, <).
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2.1 Optimisation Problems and Solving Methods

which do not need the Pareto-optimal front. Note that we consider Example[2.1.1]to analyse the
behaviour of the next tools by comparing the sets A and B.

Number of solutions
It is a simple Pareto non-compliant indicator, showing the number of non-dominated solu-
tions provided by a Pareto-front. This way, given a front Z, the indicator is denoted as

Ins(Z) =12,

where ||.|| is the operator giving the cardinal of a set. In the example, I} 4(A) = 6 and
I} 5(B) = 8. Hence, B is better than A.

Hypervolume
This Pareto compliant indicator was proposed by Zitzler and Thiele [37]. It measures
the portion of the objective space weakly dominated by a front Z regarding a reference
point, while solving a problem with k objectives. Before computing the metric, the front
Z should be normalised so that all the objectives contribute equally to the indicator, res-
ulting in a new front Z’. To this end, two k-dimensional points called ideal and nadir are
considered, denoting the best and worst estimated values for each objective.

Let af be the value of the i-th fitness function of a solution {. Let 3; be the reference
value of the i-th fitness function. Let f; be the i-th fitness function. Given a normalised
front Z’ in the interval [0, 1] and a reference point v = (31, 52, . . ., %) given by

. BiEnNi€l,... k.

3, = 1 <= f; is to maximise
*7 1 0 < f;isto minimise

Then, each member of Z’ has a hypercube given by
h(C) = [agwgl] X [agaﬁﬂ X ... X [ai76k]7 C S Z/-

The hypervolume of Z is calculated as the union of all the hypercubes of Z’ by assuming
the Lebesgue measure A, that is

I4(2) =Tu(Z',v) = A | | Q)
cez’

In the example, 1};(A) = 66.00% and I};(B) = 61.25% by considering v = (1.00, 1.00)
and (20.00, 20.00) and (0.00, 0.00) as the ideal and nadir points, respectively. Hence, A
is better than B, providing A more hypervolume than B. If we modify the ideal and
nadir points to be closer to the two fronts, the measure is more accurate, i.e. we get
I} (A) = 65.63% and I}, (B) = 46.88% by assuming (19.00, 16.00) and (7.00, 8.00)
as the new bounding points, increasing the difference to 18.75%. This means that it is
important to adjust the bounding points as close as possible to the data being analysed.
Figure [2.8a] shows an example of this quality indicator comparing the two fronts.

Binary epsilon
The Pareto compliant binary epsilon indicator was presented by Zitzler et al. [38], includ-

ing a multiplicative and an additive version. Let >.. be the ¢--dominance relation for a
maximisation problem given b

(ren <= VYiel...k:( €>mn; e e R,

!For a minimisation problem the definitions are analogous (<..,<).
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2. Background and Fundamentals

where ¢ and 7 are two different solutions and (; and 7); are the value of the ¢-th fitness
function of ¢ and 7, respectively. Then, given two fronts Z and H, the multiplicative
epsilon indicator I..(Z, H) calculates the minimum factor e by which each point in Z has
to be multiplied, such that the resulting set weakly dominates H, that is

I.(Z,H) = inf{Vne H3C € Z: ¢ = ).
€c

Analogously, the e-+-dominance relation for a maximisation problem is defined a
Crmern <= Viel...k:(+e>n; ec R
Then, the additive epsilon indicator I (Z, H) is expressed as

Ie+(Z7H) = Helﬂg{vﬁ € HE'C €Z: C te—i— 77}

As for hypervolume, the fronts should be normalised before calculating the indicator. In
the example, we get I (A, B) = 0.05and I, (B, A) = 0.10 by assuming (20.00, 20.00)
and (0.00, 0.00) as bounding points. Hence, A is better than B because the transformation
needed is lower. As before, if we assume the closer bounding points (19.00, 16.00) and
(7.00, 8.00), the accuracy increases obtaining I (A, B) = 0.13 and I (B, A) = 0.25.

Set coverage
The Pareto compliant binary set coverage indicator was developed by Zitzler [[15]], being
based on the Pareto dominance concept. Given two fronts Z and H, the set coverage
metric Isc(Z, H) calculates the percentage of solutions from H, which are weakly dom-
inated by Z. That is,

In the example, Isc (A, B) = 50.00% and Isc (B, A) = 33.33%. Consequently, A is
better than B.

The quality indicators needed the Pareto-optimal set or, on the contrary, a reference set of
points are the following:

Number of optimal solutions
This simple Pareto non-compliant indicator is defined as the number of Pareto-optimal
solutions which a front provides. Given a front Z, the indicator is expressed as

Inos(Z) = [|1Z 0 f(p(X )],

where X s and p(.) are given by Equations (2.2)) and (2.3), respectively. In our example,
Inos(A) =1and Inos(B) = 0. Hence, A is better than B.

Unary epsilon
On the basis of the definition of the binary epsilon indicator discussed before, the Pareto
compliant unary multiplicative version for a front Z and a reference set Y is given by [38]

I.(2) =1.(Z7).

!For a minimisation problem the definitions are analogous (Re+.9).
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2.1 Optimisation Problems and Solving Methods

Analogously, the additive version is defined as
Ie+(Z)1 = I€+(Z, T)'

In our example, we get [, (A)! = 0.20 and I (B)' = 0.15by assuming T = f(p(Xy)).
If we consider the bounding points (20.00,20.00) and (7.00,8.00), we get I, (A)! =
0.33 and I, (B)' = 0.25. Hence, B is better than A. If we compare this conclusion to
the one obtained through the binary epsilon indicator discussed before, we note that both
are contradictory. This is due to this indicator is not adequate if minimum and maximum
distances between the two sets compared are large. In such a case, the indicator could
show an erratic behaviour. Figure [2.8b] shows some details for calculating the metric.

Spread
This Pareto non-compliant indicator measures how the solutions are distributed in a front.
Given an ordered front Z and the Pareto-optimal front f(p(Xy)), the spread metric pro-
posed by Deb et al. [8] for two objectives is expressed as

W21-14 _ g~
15(2)! = I5(Z,dy,dy) = 2o Ot 21— 2]
do +di + (|| Z]] = 1)dz

where d,, and d; are the Euclidean distances between the extreme solutions of f(p(Xy))
and Z, d; is the Euclidean distance between the i-th solution in Z and its consecutive i+ 1-
th solution, d is the average of all these consecutive distances, and |.| is the operator giv-
ing the absolute value of a number. Note that with n solutions, there are n — 1 consecutive
distances (see Figure[2.8¢). In the example, we get Is(A)! = 0.33 and Is(B)* = 0.31,
assuming the default bounding points, and Is(A)* = 0.58 and I5(B)! = 0.57 for the
closer ones. Hence, B is better distributed than A. There are other approaches for more
than two objectives, e.g. the crowding distance, which will be discussed in Section

Generational distance
This Pareto non-compliant indicator was proposed by Van Veldhuizen et al. [39] and
computes the proximity in the objective space of a certain front from the Pareto-optimal
front. Given a front Z and the Pareto-optimal front f(p(Xy)), the indicator is given by

d
Iep(2) = 16p(Z, f(p(X}))) = Zcez|2{|(p(xf))’

where d¢ t(p(x,)) is the Euclidean distance between ¢ € Z and its nearest solution in
f(p(Xy)) (see Figure2.8d) . In the example, we get Icp(A)! = 0.13 and Icp(B)' =
0.18, assuming default bounding points, and Igp(A)! = 0.21 and Igp(B)! = 0.28
through the closer ones. Hence, A is nearer to f(p(Xy)) than B.

Inverted generational distance
This Pareto non-compliant indicator developed by Coello et al. [40] follows a similar
approach to generational distance. It computes how far is the Pareto-optimal front from
a certain front. Given a front Z and the Pareto-optimal front f(p(Xy)), the indicator is
expressed as

2acip(X;)) Yoz
fp(X DI

Licp(2)' = Iiap(Z, f(p(Xy))) =
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2. Background and Fundamentals

Table 2.1: Main features of performance tools.

Performance tool  Isit Pareto Does it require Does It require a Behaviour
compliant? normalize? reference set?

Is NO NO NO More is better
1} YES YES NO More is better
& YES YES NO Less is better
2, YES YES NO Less is better
IZ. YES NO NO More is better
IYos NO NO YES More is better
I:_ YES YES YES Less is better
I, YES YES YES Less is better
I NO YES YES Less is better
1L, NO YES YES Less is better
Itep NO YES YES Less is better
Attainment Surface YES NO NO Pareto dominance

where d,, 7 is the Euclidean distance between a € f(p(X)) and its nearest solution in
Z (see Figure . In our example, we obtain I;gp(A)! = 0.11 and I;gp(B)* = 0.16
for default bounding points, and I;gp(A)! = 0.18 and I;¢p(B)! = 0.25 by assuming
closer ones. Then, as for generational distance, f(p(Xy)) is nearer to A than B.

On the other hand, the attainment surface is a graphical tool for representing fronts. It draws
a boundary in the objective space, separating those points which are dominated, from those
which are non-dominated. This approach is useful when we want to display several fronts in a
same plot, e.g. comparing different algorithms or analysing several runs of a same optimiser.
This graphical tool is based on the attainment function, which studies the distribution of the data
obtained in several runs according to the notion of goal-attainment, i.e. the probability that the
optimiser attains a certain solution in a single run [41]. Figure [2.9b|shows an example of this
tool. Finally, Table 2.1 summarises the main features of the performance tools discussed before.

2.2 Parallel Computing

Traditionally, software has been written for serial computation. Following this approach, an
algorithm is implemented as a serial stream of instructions, which are executed sequentially on
a single Central Processing Unit (CPU). This means that only one instruction can be executed at
any moment in time (see Figure [42]. Note that the terms processor, CPU, and core are
used interchangeably throughout this dissertation to denote a single processing unit.

In the simple sense, parallel computing is the simultaneous use of multiple compute re-
sources to solve a computational problem. Thus, an algorithm is broken into discrete sets of
instructions, which can be executed concurrently on different processors under an overall con-
trol mechanism (see Figure 2.10b). The compute resources are typically an arbitrary number
of single CPU computers connected by a network, a single computer with multiple CPUs, or a
combination of both [42]. We find many reasons to consider parallel computing [43]:

e The real work is massively parallel: Parallel computing is better suited for simulating
and modelling real world phenomena, compared to serial computing. This is because
many real problems include interrelated events happening at the same time. Some ex-
amples of such problems are galaxy formation, planetary movements, and climate change.

e Save time and/or money: Allocating more resources to a task will shorten its time to
completion. This implies potential cost savings.
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Figure 2.8: Example of Performance tools (Part 1/2).
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Figure 2.9: Example of Performance tools (Part 2/2).
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Figure 2.10: Serial vs. parallel computation.

o Solve larger/more complex problems: Many problems are so complex and/or large that
is impossible or impracticable to solve them on a single-core computer. Either because of
restrictions on computing time or computer memory.

e Provide concurrency: A single-core computer can only execute one task at a time. Mul-
tiple compute resources can do many things at the same time. An example is a collabor-
ative network for virtual working, where many users execute tasks at the same time.

o Take advantage of non-local resources: Sometimes local resources are insufficient for
a given task. Then, the use of non-local resources on a wide area network or even the
Internet is a good option. An example is BOINC for volunteer computing [H

e Make better use of underlying parallel hardware: Most computers, even smartphones,
are parallel in architecture with multiple processors/cores. In most cases, serial programs
running on modern computers waste potential computing power.

Thttps://boinc.berkeley.edu/
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Next, we describe some relevant classifications for parallel systems, as well as tools for per-
formance assessment of parallel computation.

2.2.1 Flynn’s Classification

This traditional classification was presented by Flynn in [44]. It classifies computers and pro-
grams by whether, during any one clock cycle, they assume a single set or multiple sets of
instructions (instruction stream), and whether or not those instructions consider a single set or
multiple sets of data as input (data stream). There are four possibilities according to Flynn:

Single Instruction stream, Single Data stream (SISD)
This classification includes convectional serial computers, where only one instruction
stream is executed during any one clock cycle and only one data stream is considered
as input during any clock cycle (see Figure [2.1Tal).

Single Instruction stream, Multiple Data stream (SIMD)
This is a type of parallel computer suited for specialised problems with a high degree of
regularity, e.g. image processing. All CPUs execute the same instruction at any given
clock cycle and each CPU operates on a different data element (see Figure [2.11D).

Multiple Instruction stream, Single Data stream (MISD)
This is a rarely used classification, where all CPUs execute a different instruction stream
considering the same single data stream as input. A conceivable use of this classification
may be multiple frequency filters operating on a single signal stream (see Figure [2.T1c).

Multiple Instruction stream, Multiple Data stream (MIMD)
This is by far the most common type of classification. Each processor can execute a
different instruction stream by assuming a different data stream at any given clock cycle.
Most modern supercomputers fall into this category (see Figure [2.1Td).

2.2.2 Structural Classification

Flynn’s classification discusses the overall behaviour of parallel systems. However, such sys-
tems can also be classified based on their structure [45]. If CPUs communicate through global
shared memories, then this organisation is called a shared memory system. On the other hand,
if CPUs have their own local memories and communications between CPUs are performed by
sending messages through a communication network, then this organisation is called a distrib-
uted memory system. Moreover, it is possible to have a combination of both approaches, which
is called a hybrid distributed-shared memory system. Below, we discuss each of them:

Shared memory systems

These systems have the ability to access all memory as global address space for all CPUs.
Thus, CPUs work independently, but sharing the same memory resources, which is an
advantage and a disadvantage at the same time. On the one hand, global address space
provides a user-friendly programming perspective to memory and data sharing between
CPUs is fast and uniform. On the other hand, an important disadvantage is the lack of
scalability between memory and CPUs, because adding more CPUs can geometrically in-
crease traffic on the shared memory. Another disadvantage is that global memory implies
that synchronization between tasks is a programmer’s responsibility.

23



2. Background and Fundamentals

‘ Instruction Pool ‘ ‘ Instruction Pool ‘
CPU
IS 2
£ £
= CPU = CPU
< <
a a
CPU
o (a) SISD. o (b) SIMD.
‘ Instruction Pool ‘ ’ Instruction Pool ‘
> CPU [¢{—»| CPU
8 Y Y 8
~ CPU CPU < B cPU | cPU
A A
> CPU |->] CPU
o (¢) MISD. o (d) MIMD.

Figure 2.11: Flynn’s classification.

Traditionally, we find two main shared memory systems: Uniform Memory Access sys-
tems (UMASs) and Non-Uniform Memory Access systems (NUMAs). UMAs have identical
processors, allowing equal access time to memory (see Figure[2.12a). NUMAs are often
made by physically linking two or more UMAs through a bus (see Figure 2.12b). Con-
sequently, not all CPUs have equal access time to all memories.

There are two main parallel programming models for shared memory:

o The first one is a simple model, where processes/tasks read and write asynchronously
in a common address space as Figure shows. The incorporation of control
mechanisms, such as semaphores, is usually to prevent race conditions and dead-
locks, which makes this model difficult to use. This programming model is included
in the UNIX specification'|and the POSIX standard?}

e The second one is a more advanced model, including the concept of thread: a process
having local data, but also, accessing to global memory. In addition, a thread can
also have associated multiple light-weight concurrent threads. As an example, in Fig
[2.13b] Thread 1 is the parent of Thread 1.1. We find two different implementations
of threads: POSIX threads and Opeanﬂ The first one is a very explicit parallelism
included in the POSIX standard, requiring significant programmer attention to detail.
The second one is a simple and easy multi-platform industry standard, which is
widely considered in the literature.

Thttp://www.unix.org/
2http://standards.ieee.org/develop/wg/POSIX html
3http://openmp.org/wp/
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Figure 2.13: Parallel programming models for shared memory.

Distributed memory systems
These systems do not consider the concept of global address space. Instead, each pro-
cessor has its own local memory operating independently as in Figure 2.14] This means
that changes in the local memory do not have effect on the memory of the other pro-
cessors. When a CPU needs to access to data in another CPU or memory, it considers a
communication network interconnecting all the CPUs, such as an Ethernet network.

The use of distributed memory systems has some advantages. For example, memory is
scalable with the number of processors and it has a good profitability (in theory, any type
of device connected to the network can be used to compute). However, there are also
shortcomings, such as non-uniform memory access times due to networking delay and
the difficulty to map data structures based on global memory to this organisation.

Parallel programming models for distributed memory are based on message passing. His-
torically, we find a variety of message passing libraries. However, nowadays an industry
standard called Message Passing InterfaceE] (MPI) has replaced all other message passing
implementations. Figure [2.15] shows an MPI example of two machines communicating
through synchronous functions.

Hybrid distributed-shared memory systems
This is the most common architecture for supercomputers. It is a combination of the
two previous approaches, where a shared memory component can be a shared memory

Uhttp://www.mpi-forum.org/
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Figure 2.16: Hybrid distributed-shared memory systems.

machine and/or Graphics Processing Units (GPUs). This model provides scalability with
a great ratio of power/profitability. However, programming complexity is increased.

Parallel programming models for hybrid memory systems are also a combination of the
two previous approaches. As an example, in Figure [2.16| we assume OpenMP for shared
memory machines and MPI for sending messages between them. As GPUs are also con-
sidered, Compute Unified Device Architecture (CUDA) is assumed for data exchanging
between shared memory machine and GPU.

2.2.3 Classification Based on Grain Size

There is another classification, measuring the granularity of a parallel program, i.e. how often
parallel tasks need to synchronize or communicate with each other, compared to the computing
load [46]. There are three levels according to this classification:

e Fine grain: It assumes a high degree of communications. At this level, a reduced set of
instructions or simple loops are executed in parallel. Usually, each parallel task has less
than 20 instructions. This type of parallelism can be achieved through compilers.

e Medium grain: It assumes a medium degree of communications. At this level, proced-
ures or subprograms are executed in parallel. Usually, each parallel task has less than 500
instructions. This level is exploited by programmers, but not through compilers.
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e Coarse grain: It assumes a low degree of communications. At this level, independent
programs are executed in parallel. Usually, each parallel task has more than 1000 instruc-
tions. Traditionally, this level is exploited through operating systems. If there is not any
communication, then the application is considered embarrassingly parallel.

2.2.4 Performance Assessment for Parallel Computing

As for problem solving, it is interesting to define some metrics to establish the quality of a
parallel implementation. One of the most important metrics is speedup. It was defined by
Amdahl’s law [47] and evaluates the improvement when executing a task.

Definition 2.2.1 (Speedup). Let c be a section of code to analyse, let p be the number of CPUs
for parallel computing, and let t¥ be the execution time of code c by assuming p CPUs. Speedup
or acceleration metric Isy (¢, p) for a code ¢ and p CPUs is given by

1
Isy(c,p) = t%'
(&

Optimally, if we parallelise an algorithm doubling the number of CPUs considered initially,
then execution times should be halved. However, very few parallel algorithms get optimal spee-
dup, i.e. linear speedup. Most of them achieve a near-linear speedup for a small number of
CPUs, reducing the gain while the number of CPUs is increased, approximating to a constant
for large numbers of CPUs. This is because the speedup of a parallel program is limited by how
much of the program can be parallelised. As an example, Figure [2.17 shows speedup and num-
ber of CPUs for some parallel codes by assuming a logarithmic scale. Note that codes having a
higher parallel percentage show a better speedup. In this figure, the code having 100% parallel
percentage corresponds to ideal speedup.

Definition 2.2.2 (Theoretical speedup limit). Given a code c and the percentage o of c suit-
able for being parallelised. Theoretical maximum speedup I, (c) of c is expressed as

- 1
Cl-a,

Ié‘U(C)

Thus, if o, equals 0.95, then the theoretical maximum speedup would be 20. Note that if o
equals 1, then speedup is infinity, i.e. it is optimal.

An additional metric based on speedup is efficiency, estimating how well-utilised the pro-
cessors are in the parallel implementation.

Definition 2.2.3 (Efficiency). Given a code c and p CPUs. Efficiency Ig(c,p) of ¢ executed in
p CPUs is expressed as

Isu(e,
IE(C7p): SUZ() p)

Based on this efficiency metric, we get three different possibilities:
o Efficiency equals 1: It is the ideal situation showing a very good convergence.
o Efficiency lower than 1: It is the usual situation. Values closer to 1 are desirable.

o Efficiency greater than 1: It is an unusual situation called super-linear speedup. It hap-
pens when the theoretical maximum speedup is exceeded. One possible reason is the
cache effect, resulting from the different memory hierarchies of a modern computer.
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2. Background and Fundamentals
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28

65536



Multiobjective
Metaheuristics

In this chapter, we provide a general description of the MO metaheuristics considered in this
dissertation to solve the RNPP. We include metaheuristics from the three main types:

e MO approaches of the three SO SIAs FA, ABC, and GSA.
o Three EAs, the standard NSGA-II and SPEA2 and the state-of-the-art MOEA/D.
e An MO approach of the TA VNS.

Next, we describe each one in depth.

3.1 Non-dominated Sorting Genetic Algorithm II

NSGA-II was proposed by Deb et al. in [8] as a revised version of NSGA ([48]). This improved
metaheuristic is characterized by assuming two MO measures called rank and crowding:

e Given a set of solutions, rank is obtained by splitting the set into different Pareto fronts.
Thus, the solutions in the non-dominated front have rank 0; the solutions in the non-
dominated front in the absence of the previous one have rank 1, and so on. The authors
proposed a sorting function called fast-non-dominated-sort to perform this task.

e The crowding distance provides density information. Given a solution in a Pareto front,
the measure is calculated as the average perimeter of the cuboid formed by the nearest
neighbours to such solution. Note that the cuboid assumes as many dimensions as object-
ives the problem considers.

Based on these two MO measures, the authors defined an elitist crowded-comparison operator
=<, to guide the selection process.
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3. Multiobjective Metaheuristics

Algorithm 1 NSGA-II.

1: P, < generatelnitialPopulation(ps.,) > g starts from 1
2 Qg+ {}

3 Fg+ By

4: while not stop condition do

5: Ry < P, UQy > Combine both parent and offspring populations
6 Sg « fastNonDominatedSort(Ry) > Sort Ry in fronts, Sq = {f4, f2,...}
7 Py {} )

8 while || Py 1| + |[f4]] <= psn do > 4 starts from 1
9: crowdingDistanceAssignment( f;) > Calculate the crowding distance of solutions in f
10: Py41 ¢ Pyr1 U f
11: i1+ 1

12: end while
13: if || Py41]| < psn then

14: fg ¢ sortCrowding( f;) > Sort f; in descending order based on crowding
15: Pyi1 Py U fo[l: (psn — ||Pg41]|)] > Choose the first ps, — ||Py41|| elements of f
16: end if

17: Qg+1 < {}

18 while [|Qg1]| <= psy do

19: (¢,¢") « binaryTournament(Py41)

20: n < crossover((,¢’,param_croy)

21: 7 < mutation(n,param_mut,)

22: Qg+1 + Qg1 U{n}

23: end while

24: Fyq1 + getBestSolutions(Fg, Qg+1)
25: g+—g+1

26: end while

Definition 3.1.1 (Crowded-comparison operator). Let ( and n be two solutions to an optim-
isation problem. Let (g and 1yani be the rank of ¢ and n, respectively. Let (oo and Meyoy be
the crowding of ¢ and n, respectively. Then, the crowded-comparison operator <, is given by

C =<n n <~ [C’r‘ank < nrank:| \ [(Crank = nrank) A (Ccrow > ncrow):|7

i.e. C is better than n if any of the conditions holds.

As Algorithm [T] shows, NSGA-II assumes two populations P and () of size ps,,, where at
generation g > 1, P, saves the parents of the current generation and ), contains the offspring
generated by individuals in P;. We propose to include another auxiliary population F' with
undefined size, where at generation g, F; saves the best solutions found until g. This is particu-
larly interesting when we want to save all the solutions found and the number of non-dominated
individuals in P is greater than ps,,. Below, NSGA-II is described step by step:

Input:

® ps,: size of the populations P and Q.
e param_cro, € [0,1]: probability that crossover is performed.
e param_mut, € [0,1]: probability that mutation is performed.
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3.2 Strength Pareto Evolutionary Algorithm 2

QOutput:
e F': aset of non-dominated individuals solving the problem.

Step 0: Initialisation (lines 1 — 3)
In this first step, P, is randomly generated and (), is empty, starting g from 1. Fj is
initialised with the content of P.

Step 1: Generation of the parent population of the next generation (lines 5 — 16)

Both populations P, and @), are combined in a new one R, with size 2 ps,, (line 5). The
best ps,, individuals from R, are inserted into a new parent population P ;. To this end,
Ry is sorted into Pareto fronts according to the sorting algorithm proposed by the authors.
Next, full fronts are inserted into the new population in ascending order (from best to
worst rank) until Py, is filled or the remaining free space is not enough (lines 6-12). If
the latter case is fulfilled, the current front is sorted using the crowding distance and then
only its best ps,, — ||Py+1]| solutions are inserted into Py (lines 13-16).

Step 2: Generation of the offspring population of the next generation (lines 17 — 23)
In this step, a new Q441 is generated based on Py . To this end and so long as Q441
is not filled, two individuals ¢ and ¢’ are selected from Py; by binary tournamenﬂline
19). Then, a new individual is generated through crossover and mutation operators (lines
20 — 21). Both operators usually assume a parameter determining the probability that
the task is performed, param_cro, and param_mut,, respectively. Finally, the new
individual is inserted into Q441 (line 22).

Step 3: Next generation (lines 4 and 24 — 25)
The algorithm goes to the next generation jumping to step 1. Before this, the best solutions
found are saved in F; 1. This procedure is repeated while a stop condition is not reached.

3.2 Strength Pareto Evolutionary Algorithm 2

SPEA2 was developed by Zitzler et al. [9] as an enhanced version of the previous SPEA [37]].
This MO metaheuristic assumes two populations P and P, where at generation g > 1, Py is
a regular population of size ps; and P, is an auxiliary population of size ps,, saving the best
individuals found over generations. SPEA?2 is characterised by assuming a selection process
based on the Pareto dominance concept and additional density measure as fine assignment.

Each solution ¢ € {P,UP,} is assigned a strength value strengths (), denoting the number
of solutions dominated by (, that isE]

strengths(C) = [[{n :n € {Py U Py} A C - n}ll.

On the basis of the strength value, the raw fitness of (, denoted as raw,((), is defined as the
strength of its dominators in both populations, which is given byE]

raws(¢) = Z strengths(n),

nne{PyUP }AN-¢

ITwo individuals are randomly selected from a set, choosing the best individual of both.
2This is for a maximisation problem. If a minimisation problem is assumed, the expression changes > for <.
3This is for a maximisation problem. If a minimisation problem is assumed, the expression changes > for <.
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3. Multiobjective Metaheuristics

Algorithm 2 SPEA2.

: Py < generatelnitialPopulation(ps) > g starts from 1
PPy {}

Fy + P,

: while not stop condition do

Ay <+ fitnessAssignment(P,,P) > Calculate SPEA? fitness values
P11 < environmentalSelection(A4,) &> Copy the best solutions from P, U P, to Pg1
Pyi1 + makeNewPopulation(ﬁgH , param_cros, param_muts) > Generate a new Py
Fy i1 + getBestSolutions(Fy, Pyy1)

g+—g+1

: end while

D A > s

—_
(=]

where raws(() equalling 0 corresponds to a non-dominated individual and a high raw;(¢) value
means that { is dominated by many individuals.

In case that most solutions are non-dominated, the raw fitness is lacking. To alleviate this
issue, additional density information is added to guide the selection process. This density meas-
ure is based on the k-th nearest neighbour method: given a reference solution ¢, the distances
(in the objective space) to all other individuals in both populations are calculated and sorted in
increasing order. Next, the k-th element is taken, where k is given by

k = +/pss + Ds,.

Based on this neighbour method, the density measure of ¢, denoted as dens;((), is expressed as

denss(¢) =

where U’g is the k-th element provided by the neighbour method, assuming ¢ as the reference
solution. Given ¢, the combination of both measures, the raw fitness and the density information,
yields a fitness value fitnesss(¢) guiding the selection process, that is

fitnesss(¢) = raws(¢) + denss(Q). (3.1)

Algorithm[2]shows the overall behaviour of SPEA2. As for NSGA-II, we propose to include
an auxiliary population F' with undefined size. Below, the algorithm is described step by step:

Input:

pss: size of the population P.
e Ps,: size of the population P.
e param_cros € [0, 1]: probability that crossover is performed.

e param_muts € [0, 1]: probability that mutation is performed.
Output:
e [F': aset of non-dominated individuals solving the problem.

Step 0: Initialisation (lines 1 — 3) -
In this first step, P, is randomly generated and P, is empty, starting g from 1. Fj is
initialised with the content of P,.
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3.3 Multiobjective Variable Neighbourhood Search Algorithm

Step 1: Fitness assignment (line 5)
Each solution in P, U P, is assigned a fitness value given by Equation 1i

Step 2: Environmental selection (line 6)

The best solutions from P, U?g are copied to ?g—&-l- To this end, we get the number of non-
dominated solutions in Py U E, denoted as nd,. Note that non-dominated solutions have
an SPEA? fitness lower than one. According to nd,, we could have three possibilities: i)
ndgy equals ps,, then the non-dominated solutions are copied to ?gﬂ. ii) ndy is lower
than ps,, then the solutions in P, U P, are sorted in increasing order according to the
SPEA?2 fitness, copying the first ps, solutions to ?g+1. iii) nd, is greater than ps,, then a
truncation procedure is performed based on the k-th nearest neighbour method, copying
only the ps; non-dominated individuals, which have greater distances among them.

Step 4: Generation of a new regular population (line 7)
A new P, is generated based on P, 1, assuming binary tournament, crossover, and
mutation as previously discussed in Section [3.1]for NSGA-II .

Step 5: Next generation (lines 4 and 8 — 9)
The algorithm goes to the next generation jumping to step 1. Before this, the best solutions
found are saved in Fy 1. This procedure is repeated while a stop condition is not reached.

3.3 Multiobjective Variable Neighbourhood Search Algorithm

MO-VNS was proposed by Geiger et al. [49] as an MO version of the traditional SO VNS
[[L1]]. This metaheuristic does not exactly follow a trajectory in the objective space as other TAs.
Instead, given a solution to the optimisation problem, the algorithm explores the search space
by generating new solutions in the surrounding of such initial solution. To this end, it considers
a set of neighbourhood structures, determining how different could be a new solution from the
initial one. This set is denoted as V.S, and is expressed as

NS, = {nst,ns?,... ,nsﬁamm—"“gh“},

where param_neigh, is the number of neighbourhood structures. This set V.S, is partially
ordered, for any two structures nsé,nsitl € NS, with i € 1,2,...,param_neigh, — 1,
nstt! could generate a more different solution than ns!, regarding the initial solution.

The definition of the set of neighbourhood structures depends on the problem definition and
should be carefully studied. If we consider Example[2.1.1] where we have two decision variables
a and b, NS, could be defined as

NS, = {1,2,3}.

This way, a new solution could be generated by adding an integer random number between 0
and one of the three neighbourhood structures to a and b. For example, if we select the second
neighbourhood structure ns2, the random number will be generated in the interval [0, 2].

As described in Algorithm [3] MO-VNS assumes two populations P and S with undefined
size, where at generation g > 1, P is a regular population, keeping only non-dominated solu-
tions, and S, saves the solutions from P, which were considered during g to explore the search
space. Below, the algorithm is described step by step:
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3. Multiobjective Metaheuristics

Algorithm 3 MO-VNS.

1: P, < generateRandomIndividual() > g starts from 1
2: Sg«—{}

3: NS, < generateNeighborhoodStructures(param_neigh., param_ns,)

4: while not stop condition do

5 while P, # S, do > While there are non-considered solutions
6: ¢ < selectNonConsideredSolution( Py, Sg) > A non-considered solution from Py is selected
7: ns?, < selectNeighborhoodStructure(N S,,) >1€1,2,...,param_neigh,
8: Sg + SgU{¢} > The solution is marked as studied
9: do

10 ¢ + generateNeighborhoodSolution (¢, ns?)

11: Py + P, U{(}

12: (Py, Sg) < update(Py, Sy) > Only non-dominated solutions are saved
13: if { € P, then

14: ¢+ ¢ > The new solution is considered to explore the search space
15: nst < nsk > The first neighbourhood structure is selected
16: Sy < SqU{¢} > The solution is marked as studied
17: else

18: if nst # nsPerem-neighy thep

19: nsl « nsitt > The next neighbourhood structure is considered if possible

20: end if

21: end if

22: while ns! #£ nsporam-nreighe

23: end while

24: if perturbation mechanism then

25: Py41 + performPerturbation( Py, param_per,)
26: else

27: Pyi1+ P,

28: end if

29: Sg+1 — { }
30: g—g+1
31: end while

Input:

Output:

e param_neigh,: number of neighbourhood structures.
® param_ns,: it determines how the neighbourhood structures are generated.

e param_per,: it determines how the perturbation mechanism is performed.

e P: a set of non-dominated individuals solving the problem.

Step 0: Initialisation (lines 1 — 3)
In this first step, a random solution is inserted into P, and S, is empty, starting g from
1. Next, the set of neighbourhood structures is generated. It is usual that the generation
of this set is based on any parameter related to the problem definition. In this case, we
include a parameter called param_ns, to show this behaviour.

Step 1: Select non-considered solutions (lines 6 — 8)
A non-considered solution ¢ € Py A ¢ ¢ S, and a neighbourhood structure ns!, € NS,
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3.4 Multiobjective Artificial Bee Colony Algorithm

withi € 1,2,..., param_neigh, are randomly selected to explore the search space (lines
6 — 7). ( is inserted into S, to avoid being selected again over g (line 8).

Step 2: Explore neighbourhood solutions (lines 10 — 22)
A new solution ( is generated in the neighbourhood of ¢ based on ns! (line 10). The
new solution € is added to P, (line 11). Next, P, is updated, removing all the dominated
solutions (line 12). Note that if a solution from P, is removed, it is also removed from .S;.
If after this procedure ( is in Py, this means that the exploration provided a good perform-
ance. Hence, the search is repeated again, but assuming ( as base solution and considering
nst=1 as neighbourhood structure (lines 13 — 16). Otherwise, the next structure is taken
so long as ns! equals nsPa7em-ncighy (lines 17 — 22).
If the latter case is fulfilled and ns! equals nsP?"@™m-"¢i9hv then the algorithm goes to
step 1 if there is any non-considered solution in F,;. Otherwise, it goes to step 3 (line 5).

Step 3: Next generation (lines 24 — 30)
At this point, some authors consider a perturbation mechanism [49], modifying the solu-
tions in P, to avoid local minima. For example, by assuming a mutation operator as
discussed for NSGA-II and SPEA2 (lines 24 — 25). We include a parameter called
param_per,, which could be considered to determine the behaviour of this procedure.
After this, the algorithm goes to the next generation jumping to step 1 (lines 26 — 30).
This procedure is repeated so long as a stop condition is not reached.

3.4 Multiobjective Artificial Bee Colony Algorithm

ABC was proposed by Karaboga and Basturk [[14]]. This is an SO SIA based on the behaviour of
honey bees. According to the authors, there are three essential components in a real honey bee
swarm, i.e. food sources, employed foragers, and unemployed foragers:

e Food sources are set of flowers in the surrounding of the hive.

e Employed foragers are the bees exploiting known food sources. Each time an employed
forager exploits a food source, it returns to the nest to upload the nectar and shares quality
information about the source.

e Unemployed foragers are the bees looking out for new food sources. There are two types:
onlookers and scouts. Onlookers wait in the nest to define new food sources based on
the quality information provided by employed foragers. Scouts search new food sources
without considering any previous experience.

The authors considered some assumptions to design the metaheuristic:
e A food source is a solution to the optimisation problem.
e The colony consists of two groups of artificial bees: employed foragers and onlookers.

e FEach employed forager is assigned to a food source, which is exploited by generating new
solutions in its surrounding. The algorithm includes a parameter called param_limit, to
detect if a food source is exhausted. Thus, if the bee does not get a better solution after
param_limit, times, the employed forager considers that the source is exhausted. Then,
the bee becomes a scout, choosing a new food source through a low cost search.
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3. Multiobjective Metaheuristics

Algorithm 4 MO-ABC.

1: Py < generatelnitialPopulation(ps,)
2 Fy«—{}

3: while not stop condition do

4 (Segq, Sog) + selectBees(Py,param_Seg)

50 Segri < {}

6: for each ¢ € Sey do

7 ¢ + generateEmployedForagerSolution(¢)
8 if ¢ is better than ¢ then

9: ¢.attemptCounter + +
10: end if

11: Segi1 < Segp1 U greedySelection(¢,C)

12: end for

13: 5094,_1 <— { }

14: ProbSeg4+1 < generateProbabilities(Seg41)

15: for each n € So, do

16: ¢ <+ selectEmployedForager(ProbSeg41,5€eg+1)
17: n < generateOnlookerSolution(n,()

18: Sog+1 + Sog4+1 U greedySelection(n,7)

19: end for
20: for each ( € Sey11 do

21: if (.attemptCounter > param_limit, then
22: ¢ + generateScoutSolution()

23: Segi1 < replaceSolution(Sey41,¢,0)
24: end if

25: end for

26: Pyi1 + S’eg+1 U Sog+1

27: Fy1 < getBestSolutions(Fy,Py41)

28: g+—g+1
29: end while

> g starts from 1

> Divide population
> Employed forager process

> Onlooker process

> Scout process

> Next generation

e As stated before, onlookers establish new food sources based on the information shared
by employed foragers. This information quality is shared with a probability proportional

to the profitability of the food source.

In this dissertation, we propose an MO approach of this SIA called MO-ABC. As given in
Algorithm ] MO-ABC assumes a population P of size ps, and an auxiliary population F' of
undefined size, where at generation g > 1, P, saves the non-exhausted food sources known at g
and F}; saves the best food sources found until g. Below, the algorithm is described step by step:

Input:
® ps,: size of the population P.
e param_Se, € [0, 1]: percentage of employed foragers in P.
e param_limit, € 0,1,...: number of attempts to determine if a food source is
exhausted.
Output:

e [ a set of non-dominated individuals solving the problem.
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3.5 Multiobjective Firefly Algorithm

Step 0: Initialisation (line 1 — 2)
In this first step, P, is randomly generated and Fy, is empty, starting g from 1.

Step 1: Select group of bees (line 4)
Based on param_Se,, Py is divided into two groups Se, and Sog, i.e. the set of em-
ployed foragers and onlookers at generation g, respectively.

Step 2: Employed forager process (lines 5 — 12)
Each employed forager ( € Se, generates a new solution ( in its surrounding. Next, a
greedy selection between both solutions is performed, increasing the attempt counter of ¢
if the previous solution is better than the one generated. The resulting solution is inserted
into a new Seg1. Note that a new solution has an attempt counter value equalling 0.

Step 3: Onlooker process (lines 13 — 19)
The original SO ABC considers a probability based selection process to generate new
solutions based on Sey . It establishes selection probabilities based on the value of the
objective to optimise. Here, we propose an MO version of ABC. To this end, Seg; is
sorted according to the elitist crowded-comparison operator <,, discussed for NSGA-II
in Section[?a;f} Thus, after the sorting, the best solution of Sey is twice as likely as the
second one, the second solution is twice as likely as the third one, and so on (line 14).

Each onlooker n € So, takes an employed forager ( € Se,; according to the selection
probabilities ProbSey41. Then, a new solution 7 is generated based on the information
provided by (. Next, a greedy selection is performed between both. The resulting solution
is added to a new Sog441 (lines 15 — 19).

Step 4: Scout process (lines 20 — 25)
For each employed forager ¢ € Sey41, we check if its solution is exhausted. In such a
case, a new solution ( is generated by a low-cost local search. This procedure is charac-
terised by a low average in food source quality. However, scouts occasionally discover
rich unknown food sources. The new solution is replaced by the exhausted one.

Step 5: Next generation (lines 26 — 28)
The new P, is generated by combining both Se,; 1 and Sog41. F,yq1 saves the best
solutions found until now. Next, the algorithm goes to the next generation jumping to step
1. This procedure is repeated so long as a stop condition is not reached.

3.5 Multiobjective Firefly Algorithm

Fireflies are a type of nocturnal beetle, which produces flashing lights by a process of biolu-
minescence, with the main purpose of attracting mating partners and potential prey. As is well
known, light intensity decreases with the distance from its source and the media absorbs light.
Hence, flashing lights of fireflies are only visible to a limited distance.

The original SO FA was proposed by Yang [13]. This algorithm is based on the idealised
behaviour of fireflies by following three basic rules:

o All fireflies are unisex. Hence, a firefly can be attracted to another, regardless of its sex.
e Attractiveness is proportional to light intensity. Given any two fireflies, the less bright one

will move towards the brighter one.
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3. Multiobjective Metaheuristics

e The light intensity of a firefly is determined by the landscape of the objective function to
be optimised. As this is an SO metaheuristic, light intensity could be proportional to the
value of the fitness function, in case that a maximisation problem is assumed.

There are two important aspects in the formulation of FA, i.e. the variation of brightness and
the formulation of attractiveness:

o A firefly is a possible solution to the optimisation problem. Hence, the brightness of a fire-
fly is determined by its solution quality. In this dissertation, we propose an MO approach
of this SIA called MO-FA. To this end, we consider the elitist crowded-comparison oper-
ator <, previously discussed for NSGA-II in Section [3.1] Thus, let ¢ and 7 be any two
fireflies,  is brighter than n if { <, 7.

e Attractiveness is defined based on the distance between fireflies. Let n be the number of
decision variables of the optimisation problem. Let { and 7 be any two fireflies, where (;
and 7); are the values of the i-th decision variable of ( and 7, with s € 1,2,...,n. Let
dj;a(g“ , 1) be the Cartesian distance between ¢ and 7 in the solution space denoted as

df‘a(gv n) =

Suppose that ¢ <,, . Then, the attractiveness that ¢ applies to 1 causes a movement in 7
expressed as

2 1
ni =i + Po,e GaCm™ (¢ —mi) 4+ 75 (o — 5); Viel,2,...,n, (3.2)

where r¢ € [0,1] is the randomisation parameter, « is a random number in the interval
[0,1], Bo, € [0,1] is the attractiveness at d},((,n) equalling 0, and vy € [0, 00) is the
light absorption coefficient. The value of + is crucial, due to it determines the convergence
speed of the algorithm. In practice, this value is limited by the characteristics of the
optimisation problem. Most applications assume values varying from 0.01 to 100.

The original formulation of attractiveness given by Equation presents some limit-
ations, due to the exponential function e. If the distance between two fireflies is large,
the value provided by the exponential function will be huge. This formulation limits the
applicability of the algorithm in certain problems. To solve this, we propose to change
distances to the interval [0, 1] by assuming a bounding distance, that is

& (C,
b3, (C,n) = FalC, 1) :

n

n Z (maz_z; — min_xi)z
i=1

where max_x; and min_x; are the maximum and minimum values of the decision vari-
able x;, respectively. These maximum and minimum values could be theoretical or prac-
tical ones. Thus, the new formulation of attractiveness is expressed as

S 1
N =mn; + lgofe—w bd3, (¢,m)? (& —m) + Tr (o — 5), Viel?2, ..., n. (3.3)
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3.5 Multiobjective Firefly Algorithm

Algorithm 5 MO-FA.

1: Py < generatelnitialPopulation(ps y) > g starts from 1
2 Qg+ {}
3 Fy+ P,
4: while not stop condition do
5: 1, < calculateLightIntensity(F;)
6: for each ( € P, do
7: ¢ « copyFirefly(¢, €) > Copy € to a new firefly ¢
8: foreachn € P, : ( #ndo
9: if getLightIntensity(l4, n) > getLightIntensity(lg, ¢) then > If 7 is brighter than ¢
10: ¢ + moveFirefly(C, n, Tf,Bosy Af) > Move firefly ¢ towards 7
11: end if
12: end for
13: Qg + Qg U{¢}
14: end for
15: ¢ < moveBrightestFirefly(P,) > The brightest firefly in P, is randomly moved
16: Qg + Qg U{¢}
17: Qg < calculateFitnessValues(Q)4) > Evaluate fireflies in Q)
18 Qgi1+{}
19: Py41 < selectBestIndividuals(Py, Q4) > The best ps; fireflies of Py U Q4 are inserted into Py 1
20: Pyt1 + stagnationControl(Py1, Py, Qg4, param_how_scy, param_when_scy)

21: Fyy1 + getBestSolutions(Fy, Pyy1)
22: g+—g+1
23: end while

As stated before, we propose an MO approach of FA called MO-FA. As given in Algorithm
E], MO-FA assumes two populations P and @) of size ps;, where at generation g > 1, P, saves
the fireflies at the beginning of g, before attractiveness, and (), contains the resulting population
after moving the fireflies in P;. As for NSGA-II and SPEA2, we propose to include an auxiliary
population F' with undefined size. Below, the algorithm is described step by step:

Input:

psy: size of the populations P and Q.

rs € [0, 1]: randomisation parameter.

Bo, € [0, 1]: attractiveness at distance 0.

Ay € [0, 00): light absorption coefficient.
e param_how_scy: it determines how the stagnation control is performed.

e param_when_scy: it determines when the stagnation control is performed.
QOutput:
e F': aset of non-dominated individuals solving the problem.

Step 0: Initialisation (lines 1 — 3)
In this first step, P, is randomly generated and @, is empty, starting g from 1. F, is
initialised with the content of P,.

Step 1: Calculate light intensity of fireflies (line 5)
Light intensity of fireflies in P is calculated attending to <,,. The values are saved in I,.
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Step 2: Attractiveness (lines 6 — 14)
Each solution in P, is attracted to others, having greater light intensity. This attractiveness
causes a movement described by Equation (3.3). The resulting fireflies are saved in Q.

Step 3: Move the brightest firefly (lines 15 — 16)
The brightest firefly in P, is randomly moved, because it was not attracted to any other
solution. The resulting firefly is inserted into Q.

Step 4: Next generation (lines 17 — 22)

After movements, the fitness functions of each solution in @), are calculated. Next, Q41
is initialised to empty and a new Py is generated by combining both P, and )4, saving
only its best psy solutions according to <,,. After this, a stagnation control is performed
to ensure that the algorithm escapes from local minima. To this end, if the condition in
param_when_scy holds, then this procedure will include changes in P, ; attending to
param_how_scy. We include this mechanism due to the algorithm does not have any
procedure to ensure this aspect. Next, the best solutions found are saved in Fi, ;. This
procedure is repeated, jumping to step 1, so long as a stop condition is not reached.

3.6 Multiobjective Gravitational Search Algorithm

GSA was developed by Rashedi et al [[12]. This SO SIA is considered as an isolated system of
masses, where agents are objects and their performance is measured by their masses. All these
objects are mutually attracted by the Newtonian gravity force, causing a global movement of
all objects towards heavier masses, which correspond to good solutions. Heavier masses move
slowly than lighter ones, guaranteeing the exploitation of the solution space.

There are five important aspects in the formulation of GSA, i.e. position of agents, masses of
agents, gravitational forces, acceleration of agents, velocity of agents, and movement of agents:

o Position of agents: Let n be the number of decision variables of the problem. Let ps s, be
the number of agents in the system. Let z¢(g) be the value of the d-th decision variable of
the i-th agent z,(d) at generation g, withd € 1,2,...,n,9 € 1,2,...,1 € 1,2,...,pSgsqa-
The position in the system of the ¢-th agent at g is given by

zi(9) = (i (9),27(9), ..., 2} (9))-

e Masses of agents: They are calculated according to the solution quality. Following the
original SO approach, the individual mass m;(g) of agent x;(g) is given by

f(zi(g)) — worst(g)
best(g) — worst(g) ’

mi(g) = (3.4)

where f(z;(g)) is the fitness value of z;(g) and best(g) and worst(g) are defined a

best(g) = max  f(z;(g)) (3.5)

J€L2,...,pSgsa

and

worst(g) = jel,zr,r.l.i.%sgm flz;(g)), (3.6)

I'This is for a minimisation problem. If a maximisation problem is assumed, the definitions will be opposite and
then Equation will be for worst(g) and Equation will be for best(g).

40



3.6 Multiobjective Gravitational Search Algorithm

respectively. Based on this individual mass, the total mass mm;(g) of agent x;(g) is
calculated regarding all other masses in the system, that is

mmi(g) = il 3.7)

Z m;(g)

j=1

As stated before, we propose an MO approach of GSA called MO-GSA. Consequently,
individual masses cannot be calculated assuming Equation @, because we have more
than one objective. To solve this, we consider the elitist crowded-comparison operator
<, discussed for NSGA-II in Section Thus, we sort the psgs, agents in decreasing
order at g. After this sorting, the x;(g) agent corresponds to the i-th best solution in
the system at g. This order is assumed to formulate a new expression for calculating
individual masses, that is ’
m; = mi(g) = —L29%a (3.8)
1- ps gsa
Note that this expression is constant over time. Consequently, Equation is also con-
stant over time. Following this MO approach, both individual and total masses are calcu-
lated by assuming Equations (3.8) and (3.7), respectively.

Gravitational forces: They are calculated for each decision variable. Given any two
agents ;(g) and z;;(g), the individual force f¢,(g) acting on agent z;(g) from z;(g) at g
is defined as

d mm;(g) mm;(g) d d
where ¢ is a very small constant, d(-) provides the n-dimensional Euclidean distance
between any two agents, ¢(g) is a gravitational constant described by an increasing func-
tion of g. Based on this individual force, the total force ff(g) acting on agent ;(g) is
expressed as a randomly weighted sum of the individual forces exerted from the kbest(g)
agents at g, that is

kbest(g)

[y = > (f(9) o), (3.10)
i=Lj#i

where « is a random number in the interval [0, 1] and kbest(g) is a decreasing function of
g, providing values in the range 1,2, ..., pSgsq.

Acceleration of agents: It is calculated for each decision variable. The acceleration aZ(g)
of agent x;(g) is calculated attending to the total forces acting on it, that is

al(g) = 114) G.11)

mm;

Velocity of agents: It is calculated for each decision variable. The velocity of agent
x;(g + 1) is calculated by assuming its acceleration and velocity in the previous instant g,
that is

vi(g+1) = ai(g) +v{(9) o, (3.12)

where « is a random number in the interval [0, 1].
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Algorithm 6 MO-GSA.

Qg

R S A

R R = m m m s e e e
S B A S e

: (Pg,Vy) « generatelnitialPopulation(psgsa) b g starts from 1

<{}

Fy + P,

IM < calculateIndividualMasses(psgsa)
TM < calculateTotalMasses(I M)

cg < param_clnitial

. kbesty < param_kbestInitial

: while not stop condition do

(Py, Vy) < sortPopulation(Py, Vy)

I Fy < calculateIndividualForces(Py, cg, T'M)
TFy < calculateTotalForces(I Fy, kbesty)

Ay < calculateAcceleration(T'Fy, T'M)

V441 < calculateVelocity(Ag, V)

Qg < moveAgents(Py, Vy41)

Py1 + selectBestIndividuals(Py, Q)

Py41 < stagnationControl(Py+1, Py, Qg, param_how_scgsa, param_when_scgsq)
cg+1 < updateC(g)

kbestg41 <— updateKbest(g)

Fy1 + getBestSolutions(Fy, Pyy1)
g<g+1

: end while

e Movement of agents: It is calculated for each decision variable. The position of agent
z;(g + 1) is calculated attending to its velocity at such generation and its position in the
previous instant g, that is

As

al(g+1) =2 (g) + v (g +1). (3.13)

Algorithm@ shows, MO-GSA assumes two populations P and @ of size psgs,, Where at

generation g > 1, P, saves the agents at the beginning of g, before acting gravitational forces,
and (), contains the resulting agents after acting the forces in F;. As for NSGA-II, SPEA2,
and MO-FA, we propose to include an auxiliary population F' with undefined size. Below, the
algorithm is described step by step:

Input:

® PSgsq: size of the populations P and Q.
o param_cInitialys, € R: value of ¢(g) at the beginning of the algorithm.
o param_cFinalgys, € R: value of ¢(g) at the end of the algorithm.

o param_kbestInitialyse € 1,2,...,pSgsq: value of kbest(g) at the beginning of
the algorithm.

o param_kbestFinalgsq € 1,2,...,pSgsq: value of kbest(g) at the end of the al-
gorithm.

o param_how_scgs,: it determines how the stagnation control is performed.

o param_when_scys,: it determines when the stagnation control is performed.
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QOutput:
e [: a set of non-dominated individuals solving the problem.

Step 0: Initialisation. Population (lines 1 — 3)
In this first step, P, is randomly generated and (), is empty, starting g from 1. Fj is
initialised with the content of P;. Note that when a new solution is generated, its velocity
is initialised to zero, that is

z;i(g) € Py, vi(g)=0c¢ Vgs g=1,Vi€l,2,...,psgsqandVd € 1,2,...,n.

Step 1: Initialisation. Masses (lines 4 — 5)
As stated before, for our MO approach the mass of an agent depends on its order position
in P, and the mass for each position is constant over time. Thus, individual and total
masses are calculated based on Equations (3.8)) and (3.7)), that is

m; € IM, mm; € TM; Vi€ 1,2,...,pSgsq-

Step 2: Initialisation. Functions (lines 6 — 7)
Initialise ¢(g) and kbest(g) to the values in param_cInitial and param_kbestInitial,
respectively. Note that according to the notation assumed in the other algorithms, ¢(g)
and kbest(g) are denoted as ¢, and kbest, in Algorithm [}

Step 3: Evaluate agents (line 9)
P, is sorted according to <, in decreasing order. Note that V} is also reorganised to fit
the new order of P,.

Step 4: Calculate gravitational forces (lines 10 — 11)
Individual and total forces are calculated for each agent in P, according to Equations (3.9)
and (3.10), respectively. This way,

4.(9) €IF,, ffi(g) € TFy; Vi,j€1,2,...,psgsaandVd € 1,2,...,n.

Step 5: Calculate acceleration and velocity (lines 12 — 13)
Acceleration at g and velocity at g + 1 are calculated for each agent in P, according to

Equations (3.11)) and (3.12)), respectively. Thus,
al(g) € Ay, vi(g+1) € Vypr; Vi€ 1,2,...,psgsqandVd € 1,2,... 1.

Step 6: Move agents (line 14)
The agents in P, are moved because of gravitational forces at g according to Equation

(3.13). The new agents are saved in Q.

Step 7: Next generation (lines 15 — 20)

A new P, is generated by selecting the best psgs, agents according to <,, (line 15).
A stagnation control is performed as for MO-FA in line 16, according to the parameters
param_how_scysq and param_when_scysq. Next, we calculate c,41 and kbestgiq
(lines 17 — 18). To this end, we should estimate how many generations the algorithm will
execute. The purpose is that the distribution of the values provided by both functions is
uniform over generations. Note that maximum and minimum values of such functions are
parameters of MO-GSA. Then, the best solutions found are saved in F;; (line 19). This
procedure is repeated, jumping to step 1, so long as a stop condition is not reached.
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3.7 Multiobjective Evolutionary Algorithm Based on Decom-
position

MOEA/D was proposed by Qingfu Zhang and Hui Liu [10]. In contrast to the majority of
the current state-of-the-art MOEAs, which treat MOPs as a whole. MOEA/D decomposes a
given MOP into several SO optimisation subproblems, solving each one by considering only
information from neighbouring subproblems.

Two decomposition methods are common in MOEA/D: Weighted Sum Approach (WSA)
and Weighted Tchebycheff Approach (WTA) [10]. The first one works out well on convex
problems, but not for non-convex ones. The second method is able to deal with both types of
problems. However, both are very sensitive to the scale of the objectives.

A decomposition method independent of the scales of the objectives is Normal Boundary
Intersection (NBI) [S0]. This approach tries to find the intersection points between the solutions
in the Pareto front and a number of straight lines, which are defined by both a set of uniformly-
distributed reference points in the Convex Hull of Individual Minima (CHIM) and a normal
vector to the CHIM. Due to NBI has several constraints applied to MOEA/D [51]], the authors
in [52] proposed to take the advantages of the NBI approach and the Tchebycheff approach, de-
fining the NBI-Tchebycheff approach for decomposing three-objective optimisation problems.

In this dissertation, we assume MOEA/D with this NBI-Tchebycheff approach for optim-
ising problems with two and three objectives. Below, we describe the way in which the sub-
problems are defined for each case:

e For two objectives: Suppose an MOP, maximising f; and f». Let F'* = (maxF(f),
minF(f>)), F2 = (minF(f1), maxF(f)) be the two extreme points delimiting the object-
ive space. Note that maxF(-) and minF(-) denote the maximum and minimum possible
values of a fitness function. These values could be theoretical or practical ones. Let
Y = {ri,7%,...,rP*"} be a set of points evenly distributed on the plane I (CHIM),
where ps,, is the cardinal of the set. Both F'! and F? are included in Y. Let 2 = (n1,n2)
be the normal vector to the plane I. Then, the bi-objective optimisation problem is de-
composed into ps,, SO minimisation subproblems, according to the NBI-Tchebycheff
approach. Each ¢-th subproblem optimises the fitness function given byﬂ

g(z : i, A) = max{ n; (f1(z) — r’i),

na (fa(z) —rs) }’

where X is a possible solution to the optimisation problem.

rt = (ri,ré) eT,iel,2,...,pSm,
(3.14)

e For three objectives: Suppose an MOP, maximising f1, f2, and f3. Let F'! = (maxF(f;),
minF(fy), minF(f3)), F? = (minF(f;), maxF(f;), minF(f3)), and F* = (minF(f;),
minF( f2), maxF(f3)) be the three extreme points delimiting the objective space. Let
YT = {r',r% ..., 7P*=} be a set of points evenly distributed on the plane Il (CHIM),
where ps,,, is the cardinal of the set. Note that F'*, F2, and F? are included in Y. Let
7 = (n1,n2,n3) be the normal vector to the plane II. Then, the three-objective optim-
isation problem is decomposed into ps,,, SO minimisation subproblems, according to the

'If f is to minimise, the definition would be similar, changing n1 (f1(z) — r%) for ni(ré — f1(z)).
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Algorithm 7 Distribution of the reference points on the CHIM for two objectives.

T+ {}
PSm 0
(E', E?) + scaleExtremePointsCHIM(F", F?, param_CHIMinc.,)
d(E',E?)
nE17E2 A param_crowm

form <~ 0tong1 g2 do
YT YU{E' +m Z2=E1}

gl B2

PSm ¢ PSm + 1
: end for

e A A T

NBI-Tchebycheff approach. Each i-th subproblem optimises the fitness function given by

g(z : 7t n) = max{ ny (fi(x) — 1),

na (fo(x) —1%), rt = (ri,ré,ré) eY,iel,2,...,p8m,

ns (f3(z) —r%) }

where x is a possible solution to the optimisation problem.

(3.15)

Another important aspect of MOEA/D is the distribution of the reference points T on the
CHIM. Following the same NBI-Tchebycheff approach, we assume two different algorithms
according to whether the problem considers two or three objectives:

o For two objectives: As Algorithm[/|shows, the reference points are distributed following
a straight line between F'! and F2. Below, the procedure is described step by step:

Input:

— F!and F?: extreme points of the CHIM.

- param_CHIMinc,, € [1,00): increment of the CHIM.

- param_crow,, € (0,00): distance between reference points.
Output:

— The set of reference points Y is distributed on the CHIM.
Step 0: Initialisation (lines 1 — 3)
At this step, Y is initialised to empty. Next the new extreme points E' and E? of
the CHIM are calculated by solving the equation given by

d(E*, E?) = d(F', F?) param_CHIMinc,y,,

where d(-) provides the Euclidean distance between any two points. Because we
did not find any work providing the mathematical development needed to perform
this scaling task, which is not trivial, we provide this information in Appendix [A]
specifically in Section[A.T]

Step 1: Obtaining the number of divisions (line 4)
Calculate the number of divisions ng:1 g2 in the segment E1E?2.

Step 2: Generate reference points (lines 5 — 8)
Generate new reference points in the segment E1 E2.
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Algorithm 8 Distribution of the reference points on the CHIM for three objectives.

LT+ {}
2: pSm 0
3. (B', E? E®) « scaleExtremePointsCHIM(F*, F2, F* param_CHIMinc,,)
4. while true do
5 (E', E?, E®) < reassignExtremePointsCHIM(E", E2, E®)
6 Ngt g2 < Imi&f:%
7. NEl g3 < %
8: ifng1 g2 < 1.0 then
9: stop algorithm
10: end if
11: for m <— 0 tong1 gs do
12: 0 B 4m 2ol
13: b E' 4m Z2=E
gl g3
14: Map 4 sV
15: for n < 0 to ny do
16: T« TU{a+ni2}
17: PSm ¢ PSm + 1 ‘
18: end for
19: end for
200 E' 4 E'4npg ps LB
’ El E2
21: end while

e For three objectives: As Algorithm [§] shows, the reference points are distributed in the
area enclosed by F'!, F'2, and F'3. Below, the procedure is described step by step:

Input:

- F' F? and F3: extreme points of the CHIM.

- param_CHIMinc,, € [1,00): increment of the CHIM.

- param_crow,, € (0,00): distance between reference points.
Output:

— The set of reference points Y is distributed on the CHIM.

Step 0: Initialisation (lines 1 — 3)
T is initialised to empty. Next the new extreme points £, E2, and E® of the CHIM
are calculated by solving the system of equations given by

d(EY, E?) = d(F*, F?) param_CHIMinc,,
d(EY, E3) = d(F*, F3) param_CHIMinc,,
d(E? E3) = d(F?, F3) param_CHIMinc,,

As for two objectives, we provide the mathematical development needed to perform
this scaling task in Appendix[A] specifically in Section[A.3]
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Algorithm 9 MOEA/D with NBI-Tchebycheff approach.

R A A S ol ey

T « distributeReferenceSet(F'*, F2, F3, param_CHIMinc,, , param_crowm,)

P, < generatelnitialPopulation(psm,) > g starts from 1
Fy—{}

N < computeNeighbourhood(Y ,param_neigh,)

while not stop condition do

for each r* € Y do
k «+ getRandomNeighbourhood(N,r?)
[ + getRandomNeighbourhood(N,r?)
n < generateNewSolution(pg[N; k], pg[Ni,i])
Fy < Fy U {n}
for j = 1 — param_neigh., do > Update neighbouring solutions
it g(n: ¥9,7) < g(pg[Nis] : 743, 7) then
Py[Nijl <
end if
end for
end for
Fy 11 < updateNonDominatedSet(F})
Pot1 Py

19: end while

Step 1: Reassignment of extreme points (line 5)
The extreme points £, E2, and E* are reassigned among them to satisfy: d(E*, E?)
> d(E', E3) > d(E?, E3). For example, E' and E? could exchange their positions
to satisfy the condition.

Step 2: Obtaining the number of divisions (lines 6 — 10)
Calculate the number of divisions in the two largest segments E'E2? and E1E3,
denoted as ng1 g2 and ng gs, respectively. In case of ng1 g2 < 1.0, it is not
possible to add new reference points, and then, the algorithm ends.

Step 3: Generate reference points (lines 11 — 19)
Generate new reference points in the area delimited by E!, E?, and E3.

Step 4: Going to the next area (line 20)
Not all the surface delimited by the tree extreme points ', E?, and E® was studied
in step 3. To solve this, E' is moved to a new position, delimiting a new area to
study for the next iteration.

As Algorithm 9] shows, MOEA/D assumes a regular population P of size ps,, and an aux-

iliary population F' of undefined size. At generation g > 1, P, is considered to generate new
solutions in g and F,, saves the non-dominated solutions found until g. Note that this imple-
mentation is for two or three objectives. Below, the algorithm is described step by step:

47



3. Multiobjective Metaheuristics

Input:

F' and F? (and F'3 if there is three objectives): extreme points of the CHIM.

param_CHIMinc,, € [1,00): increment of the CHIM.

e param_crowy, € (0,00): distance between reference points.

e param_neigh,, € 1,2, ...: number of neighbourhoods for each reference point.
e param_croy,, € [0,1]: probability that crossover is performed.

e param_mut,, € [0,1]: probability that mutation is performed.
Output:
e [': aset of non-dominated individuals solving the problem.

Step 0: Initialisation. Reference points (line 1)
In this first step, T is generated by distributing the ps,,, reference points on the CHIM
as Algorithm [7]and [§] show. Note that F and F are the extreme points if a bi-objective
problem is assumed and Fj, F5, and Fj if it is a three-objective problem. Note that in
Algorithm[9] we assume three objectives.

Step 1: Initialisation. Population (lines 2 — 3)
P, is randomly generated and F} is empty, starting g from 1. To this end, each solution
in P, is associated with a different reference point in Y, i.e. given a point 7 € T, r’ is
associated with the solution in P, denoted as P,[i], withi € 1,2,..., ps,,.

Step 2: Initialisation. Neighbourhood (line 4)
In this step, the neighbourhood of the reference points in Y is calculated. To this end, the
Euclidean distance between each pair of points in T is obtained, including itself. Next,
we get the param_neigh,, closest reference points to each reference point, generating
a N matrix of size ps,, x param_neigh,, . Given a reference point r’ € T, N;; €
1,2,...,ps,, is the index in Y of its j-th closest reference point, with i € 1,2,..., DSy,
Jj€L12,..., param_neighy,. As an example, suppose N; ; equalling 4, this means that
the j-th closest reference point to % is r.

Step 3: Generation of new solutions (lines 6 — 16)
For each reference point 7% in Y, two neighbouring reference points N; 1, and N; ; of rtare
randomly selected, with k,[ € 1,2, ... param_neigh,,. Then, based on the solutions
associated to such points in P,, i.e. Py[N; ] and P,[N;;] a new solution n is gener-
ated through binary tournament, crossover, and mutation according to param_cro,, and
param_mut,,, as previously discussed in Section@]for NSGA-II. This new solution is
added to Iy (lines 7 — 10).

Next, for each neighbourhood of rt, we check if the new solution 7 is better suited than the
solutions associated to such reference points, according to Equations (3.14) and (3.15). In
that case, the new solution replaces the previous one (lines 11 — 15).

Step 4: Next generation (lines 17 — 18)
Fy41 is generated by removing all the dominated solutions from F},. The algorithm goes
to the next generation jumping to step 3. This procedure is repeated so long as a stop
condition is not reached.
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Solving the RNPP:
bi-objective Outdoor
Approach

In this chapter, we define and solve the first approach of the RNPP by applying the previ-
ously mentioned MO metaheuristics. This chapter is structured as follows. The WSN model
considered in this work is presented in Section[d.1] Based on this model, we define the optim-
isation problem in Section f.2] Section [4.3] presents the data set considered for comparing the
metaheuristics while solving the problem. Chromosome definition and specific considerations
for implementing the metaheuristics are detailed in Sections [4.5] and [.6] respectively. Experi-
mental results are presented in Section[4.7] Finally, we discuss the scientific achievements from
solving this first optimisation problem in Section }.§]

4.1 The Wireless Sensor Network Model Assumed

This section describes the WSN model considered in the bi-objective unconstrained RNPP out-
door approach. The notation assumed is listed in Section[4.1.1] The general assumptions of the
model are presented in Section [#.1.2] Finally, we discuss energy expenditure, sensitivity area,
and network lifetime in Sections f.1.3| f.1.4] and [4.1.3] respectively.

4.1.1 Notation

The following notation is considered for modelling the WSN definition:

a path loss exponent, « € [2,4];
B8 transmission quality parameter, 8 > 0;
T set of time periods, 7 = {0,1,2,...};
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A(t) sensitivity area provided by the WSN at time ¢t > 0 € 7;

ap(t) variable assuming 1 if there is at least one sensor i € Ss(t) at a distance to
the demand point p € D, (¢) lower than rs;

amp energy cost per bit of the power amplifier, amp > 0;

c sink coordinates, ¢ = (z,y) where x € [0,d,] and y € [0, d,];

cos, coverage threshold, coyp, € [0, 1];

Dp(t) set of demand points at time ¢ > 0, Vp € Dp, p = (x,y) where z € [0, d]
and y € [0,d,];

dy(t) number of demand points. It is the cardinal of D,,(t);

dpn distance between two neighbouring demand points;

dy width of the surface, d, > 0;

dy height of the surface, d, > 0;

Ec;(t) energy charge of a sensor i € S¢(t) at time t;

Ee;(t) energy expenditure of a sensor ¢ € S,(¢) at time ¢ > 0;

fi AEC of the sensors over the network lifetime;

fa ASA provided by the WSN over the network lifetime;

1ec initial energy charge of the sensors, iec > 0;

k information packet size in bits, &k > 0;

P;(t) number of packets sent by the sensor i € S;(¢) at time ¢ > 0;

Te communication radius, . > 0;

Rp;(t) number of relayed packets sent by the sensor ¢ € S;(t) at time t > 0;

Ts sensitivity radius, rs > 0;

S, set of RN coordinates, Vr € S,, r = (x,y) where z € [0,d;] and y €
[0, dy];

5, number of RNs. It is the cardinal of .S,;

S, set of initial sensor coordinates, Vi € Sy, i = (,y), where x € [0, d,] and
y €1[0,dy);

Ss number of initial sensors. It is the cardinal of S,;

Ss(t) set of sensor coordinates, holding that the energy charge is greater than 0

and that there is any path to the sink node, both at time ¢ > 0, Ss(t) C S,:

ss(t) number of sensors, holding that the energy charge is greater than 0 and that
there is any path to the sink node, both at time ¢ > 0. It is the cardinal of
Ss(t), ss(t) < 343

tn network lifetime of the WSN based on the coverage threshold coy,;

wi(t) variable which provides the next device in the minimum path between i €
Ss(t) and the sink node at ¢ > 0, wi(t) € {Ss(t) U Sy} +c¢c—i;

2§ ,(t) variable assuming 1 if ¢ € S, (t) is in the minimum path between j € S (t)

and the sink node at ¢ > 0, and O otherwise.
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4.1.2 Assumptions of the Wireless Aensor Network Model

The general assumptions of the network model are:

1. The network is composed of three types of wireless static devices: a sink node, 54 sensors,
and 5, RNs. They send messages by following a ST approach.

2. All the devices are placed on a same outdoor 2D-surface of size d, x d,,, where there is
not any relevant obstacle nor interferences from other electronic devices.

3. We suppose that there are not prohibited areas. Hence, all the devices can be placed on
anywhere of the surface, i.e. we follow an unconstrained approach of the RNPP.

4. The sensors are powered by batteries. On the contrary, the sink node and the RNs are
energy-harvesting devices. Thus, we consider that they have enough energy capacity for
operating over the network lifetime, not as the sensors.

5. Initially, at time ¢ = 0, all the sensors start with the same energy capacity ¢ec in their
batteries. If during operation, ¢t > 0, a sensor is exhausted, it cannot be linked again.

6. The sink node is the only connection point of the network to the outside.

7. The sensors capture information about the environment on a regular basis and with a
sensitivity radius r, i.e. each sensor covers a circumference of radius r;. Once the
information is captured, it is immediately sent to the sink node.

8. The RNs are low-cost devices, which only forward all the information received to the sink
node, i.e. they do not capture information.

9. Any two devices can be linked, if they are at a distance lower than the communication
radius r. and have enough energy capacity in their batteries.

10. All the devices consider the same multi-hop routing protocol provided by Dijsktra’s Al-
gorithm [53]], for minimum path length among devices.

11. We suppose a perfect synchronisation among devices and the use of an efficient MAC
protocol, such as S-MAC [54], which allows reducing energy cost on idle time.

4.1.3 Energy Expenditure

As stated before, the sensors are the only devices powered by batteries. Hence, if we want to
optimise energy cost, we need to simulate the energy consumption of such devices during oper-
ation. To this end, we consider the energy model proposed by Konstantinidis et al. [55]], where
the energy expenditure is only due to the sending task. Consequently, processing, receiving, and
sensing tasks are considered negligible.

Following this energy model, a sensor 4, with ¢ € S,(¢), sends a number of data packets
P;(t) attime t € 7 and ¢ > 0 given by

Pi(t) = 1 + Rpi(0). @

This means that Equation #.1)) is given by the sum of the number of data packets generated by
7 at t (in this case, we consider that each sensor captures a data packet per time period) and the
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number of relayed packets because of the multi-hop routing approach, which is denoted as

Rpi(t)= > =zt

Je{Ss(t)—i}

Note that control packets from routing and MAC protocols were not simulated, because this is
not the aim of this dissertation.
Based on this expression, the energy cost Ee;(t) of a sensor ¢ at time ¢ > 0 is given by

Ee;(t) = Pi(t) 8 amp k ([li —wi(t)]la), (42)

where || - ||4 is the Euclidean distance between any two devices. This way, the energy charge of
a sensor ¢ at time ¢ is given by
. Eci(t— ].) —Eel(t) ift >0

Beit) = { iec ift=0"

If this value equals zero, the sensor is out of energy; otherwise, it is active.

4.1.4 Sensitivity Area

As stated before, a sensor covers a circumference of radius r and area 7 r?. Hence, at time ¢, the
total sensitivity area of a WSN is calculated as the union of its s,(t) areas by assuming possible
overlaps between circles. The intersection of two circles is straightforward, even three circles
is not a really complex computational problem. However, the computational effort increases
exponentially when the number of circles increases [56].

As a possible way to approximate this calculation, some authors assume a set of demand
points uniformly distributed on the surface. Then, they count the number of demand points,
which have an active sensor at a distance lower than r, [S7]. Based on this idea, the sensitivity
area provided by a WSN at time ¢ > 0 is given by

Z ap(t)

pED,(t)
dp(t)

where a,,(¢) is the indicator function expressed as

At) = : 4.3)

o (1) = { 1 if3dieSs(t):|lp—illa <rs
P 0 otherwise
i.e. ap(t) equals 1 if there is a sensor ¢ such that the distance between the demand point p and ¢
is lower than 7, and O otherwise.
In this dissertation, we consider that the demand points follow a grid distribution, with d,,,
distance between neighbouring points. Thus, the number of demand points is given by

~ de d
d (t) =2z
P dpn

We express the accuracy of this metric according to the upper bound of the relative error of
calculating the area of a single circumference, regarding the total area of the surface. To this
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x  Demand point

n Is /\ Sensor node

»
< »

Figure 4.1: Approximate method for calculating the area of the circumference.

end, we consider a circumference, whose center is placed in a demand point and its 75 is a
multiple of dp,,, see Figure In such a case, the approximate area of the circumference is
calculated according to a number of demand points given by

o1 7]
pn i=0

In Figure[d.T] the cells having the demand points considered for calculating the area are shaded.
Let e be the upper bound of the error defined as the difference between the real and the
estimated areas. That is,

2
e=mr, —ng dpp dpn-

Then, the upper bound for the relative error e, is expressed as

If this quantity is multiplied by 100, the result is expressed in percentage. As an example, we
get an error of 0.3176% by assuming d, = 300m, d, = 300m, dp,,, = 1m, and r, = 15m.
Note that the error decreases when d,,, also decreases. However, the number of demand points
increases exponentially when d,,,, decreases, affecting the computational cost.

4.1.5 Network Lifetime

The network lifetime is defined as the number of time periods over which a WSN is useful. We
find several approaches to check this requirement in the literature, e.g. the time until all the
nodes are exhausted or the time until the first node dies [58]]. In this dissertation, we assume a
coverage threshold method. This way, the network lifetime is defined according to the time until
the information provided by the network is not enough, that is

tn =|{t >0€7:A(t) > com}l| 4.4

This criterion is better than others, because it fits most WSN applications.
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4.2 Problem Formulation

Let f1 be the AEC of the sensors over the network lifetime. That is expressed as

i 3 Bey(t)
t=1 \i€S,(t) ss(t)

fi= . ; 4.5

where f; € R and both Ee;(t) and ¢,, are given by Equations (4.2) and (4.4), respectively.
Let f5 be the ASA provided by the network, which is expressed as

=—, (4.6)

where f> € [0,1] and A(t) is given by Equation (4.3).

This way, we define the unconstrained outdoor RNPP as a bi-objective optimisation problem,
where given a previously-established traditional WSN, i.e. S5 sensors and a sink node, the
objective is to place 5,, RNs by assuming an ST network model to

min(f;) and max(fz),

subject to ~
Vre S, r=(zy):c0,d]adye0,d,).

These objectives are related to two important problems in the WSN literature: i) Energy
efficiency problem [59]], whose aim is to reduce the energy cost, increasing the network lifetime
and balancing the energy distribution. ii) Coverage problem [60], its purpose is to optimise the
amount and diversity of the information provided by the network.

It is well-known that one fundamental requirement for a problem to be considered as an
MOP is that the objectives should be conflicting [15]. Other authors checked that both energy
cost and coverage were conflicting objectives in WSNs [55] [61] [62]] [63] [64].

4.3 Description of the Dataset

We did not find any data set fitting the problem definition discussed in Section 4.2} or instead,
providing enough information for replicating the experiments from other authors. This situation
led us to define a new data set, with the purpose of providing a common framework for studying
the outdoor RNPP in future works. This data set is freely available in [65].

This data set is composed of four different scenarios of sizes 50x50m, 100x100m, 200x200m,
and 300x300m. A traditional WSN is deployed in each scenario, i.e. a set of sensors and a sink
node, considering the minimum number of sensors to cover the whole surface. Thus, if the area
of the surface is d, d, and a sensor covers a circumference of radius rg, then the lower bound
of the minimum number of sensors is given by

_ dy dy

T [ 772 W '
Thus, for each scenario, we deploy S5 sensors by assuming an SO GA, which optimises the
sensitivity area provided by the WSN according to Equation @I) and subject to all the sensors
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can be linked to the sink node via one or more hops. This means that the resulting traditional
WSN is fully functional without including RNs.

As stated before, this WSN model includes several parameters. We consider a = 2.00,
B = 1.00, cosp, = 0.70%, k = 128KB, s = 15.00m, iec = 5J, and amp = 1OOpJ/bit/m2, from
66] and [61]]. Two r. values are assumed to simulate sensors with different communication
capacities, 30m and 60m, respectively. Thus, we define two instances for each scenario by
following the notation d, x d,,_r.. Figures and [4.5] show detailed information of
these four scenarios according to three criteria:

e a) Main features: We show the instance name, the position of the sink node, the fitness
values f1 and f, without deploying any RN, the reference points for calculating the hy-
pervolume metric, which were obtained experimentally, and the test cases. Note that we
consider that a test case is the number or RNs, which we deploy in a traditional WSN as
a way to optimise it. Being as adding RNs increases the network cost, we do not include
more than 20% of these devices regarding the total number of sensors. Thus, we define
one test case for 50x50_30 and 50x50_60 instances, two for 100x100_30 and 100x100_-
60 instances, four for 200x200_30 and 200x200_60 instances, and four for 300x300_30
and 300x300_60 instances.

e b) Deployment details: We include a table with all the sensor coordinates and a plot,
showing the positions of all the devices in the scenario.

e c¢) Energy charge distribution: For each instance and without including any RN (5, =
0), we analyse the energy charge distribution at the end of the network lifetime, i.e. the
remaining energy charge for each sensor once the lifetime is ended. For all the cases,
we check that the energy distribution is really unbalanced: there are many sensors having
energy charge, while others are exhausted. This means that the active sensors cannot send
data to the sink node, because there is not any available path, resulting in a bottleneck
situation. Consequently, these instances are candidates to be optimised by deploying RNs.

4.4 Problem Example

We propose an illustrative example of this problem definition by adding a RN in one of the
previously discussed instances. In this case, we consider the instance 100x100_60. Before
adding the RN, we analyse in depth this WSN to identify possible improvements. Table [4.1]
shows fitness functions, sensitivity area, and energy charge of the sensors over simulation time.
Notice that when A(t) is lower than coy,, the network lifetime is ended. In this case, when ¢
equals 25. In Table .1 ~0.0000 means that the energy charge is near to zero, but enough for
transmitting this time. As stated before, its energy charge distribution is in Figure 4.3

Table [4.2] and Figure [4.6] show the same information mentioned above, but for the instance
100x100_60 including a RN in coordinate (20.00,20.00), i.e. test case 100x100_60(1). We
check that the network lifetime was increased and the energy cost of the sensors in the surround-
ing of the RN is lower than shown in Table .1} affecting the sensitivity area. Thus, sensors #1,
#9, and #12 have more energy charge at the end of the network lifetime. In Figure .6 R1
denotes the position of the RN and C is the position of the sink node.

55



4. Solving the RNPP: bi-objective Outdoor Approach

Instance name Sink node Fitness values (S, =0)  Reference points (f,f;)  Test cases (5;)
(dxxdy_rc)  (x-coordinate, y-coordinate) f; fa ideal nadir
50x50_30 (25.00,25.00) 0.035 91.75% (0.02,100.00)  (0.04,60.00) 1
50x50_60 (25.00,25.00) 0.035 91.75% (0.02,100.00)  (0.04,60.00) 1

(a) Main features.

(Ss) Sensor coordinates: sensorID , (x-coordinate, y-coordinate)

#1(834) | #2 (3738) | #3  (36,9) | #4 (14,12)
5 50X50 scenario (_) fnsgm,
40
o
— o
g/ 30
[}
ﬁ L]
£
2 20
3
?
> 10 o .
0 1
0 10 20 30 40 50
x-coordinate (m)
(b) Deployment details.
50x50_30 50x50_60

Energy consumed (%)
oBE3BS
BEERBISRKSES
Energy consumed (%)
oB&5388

o
=)

10

(c) Energy charge distribution.

Figure 4.2: Instace 50x50.
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4.4 Problem Example

Instance name Sink node Fitness values (S, = 0)  Reference points (f;,f2)  Test cases (§,)
(dxxdy_re)  (x-coordinate, y-coordinate) f1 fy ideal nadir
100x100_30 (50.00,50.00) 0.1091 89.24% (0.02,100.00)  (0.10,60.00) 2,3
100x100_60 (50.00,50.00) 0.1482 86.63% (0.02,100.00)  (0.10,60.00) 2,3

Energy consumed (%)

(a) Main features.

(Ss) Sensor coordinates: sensorID , (x-coordinate, y-coordinate)

#1 (17,10 | #5 (76,13) | #9  (1334) | #13  (85.87)
#2(63.66) | #6  (59.90) | #10 (13.88) | #14  (38.55)
#3 (8859) | #7 (6540) | #11 (40.30) | #15  (13,59)
#4(38.84) | #8 (89.35) | #12  (47.10)

. O sensor
100- 100X 100 scenario | » collector
o [0]
80 ©
= o
% 60
5 S
S a0
8 © ?
)
e} 0] ©
0 ‘
0 20 40 60 80 100
x-coordinate (m)
(b) Deployment details.
100x100 30 100x100_60
< .
= P
100 B 1w kY
0 g ® 3
@ Z @ 50
20 5 % e
20 S 2 %
0 Z o
5]
(=}
0 Qoo

x-m 40 a0
coordmate(m ) 0
(c) Energy charge distribution.

Figure 4.3: Instace 100x100.
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Instance name Sink node Fitness values (S, = 0)  Reference points (f;,f;)  Test cases (5;)
(dxxdy_rc)  (x-coordinate, y-coordinate) f1 fa ideal nadir
200x200_30 (100.00,100.00) 0.2791 87.10% (0.10,100.00)  (0.30,60.00) 2,4,6,9
200x200_60 (100.00,100.00) 0.3871 82.43% (0.10,100.00)  (0.30,60.00) 2,4,6,9

(a) Main features.

(Ss) Sensor coordinates: sensorID , (x-coordinate, y-coordinate)

#1 (87,14) | #11  (26,120) | #21  (135,80) | #31  (144,13) | #41 (139,164) | #51 (9,68)
#2  (185,187) | #12  (188,159) | #22 (161,118) | #32  (29,67) | #42 (121,59) | #52  (186,46)
#3 (161,92) | #13  (83,62) | #23  (69,86) | #33 (106,128) | #43  (117,101) | #53  (14,189)
#4  (158,143) | #14  (158,63) | #24  (80,134) | #34  (10,140) | #44 (136,112) | #54  (69,186)
#5 (61,13) | #15 (103,78) | #25  (55,64) | #35 (189,16) | #45 (125,188) | #55  (13,96)
#6 (62,112) | #16 (185,132) | #26  (41,94) | #36  (61,158) | #46  (35,153) | #56 (186,104)
#7  (165,167) | #17  (86,161) | #27  (89,104) | #37 (167,13) | #47  (70,39) | #57 (115,12)
#8 (100,38) | #18  (52,132) | #28 (111,162) | #38  (12,13) | #48  (185,75)

#9 (14,41) | #19 (155,189) | #29  (13,167) | #39  (157,39) | #49  (129,38)

#10  (131,139) | #20  (96,187) | #30 (41,182) | #40  (41,41) | #50  (37,14)

200- 200X 200 scenario @

BRBRINBR

o J; o o o o o
1601 %o o0 0 O o
= © ) © CL )
E 120 ©
[} [©] ° (o) °
2 o 5 = 9
S o
S 80 =
§ © o o
> w0l 0o o ° ©
o] e o o o o o ©
0 1
0 40 80 120 160 200
x-coordinate (m)
(b) Deployment details.
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< 70 <
T 1w i T 10
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g 60 25 2 0
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53 82
: » §
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=9 100 &‘“ (]
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5 50 0@\0 X-coo d'lm 5
T
20 s3,00 hate(m)

(c) Energy charge distribution.

Figure 4.4: Instace 200x200.
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Energy consumed (%)

Instance name Sink node Fitness values (S, = 0)  Reference points (f;,f2)  Test cases (§,)
(dxxdy_re)  (x-coordi y-coordinate) f1 fy ideal nadir
300x300_30 (150.00,150.00) 0.4225 76.44% (0.04,100.00)  (0.50,60.00) 6,12, 18,24
300x300_60 (150.00,150.00) 0.6295 81.22% (0.04,100.00)  (0.50,60.00) 6,12, 18,24
(a) Main features.
(Ss) Sensor coordinates: sensorID , (x-coordinate, y-coordinate)
#1 (131,223) | #23  (285,30) | #45 (197,247) | #67  (63,132) | #89 (39,93) #111  (39,226)
#2 (64,71) #24  (173,264) | #46  (169,12) | #68 (185,178) | #90 (119,11) | #112  (72,153)
#3 (37,255) | #25 (111,82) | #47 (195,286) | #69  (56,204) | #91 (226,55) | #113  (61,103)
#4 (126,57) | #26  (147.36) | #48 (266.262) | #70 (263,107) | #02  (121,243) | #114 (231.211)
#5 (254,288) | #27 (167,288) | #49  (86,113) | #71  (93,281) | #93 (278,171) | #115  (16,208)
#6 (13,234) | #28 (225,287) | #50 (90,12) #72  (218,157) | #94 (119,290) | #116 (13,87)
#7 (190,86) | #29 (149,247) | #51 (175,235) | #73 (121,138) | #95 (163,99) | #117 (285,226)
#3 (261,46) | #30 (102,224) | #52  (65,265) | #74  (179,39) | #96 (12,59) #118  (212,107)
#9  (147.15) | #31  (63.241) | #53 (240262) | #75 (74226) | #97  (68.42) | #119 (212.264)
#10 (13,10) #32  (286,58) | #54 (173,129) | #76 (230,182) | #98 (181,206) | #120 (202,132)
#11  (144,275) | #33  (278,12) | #55 (86,178) | #77  (85,200) | #99 (155,216) | #121  (38,122)
#12 64,14 #34  (219,81) | #56  (13,287) | #78 (14,32) #100 (225,238) | #122  (139,112)
#13  (208,35) | #35 (221,10) | #57 (160,185) | #79  (268,79) | #101  (290,95) | #123 (249,160)
#14  (193,14) | #36 (260,135) | #58 5,88 #80 (256,188) | #102 (40,40) #124  (236,33)
#15 (39,14) #37 (138,164) | #59  (93,134) | #81 (288,121) | #103 (286,150) | #125  (152,43)
#16 (117,264) | #38 (191,153) | #60  (13,110) | #82 (138,194) | #104 (112,201) | #126 (37,67)
#17 (186,110) | #39 (207,193) | #61  (124,34) | #83  (41,151) | #105 (251,13) | #127  (34,184)
#18  (138,83) | #40  (13,161) | #62 (112,108) | #84 (285,197) | #106  (69,290) | #128 (285,283)
#19  (115,174) | #41 (9,185) #63  (100,157) | #85  (246,75) | #107  (14,136)
#20 (253,236) | #42 (239,103) | #64 (41,285) | #86  (164,69) | #108  (58,176)
#21 (97,39) #43  (231,132) | #65 91,61) #87  (163,156) | #109  (91,250)
#22 (289,254) | #44  (12,261) | #66  (197,61) | #88 (260,212) | #110 (203,221)
. sensor
200- 300X 300 scenario
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(b) Deployment details.
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(c) Energy charge distribution.

Figure 4.5: Instace 300x300.
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Table 4.1: Example of the bi-objective outdoor RNPP based on instance 100x100_60 without assuming any RN.

Evolution of the energy charge of the sensors over time (J)

#1 #2 #3 #4 #5 #6 #7 #3 #9 #10 #11 #12 #13 #14 #15 i fa A(t) t
47180  4.9554 4.8401 4.8637 4.7856  4.8237 4.9659 4.8169 4.8296 47050 49476 4.8313 47280 4.9823 4.8480 0.1573 09194 09194 1
44361 49109 4.6802 4.7274 45711  4.6475 49318 4.6338 4.6592 4.4101 48951 4.6626 4.4560 4.9646 4.6959 0.1573 09194 09194 2
4.1541 48663 4.5203 4.5911 43567 44712 48978 44508 4.48838  4.1151  4.8427 4.4939  4.1840 4.9468 4.5439 0.1573 09194 09194 3
3.8722  4.8217 43604 4.4547 41423 42949 4.8637 4.2677 43184 38201 47903 43251 39120 49291 43918 0.1573 09194 09194 4
3.5902 47772 4.2005 4.3184  3.9278  4.1187 4.8296 4.0846 4.1480  3.5252  4.7379 4.1564  3.6400 49114 42398 0.1573 09194 09194 5
33082 47326 4.0406 4.1821  3.7134  3.9424 4.7955 39015 3.9776 3.2302 4.6854 3.9877 3.3680 4.8937 4.0877 0.1573 09194 09194 6
3.0263  4.6880 3.8806 4.0458 3.4990 3.7661 4.7614 3.7184 3.8072 29352  4.6330 3.8190 3.0960 4.8760 3.9357 0.1573 0.9194 09194 7
27443  4.6435 3.7207 3.9095 32845 3.5899 4.7274 3.5353 3.6369 2.6403  4.5806 3.6503 2.8240 4.8582 3.7837 0.1573 0.9194 09194 8
24623 45989 3.5608 3.7732 3.0701 3.4136 4.6933 3.3523 3.4665 2.3453  4.5281 3.4816 25520 4.8405 3.6316 0.1573 09194 09194 9
2.1804  4.5544 3.4009 3.6369  2.8557 3.2373 4.6592 3.1692 3.2961  2.0504 4.4757 33128 22800 4.8228 3.4796 0.1573 0.9194 09194 10
1.8984 45098 3.2410 3.5005 2.6412 3.0611 4.6251 29861 3.1257 1.7554  4.4233 3.1441 2.0080 4.8051 3.3275 0.1573 09194 09194 11
1.6165 4.4652 3.0811 33642 24268 2.8848 4.5911 28030 29553 1.4604 43709 29754 1.7360 4.7873 3.1755 0.1573 0.9194 09194 12
1.3345 44207 29212 32279 22124 27085 4.5570 2.6199 2.7849 1.1655 43184 2.8067 14640 4.7696 3.0234 0.1573 09194 09194 13
1.0525 43761 27613 3.0916 19979 25323 4.5229 24369 2.6145 0.8705 42660 2.6380 1.1920 4.7519 2.8714 0.1573 09194 09194 14
0.7706  4.3315 2.6014 29553 1.7835 23560 4.4888 2.2538 2.4441 05755 42136 24693 09200 4.7342 27193 0.1573 09194 09194 15
0.4886  4.2870 2.4415 2.8190 1.5691  2.1798 4.4547 2.0707 22737 0.2806 4.1611 23005 0.6480 4.7165 2.5673 0.1573 09194 09194 16
0.2066  4.2424 22816 2.6826  1.3546  2.0035 4.4207 1.8876 2.1033 ~0.0000 4.1087 2.1318 0.3760  4.6987 24153 0.1573 09194 09194 17

~0.0000 4.1978 2.1217 2.5463  1.1402  1.8272 43866 1.7045 1.9329 = 0.0000 4.0563 1.9631  0.1040 4.6810 2.2632 0.1567 09161 0.8595 18
0.0000  4.1533 19618 24100 0.9258 1.6510 4.3525 1.5215 1.7625 = 0.0000 4.0039 1.7944 ~0.0000 4.6633 2.1112 0.1557 0.9101 0.8021 19
0.0000  4.1087 1.8018 2.2737 0.7113 14747 43184 13384 1.5921 = 0.0000 3.9514 1.6257 = 0.0000 4.6456 1.9591 0.1542 0.9015 0.7386 20
0.0000 4.0641 1.6419 21374 04969 1.2984 42843 1.1553 14217 = 0.0000 3.8990 1.4570 = 0.0000 4.6279 1.8071 0.1528 0.8937 0.7386 21
0.0000 4.0196 1.4820 2.0011 0.2825 1.1222 4.2503 0.9722 1.2513 = 0.0000 3.8466 1.2883 = 0.0000 4.6101 1.6550 0.1516 0.8867 0.7386 22
0.0000 3.9750 1.3221 1.8648 0.0680 0.9459 4.2162 0.7891 1.0809 = 0.0000 3.7941 1.1195 0.0000 4.5924 1.5030 0.1505 0.8803 0.7386 23
0.0000  3.9305 1.1622 1.7284 ~0.0000 0.7696 4.1821 0.6060 0.9106 = 0.0000 3.7417 0.9508 ~ 0.0000 4.5747 1.3510 0.1495 0.8744 0.7386 24
0.0000  3.8859 1.0023 1.5921 = 0.0000 0.5934 4.1480 0.4230 0.7402 = 0.0000 3.6893 0.7821 = 0.0000  4.5570 1.1989 0.1482 0.8664 0.6745 25
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Table 4.2: Example of the bi-objective outdoor RNPP based on instance 100x100_60 by assuming a RN in coordinate (20.00,20.00).

Evolution of the energy charge of the sensors over time (J)

#1 #2 #3 #4 #5 #6 #1 #8 #9 #10 #11 #12 #13 #14 #15 f1 f2 A(t) t
49886 4.9554 48401 4.8637 4.7856 48237 49659 48169 49743 47050 49476 49131 47280 49823 4.8480 0.1241 91.94% 91.94% 1
49771 49109 4.6802 4.7274  4.5711 4.6475 49318 4.6338 49486 44101 48951 4.8261 44560 49646 4.6959 0.1241 91.94% 91.94% 2
49657 4.8663 4.5203 45911  4.3567 44712 4.8978 44508 49229 41151 4.8427 4.7392  4.1840 49468 4.5439 0.1241 91.94% 91.94% 3
49543 4.8217 43604 44547 4.1423 42949  4.8637 42677 4.8972 3.8201 4.7903 4.6523 39120 49291 4.3918 0.1241 91.94% 91.94% 4
49429 47772 4.2005 43184  3.9278 4.1187  4.8296 4.0846  4.8715 3.5252 47379 4.5654 3.6400 49114 42398 0.1241 91.94% 91.94% 5
49314 4.7326 4.0406 4.1821 3.7134 3.9424 47955 39015 4.8459 32302 4.6854 4.4784 33680 4.8937 4.0877 0.1241 91.94% 91.94% 6
49200 4.6880 3.8806 4.0458  3.4990 37661  4.7614 37184  4.8202 29352  4.6330 4.3915 3.0960 4.8760 3.9357 0.1241 91.94% 91.94% 7
49086 4.6435 3.7207 3.9095  3.2845 3.5899 47274 35353  4.7945  2.6403  4.5806 4.3046  2.8240 4.8582 3.7837 0.1241 91.94% 91.94% 8
4.8971 4.5989 3.5608 3.7732  3.0701 34136 4.6933 33523 4.7688 23453  4.5281 42177 25520 4.8405 3.6316 0.1241 91.94% 91.94% 9
4.8857 4.5544 3.4009 3.6369  2.8557 32373 4.6592  3.1692  4.7431  2.0504  4.4757 4.1307 22800 4.8228 34796 0.1241 91.94% 91.94% 10
4.8743 45098 3.2410 3.5005 @ 2.6412 3.0611  4.6251 29861 4.7174 1.7554 44233 4.0438 2.0080 4.8051 3.3275 0.1241 91.94% 91.94% 11
4.8628 4.4652 3.0811 3.3642  2.4268 2.8848 45911 28030 4.6917 1.4604 43709 3.9569 1.7360 4.7873 3.1755 0.1241 91.94% 91.94% 12
4.8514 44207 29212 32279 22124 27085  4.5570  2.6199  4.6660 1.1655 43184 3.8700 1.4640 47696 3.0234 0.1241 91.94% 91.94% 13
4.8400 4.3761 27613 3.0916  1.9979 25323  4.5229 24369 4.6403 08705 42660 3.7830 1.1920 47519 2.8714 0.1241 91.94% 91.94% 14
4.8286 4.3315 26014 29553  1.7835 23560 4.4888 22538 4.6146 05755 42136 3.6961 09200 4.7342 2.7193 0.1241 91.94% 91.94% 15
48171 4.2870 2.4415 2.8190  1.5691 2.1798  4.4547  2.0707 45800 02806 4.1611 3.6092  0.6480 4.7165 2.5673 0.1241 91.94% 91.94% 16
4.8057 42424 22816 2.6826  1.3546 2.0035  4.4207 1.8876  4.5633 ~0.0000 4.1087 3.5222 0.3760 4.6987 24153 0.1241 91.94% 91.94% 17
47943 41978 2.1217 2.5463  1.1402 1.8272 43866  1.7045 45376 ~ 0.0000 4.0563 34353 0.1040 4.6810 2.2632 0.1234 91.61% 8595% 18
47828 4.1533 19618 24100  0.9258 1.6510 43525  1.5215  4.5119  0.0000 4.0039 3.3484 ~0.0000 4.6633 2.1112 0.1228 91.31% 85.95% 19
47714 4.1087 1.8018 22737  0.7113 1.4747 43184 13384 44862 0.0000 3.9514 3.2615 0.0000 4.6456 1.9591 0.1217 90.72%  79.60% 20
47600 4.0641 1.6419 2.1374  0.4969 1.2984 42843  1.1553  4.4605 0.0000 3.8990 3.1745 0.0000 4.6279 1.8071 0.1206 90.19% 79.60% 21
47486 4.0196 1.4820 2.0011  0.2825 1.1222 42503 0.9722  4.4348 0.0000 3.8466 3.0876  0.0000 4.6101 1.6550 0.1197 89.71% 79.60% 22
47371 39750 1.3221 1.8648  0.0680 0.9459 42162 0.7891  4.4091  0.0000 3.7941 3.0007  0.0000 4.5924 1.5030 0.1188 89.27% 79.60% 23
47257 39305 1.1622 1.7284 ~0.0000 0.7696  4.1821  0.6060  4.3834 ~ 0.0000  3.7417 29138 = 0.0000 4.5747 13510 0.1180 88.87% 79.60% 24
47143 3.8859 1.0023 1.5921 = 0.0000 0.5934  4.1480  0.4230 43577  0.0000 3.6893 2.8268  0.0000 4.5570 1.1989 0.1169 88.24% 73.19% 25
47028 3.8413 0.8424 1.4558 = 0.0000 0.4171  4.1140 02399 43321  0.0000 3.6369 2.7399  0.0000 4.5393 1.0469 0.1158 87.66% 73.19% 26
4.6914 3.7968 0.6825 1.3195  0.0000 0.2408  4.0799 0.0568  4.3064  0.0000 3.5844 2.6530  0.0000 4.5215 0.8948 0.1149 87.13% 73.19% 27
4.6800 3.7522 0.5226 1.1832 ~ 0.0000 0.0646  4.0458 ~0.0000 4.2807 =~ 0.0000 3.5320 2.5660 ~ 0.0000 45038 0.7428 0.1140 86.63% 73.19% 28
4.6685 3.7076 0.3627 1.0469 =~ 0.0000 ~0.0000 4.0117 = 0.0000 4.2550 = 0.0000 3.4796 2.4791 = 0.0000 4.4861 0.5907 0.1129 85.99% 68.13% 29

sdwexy u[qoid p'p



4. Solving the RNPP: bi-objective Outdoor Approach

100x100_60(1)

Energy consumed (%)
oRB&E388
B854338S8

Figure 4.6: Energy charge distribution of instance 100x100_60(1) by assuming a RN in coordinate
(20.00,20.00).
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(a) Formal definition. (b) Example.
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Figure 4.7: Chromosome Statement.

4.5 Chromosome Definition

We consider a same chromosome structure for all the metaheuristics. As stated before, a chro-
mosome is a possible solution to the optimisation problem and the objective of the RNPP defined
in Section[d.2]is to place 5, RNs. This way, as Figure[#.7a]shows, we assume that a chromosome
is composed of s, genes, where a gene is a bi-dimensional coordinate of a RN. We include an
example of this encoding in Figure [#.7b|by assuming s,. = 3, d, = 100, and d,, = 100m.

4.6 Considerations for Implementing the Metaheuristics

In this section, we discuss some specific details assumed for implementing the metaheuristics
according to this problem definition. Before this, we include an important common aspects to
all the metaheuristics: the generation of random individuals.

e Random individuals:
The generation of random individuals is detailed in Algorithm @ where random(a,b)
a,b € R is a function providing random numbers in the interval [a,b]. evaluateSolution(()
calculates the fitness functions of ¢ according to the problem definition. Note that ([i].x
and ([i].y are the x-coordinate and y-coordinate of the i-th gene (RN) of ¢, respectively.
This procedure is considered for generating the initial population of all the metaheuristics.

Non-dominated Sorting Genetic Algorithm II
Next, we discuss the crossover and mutation strategies considered in NSGA-II:

e Crossover operator: () < crossover(¢, (', param_croy), line 20 of Algorithm
We consider the standard one-point crossover described in Section[2.1.3] taking two
input individuals (¢ and ¢’) and giving a new one (1) based on them. This operator
depends on the crossover probability (param_cro,,), determining if the crossover is
performed, or otherwise, the best individual of the incoming pair is returned.
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4.6 Considerations for Implementing the Metaheuristics

Algorithm 10 Generation of random individuals.

SN

: fort =1to s, do
¢[#].z <+ random(0, d.,)
¢[i].y < random(0, dy)
end for
: ¢ < evaluateSolution(¢)
return ¢

Algorithm 11 Mutation operator for NSGA-II.

1: ¢+ ¢ > Backup of the initial individual
2: fori =0 — 5. do > Modify coordinates for each RN
3 if random(0, 1) < param_mut,, then

4 ¢[i].z + random(0, d;)

5: ¢[i].y + random(0, dy)

6: ¢ < evaluateSolution(¢)

7 if ¢’ > ¢ then

8: ¢+ (¢ > Restore backup
9: else
10: ¢ > Accept changes
11: end if
12: end if
13: end for
14: return ¢

e Mutation operator: (1 < mutation(¢, param_mut,) in line 21 of Algorithm I}

This operator generates a new individual (1) by performing random changes in the
input chromosome ((), attending to the mutation probability (param_mut,). In
this approach, param_mut,, is the probability that each gene of the chromosome
is mutated. As detailed in Algorithm [TT] we follow a greedy strategy, where each
time a gene is mutated, the individual is evaluated, and then, only if the mutated
individual is not dominated by the previous one, the change is accepted. Otherwise,
the gene takes the previous value.

Strength Pareto Evolutionary Algorithm 2

We consider the same crossover and mutation operators described for NSGA-II.

Multiobjective Variable Neighbour Search algorithm

Next, we discuss the generation of the neighbourhood structures, the generation of neigh-
bourhood solutions, and the perturbation mechanism:

e Neighbourhood structures: (NS, < generateNeighborhoodStructures (param_-

neigh,, param_ns,), line 3 of Algorithm@

We assume that a neighbourhood structure is the maximum displacement, that the
RNs of a solution could experience during the local search, regarding the initial
position. Thus, the set of neighbourhood structures V.S, is given by

min(dy, dy) i }

param_ns, param_neigh,

NS, = {nsfj eR: nsf) = .7
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4. Solving the RNPP: bi-objective Outdoor Approach

fori =1,2,...,param_neigh,, where ns! < nsi*1, param_neigh, is the num-
ber of neighbourhood structures, i.e. the cardinal of NS, min(d,, dy) is the min-
imum value between d, and dy, and param_ns, is a factor delimiting the displace-
ment. Accordingly, if ¢ equals param_neigh, and param_ns, equals j, j € N, the
maximum displacement is min(dy, d,) divided by j.

e Neighbourhood solutions: ({ < generateNeighborhoodSolution({, ns’), line 10

of Algorithm[3)
A new solution ( is generated in the neighbourhood of (, according to the neigh-
bourhood structure nsi, € NS,, i € 1,2,...,param_neigh,, by assuming the

expression given by

%

(j)-x = ¢z + (n;” — random(O,nsf})) ;o Vjel,2,...,param_neigh,.

Note that this expression is for the x-coordinate. For the y-coordinate it is similar.

o Perturbation mechanism: (P, < performPerturbation(Fy, paramyer,), line 25
of Algorithm [3)
The perturbation is performed by applying the previously discussed mutation oper-
ator to each individual in P, resulting in a new Py . In this case, the mutation
probability is param_per,,.

Multiobjective Artificial Bee Colony
We describe the generation of employed, onlooker, and scout solutions:

o Employed forager solutions: ({ < generateEmployedForagerSolution({), line 7
of Algorithm [4)
It generates a new solution ( in the surrounding of a given employed forager ¢ € Se,
by following the expression given by

Cli].x = Cli].x + random(—1,1)(C[i].x — {'[il.x); Vi€ 1,2,...,35,,
where ¢’ € Se, is a randomly selected solution. Note that this expression is for the

x-coordinate. For the y-coordinate it is similar.

e Onlooker solutions: (77 <— generateOnlookerSolution(7, ¢), line 17 of Algorithm[4)
The onlooker bee € So, generates a new solution 77 based on the employed forager
¢ € Seg41, according to the expression given by

7li].x = nlil.x + random(—1,1)(nli].x — ([i].x); Vi€ 1,2,...,5..

Note that this expression is for the x-coordinate. For the y-coordinate it is similar.
e Scout solutions: (( <+ generateScoutSolution(), line 22 of Algorithm@)

A employed solution ¢ € Segy1 is randomly selected from the first two Pareto fronts
of Segy41, according to rank measure. Next, we get the Euclidean distance between
¢ and all other solutions in Sey1 U Sog41 — {(}. Finally, the k-nearest solutions
to ¢ are combined to generate a new one, which replaces the exhausted one, where
k is a random number in the interval [2,11]. That is

Z beeli].x

Z[i].x:%; Vic1,2...,5, (4.8)
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where K S is the set of k-nearest solutions to (. Note that this expression is for the
x-coordinate. For the y-coordinate it is similar.

Multiobjective Firefly Algorithm
The original algorithm describes how the solutions are generated. Consequently, we do
not need to discuss this aspect. Next, we describe the stagnation control:

e Stagnation control: (P,; < stagnationControl(Py1,P,,Q4.param_how_scy,
param_when_scy), line 20 of Algorithm
In case that the percentage of non-dominated solutions in ()4, regarding P, is lower
than param_when_scy € [0,1], then we apply the mutation operator discussed
before for NSGA-II, attending to param_how_scy, to individuals in Py .

Multiobjective Gravitational Search Algorithm

The original algorithm describes how the solutions are generated. Consequently, we do
not need to discuss this aspect. The stagnation control (line 16 of Algorithm [6) is the
same as described before for MO-FA. The definition of both ¢(g) and kbest(g) decreasing
functions were inspired by the original proposal of the authors of GSA. We assume that
param_kbestInitialgs, i psgsq and param_kbest Fiinal s, is 1. We consider that ¢(g)
is given by

c(g) = 100e™" 4.9)

for 50x50 and 100x100 instances and
c(g) = 100e~27" (4.10)

for larger displacements, i.e. 200x200 and 300x300 instances, where h € [0, 7]. Thus,
param_cInitial 4, is the value obtained by considering Equations or with h
equalling 0. param_cFinalys, is the value obtained by considering Equations or
(4.10) with h equalling 7.

Multiobjective Evolutionary Algorithm based on Decomposition
The generation of new solutions (line 9 of Algorithm[J) considers the same crossover and
mutation operators as described before for NSGA-II. We consider that the extreme points
of the CHIM correspond to the reference points defined for calculating the hypervolume
metric in Section

4.7 Solving the Problem

In this section, we discuss the results obtained by solving the bi-objective outdoor RNPP through
a wide range of MO metaheuristics, assuming hypervolume, set coverage, and attainment sur-
face as MO tools. To this end, we consider the data set described in Section [4.3] and several
stop conditions based on the number of evaluations, i.e. 50 000, 100 000, 200 000, 300 000,
and 400 000. The purpose is to determine which of them provide better significant performance,
according to several criteria and not only to one, while convergence speed is analysed.

This section is structured as follows. Firstly, we adjust the algorithms in Section We
provide a statistical analysis based on the hypervolume metric in Sectiond.7.2] A convergence
study based on this same metric is discussed in Section[4.7.3] Another analysis based on the set
coverage metric is provided in Section .7.4] Pareto fronts and attainment surfaces are shown in
Section We study the impact of the optimisation on the fitness functions in Section
Finally, comparisons to other approaches are discussed in Section[d.7.7]
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Table 4.3: Parametric sweep.

NSGA-II
Parameter Selected Range
PSn 100 -
param_cro, 0.50 [0.05,0.1,0.15,...,0.95]
param_mut, 0.50 [0.05,0.1,0.15,..., 0.95]
MO-FA
Parameter Selected Range
SPEA2 ps; 100 N
Parameter Selected Range r ff 0.50 [0.05,0.1,0.15....,0.95]
— 100 Bo, 0.75 [0.05,0.1,0.15.,...,0.95]
5%5 100 B V¢ 0.05 [0.05,0.1,0.15....,0.95]
s param_how_scy 0.60 [0.05,0.1,0.15,...,0.95]
gg:zm:;:zzb ggg %882:8}:8};: :882% param_when_scy 0.30 [0.05,0.1,0.15,...,0.95]
MO-VNS MO-GSA
Parameter Selected Range Parameter Selected Range
D i DSgsa 100 -
gg;g;;;—;;gt{/’ e ] [4[’15 Sai '5']4] param_how_scys 040  [0.05,0.1,0.15,...,0.95]
- o param_when_scgsq 0.05 [0.05,0.1,0.15....,0.95]
- *
P t S lM:)dVNS R MOEA/D
arame er. . ¢ ii ¢ s 6ange14] Parameter Selected Range
Daram s 3 [12345] param CHIMine, — 130 [1.00,1.05,....,2.00]
e T X 015, param_crow,y, .015 [0.010,0.015....,0.050]
param_per, 0.10 [0.05,0.1,0.15,...,0.95] Daram neigho, 0.55 0.05.0.10.. 0.95]
PATam_cropy, 0.15 [0.05,0.10,...,0.95]
param_mut,, 0.25 [0.05,0.10....,0.95]
MO-ABC
Parameter Selected Range
DSa 100 -
param_Se, 0.50 [0.30,0.35,0.40,...,0.70]
param_limit, 30 [10,15,20....,60]

4.7.1 Parametric Swap

As stated before, the first step before executing the algorithms is to adjust their parameters. To
this end, we consider the methodology discussed in Section 2.3.2 by assuming all the test cases,
areduced stop condition of 50 000 evaluations, and the hypervolume indicator as quality metric.
The resulting configurations are in Table showing for each parameter the range of values
studied and the resulting value selected. Note that population size parameters were not studied,
such as ps,,, instead we consider a widely accepted value of 100 individuals. In the next chapter,
we will incorporate this aspect to the research.

Observing this table, we notice that we obtained mutation parameters close to 0.5, instead of
expected values close to 0.0. E.g. param_mut,, and param_mut, equal 0.5, This is because
we consider a greedy strategy as discussed in Section allowing to assume such level of
mutation without penalising its behaviour. Otherwise, the level of novelty in the chromosome
would be inadequate for generating good solutions.

4.7.2 Statistical Analysis Based on the Hypervolume Metric

Tables and shows median hypervolume (Hyp) and InterQuartile Range (/QR)
for each metaheuristic, test case, and stop condition, where higher hypervolumes are shaded.

These median hypervolumes were obtained by running 31 independent runs for each metaheur-
istic and test case. Note that one run provides results for the five stop conditions. Analysing
these tables according to the shaded cells, some algorithms seem to provide better results than
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others. However, these differences could not be significant, and then, we should check this by
following the statistical methodology discussed in Section 2.3.1.

With this purpose, we study if hypervolume distributions come from a normal distribution
through Kolmogorov-Smirnov-Lilliefor’s [[67] and Shapiro-Wilk’s [68] tests, considering the
hypothesis: Hj if data follow a normal distribution and H; otherwise. P-values lower than 0.05
were obtained for all the cases. Hence, we cannot assume ;. Consequently, we cannot assume
that hypervolume distributions follow a normal distribution, and then, we should assume median
and IQR as average value and statistical dispersion metric, respectively. Note that Tables [4.4]
[4.5] [.6] and[d.7) were developed after performing this study.

Next, we analyse if there are significant differences among the algorithms. To this end, as
samples are independent and data do not follow a normal distribution, we assume the Wilcoxon-
Mann-Whitney’s [69] test with hypothesis: Hy if Hyp;, <= ij, withe = 1,2,...,8,j =
2,3,...,8,1 < 7, I=NSGA-II, 2=SPEA2, 3=MO-VNS, 4=MO-VNS*#, 5=MO-ABC, 6=MOFA,
7=MO-GSA, and 8=MOEA/D. MO-VNS is the algorithm without perturbation mechanism and
MO-VNS* includes this procedure. The p-values obtained are in Section [B.1] of Appendix [B]
specifically in Tables and These p-values were analysed by
assuming a widely accepted significance level of 0.05. Thus, if we compare any two algorithms
1 and j, we could reach three different situations for a given study case (a test case and a stop
condition):

e The p-value is lower than 0.05: 7 is significant better than j.
e The p-value is higher than 0.95: j is significant better than :.
e The p-value is between 0.05 and 0.95: there are not significant differences between both.

Based on these p-values, Table [4.8] shows which algorithms provide the best significant per-
formance for each study case. Note that it is possible that more than one algorithm provides the
best significant performance, i.e. they are better than the remaining algorithms, but there is not
significant differences among them. In such a case, more than one algorithm appears in a same
cell of this table, e.g. MO-FA and MO-VNS for 100x100_30(2) and 100 000 evaluations.

In addition to study which algorithms provide a significant better performance for a given
study case as before. It is also interesting to compare all the algorithms two by two, with the
purpose of determining which metaheuristics provide the best average behaviour. Thus, Table
[4.9] shows the percentage of study cases in which the metaheuristics are better and worse than
others, considering all the instances, 50x50 instances, 100x100 instances, 200x200 instances,
and 300x300 instances. In this table, better average values in Percentage field are shaded from
darker to lighter tone, i.e. from better to worse average behaviour.

Analysing this table, we reach that MO-FA provides the best average behaviour for all the
instances, followed by MO-ABC, MO-VNS#*, and MO-VNS. For 50x50 instances, we find that
MO-ABC, MO-FA, MO-GSA, and MOEA/D provides a similar behaviour, followed by MO-
VNS and MO-VNS*. For 100x100 instances, MO-VNS provides the best behaviour, followed
by MO-FA and MO-ABC. In case of 200x200 instances, MO-FA is the best algorithm, followed
by MO-VNS* and MO-VNS. For 300x300 instances, MO-FA provides the best behaviour, fol-
lowed by MO-ABC and MO-VNS*.

Based on this analysis, we can conclude that MO-FA is the best algorithm in average term.
However, and according to the instance size, we recommend to consider MO-FA for solving this
problem in large instances (200x200 and 300x300) and MO-VNS for small instances (50x50
and 100x100). Note that the behaviour of MO-VNS and MO-VNS* is really different and de-
serves special mention. MO-VNS provides a good behaviour for solving small instances, while
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Table 4.4: Median hypervolume metric for each test case and stop condition, where higher hiper-
volumes obtained are shaded by considering all the metaheuristics. Part 1 of 4.

NSGA-II(Hyp %, IQR)
Evaluations (Stop condition)

Instance(s,) 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 64.61% ,0.0000 64.61% ,0.0000 64.61% ,0.0000 64.61% ,0.0000 64.61% ,0.0000
50x50_60(1) 64.61% ,0.0000 64.61% ,0.0000 64.61% ,0.0000 64.61% ,0.0000 64.61% ,0.0000

100x100_30(2)  42.40% ,0.0041 42.45% ,0.0038 42.67% ,0.0002 42.69% , 0.0003  42.69% , 0.0002
100x100_30(3) 55.02% , 0.0067 55.37% ,0.0045 55.53% ,0.0035 55.55% ,0.0031 55.66% , 0.0005

100x100_60(2)  31.60% ,0.0030 31.80%,0.0023 31.82%,0.0022 31.86% , 0.0020 31.94% , 0.0001
100x100_60(3)  58.97% ,0.0053  59.25% ,0.0048 59.69% , 0.0030 59.73% ,0.0038  59.91% , 0.0024

200x200_30(2)  34.39%,0.0302 35.39%,0.0213  36.33%,0.0221  37.06% , 0.0102  37.54% , 0.0080
200x200_30(4)  43.41% ,0.0704 44.46% ,0.0660 46.45% ,0.0912 47.22% ,0.1052 47.48% , 0.1085
200x200_30(6)  53.70% ,0.1648  58.70% ,0.0988 64.61% ,0.0155 65.01% ,0.0154 65.26% , 0.0164
200x200_30(9)  73.47% ,0.0227 76.04% ,0.0197 77.56% ,0.0154 78.14% ,0.0176  78.47% , 0.0155

200x200_60(2)  22.40% ,0.0073 22.92% ,0.0060 23.32% ,0.0049 23.57% ,0.0034 23.68% , 0.0042
200x200_60(4) 56.14% ,0.0113  57.63% , 0.0095 58.94% ,0.0085 59.38% ,0.0077 59.65% , 0.0060
200x200_60(6)  71.79% ,0.0145  73.96% ,0.0123  75.33% ,0.0127 75.93% ,0.0159 76.37% , 0.0141
200x200_60(9)  85.98%,0.0179 88.38% ,0.0137 90.05% ,0.0115 90.51%,0.0122  90.94% , 0.0115

300x300_30(6)  38.22%,0.0182 39.41% ,0.0136 40.31%,0.0121 40.77% ,0.0153 41.11% , 0.0179
300x300_30(12) 44.36% ,0.0232  46.27% ,0.0195 47.65% ,0.0155 48.11%,0.0191 48.51% ,0.0175
300x300_30(18) 47.01% ,0.0353  50.02% ,0.0290 52.34% ,0.0255 53.17% ,0.0203 53.90% , 0.0229
300x300_30(24) 48.00% , 0.0323  52.75% ,0.0374 56.67% ,0.0653 58.86% ,0.0770  59.99% , 0.0792

300x300_60(6)  33.77% ,0.0151 35.35%,0.0130 36.34%,0.0098 36.87% ,0.0131 37.22% ,0.0111
300x300_60(12) 53.14% ,0.0176  55.24% ,0.0118 57.09% ,0.0114 57.80% ,0.0115 58.31% , 0.0090
300x300_60(18) 61.23% ,0.0109 63.32%,0.0113  65.13%,0.0105 66.12% , 0.0101  66.67% , 0.0100
300x300_60(24) 65.21% ,0.0094 66.96% ,0.0064 68.71% ,0.0128 70.03% , 0.0104  70.85% , 0.0092

SPEA2(Hyp %, IQR)
Evaluations (Stop condition)

Instance(s,) 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 64.61% ,0.0000 64.61% ,0.0000 64.61% ,0.0000 64.61% ,0.0000 64.61% ,0.0000
50x50_60(1) 64.61% ,0.0000 64.61% ,0.0000 64.61% ,0.0000 64.61% ,0.0000 64.61% , 0.0000

100x100_30(2) 42.11% ,0.0055 42.45% ,0.0034 42.66% ,0.0002 42.66% , 0.0002  42.66% , 0.0001
100x100_30(3)  53.71% ,0.0117  53.78% ,0.0096  53.94% ,0.0105 54.24% ,0.0090 53.93% , 0.0094

100x100_60(2)  31.27%,0.0039  31.57%,0.0028 31.75% ,0.0026  31.78% ,0.0021  31.87% , 0.0009
100x100_60(3)  57.96% ,0.0101 58.63% ,0.0081 58.97% ,0.0121 58.84% ,0.0128 59.30% , 0.0069

200x200_30(2)  34.08% ,0.0221 34.35%,0.0228 34.72% ,0.0195 34.85%,0.0143 34.99% , 0.0144
200x200_30(4)  44.14% ,0.0608 44.71% ,0.0586 45.31% ,0.0581 45.49% ,0.0631 45.63% , 0.0580
200x200_30(6)  58.30%,0.0285 61.29%,0.0208 62.99% ,0.0254  63.34% , 0.0254  63.60% , 0.0256
200x200_30(9)  70.75% ,0.0140 74.49% ,0.0154 75.63% ,0.0179 75.97% ,0.0141 76.35% , 0.0148

200x200_60(2) 22.91% ,0.0047  23.29% ,0.0062  23.62% ,0.0048  23.76% ,0.0037 23.85% , 0.0030
200x200_60(4)  57.43% ,0.0108 58.57% ,0.0081 59.30% ,0.0066 59.74% ,0.0082 59.88% , 0.0061
200x200_60(6)  71.38% ,0.0086 72.69% ,0.0087 73.67% ,0.0094 74.13% ,0.0140 74.35% , 0.0166
200x200_60(9)  84.30% ,0.0076  86.50% ,0.0049 88.28% ,0.0171 89.27% ,0.0167 89.71% , 0.0122

300x300_30(6)  39.13%,0.0176  40.15% ,0.0157 40.89% ,0.0201 41.12%,0.0215 41.21% , 0.0205
300x300_30(12) 45.56% ,0.0278 47.03% ,0.0170 47.99% ,0.0149 48.39% ,0.0120 48.63% ,0.0113
300x300_30(18) 48.81% ,0.0184 50.81% ,0.0092 52.18% ,0.0087 52.99% ,0.0130 53.68% , 0.0167
300x300_30(24) 52.39% ,0.0492  56.93% ,0.0655 59.44% ,0.0639 60.34% , 0.0619 60.86% , 0.0657

300x300_60(6)  35.40% ,0.0117 36.42% ,0.0138 37.11%,0.0122 37.35%,0.0131  37.56% , 0.0127
300x300_60(12) 55.55% ,0.0122  56.98% ,0.0063 57.95% ,0.0065 58.40% ,0.0041 58.56% , 0.0039
300x300_60(18) 63.20% , 0.0076  64.50% , 0.0075 65.79% , 0.0083  66.57% , 0.0088  67.02% , 0.0080
300x300_60(24) 66.83% ,0.0081 68.14% ,0.0077 69.78% ,0.0062 70.73% , 0.0048 71.30% , 0.0051
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4.7 Solving the Problem

Table 4.5: Median hypervolume metric for each test case and stop condition, where higher hiper-
volumes obtained are shaded by considering all the metaheuristics. Part 2 of 4.

MO-VNS without perturbation(Hyp %, IQR)
Evaluations (Stop condition)

Instance(s;) 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 63.08% ,0.1408  67.03% , 0.0000 67.03% ,0.0000 67.03% ,0.0000 67.03% , 0.0000
50x50_60(1) 67.03% ,0.0000 67.03% ,0.0000 67.03% ,0.0000 67.03% ,0.0000 67.03% , 0.0000

100x100_30(2)  43.62% ,0.0188 44.67% , 0.0003 = 44.69% , 0.0000 44.69% , 0.0000 44.69% ., 0.0000
100x100_30(3) 58.33% ,0.0023  58.65% ,0.0038 58.85% ,0.0067 59.09% , 0.0077 = 59.24% , 0.0077

100x100_60(2)  34.55%,0.0005 34.58% ,0.0005 34.60% , 0.0006 34.61% ,0.0002 34.63% , 0.0000
100x100_60(3) 61.41% ,0.0169  62.05% ,0.0029 62.17% ,0.0021 62.25% ,0.0016  62.33% , 0.0005

200x200_30(2)  37.63%,0.0613 | 38.82% ,0.0284 39.93%,0.0173  40.75% , 0.0048 ' 41.07% , 0.0022
200x200_30(4)  51.99%,0.0430 53.29% ,0.0274 54.31% ,0.0176  54.74% ,0.0196 54.96% , 0.0202
200x200_30(6)  64.36% ,0.0332 65.47% ,0.0342 66.31% ,0.0378 66.63% ,0.0293  66.87% , 0.0266
200x200_30(9) 74.57% ,0.0414  75.84% ,0.0344  77.12% ,0.0290 77.75% ,0.0229  78.28% , 0.0260

200x200_60(2)  24.43% ,0.0068 24.55% ,0.0067 24.65% ,0.0069 24.68% ,0.0049 24.72% , 0.0048
200x200_60(4) 61.28% ,0.0114  61.68% ,0.0061 61.95% ,0.0074 62.17% ,0.0055 62.29% , 0.0067
200x200_60(6)  75.95% ,0.0126  76.75% ,0.0118  77.22% ,0.0166 77.61% ,0.0175 77.86% , 0.0148
200x200_60(9)  89.42%,0.0106 90.21% ,0.0047 91.02% ,0.0089 91.39% ,0.0062 91.59% , 0.0081

300x300_30(6)  39.85%,0.0155 40.57% ,0.0202 41.22% ,0.0158 41.67% ,0.0224 41.89% , 0.0250
300x300_30(12) 45.28% ,0.0174 46.39% ,0.0147 47.45% ,0.0127 47.97% ,0.0147 48.33% , 0.0146
300x300_30(18) 48.49% ,0.0138  49.51% ,0.0081 50.47% ,0.0092 51.04% ,0.0134 51.59% , 0.0090
300x300_30(24) 50.54% ,0.0105 51.88% ,0.0128 52.92% ,0.0179 53.75% ,0.0172 54.28% , 0.0167

300x300_60(6)  35.79% ,0.0237 36.39% ,0.0176  37.26% ,0.0182 37.69% ,0.0187 38.11% ,0.0172
300x300_60(12) 53.68% , 0.0235 54.99% ,0.0148 55.95% ,0.0162 56.51% ,0.0154 56.86% , 0.0147
300x300_60(18) 61.69% ,0.0162  62.75% ,0.0139  63.79% ,0.0175 64.26% ,0.0161 64.57% ,0.0177
300x300_60(24) 66.52% ,0.0109 67.44% ,0.0100 68.28% ,0.0093 68.69% , 0.0088 68.95% , 0.0092

MO-VNS with perturbation(Hyp %, IQR)
Evaluations (Stop condition)

Instance(s;) 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 66.79% ,0.0026  66.84% ,0.0020 66.88% ,0.0019  66.94% ,0.0021  66.98% , 0.0019
50x50_60(1) 66.57% ,0.0060 66.79% , 0.0040  66.92% , 0.0020 66.96% , 0.0020  67.00% , 0.0011

100x100_30(2)  41.90% ,0.0489 42.73% ,0.0410 43.49% ,0.0376 | 44.69% ,0.0000 44.69% , 0.0000
100x100_30(3)  58.17% ,0.0063  58.48% ,0.0006 58.53% ,0.0018 58.52% ,0.0022  58.57% , 0.0025

100x100_60(2)  34.46% ,0.0017 34.56% , 0.0001  34.56% ,0.0001 34.58% ,0.0005 34.59% , 0.0005
100x100_60(3)  60.74% ,0.0286 61.29% , 0.0214 61.62% ,0.0168 62.20% , 0.0021  62.32% , 0.0011

200x200_30(2)  35.44%,0.0544 37.35% ,0.0742 38.35% ,0.0763 38.66% ,0.0608 39.03% , 0.0375
200x200_30(4)  48.64% ,0.0944 50.13% ,0.0720 51.56% ,0.0654 52.88% ,0.0354 53.71% , 0.0252
200x200_30(6)  66.48% ,0.0258  67.06% ,0.0231 67.47% ,0.0226  67.70% ,0.0176  67.80% , 0.0181
200x200_30(9)  77.99% ,0.0259 78.97% ,0.0225 79.63% ,0.0177 80.06% ,0.0185 80.31% , 0.0161

200x200_60(2) 23.43% ,0.0195 24.26% ,0.0094 24.51% ,0.0088 24.59% ,0.0063 24.66% , 0.0061
200x200_60(4) ' 61.83%,0.0061 61.95% ,0.0071 62.16% ,0.0072 62.27% ,0.0071 62.39% , 0.0067
200x200_60(6) = 76.83% ,0.0093 77.42% ,0.0089 77.84% ,0.0117 78.06% ,0.0103 78.30% , 0.0064
200x200_60(9)  89.74% ,0.0113  90.46% ,0.0111  91.08% ,0.0130 91.37%,0.0127 91.43% , 0.0132

300x300_30(6) |« 41.09% ,0.0225 41.66% ,0.0289 42.18% ,0.0308 42.42% ,0.0276  42.56% , 0.0286
300x300_30(12) 47.31% ,0.0114  47.95% ,0.0083 48.50% ,0.0051 48.77% ,0.0064 48.87% , 0.0052
300x300_30(18) 51.31%,0.0124  52.08% ,0.0166 52.78% ,0.0134 53.28% ,0.0136 53.51% , 0.0165
300x300_30(24) 55.94% ,0.0251 57.58% ,0.0297 58.86% ,0.0173 59.26% ,0.0152  59.64% , 0.0160

300x300_60(6)  37.45% ,0.0119 37.89% ,0.0113 38.31%,0.0129 38.57% ,0.0131 38.73%, 0.0146
300x300_60(12) 56.61% ,0.0119 57.35%,0.0052 57.87% ,0.0105 58.18% ,0.0075 58.32% , 0.0061
300x300_60(18) 63.11% ,0.0079  63.67% , 0.0078 64.08% ,0.0080 64.34% , 0.0060 64.48% , 0.0045
300x300_60(24) 67.86% ,0.0099 68.47% ,0.0118 69.00% ,0.0130 69.25% , 0.0099  69.46% , 0.0069
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4. Solving the RNPP: bi-objective Outdoor Approach

Table 4.6: Median hypervolume metric for each test case and stop condition, where higher hiper-
volumes obtained are shaded by considering all the metaheuristics. Part 3 of 4.

MO-ABC(Hyp %, IQR)
Evaluations (Stop condition)
Instance(s,) 50 000 100 000 200 000 300 000 400 000

50x50_30(1) 67.07% ,0.0000 67.07% ,0.0000 67.07% , 0.0000 67.07% , 0.0000 67.07% , 0.0000
50x50_60(1) 67.07% , 0.0000 67.07% ,0.0000 67.07% ,0.0000 67.07% ,0.0000 67.07% , 0.0000

100x100_30(2)  44.64% ,0.0003 44.64% ,0.0004 44.65% ,0.0003 44.66% , 0.0003  44.66% , 0.0003
100x100_30(3) | 58.79% ,0.0060 59.11% ,0.0050 59.15% ,0.0038 59.16% , 0.0038 59.18% , 0.0039

100x100_60(2)  34.39%,0.0023  34.40%,0.0024 34.41%,0.0024 34.41% ,0.0023 34.41% , 0.0021
100x100_60(3) | 61.57% ,0.0044 61.95% ,0.0020 62.02% ,0.0017 62.04% ,0.0019  62.06% , 0.0018

200x200_30(2)  37.62% ,0.0145 37.98% ,0.0143 37.98%,0.0143  37.99% ,0.0143  37.99% , 0.0143
200x200_30(4)  48.41% ,0.0446 49.89% ,0.0324 52.59%,0.0179 53.21%,0.0152 53.28% , 0.0150
200x200_30(6)  59.69% ,0.0279  62.60% ,0.0215 65.80% ,0.0228 | 67.74% , 0.0200 68.27% , 0.0202
200x200_30(9)  73.07%,0.0241  75.35% ,0.0199 77.40% ,0.0121  78.79% ,0.0150  80.08% , 0.0128

200x200_60(2)  24.73%,0.0018 24.82% ,0.0009 24.83% ,0.0011 24.84% ,0.0010 24.85% , 0.0009
200x200_60(4)  59.82% ,0.0088 61.88% ,0.0050 = 62.45% ,0.0032 62.50% ,0.0039 62.55% , 0.0043
200x200_60(6)  73.92% ,0.0164  75.29% ,0.0112  77.00% , 0.0090 = 78.19% , 0.0058 78.70% , 0.0087
200x200_60(9)  87.02% ,0.0118 88.66% ,0.0113  90.19% ,0.0090 91.19%, 0.0111 = 92.09% , 0.0072

300x300_30(6)  40.24% ,0.0067 41.45% ,0.0064 | 42.51% ,0.0080 43.09% ,0.0070 43.46% , 0.0063
300x300_30(12)  47.46% ,0.0090 49.40% ,0.0070 50.52% ,0.0073 51.04% , 0.0064 51.38% , 0.0054
300x300_30(18) 51.90% , 0.0068 54.31% ,0.0056 56.07% ,0.0080 56.79% , 0.0054 57.41% , 0.0051
300x300_30(24) 55.41% ,0.0112 59.05% ,0.0189 61.93%,0.0144 63.46% ,0.0125 64.24% , 0.0129

300x300_60(6)  34.55% ,0.0115 35.89%,0.0108 37.86% ,0.0095 | 39.17% ,0.0103 39.94% , 0.0064
300x300_60(12) 52.61% ,0.0139  54.36% ,0.0098 55.75% ,0.0109 56.63% ,0.0104 57.30% , 0.0108
300x300_60(18)  62.55% ,0.0096 63.96% ,0.0094 65.31% ,0.0101 65.93% ,0.0104 66.37% , 0.0105
300x300_60(24) 67.46% ,0.0081 68.78% ,0.0055 69.86% ,0.0062 70.41% ,0.0073 70.78% , 0.0074

MO-FA (Hyp %,IQR)
Evaluations (Stop condition)
Instance(s,) 50 000 100 000 200 000 300 000 400 000

50x50_30(1) 67.07% ,0.0000 67.07% ,0.0000 67.07% ,0.0000 67.07% ,0.0000 67.07% , 0.0000
50x50_60(1) 67.07% ,0.0000 67.07% ,0.0000 67.07% ,0.0000 67.07% ,0.0000 67.07% , 0.0000

100x100_30(2)  44.66% ,0.0003  44.68% ,0.0002 44.69% ,0.0000 44.69% , 0.0000 44.69% , 0.0000
100x100_30(3)  58.47% ,0.0003 58.59% ,0.0034 58.74% ,0.0031 58.83% ,0.0003 58.84% , 0.0003

100x100_60(2)  33.99%,0.0024 34.10% ,0.0025 34.25% ,0.0021 34.36% ,0.0022 34.41% , 0.0021
100x100_60(3)  61.54% ,0.0034 61.84% ,0.0027 62.00% , 0.0014 62.08% ,0.0011  62.14% , 0.0010

200x200_30(2) | 38.06% ,0.0629 38.60% ,0.0409 = 41.02% ,0.0016 41.03% ,0.0013 41.05% , 0.0017
200x200_30(4)  49.95% ,0.0747 50.63% ,0.0838 50.95% ,0.0868 51.20% ,0.0869 51.16% , 0.0834
200x200_30(6) = 66.70% , 0.0300 67.29% ,0.0174 67.52% ,0.0172 67.71% ,0.0178  67.68% , 0.0173
200x200_30(9)  78.92% ,0.0323  80.26% ,0.0238  80.76% ,0.0184 81.19% ,0.0193 81.30% , 0.0194

200x200_60(2)  24.38% ,0.0089 24.52% ,0.0055 24.61% ,0.0045 24.70% ,0.0034 24.74% , 0.0035
200x200_60(4)  61.61% ,0.0036 61.73% ,0.0034 61.79% ,0.0033 61.83% ,0.0026 61.86% , 0.0021
200x200_60(6)  76.38% ,0.0172  76.99% ,0.0156  77.19% ,0.0132 77.24% ,0.0127  77.34% , 0.0128
200x200_60(9) | 90.84% ,0.0093 91.30% ,0.0075 91.51% ,0.0069 91.64% ,0.0069 91.71% , 0.0062

300x300_30(6)  40.68% ,0.0224 41.15% ,0.0257 41.40% ,0.0273 41.58%,0.0247 41.65% , 0.0276
300x300_30(12)  49.20% ,0.0170  50.25% ,0.0164 51.06% ,0.0155 51.25% ,0.0165 51.41% ,0.0148
300x300_30(18) 54.15% ,0.0117 56.56% ,0.0163 58.06% ,0.0186 58.72% ,0.0201 59.13% , 0.0201
300x300_30(24) 59.68% ,0.0385 63.40% ,0.0308 65.98%,0.0125 66.58% ,0.0138  66.90% , 0.0130

300x300_60(6) ' 38.09% ,0.0146 38.57% ,0.0118 38.83% ,0.0115 38.90%,0.0129 38.99% , 0.0161
300x300_60(12) 58.28% ,0.0074 58.97% ,0.0074 59.40% ,0.0035 59.55% ,0.0069 59.64% , 0.0071
300x300_60(18)  65.19% , 0.0056 66.47% ,0.0065 66.93% ,0.0087 67.21% ,0.0092 67.30% , 0.0094
300x300_60(24)  69.25% , 0.0069 70.59% ,0.0086 71.34% ,0.0054 71.59% ,0.0049 71.69% , 0.0049
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4.7 Solving the Problem

Table 4.7: Median hypervolume metric for each test case and stop condition, where higher hiper-
volumes obtained are shaded by considering all the metaheuristics. Part 4 of 4.

MO-GSA(Hyp %, IQR)
Evaluations (Stop condition)
Instance(s,) 50 000 100 000 200 000 300 000 400 000

50x50_30(1) 67.07% ,0.0000 67.07% , 0.0000 67.07% , 0.0000 67.07% ,0.0000 67.07% , 0.0000
50x50_60(1) 67.07% , 0.0000  67.07% ,0.0000 67.07% ,0.0000 67.07% ,0.0000 67.07% , 0.0000

100x100_30(2)  43.51%,0.0092 44.10% ,0.0041  44.46% ,0.0023 44.53% ,0.0022  44.64% , 0.0003
100x100_30(3) 55.57% ,0.0153  56.21% ,0.0150 57.32% ,0.0079 58.03% , 0.0047  58.24% , 0.0045

100x100_60(2)  33.59% ,0.0040 33.85% ,0.0041 34.20%,0.0030 34.33%,0.0031 34.39% , 0.0025
100x100_60(3)  60.47% ,0.0133  61.07% ,0.0104 61.61% ,0.0035 61.81% ,0.0025 61.89% , 0.0023

200x200_30(2)  37.36% ,0.0166 37.46% ,0.0148 37.92% ,0.0201 38.51%,0.0186 38.87% , 0.0201
200x200_30(4)  47.42% ,0.0327 48.89% ,0.0328 51.24% ,0.0469 52.56% ,0.0248 53.02% , 0.0271
200x200_30(6)  60.76% , 0.0338  63.50% , 0.0236  65.13% ,0.0246  65.90% , 0.0222  66.44% , 0.0198
200x200_30(9)  72.35%,0.0340 74.83%,0.0246 76.78% ,0.0197 77.69% ,0.0185 78.48% , 0.0158

200x200_60(2)  22.69% ,0.0221  23.38% ,0.0120 24.28% ,0.0051 24.37% ,0.0062 24.57% , 0.0028
200x200_60(4) 58.79% ,0.0132  60.20% , 0.0071  61.16% ,0.0052 61.41% ,0.0052 61.66% , 0.0054
200x200_60(6)  72.31%,0.0151 74.04% ,0.0085 75.77% ,0.0121 76.58% ,0.0140 77.02% , 0.0154
200x200_60(9)  83.86%,0.0189 86.74% ,0.0248 89.78% ,0.0116  90.54% ,0.0102  91.09% , 0.0085

300x300_30(6)  37.70% ,0.0234  38.89% ,0.0170  39.95% ,0.0161 40.52% ,0.0152 40.89% , 0.0150
300x300_30(12) 43.71%,0.0338 45.79% ,0.0289 47.68% ,0.0175 48.44% ,0.0164 49.04% , 0.0125
300x300_30(18) 48.67% ,0.0206 51.12% ,0.0130  54.09% , 0.0359  55.25% ,0.0417 56.38% , 0.0271
300x300_30(24) 56.82% ,0.0402 60.25% ,0.0241  62.50% , 0.0206 63.56% ,0.0135 64.47% , 0.0156

300x300_60(6)  33.80%,0.0217 35.10% ,0.0133 36.81%,0.0103 37.57% ,0.0104 37.99% , 0.0131
300x300_60(12) 54.37% ,0.0156 56.14% ,0.0167 57.33% ,0.0130 57.97% ,0.0095 58.54% , 0.0050
300x300_60(18)  62.37% ,0.0079  63.81% ,0.0046 65.78% ,0.0077 66.70% , 0.0089 = 67.36% , 0.0083
300x300_60(24) 66.15% ,0.0106 67.92% , 0.0063 70.01% ,0.0096 71.17% ,0.0085 = 71.72% , 0.0091

MOEA/D(Hyp %, IQR)
Evaluations (Stop condition)

Instance(s;) 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 67.07% ,0.0000 67.07% ,0.0000 67.07% ,0.0000 67.07% ,0.0000 67.07% , 0.0000
50x50_60(1) 67.07% , 0.0000 67.07% ,0.0000 67.07% ,0.0000 67.07% ,0.0000 67.07% , 0.0000

100x100_30(2)  44.22%,0.0001  44.25% ,0.0003  44.32% ,0.0018 44.34% ,0.0019 44.35% , 0.0023
100x100_30(3)  58.30%,0.0011  58.39% , 0.0007 58.41% ,0.0003 58.43% ,0.0002 58.43% , 0.0002

100x100_60(2)  33.33%,0.0150 33.61%,0.0138 33.76% ,0.0123  33.92% ,0.0110  34.04% , 0.0049
100x100_60(3)  57.79% ,0.0169 58.09% ,0.0182 58.40% ,0.0146 58.65% ,0.0153 58.81% ,0.0153

200x200_30(2)  37.25%,0.0228 37.57% ,0.0216 37.86% ,0.0292 37.97% ,0.0319 38.25% , 0.0329
200x200_30(4)  48.08% ,0.0804 48.71% ,0.0793 49.68% ,0.0631 50.01% ,0.0557 50.63% , 0.0453
200x200_30(6)  60.91% ,0.0421  63.55% ,0.0299 63.35% ,0.0305 63.57% ,0.0347 63.98% , 0.0342
200x200_30(9)  74.45% ,0.0388  75.41% ,0.0266 76.25% ,0.0336  76.56% , 0.0347  76.78% , 0.0281

200x200_60(2)  23.82%,0.0060 23.98% ,0.0063 24.11% ,0.0074 24.17% ,0.0084 24.18% , 0.0084
200x200_60(4)  57.01% ,0.0314 57.68% ,0.0296 58.15% ,0.0291 58.32% ,0.0313  58.42% , 0.0313
200x200_60(6)  70.97% ,0.0207 71.72% ,0.0187 72.19% ,0.0183 72.50% ,0.0222 72.83% , 0.0231
200x200_60(9)  84.15%,0.0233 84.71% ,0.0229 85.28% ,0.0204 85.58% ,0.0220  85.74% , 0.0219

300x300_30(6) 37.78% ,0.0162 38.41%,0.0142 38.95%,0.0138 39.21%,0.0152 39.41% , 0.0155
300x300_30(12)  46.02% ,0.0313  46.68% ,0.0417 47.38% ,0.0370 47.84% ,0.0397 48.04% , 0.0380
300x300_30(18) 53.29% , 0.0233  54.00% , 0.0299  54.65% ,0.0291 55.09% ,0.0296 55.30% , 0.0352
300x300_30(24) 58.03%,0.0289  59.22% ,0.0322  60.05% , 0.0363  60.44% , 0.0313  60.70% , 0.0315

300x300_60(6)  36.51%,0.0171 36.86% ,0.0161 37.40% ,0.0137 37.56% ,0.0154 37.65% , 0.0151
300x300_60(12)  55.13%,0.0206 56.01% ,0.0151 56.61% ,0.0119 56.80% ,0.0119 56.96% , 0.0119
300x300_60(18) 62.97% ,0.0086  63.60% , 0.0099 64.27% ,0.0118 64.56% ,0.0143  64.77% , 0.0164
300x300_60(24) 67.65% ,0.0141  68.27% ,0.0140  68.79% ,0.0119 69.11% ,0.0145 69.31% , 0.0135
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Table 4.8: Algorithms providing the best significant performance for each test case and stop condi-
tion, based on the hypervolume metric and the Wilcoxon-Mann-Whitney’s test.

Instance(s,)

Evaluations (Stop condition)

50 000

100 000

200 000

300 000

400 000

50x50_30(1)
50x50_60(1)

MO-ABC,MO-FA,
MOEAD,MO-ABC
MO-ABC,MO-FA
MOEAD,MO-ABC

MO-ABC,MO-FA,
MOEAD,MO-ABC
MO-ABC,MO-FA
MOEAD,MO-ABC

MO-ABC,MO-FA,
MOEAD,MO-ABC
MO-ABC,MO-FA
MOEAD,MO-ABC

MO-ABC,MO-FA,
MOEAD,MO-ABC
MO-ABC,MO-FA
MOEAD,MO-ABC

MO-ABC,MO-FA,
MOEAD ,MO-ABC
MO-ABC,MO-FA
MOEAD,MO-ABC

100x100_30(2) MO-FA MO-FA,VNS MO-FA MO-FA MO-FA
100x100_30(3) MO-FA MO-FA.VNS MO-FA,VNS MO-FA,VNS VNS
100x100_60(2) VNS VNS VNS VNS VNS
100x100_60(3)  MO-ABC.MO-FA, VNS VNS*VNS VNS*,VNS VNS*,VNS
VNS* VNS
200x200_30(2) MO-FA,VNS MO-FA,VNS MO-FA MO-FA,VNS MO-FA, VNS
200x200_30(4) VNS VNS VNS VNS VNS
200x200_30(6) ~ MO-FA,VNS* MO-FA,VNS* MO-FA,VNS*  MO-ABCMO-FA, MO-ABC.MO-FA,
VNS* VNS*
200x200_30(9) MO-FA MO-FA MO-FA MO-FA MO-FA
200x200_60(2) MO-ABC MO-ABC MO-ABCVNS ~ MO-ABCMO-FA, MO-ABC,MO-FA,
VNS VNS,VNS*
200x200_60(4) VNS* MO-ABC,VNS* MO-ABC MO-ABC MO ABC
200x200_60(6) VNS* VNS* VNS* MO-ABC,VNS* MO-ABC
200x200_60(9) MO-FA MO-FA MO-FA, VNS* MO-FA,VNS* MO-ABC
300x300_30(6)  MO-FAVNS*  MO-ABCMO-FA  MO-ABC,VNS*  MO-ABC,VNS*  MO-ABC,VNS*
VNS§*
300x300_30(12) MO-FA MO-FA MO-FA MO-ABCMO-FA  MO-ABC,MO-FA
300x300_30(18) MO-FA MO-FA MO-FA MO-FA MO-FA
300x300_30(24) MO-FA MO-FA MO-FA MO-FA MO-FA
300x300_60(6) MO-FA MO-FA MO-FA MO-ABC MO-FA MO-ABC
300x300_60(12) MO-FA MO-FA MO-FA MO-FA MO-FA
300x300_60(18) MO-FA MO-FA MO-FA MO-FA MO-GSA MO-FA
300x300_60(24) MO-FA MO-FA MO-FA MO-FA MO-GSA MO-FA

MO-VNS* is better for solving larger ones. The difference between them is the perturbation
mechanism. In small instances, the perturbation mechanism penalises the exploitation of the
search space, because of it consumes many evaluations if it is performed. On the other hand, in
general, the optimisation of larger instances need further exploration of the search space, this is
the reason why MO-VNS* provides better behaviour in such cases.

4.7.3 Convergence Study Based on the Hypervolume Metric

Tables[d.8][4.9] and[.10]show a converge study based on the hypervolume metric. We notice that
most of the algorithms show an homogeneous growth over stop conditions and an asymptotic
trend when 400 000 evaluations are reached. This means that the set of stop criteria is represent-
ative to analyse the behaviour of the algorithms, because we do not expect large improvements
by assuming more evaluations.

MO-GSA is the only algorithm having an uneven trend, e.g. in 100x100_30(3), 200x200_-
30(6). Perhaps, this is due to the way of working of the algorithm: if it finds a good solution, it
is able to generate many solutions in its surrounding by moving the other planets. However, it is
not really good at generating new solutions (fresh solutions), the main way is through the anti-
stagnation mechanism. Thus, it falls in local minima many times, penalising its performance.

Through this convergence analysis, we notice that the best algorithm according to the hyper-
volume metric, i.e. MO-FA, it shows an homogeneous growth. Hence, it could be considered
irrespective of the stop criterion. This behaviour is similar for MO-VNS with small instances.

72



4.7 Solving the Problem

Table 4.9: Based on the hypervolume metric, percentage of test cases in which the metaheuristics
are significant better and worse, for all the test cases, 50x50 instances, 100x100 instances, 200x200
instances, and 300x300 instances.

A is worse than B (all the instances)
A\B NSGA-II SPEA2 MO-VNS MO-VNS* MO-ABC MO-FA MO-GSA MOEA/D Percentage

= NSGA-II 0,00% 0,79% 0,37% 0,10% 0,12% 0,00% 0,14% 0,66% 2,17%

£ _SPEA2 0,74% 0,00% 0,43% 0,19% 0,27% 0,00% 0,31% 0,58% 2,52%

£ MO-VNS 1,59% 1,43% 0,00% 0,62% 0,68% 0,37% 1,28% 1,20% 7,16%

=  MO-VNS* 1,82% 1,68% 1,01% 0,00% 0,72% 0,39% 1,37% 1,41% 8,40%

£ MO-ABC 1,84% 1,82% 1,12% 0,93% 0,00% 0,45% 1,28% 1,45%

2 MO-FA 2,11% 2,07% 1,24% 1,30% 1,12% 0,00% 1,76% 1,90%

= MO-GSA 1,59% 1,51% 0,68% 0,48% 0,31% 0,00% 0,00% 1,01% 57%

<« MOEA/D 1,20% 1,04% 0,58% 0,39% 0,23% 0,00% 0,37% 0,00% 3,81%
Percentage  10,87%  10,35% 5,42% 401% [344% 20%m  6,50% 8,20% 100,00%

A is worse than B (50x50 instances)
A\B NSGA-II SPEA2 MO-VNS MO-VNS* MO-ABC MO-FA MO-GSA MOEA/D Percentage

A is better than B

A is better than B

NSGA-II 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
SPEA2 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
MO-VNS 2,43% 2,43% 0,00% 1,46% 0,00% 0,00% 0,00% 0,00%
MO-VNS* 2,43% 2,43% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
MO-ABC 2,43% 2,43% 2,43% 2,43% 0,00% 0,00% 0,00% 0,00%
MO-FA 2,43% 2,43% 2,43% 2,43% 0,00% 0,00% 0,00% 0,00%
MO-GSA 2,43% 2,43% 2,43% 2,43% 0,00% 0,00% 0,00% 0,00%
MOEA/D 2,43% 2,43% 2,43% 2,43% 0,00% 0,00% 0,00% 0,00%
Percentage [714,56% " 14,56% WNOTI6NN " 11,17% " IE0007 00070007 NN000% Ml 100,00
A is worse than B (100x100 instances)
A \B NSGA-II SPEA2 MO-VNS MO-VNS* MO-ABC MO-FA MO-GSA MOEA/D Percentage
NSGA-II 0,00% 1,86% 0,00% 0,00% 0,00% 0,00% 0,00% 0,49% 2,35%
SPEA2 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,29% 0,29%
MO-VNS 1,96% 1,96% 0,00% 1,27% 1,27% 0,98% 1,96% 1,96%
MO-VNS* 1,76% 1,76% 0,00% 0,00% 0,88% 0,69% 1,67% 1,76% ,53%
MO-ABC 1,96% 1,96% 0,29% 0,59% 0,00% 0,88% 1,76% 1,96% 9,41%
MO-FA 1,96% 1,96% 0,49% 0,98% 0,59% 0,00% 1,67% 1,86%
MO-GSA 1,96% 1,96% 0,00% 0,00% 0,00% 0,00% 0,00% 1,08% ,00%
MOEA/D 1,47% 1,47% 0,00% 0,00% 0,00% 0,00% 0,59% 0,00% 3,53%
Percentage  11,08%  12,94% [IOW8%MN 2.84% 275% 1255% | 7.65% 9,41% 100,00%

A is worse than B (200x200 instances)
A\B NSGA-II SPEA2 MO-VNS MO-VNS* MO-ABC MO-FA MO-GSA MOEA/D Percentage

=  NSGA-II 0,00% 1,17% 0,00% 0,00% 0,05% 0,00% 0,27% 0,96% 2,44%
£ _SPEA2 0,53% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,58% 1,11%
<= MO-VNS 1,91% 2,12% 0,00% 0,69% 0,96% 0,48% 1.91% 1,96%
=  MO-VNS* 2,07% 2,07% 0,80% 0,00% 0,96% 0,53% 1,75% 1,86%
£ MO-ABC 1,80% 2,12% 0,69% 0,48% 0,00% 0,53% 1,38% 1,54%
2 MO-FA 2,12% 2,12% 0,69% 0,74% 1,11% 0,00% 1,91% 2,07%
= MO-GSA 1,38% 1,86% 0,00% 0,05% 0,16% 0,00% 0,00% 1,27% 12%
<« MOEA/D 1,01% 1,01% 0,00% 0,00% 0,16% 0,00% 0,16% 0,00% 2,34%

Percentage  10,83%  12,47% 2,18% [1,96% 1 3.40% [s4%m  7.38% 10,24% 100,00%

A is worse than B (300x300 instances)
A\B NSGA-II SPEA2 MO-VNS MO-VNS* MO-ABC MO-FA MO-GSA MOEA/D Percentage

@ NSGA-II ~ 000%  000%  1.03% 027% 027%  000%  0.11% 0.59% 227%

£ SPEA2 151%  0.00%  1,19% 0.54% 076%  000%  0.86% 0.86% 5.72%

£ MO-VNS  086%  022%  0,00% 0,00% 022%  000%  0,54% 0.27% 2.11%

= MO-VNS*  146%  1.08%  2.00% 0.00% 054%  016%  1.13% 1.08% 7.45%

£ MO-ABC  1.67%  130%  1.73% 1.24% 0.00%  022%  1.19% 1:40%

2 MOFA  211%  200%  194% 1.78% 167%  000%  2.05% 2.16%

‘2 MO-GSA  140%  070%  135% 0.76% 070%  000%  0.00% 0.92% 83%

% MOEAD  097%  054%  1.08% 0.54% 049%  000%  0.54% 0,00% 4116%
Percentage  9.99% | 583%  1031% 5.13%  IUAI6A%IOBS%M  6.43% 7,29% 100,00%
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Figure 4.8: Convergence study based on the hypervolume metric. Part 1 of 3.
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Figure 4.9: Convergence study based on the hypervolume metric. Part 2 of 3.
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Figure 4.10: Convergence study based on the hypervolume metric. Part 3 of 3.
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4.7.4 Set Coverage Analysis

In addition to hypervolume, in this study we include the set coverage metric as another MO
quality indicator. Table [4.10] shows the set coverage metric comparing all the metaheuristics
two by two for all the instances, 50x50 instances, 100x100 instances, 200x200 instances, and
300x300 instances. The Percentage field of this table shows the average set coverage regarding
all other metaheuristics, where better average values are shaded from darker to lighter tone, i.e.
from better to worse average behaviour.

The set coverage metric was calculated by assuming the median Pareto fronts from the dis-
tribution of 31 samples previously considered for hypervolume. Note that the values shown in
Table are the average set coverage for all the stop conditions, full values are in Section|[C.2]
of Appendix [B] specifically in Tables[B.8| [B.9] [B.10} B.11] [B.12] [B.13| [B.14] B.15| [B.16] [B.17]
[B.18] [B.19} [B.20] and [B.21}

Analysing Table [4.10} we notice that MO-FA is the best algorithm for all the instances,
followed by MO-VNS* and MO-ABC. For 50x50 instances, we reach that MO-ABC, MO-FA,
and MO-GSA provides a same behaviour, followed by MOEA/D and MO-VNS. In case of
100x100 instances, MO-VNS is the best algorithm, followed by MO-VNS* and MO-FA. For
200x200 instances, MO-FA provides the best behaviour, followed by MO-VNS* and MO-VNS.
Finally, for 300x300 instances, MO-FA is the best algorithm from far, followed by MO-VNS*.

Comparing both hypervolume and set converage analyses, we notice that the conclusions
are similar. MO-FA is the algorithm providing the best average behaviour for all the instances.
Attending to the instance size, MO-VNS is the best algorithm for small instances and MO-FA
is the best for large instances.

4.7.5 Median Pareto Fronts and Attainment Surface

Figures compare the median Pareto fronts obtained for 400 000 evaluations, by
assuming the attainment surface representation. Through this methodology, we can observe in
a clear way, which area of the objective space is considered for a given algorithm. Thus, we can
see the differences in terms of performance for each test case and algorithm. We notice that the
conclusions are the same as previously discussed for hypervolume and set coverage.

This representation is useful for graphically comparing several Pareto fronts. However, we
cannot analyse the distribution of the points in the objective space nor the shape of the fronts.
Figure 11| [£.12] and [4.13] show the median Pareto fronts obtained for 400 000 evaluations.
We check that, in general, there are zones in the objective space, which are not covered by any
algorithm. This means that maybe there are not solutions for this problem in this zone. On the
contrary, we find fronts full of points, such as in 100x100_60(2). In this case, we notice that
while MO-FA find many points, MOEA/D provides a non-continuous front.

4.7.6 Impact of the Optimisation on the Fitness Functions

In this subsection, we discuss the impact provided by the addition of RNs to traditional WSNss.
Table shows extreme values of the median Pareto front obtained by MO-FA for 400 000
evaluations. Each solution is associated with two quality metrics: I and Igp. I denotes the
percentage in which a fitness function is increased or decreased, regarding the use of a traditional
WSN (see Section[4.3). On the other hand, Irr measures the efficiency of the optimisation by
dividing the gain obtained between the number of RNs assumed. According to this table, AEC is
decreased up to 92.03% in 300x300_60(24), and ASA is increased up to 18.25% in 300x300_-
30(24). Analysing this table, we note that as the number of RNs increases, the efficiency of the
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Table 4.10: Set coverage metric among all the metaheuristics, for all the test cases, 50x50 instances,
100x100 instances, 200x200 instances, and 300x300 instances.

A dominates B (all the test cases)

A\B NSGA-II SPEA2 MO-VNS MO-VNS* MO-ABC MO-FA MO-GSA MOEA/D Percentage
NSGA-II HHHH 52,27% 25,07% 11,09% 15,82% 3,15% 21,95% 35,39% 23,54%
SPEA2 56,25% HiHHHHH 28,48% 16,82% 18,87% 3,64% 24,08% 37,79% 26,56%

MO-VNS 65,21% 56,53% HHHHH 35,93% 48,62% 30,25% 64,46% 70,80% 53,12%
MO-VNS*  74,32% 72,32% 70,51% HHHHHE 59,23% 32,82% 66,75% 70,81% 63,82%
MO-ABC 73,96% 70,65% 54,04% 42,22% HHHHHH 31,88% 66,95% 72,73% 58,92%
MO-FA 90,82% 84,29% 77,30% 71,17% 72,64% HEHHH 88,80% 85,30%

MO-GSA 68,32% 59,64% 36,13% 23,07% 29,19% 16,50% HHHHHH 60,71% 41,94%
MOEA/D 39,86% 39,46% 28,89% 14,07% 20,32% 15,14% 32,73% HHHHHH 27,21%

Percentage  6696%  62,17%  4577% [030:63% 1 3781% MHOWSYEN 5225%  61,93%

A is dominated by B

A dominates B (50x50 test cases)

A \B NSGA-II SPEA2 MO-VNS MO-VNS* MO-ABC MO-FA MO-GSA MOEA/D Percentage
NSGA-II #H### 100,00%  20,00% 9,09% 11,11% 11,11% 11,11% 20,00% 26,06%
SPEA2 100,00%  ##HHH 20,00% 41,05% 11,11% 11,11% 11,11% 20,00% 30,63%

MO-VNS 88,89% 88,89% HHHHHE 83,52% 88,89% 88,89% 88,89% 90,00% 88,28%
MO-VNS*  5222% 52,22% 48,00% HitHHH 38,89% 38,89% 38,89% 43,33% 44,63%
MO-ABC 100,00%  100,00%  100,00% 100,00% HHHHHH 100,00%  100,00% 100,00%
MO-FA 100,00%  100,00%  100,00% 100,00% 100,00%  ######  100,00% 100,00%
MO-GSA 100,00%  100,00%  100,00% 100,00% 100,00%  100,00%  ###### 100,00%
MOEA/D 90,00% 90,00% 90,00% 90,00% 90,00% 90,00% 90,00% HHHHHH

Percentage  90,16%  90,16% | 6829% = 74.81% [EG2SCYNC2SCTMNG2ISCY"67:62%%

A is dominated by B

A dominates B (100x100 test cases)
A \B NSGA-II SPEA2 MO-VNS MO-VNS* MO-ABC MO-FA MO-GSA MOEA/D Percentage

NSGA-II HHHHHH 79,08% 0,78% 0,29% 2,35% 1,76% 6,85% 13,49% 14,94%
SPEA2 51,76% HHHHHH 0,65% 0,63% 1,46% 1,93% 3,68% 10,26% 10,05%
MO-VNS 88,72% 92,56% it 78,86% 80,80% 83,12% 93,22% 95,65% W
MO-VNS*  88,30% 90,45% 76,25% HHHHHE 79,90% 76,17% 84,08% 86,61% 1%
94,03% 95,11% 51,78% 59,47% HHHHHH 64,15% 81,78% 84,98% 75,90%
MO-FA 88,09% 87,75% 59,49% 62,93% 70,12% HHEHH 78,78% 84,38% 75,93%
MO-GSA 83,97% 91,44% 14,05% 19,17% 33,34% 22,60% HHHHHH 53,61% 45,45%
MOEA/D 52,70% 63,75% 19,13% 21,44% 29,90% 21,77% 31,44% HHHHHH 34,30%

Percentage  78,22%  85.73% |BINIBYANN34:68% " 4255% | 3879% @ 5426%  61,28%

A is dominated by B
=
@
>
=
a

A dominates B (200x200 test cases)
A\B NSGA-II SPEA2 MO-VNS MO-VNS* MO-ABC MO-FA MO-GSA MOEA/D Percentage

NSGA-II HHHHHH 53,40% 6,81% 5,18% 13,70% 2,04% 18,45% 40,03% 19,95%
SPEA2 42,04% HitHHH 2,89% 3,00% 7,54% 1,92% 10,00% 36,92% 14,90%
MO-VNS 83,41% 82,90% HHHHHE 43,27% 64,12% 30,77% 77,79% 84,06% 66,62%
MO-VNS*  79,43% 83,90% 59,72% HHHHH 61,65% 34,67% 78,77% 84,33% 68,92%
83,39% 84,67% 31,04% 24,58% HHHHH 17,94% 69,18% 72,64% 54,78%
MO-FA 90,42% 85,22% 63,53% 59,39% 70,00% HHHHH 87,21% 86,85%

MO-GSA 77,90% 69,42% 8,39% 12,51% 21,21% 6,08% HHHHHH 60,54% 36,58%
MOEA/D 40,70% 38,49% 5,60% 5,02% 13,87% 4,42% 20,53% HHHHH 18,38%

Percentage  71,04%  71,14% | 2543% 102185% 7 3601% [EBOSYAN 51.70%  6648%

A is dominated by B
=
@
>
=
a

A dominates B (300x300 test cases)

MOEA/D  32.60%  2829%  41.78%  19.44%  21.98%  382%  3125%  #### 25.59%
Percentage  54.76% = 38,65%  67.51% [N34S1%0N 37.68% MESWBYEM 49.13%  56.29%

A \B NSGA-II. SPEA2 MO-VNS MO-VNS* MO-ABC MO-FA MO-GSA MOEA/D Percentage

g2 NSGA-II HHHHH 25,79% 56,74% 2291% 25,85% 2,97% 35,71% 45,55% 30,79%
% SPEA2 61,78% HHHHH 70,11% 32,68% 40,84% 4,36% 51,61% 56,87% 45,46%
= MO-VNS 35,27% 12,16% HHHHH 7,14% 17,02% 3,29% 30,66% 40,31% 20,83%
£ MO-VNS*  62.21% 51,68% 84,05% HHHHHH 46,46% 9,29% 53,04% 56,26% 51,86%
£ MO-ABC 47.97% 37,06% 66,67% 36,78% HHHHHH 12,65% 49,04% 59,87% 44,29%
‘E MO-FA 92,60% 81,63% 94,30% 87,07% 76,53% HitHHE 92,60% 80,52%

] MO-GSA 50,92% 33,96% 58,93% 35,59% 35,09% 3,00% HHHHH 54,61% 87%
v

<«
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Figure 4.11: Comparing the metaheuristics through attainment surface. Part 1 of 3.
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Figure 4.12: Comparing the metaheuristics through attainment surface. Part 2 of 3.
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Figure 4.13: Comparing the metaheuristics through attainment surface. Part 3 of 3.
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Figure 4.14: Comparing the metaheuristics through attainment surface. Part 1 of 3.
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Figure 4.15: Comparing the metaheuristics through attainment surface. Part 2 of 3.
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4.7 Solving the Problem

Table 4.11: Extreme values of the median Pareto fronts obtained by MO-FA for 400 000 evaluations,

including efficiency and gain metrics.

max(f; : AEC)

min(f; : AEC)

max(fy : ASA)

min(fy : ASA)

Instance(S,) value I Ipr value I Iprp value IgIgr value I, Ipr
50x50_30(1) 0,0229 -34,60%,-34,60% 0,0276 -21,08%,-21,08% 0,9205  0,33%,0.33%  0,8898  -3,02%,-3,02%
50x50_60(1) 0,0229 -34,60%,-34,60% 0,0276 -21,08%,-21,08% 0,9205  0,33%,0,33%  0,8898  -3,02%,-3,02%
100x100_30(2)  0,0545 -50,02%,-25,01%  0,0622 -42,99%,-21,49% 0,9156  2,60%,1,30%  0,8945 0,23%,0,12%
100x100_30(3)  0,0401 -63,25%,-21,08% 0,0622 -42,99%,-14,33% 09156  2,60%,0,87%  0,8195 -8,16%,-2,72%
100x100_60(2)  0,0619 -58,21%,-29,10%  0,0871 -41,23%,-20,61% 09126  5,35%.,2,67%  0,8149  -5,94%,-2,97%
100x100_60(3)  0,0337 -77,28%,-25,76%  0,0556 -62,49%,-20,83% 09145 5,57%,1,86%  0,7790 -10,07%,-3,36%
200x200_30(2)  0,1856 -33,49%,-16,75% 0,2146 -23,10%,-11,55% 0,8881 1,97%.,0,98%  0,8775 0,74%,0,37%
200x200_30(4) 0,1522 -4545%,-11,36% 0,1522 -4545%,-11,36% 0,8922  2,43%,0,61%  0,8922 2,43%,0,61%
200x200_30(6)  0,1224  -56,13%,-9,35%  0,1326  -52,48%,-8,75%  0,9052  3,93%,0,66%  0,8994 3,26%,0,54%
200x200_30(9)  0,0891  -68,08%,-7,56%  0,0915 -67,23%,-7,47% 09100  4,47%,0,50% 0,8673  -0,42%,-0,05%
200x200_60(2)  0,2279  -41,14%,-20,57% 02371 -38,76%.,-19,38% 0,8769  6,39%,3,19%  0,8581 4,10%,2,05%
200x200_60(4)  0,1358  -64,92%,-16,23%  0,1509 -61,01%,-15,25% 0,9015  9,37%,2,34%  0,8752 6,18%,1,54%
200x200_60(6) 0,0914  -76,39%,-12,73%  0,1096 -71,69%,-11,95% 0,8985 9,01%,1,50%  0,8477 2,84%,0,47%
200x200_60(9)  0,0559  -85,57%.-9,51%  0,0632  -83,66%,-9,30%  0,9010  9,30%,1,03%  0,8402 1,93%.,0.21%
300x300_30(6) 0,2404  -43,09%,-7,18%  0,2811  -33,46%,-5,58%  0,8826  15,46%,2,58% 0,7921 3,62%,0,60%
300x300_30(12) 0,1710  -59,53%,-4,96%  0,2466  -41,64%,-3.47% 0,8917 16,65%,1,39% 0,7987  4,49%.,0,37%
300x300_30(18) 0,1354  -67,95%,-3,77%  0,1470  -65,20%,-3,62%  0,9002 17,76%,0,99%  0,8284 8,38%,0,47%
300x300_30(24) 0,0934  -77,89%,-3,25%  0,1042  -75,33%,-3,14% 0,9039 18,25%.,0,76% 0,8524  11,52%,0,48%
300x300_60(6) 0,2345 -62,75%,-10,46% 0,2399 -61,89%,-10,31% 08741  7,62%,1,27%  0,8582 5,66%,0,94%
300x300_60(12) 0,1214  -80,71%,-6,73%  0,1323  -78,98%,-6,58%  0,8903  9,61%,0,80%  0,8568 5,49%,0,46%
300x300_60(18) 0,0732  -88,37%,-491%  0,0804 -87,23%,-4,85%  0,8896  9,54%,0,53%  0,8551 5,29%,0,29%
300x300_60(24) 0,0502  -92,03%,-3,83%  0,0569  -90,96%,-3,79%  0,8935 10,01%,0,42% 0,8487  4,49%,0,19%

optimisation decreases. This way, the maximum efficiency for AEC is 34.60% in both 50x50_-
30(1) and 50x50_60(1). For ASA, the maximum efficiency is 2.62% in 100x100_60(2).

In summary, the addition of RNs seems to be a good way to optimise traditional WSNs.
However, the efficiency of this approach could be reduced if many RNs are considered.

4.7.7 Comparisons to Other Approaches

We started this work assuming an important limitation: we did not find any paper fitting this
problem definition. Hence, we cannot directly compare the results obtained to other author
approaches. To alleviate this fact, we selected a paper from the current literature considering
a similar approach: Hou et al [6] implemented a heuristic called SPINDS, which optimises the
network lifetime by adding routers to TT-WSNss.

The network model assumed by Hou et al. is composed of several clusters and a Base
Station (BS). Each cluster consists of a set of MicroSensor Nodes (MSNs) and one Aggregation
and Forwarding Node (AFN). MSNs capture and send information via single-hop transmission
to the local AFN. Each AFN relays all the received information to the BS via multi-hop routing.
Finally, the RNs are additional devices, forwarding all the information received from AFNs to
the BS. In this model, all the devices are powered by batteries, excepting the BS. In addition,
each device can assume a different initial energy charge.

As both network models are different, we assume some assumptions to adapt this model to
our problem definition:

e We consider that a cluster is a sensor node. This way, MSNs are not included and AFNs
are the new sensors.

e In the original model, the amount of information relayed by an AFN is given by the
number of MSNSs in its cluster. Now, we assume that all the AFNs send an information
packet of size k per time unit.
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4. Solving the RNPP: bi-objective Outdoor Approach

Table 4.12: Solutions obtained by SPINDS heuristic, including efficiency and gain metrics.

i+ AEC f»: ASA
Instance(s,) value Ig Ipr value Ig Ipr
50x50_30(1) 0,0247  -2929% -29,29% 0,8898 -3,02% -3,02%
50x50_60(1) 0,0247  -2929%  -29,29% 0,8898 -3,02% -3,02%

100x100_30(2)  0,0610 -44,11% -22,06% 0,8946 0,25%  0,12%
100x100_30(3)  0,0534 -51,06% -17,02% 0,8880 -0,49% -0,16%

100x100_60(2)  0,0642 -56,65% -28,32% 0,8209 -5,24% -2,62%
100x100_60(3)  0,0492 -66,81% -22,27% 08316 -4,00% -1,33%

200x200_30(2)  0,2655  -4,89% -2,44%  0,8645 -0,75% -0,37%
200x200_30(4)  0,1851 -33,69% -842% 08622 -1,01% -0,25%

200x200_30(6)  0,1653 -40,77%  -6,80%  0,8568 -1,63% -0,27%
200x200_309) 0,1171 -58,05%  -6,45% 08615 -1,09% -0,12%

200x200_60(2) 02545 -3424% -17,12% 08333  1,00% 0,54%
200x200_60(4)  0,1598 -58,72% -14,68% 0,8675 5,24% 1,31%

200x200_60(6)  0,1108 -71,37% -11,90% 0,8488 297% 049%
200x200_60(9) 0,0716 -81,51%  -9,06%  0,8204 -0,48% -0,05%
300x300_30(6)  0,3853  -8,80% -1,47%  0,8038 5,16%  0,86%

300x300_30(12) 03853  -8,80% -0,73%  0,8038 5,16%  0,43%
300x300_30(18) 0,3301 -21,86% -1,21% 0,7804 2,10% 0,12%
300x300_30(24) 03301 -21,86% -091% 0,7804 2,10%  0,09%

300x300_60(6)  0,5765 -8,42% -1,40%  0,8031 -1,12% -0,19%
300x300_60(12) 0,5765  -8,42% -0,70%  0,8031 -1,12% -0,09%
300x300_60(18) 0,5765  -8,42% -0,47%  0,8031 -1,12% -0,06%
300x300_60(24) 0,5765  -8,42% -0,35%  0,8031 -1,12% -0,05%

o All the AFNs have a same initial energy charge in their batteries. Having RNs and BS an
unlimited power supply.

o We assume the energy model described in our work.

We implemented the SPINDS algorithm following these assumptions. The results obtained
optimising our data set appear in Table f.12] where the value of the fitness functions have as-
sociated both I and gy metrics previously defined in Section Comparing Tables {.T1]
and 4.12] we note that MO-FA provides a better behaviour for all the test cases. In fact, all the
results provided by SPINDS are dominated by MO-FA. In addition, we check that SPINDS does
not provide a good behaviour for large instances.

4.8 Scientific Achievements

In this chapter, we proposed and solved a bi-objetive RNPP by considering a wide range of MO
metaheuristics. The following scientific achievements were obtained from performing this task:

International journals (ISI-SCI):

e Jose M. Lanza-Gutierrez and Juan A. Gomez-Pulido. A gravitational search al-
gorithm for solving the relay node placement problem in wireless sensor networks.
International Journal of Communication Systems, page n/a (on-line), 2015. Impact
factor of 1.106 (Q3, T2). In [70], we apply NSGA-II, SPEA2, and MO-GSA for
optimising 100x100 and 200x200 instances.

e Jose M. Lanza-Gutierrez and Juan A. Gomez-Pulido. Studying the multiobjective
variable neighbourhood search algorithm when solving the relay node placement
problem in wireless sensor networks. Soft Computing, page n/a (on-line), 2015.
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4.8 Scientific Achievements

Impact factor of 1.271 (@3, 72). In [71], we apply NSGA-II, SPEA2, MO-VNS,
and MO-VNS* for optimising all the instances.

e Jose M Lanza-Gutierrez, Juan A Gomez-Pulido, and Miguel A Vega-Rodriguez. In-
telligent relay node placement in heterogeneous wireless sensor networks for energy
efficiency. International Journal of Robotics and Automation, 29:1-13, 2014. Im-
pact factor of 0.408 (Q4, T'3). In [72], we apply NSGA-II, SPEA2, and MO-ABC
for optimising 100x100, 200x200, and 300x300 instances.

International book chapters:

e Jose M. Lanza-Gutierrez, Juan A. Gomez-Pulido, and Miguel A. Vega-Rodriguez.
A trajectory algorithm to solve the relay node placement problem in wireless sensor
networks. In Theory and Practice of Natural Computing, volume 8273 of Lecture
Notes in Computer Science, pages 145-156. Springer Berlin Heidelberg, 2013. In
(73], we apply NSGA-II, SPEA2, and MO-VNS#* for optimising 100x100, 200x200,
and 300x300 instances.

e Jose M. Lanza-Gutierrez, Juan A. Gomez-Pulido, Miguel A. Vega-Rodriguez, and
Juan M. Sanchez-Perez. Relay node positioning in wireless sensor networks by
means of evolutionary techniques. In Autonomous and Intelligent Systems, volume
7326 of Lecture Notes in Computer Science, pages 18-25. Springer Berlin / Heidel-
berg, 2012. In [74]], we apply NSGA-II and SPEA2 for optimising 100x100 and
200x200 instances. This is our first work exactly fitting this problem approach.

e Jose M. Lanza-Gutierrez, Juan A. Gomez-Pulido, Miguel A. Vega-Rodriguez, and
Juan M. Sanchez-Perez. Optimizing energy consumption in heterogeneous wireless
sensor networks by means of evolutionary algorithms. In Applications of Evolu-
tionary Computation, volume 7248 of Lecture Notes in Computer Science, pages
1-10. Springer Berlin Heidelberg, 2012. In [[75], we apply NSGA-II and SPEA?2 for
optimising 100x100 and 200x200 instances with 50 000 evaluations. In this contri-
bution, we do not assume that the number of RNs should be significantly lower than
the number of sensors. This paper can be considered as a very preliminary approach
of the work in [74].

International conferences:

e Jose M. Lanza-Gutierrez, Juan A. Gomez-Pulido, Miguel A. Vega-Rodriguez, and
Juan M. Sanchez- Perez. A parallel evolutionary approach to solve the relay node
placement problem in wireless sensor networks. In Proceeding of GECCO, pages
1157-1164, 2013. ACM conference. In [76], we apply NSGA-II and SPEA2 for
solving the problem with 100x100 and 200x200 instances by OpenMP with 32 cores.

e Jose M Lanza-Gutierrez, Juan Gomez-Pulido, Miguel Vega-Rodriguez, Juan M Sanc-
hez -Perez. Multi-objective evolutionary algorithms for energy-efficiency in hetero-
geneous wireless sensor networks. IEEE conference. In IEEE Sensors Applications
Symposium (SAS), pages 1-6, 2012. In [77], we apply NSGA-II and SPEA2 for
solving a less realistic approach of work presented in this chapter. This contribution
can be considered as one of our first steps in this research line and is a continuation
of the work in [78]].
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National conferences:

e Jose M. Lanza-Gutierrez, Juan A. Gomez-Pulido, Miguel A. Vega-Rodriguez, and
Juan M. Sanchez-Perez. Optimizando la eficiencia energética en redes de sensores
inaldmbricos mediante computacién evolutiva paralela. In Actas de las XXIII Jor-
nadas de Paralelismo (JP 2012), Servicio de Publicaciones. Universidad Miguel
Herndndez, pages 163-168, 2012. In [79], we apply NSGA-II, SPEA?2 for optim-
ising 100x100 and 200x200 instances through OpenMP with 8 cores.

e Jose M. Lanza-Gutierrez, Juan A. Gomez-Pulido, Miguel A. Vega-Rodriguez, and
Juan M. Sanchez-Perez. Posicionando routers en redes de sensores inaldimbricos me-
diante algoritmos evolutivos para el incremento de la eficiencia energética. In Actas
de las III Jornadas de Computacion Empotrada (JCE 2012), Servicio de Publica-
ciones. Univ. Miguel Hernandez, pages 95-100, 2012. In [80], we apply NSGA-II
and SPEA?2 for optimising 100x100 and 200x200 instances with 50 000 evaluations.
This is a very preliminary work before [74].

e Jose M Lanza-Gutierrez, Juan A Gomez-Pulido, Oscar Gutierrez-Blanco, Miguel A
Vega- Rodriguez, and Juan M Sanchez. Disefio eficiente de redes heterogéneas de
sensores inaldmbricos mediante computacién evolutiva multi-objetivo. In Actas del
VIII Congreso Espariiol sobre Metaheuristicas, Algoritmos Evolutivos y Bioinspira-
dos, Universidad de Castilla-La Mancha, pages 337-344, 2012. In [78], we apply
NSGA-II and SPEA?2 for solving a less realistic approach of work performed in this
chapter. This contribution can be considered as one of our first steps in this line.
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Solving the RNPP:
three-objective Outdoor
Approach

In this chapter, we define and solve the three-objective RNPP outdoor approach. This new
three-objective approach is based on the work performed for two objectives in Chapterd] Thus,
chromosome definition and considerations for implementing the metaheuristics are the same as
discussed before in Sections[d.5|and[4.6] respectively. This chapter is structured as follows. The
WSN model considered in this work is presented in Section[5.1} The optimisation problem is
defined in Section.2} The data set considered for comparing the metaheuristics, while solving
the problem is discussed in Section Experimental results are presented in Section
Finally, scientific achievements from solving the problem are included in Section[5.3]

5.1 The Wireless Sensor Network Model assumed

This section describes the WSN model considered in the three-objective unconstrained RNPP
outdoor approach. This model is based on the one described before in Section[4.1] This section
is structured as follows. Section[5.1.T|presents additional notation and Section [5.1.2]discuss the
concept of NR, related to the third objective of the RNPP.

5.1.1 Notation

The following notation is considered for modelling the WSN definition:

a path loss exponent, « € [2,4];
B8 transmission quality parameter, 8 > 0;
T set of time periods, 7 = {0,1,2,...};
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5. Solving the RNPP: three-objective Outdoor Approach

err

sensitivity area provided by the WSN at time ¢ > 0 € 7;

variable assuming 1 if there is at least one sensor i € S, (t) at a distance to
the demand point p € D, (t) lower than r;

energy cost per bit of the power amplifier, amp > 0;
sink coordinates, ¢ = (z,y) where z € [0,d,] and y € [0, d,];
coverage threshold, coy, € [0, 1];

set of demand points at time t > 0, Vp € D,, p = (x,y) where = € [0, d,]
and y € [0,d,];

number of demand points. It is the cardinal of D, (t);

distance between two neighbouring demand points;

number of disjoint paths between the sensor i € S, and the sink node;
width of the surface, d, > 0;

height of the surface, d, > 0;

energy charge of a sensor i € S;(¢) at time ¢;

energy expenditure of a sensor ¢ € S;(¢) at time ¢ > 0;

local channel error, err € [0, 1];

AEC of the sensors over the network lifetime;

ASA provided by the WSN over the network lifetime;

NR provided by the WSN at the beginning of the network lifetime;
number of hops in the I-th disjoint path between i € S, and the sink node;
initial energy charge of the sensors, iec > 0;

information packet size in bits, k£ > 0;

number of packets sent by the sensor i € S;(t) at time ¢ > 0;
reliability of the sensor i € S,;

communication radius, r. > 0;

number of relayed packets sent by the sensor i € S;(t) at time ¢ > 0;
sensitivity radius, ry > 0;

set of RN coordinates, Vr € S,, 7 = (x,y) where = € [0,d,] and y €
[01 dy}’

number of RNs. It is the cardinal of 5};

set of initial sensor coordinates, Vi € Sy, i = (x,y), where z € [0, d,] and
y € [0,dy];

number of initial sensors. It is the cardinal of S'S;

set of sensor coordinates, holding that the energy charge is greater than 0
and that there is any path to the sink node, both at time ¢ > 0, Ss(t) C S;;

90



5.2 Problem Formulation

ss(t) number of sensors, holding that the energy charge is greater than 0 and that
there is any path to the sink node, both at time ¢ > 0. It is the cardinal of
Ss(t), ss(t) < 3

tn network lifetime of the WSN based on the coverage threshold coyp;

wé(t) variable which provides the next device in the minimum path between i €
Ss(t) and the sink node at ¢ > 0, w§(t) € {Ss(t) U S, } +¢c—1;

26.(t) variable assuming 1 if i € S,(¢) is in the minimum path between j € S;(t)
and the sink node at ¢t > 0, and O otherwise.

5.1.2 Network Reliability

We assume that reliability is defined as in [81], where it is given according to the number of
disjoint paths between a given sensor and the sink node. Thus, given a sensor i € S, the
reliability re; of 7 is denoted as

djp§

re; =1— H (1 - (1= err)hi’c) ’

=1

where djp¢ is the number of disjoint paths between ¢ and the sink node, h?c is the number of
hops in the [-th disjoint path between both devices, and err is the local channel error. The
disjoint paths are calculated through Suurballe’s Algorithm [82]].

5.2 Problem Formulation

Let f; be the AEC of the sensors over the network lifetime. That is expressed as

Ee;(t)
Z ss(t)

, 5.1)

where fi; € R and both Fe;(t) and t,, are given by Equations (4.2) and (4.4), respectively.
Let f, be the ASA provided by the network, which is expressed as

tn

> A

f2 = T» (5.2)

where f> € [0, 1] and A(¢) is given by Equation (4.3).
Let f5 be the NR, showing the probability that the sensors successfully send information to

the sink node. That is
re;
= - 5.3
rey (5. 5

i€S,

where f3 € [0, 1] and re; is given by Equation (5.1.2).
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5. Solving the RNPP: three-objective Outdoor Approach

Table 5.1: Trade-off study among the fitness functions.

case fi f2 f3

#1 Increase  Decrease Increase
#2  Increase Increase Increase
#3 Decrease Decrease Decrease
#4  Decrease Increase Decrease

This way, we define the unconstrained outdoor RNPP as a three-objective optimisation prob-
lem, where given a previously-established traditional WSN, i.e. 5, sensors and a sink node, the
objective is to place 5, RNs by assuming an ST network model to

min(f1), max(f2), and max(f3),

subject to ~
VresS,, r=(z,y):x€0,d;]and y € [0,d,].

These objectives are related to three important problems in the WSN literature: i) Energy
efficiency problem [59]], whose aim is to reduce the energy cost, increasing the network lifetime
and balancing the energy distribution. ii) Coverage problem [60]], its purpose is to optimise the
amount and diversity of the information provided by the network. ii) Reliability problem [83]],
the objective is to deploy a reliable WSN, this means that the network is able to recover from
the failure of nodes, which is crucial to reduce maintenance costs. Although these problems
are widely considered in the literature, these objectives were not considered all together for the
deployment of ST-WSNss, applied to the unconstrained RNPP.

It is well-known that one fundamental requirement for a problem to be considered as an MO
optimisation problem is that the objectives should be conflicting [[L5]]. Other authors assumed
that both energy cost and coverage were conflicting objectives in WSNs [S5] [61] [62] [63]
[64], where [61] and [63] also tackled the connectivity issue. With the purpose of showing
that our definition of the RNPP is an MO problem, we analyse the trade-off among the fitness
functions in Table[5.1] where Increase implies that the value of the fitness function is increased
and Decrease otherwise. Note that Increase and Decrease are in boldface if the behaviour of
the fitness function fits with the purpose of the optimization problem, i.e. it appears in boldface
if the fitness function is increased for a maximisation problem or decreased for a minimisation
one, respectively.

According to this trade-off study, we find four different cases in which at least one of the
objectives is optimised:

e Case #1: on the basis of Eq. (5.3), a high reliability implies the existence of many
disjoint paths between the sink node and the sensors, which allows that the network is
able to recover from the collapse of nodes, avoiding that sensors having energy in their
batteries are disconnected from the WSN. This means that more sensors can send packets
over the network lifetime. As shown in Eq. (5.1, the energy consumption depends on
the number of packets sent by the sensors, including forwards. Hence, more sensors
implies more packets, increasing the energy cost. The average coverage is low due to the
coverage is decreasing slowly over the network lifetime. As detailed in Eq. (5.2), this
value depends on the number of sensors that can be connected to the sink node over the
lifetime. A bad distribution of the energy cost (which is high) could mean that the network
loses coverage. However, as the reliability is high, the other sensors can reach the sink
node and the coverage decreases slowly, instead of reaching the coy,.
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5.3 Description of the Dataset

Table 5.2: Main features of the data set by adding the third objective to the RNPP.

Instance name  Fitness values (5, = 0) Reference points (fi, f2, f3)
(dxxdy_rc) f1 fay f3 ideal nadir

50x50_30 0.0350 09175 0.9964 (0.02,1.00,1.00) (0.04,0.60,0.50)
100x100_30  0.1091 0.8924 0.9567 (0.02,1.00,1.00) (0.10,0.60,0.50)
200x200_30  0.2791 0.8710 0.9323 (0.10,1.00,1.00)  (0.30,0.60,0.50)
300x300_30  0.4225 0.7644 0.8528 (0.04,1.00,1.00) (0.50,0.60,0.50)

e Case #2: it is similar to the previous case. The difference is that the deployment of
the RNs is more efficient in energy terms, i.e. the energy distribution is homogeneous.
Consequently, the coverage is not decreasing slowly, instead the sensors are exhausted at
the same time, reaching the coyp,.

e Case #3: a network with a low reliability implies that sensors having energy can be dis-
connected from the WSN, because other sensors are exhausted. This situation decreased
the number of packets sent over the network lifetime, decreasing the energy cost. A bad
distribution of this energy cost means that the network loses sensors slowly, decreasing
the average coverage, as in case #1.

o Case #4: it is similar to #3. As in case #2, a better deployment of the RNs allows that
the energy distribution is homogeneous. Hence, the sensors are exhausted at the same
time, increasing the average coverage.

Analysing the behaviour of the fitness functions, we reach the following conclusions: we
cannot optimise an objective without degrading at least one of the other two, and on the other
hand, enhancing an objective does not necessarily imply that another is optimised. Thus, we
conclude that the objectives are in conflict. Hence, this is an MO optimisation problem.

5.3 Description of the Dataset

We consider the same dataset as described before in Section f.3] which is composed of four
scenarios, i.e. 50x50, 100x100, 200x200, and 300X300. In Figures #.2] .3 .4} and {.5]
we presented detailed information of such scenarios according to three criteria: main features,
deployment details, and energy charge distribution. Both deployment details and energy charge
distribution are the same for this new problem definition. However, this is not the case for
main features, specifically the fitness values without deploying RN, the reference points for
calculating the hypervolume metric, and the communication radius.

Table [3;2] shows this new information. Note that we only consider an 7. value of 30m, this
is because the number of disjoint paths for 60m is really high, and then NR is also high for all
the test cases. Consequently, it is not necessary to optimise this objective for 60m.

5.4 Solving the Problem

In this section, we expose the experimental results obtained, while solving the three-objective
RNPP through the MO metaheuristics. To this end, we consider the data set exposed in Section
[5.3]and five stop conditions based on the number of evaluations: 50 000, 100 000, 200 000, 300
000, and 400 000. This section is structured as follows. The algorithms are adjusted in Section
[5.4.1] A detailed statistical analysis based on the hypervolume metric is provided in Section
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Table 5.3: Parametric sweep.

NSGA-II
Parameter Selected Range
PSn 50 [25,50....,300]
param_cro, 0.80 [0.05,0.10,...,0.95]
param_mut, 0.80 [0.05,0.10,..., 0.95]
MO-FA
Parameter Selected Range
SPEA2 pss 100 [25,50,...,300]
Parameter Selected Range T ) 8?753 %88?,8%8, . ,832%
s Po 5 .05,0.10.,.....,0.
bss » 25.50......300] bl 0.60 [0.05.0.10,....0.95]
s param_how_scy 0.10 [0.05,0.10,...,0.95]
22?22:::;325 ggg {882:8 %8: :83% param_when_scy 0.25 [0.05,0.10....,0.95]
MO-VNS MO-GSA
Parameter Selected Range Parameter Selected Range
R " PSgsa 25 [25,50,...,300]
SZ;Z%Z?‘;"}Z” 3 [[41’52"3' ol 1;']] param_how_scys 0.20 [0.05,0.10,....,0.95]
- e param_when_scgsq 0.05 [0.05,0.10,...,0.95]
MO- *
P t S lO tV dN : R MOEA/D
arame er. N ¢ ;c) ¢ m Sange14] Parameter Selected Range
Baram ns. " 2 [1534.5] param_CHIMinc,, 130 [1.00,1.05,....,2.00]
pw‘am_perv 0.10 [0.05,0.10,...,0.95] param_crown, 0.015 [0.010,0.015....,0.050]
- param_neighy, 0.05 [0.05,0.10,...,0.95]
PATam_cropy, 0.15 [0.05,0.10,...,0.95]
param_mut,, 0.25 [0.05,0.10....,0.95]
MO-ABC
Parameter Selected Range
bSa 50 [25,50....,300]
param_Se, 0.25 [0.30,0.35,...,0.70]
param_limit, 15 [5,10,...,60]

[5.4.2] We study the convergence of the algorithms according to hypervolume in Section [5.4.3]
We analyse the results obtained through set coverage in Section[5.4.4] Pareto fronts obtained
are shown in Section[5.4.5] The impact of the optimisation on the fitness functions is discussed
in Section[5.4.6] Finally, comparisons to other approaches are included in Section[5.4.7]

5.4.1 Parametric Swap

As in the previous chapter, we consider the methodology exposed in Section 2.3.2 to adjust the
algorithms. To this end, we assume all the test cases, 50 000 evaluations, and the hypervolume
metric as quality indicator. The resulting configurations are in Table [5.3] Note that population
size parameters were also studied, not as in the previous approach (see Section[4.7.1).

5.4.2 Statistical Analysis Based on the Hypervolume Metric
Tables .

| and|5.6/show median hypervolume (Hp) and IQR for each algorithm, test case,
and stop condition, where higher hypervolumes obtained are shaded. As in the previous chapter,
these values were obtained by executing 31 independent runs for each metaheuristic and test
case. Analysing these tables, some algorithms seem to provide better performance than others.
However, we should determine if such differences are significant. To this end, we follow the
statistical methodology described in Section 2.3.1.

To this end, the fist step is to remove possible outliers from the hypervolume distributions.
Next, we determine if such hypervolumes follow a normal distribution or not. With this pur-
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Table 5.4: Median hypervolume metric for each test case and stop condition, where higher hiper-
volumes obtained are shaded by considering all the metaheuristics. Part 1 of 3.

NSGA-II(Hyp %, IQR)
Evaluations (Stop condition)
Instance(s,) 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 64.52%, 0.0000  64.52%, 0.0000 64.52%, 0.0000  64.52%, 0.0000  64.52%, 0.0000

100x100_30(2)  40.99%, 0.0052  41.28%, 0.0032  41.36%, 0.0033  41.47%, 0.0002  41.48%, 0.0002
100x100_30(3)  53.78%, 0.0040  54.18%, 0.0043  54.49%, 0.0026  54.60%, 0.0013  54.60%, 0.0015

200x200_30(2)  32.40%, 0.0125  33.01%, 0.0066 33.44%, 0.0063 33.58%, 0.0042  33.66%, 0.0036
200x200_30(4)  43.40%,0.0243  44.54%, 0.0257  45.53%, 0.0223  46.08%, 0.0217  46.41%, 0.0221
200x200_30(6)  54.07%, 0.0188  56.14%, 0.0220  57.43%, 0.0167  58.15%, 0.0200 58.58%, 0.0183
200x200_30(9)  63.42%, 0.0254  65.83%, 0.0232  68.04%, 0.0204  68.93%, 0.0123  69.48%, 0.0134

300x300_30(6)  30.03%, 0.0078  30.91%, 0.0081 31.40%, 0.0107 31.71%, 0.0098  31.90%, 0.0111
300x300_30(12) 33.09%, 0.0134  34.32%, 0.0164  35.32%, 0.0165 35.90%, 0.0186  36.37%, 0.0212
300x300_30(18) 34.66%, 0.0096 36.38%, 0.0171  37.67%, 0.0194  38.46%, 0.0201  38.92%, 0.0200
300x300_30(24) 37.55%,0.0126  38.88%, 0.0146  40.44%, 0.0173  41.30%, 0.0187  41.58%, 0.0167

SPEA2(Hyp %, IQR)
Evaluations (Stop condition)
Instance(s,) 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 64.52%, 0.0000  64.52%, 0.0000  64.52%, 0.0000  64.52%, 0.0000  64.52%, 0.0000

100x100_30(2)  41.18%, 0.0033  41.28%, 0.0030  41.45%, 0.0002  41.45%, 0.0002  41.46%, 0.0003
100x100_30(3)  54.05%, 0.0063  54.43%, 0.0033  54.71%, 0.0036  54.77%, 0.0047  54.87%, 0.0045

200x200_30(2)  32.54%,0.0090 33.03%, 0.0076  33.23%, 0.0068  33.38%, 0.0063  33.43%, 0.0061
200x200_30(4) 43.11%.0.0196  44.25%, 0.0283  45.34%, 0.0222  45.74%, 0.0176  46.00%, 0.0190

200x200_30(6)  54.71%,0.0199  56.72%, 0.0162  58.00%, 0.0197  58.71%,0.0177  59.17%, 0.0161
200x200_30(9)  64.93%. 0.0294  67.56%, 0.0242  69.21%, 0.0224  70.08%, 0.0138  70.62%, 0.0133

300x300_30(6)  30.37%,0.0132  31.21%, 0.0141  31.86%, 0.0139  32.20%, 0.0138  32.35%, 0.0148
300x300_30(12) 33.90%, 0.0145  35.25%, 0.0202  36.54%, 0.0121  37.23%, 0.0123  37.75%, 0.0130
300x300_30(18) 36.01%, 0.0154  37.81%, 0.0127  39.07%, 0.0145  39.84%, 0.0139  40.36%, 0.0167
300x300_30(24) 38.51%,0.0107 40.08%, 0.0123  41.77%, 0.0101 ~ 42.72%, 0.0137  43.31%, 0.0168

MO-VNS(Hyp %, IQR)
Evaluations (Stop condition)
Instance(s,) 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 64.58%, 0.0000  64.58%, 0.0001  64.59%, 0.0002  64.59%, 0.0001  64.60%, 0.0001

100x100_30(2)  41.73%, 0.0008  41.77%, 0.0004 | 41.81%, 0.0004 41.81%, 0.0003 41.82%, 0.0002
100x100_30(3)  54.87%, 0.0053 | 55.19%, 0.0025 55.45%, 0.0053  55.55%, 0.0057  55.59%, 0.0060

200x200_30(2)  31.98%, 0.0334  33.18%, 0.0173  34.41%, 0.0180  35.37%, 0.0066  35.84%, 0.0031
200x200_30(4) 41.94%, 0.0255 43.76%, 0.0224  45.09%, 0.0281  45.60%, 0.0280  46.05%, 0.0354
200x200_30(6)  52.49%, 0.0543  54.94%, 0.0407 57.05%, 0.0323  58.10%, 0.0186  58.74%, 0.0155
200x200_30(9)  63.30%, 0.0331  65.41%, 0.0306  67.30%, 0.0311  68.39%, 0.0278  69.13%, 0.0239

300x300_30(6)  30.37%, 0.0103  30.97%, 0.0132 31.61%, 0.0121  31.97%, 0.0124  32.18%, 0.0106
300x300_30(12) 34.06%, 0.0185 35.13%, 0.0161  36.08%, 0.0154  36.75%, 0.0194  37.13%, 0.0149
300x300_30(18)  36.62%,0.0143  37.80%, 0.0119  38.95%, 0.0116  39.58%, 0.0123  40.09%, 0.0116
300x300_30(24) 39.59%, 0.0138  40.96%, 0.0129  42.20%, 0.0123  42.90%, 0.0104  43.45%, 0.0111
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Table 5.5: Median hypervolume metric for each test case and stop condition, where higher hiper-
volumes obtained are shaded by considering all the metaheuristics. Part 2 of 3.

MO-VNS*(Hyp %, IQR)
Evaluations (Stop condition)
Instance(s,) 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 64.60%, 0.0002  64.61%, 0.0001  64.62%, 0.0002  64.62%, 0.0001 | 64.63%, 0.0001

100x100_30(2)  41.75%, 0.0005 41.79%, 0.0004 41.81%, 0.0003 41.81%, 0.0002 41.82%, 0.0001
100x100_30(3) = 54.96%, 0.0062 55.17%, 0.0039 = 55.45%, 0.0071  55.56%, 0.0063  55.61%, 0.0065

200x200_30(2)  31.76%, 0.0451  34.00%, 0.0078  34.60%, 0.0180  35.22%, 0.0149  35.49%, 0.0135
200x200_30(4)  42.81%,0.0232  44.38%, 0.0284  45.24%,0.0245  45.78%, 0.0213  46.14%, 0.0198
200x200_30(6)  54.27%, 0.0300  56.20%, 0.0192  56.80%, 0.0208  57.13%, 0.0219  57.47%, 0.0208
200x200_30(9)  63.48%, 0.0225 64.30%, 0.0198  65.33%, 0.0143  65.87%, 0.0195  66.45%, 0.0179

300x300_30(6)  30.39%, 0.0067 30.93%, 0.0105  31.23%, 0.0082  31.34%, 0.0079  31.40%, 0.0079
300x300_30(12) 33.88%, 0.0110  34.56%, 0.0113  35.31%,0.0110  35.68%, 0.0096  35.83%, 0.0099
300x300_30(18) 37.04%, 0.0101  37.83%, 0.0107 38.48%, 0.0080 38.77%, 0.0066  39.01%, 0.0078
300x300_30(24) 40.14%, 0.0159  40.85%, 0.0126  41.48%, 0.0099  41.79%, 0.0084  41.95%, 0.0068

MO-ABC(Hyp %, IQR)
Evaluations (Stop condition)
Instance(s,) 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 64.60%, 0.0000  64.60%, 0.0000 64.60%, 0.0000 64.60%, 0.0000 64.60%, 0.0001

100x100_30(2)  41.40%, 0.0068  41.40%, 0.0053  41.50%, 0.0055 41.50%, 0.0049  41.50%, 0.0048
100x100_30(3)  54.70%, 0.0070  55.00%, 0.0082  55.10%, 0.0098  55.10%, 0.0099  55.10%, 0.0099

200x200_30(2)  32.40%, 0.0103  32.70%, 0.0105  32.80%, 0.0079  32.90%, 0.0082  32.90%, 0.0083
200x200_30(4)  39.80%, 0.0289  40.70%, 0.0230  41.40%, 0.0246  41.40%, 0.0256  41.40%, 0.0256
200x200_30(6)  47.00%, 0.0509  49.20%, 0.0429  50.80%, 0.0430  51.00%, 0.0426  51.20%, 0.0413
200x200_30(9)  60.20%, 0.0443  62.30%, 0.0426  63.30%, 0.0337  63.50%, 0.0403  63.70%, 0.0408

300x300_30(6)  30.00%, 0.0103  31.00%, 0.0142  31.50%, 0.0110  31.70%, 0.0108  31.80%, 0.0127
300x300_30(12)  34.80%, 0.0150  36.50%, 0.0136 ~ 37.70%, 0.0115  38.20%, 0.0119  38.40%, 0.0118
300x300_30(18)  39.20%, 0.0130  41.10%, 0.0136  42.60%, 0.0120  43.50%, 0.0145  44.00%, 0.0118
300x300_30(24) 42.90%, 0.0164  44.90%, 0.0127  46.80%, 0.0114  47.70%, 0.0115  48.30%, 0.0121

MO-FA(Hyp %, IQR)
Evaluations (Stop condition)
Instance(s,) 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 64.63%, 0.0000  64.63%, 0.0000 64.63%, 0.0000 64.63%,0.0000 64.63%, 0.0000

100x100_30(2)  41.66%,0.0013  41.71%, 0.0010  41.75%, 0.0005  41.77%, 0.0003  41.78%, 0.0004
100x100_30(3)  54.79%, 0.0055 | 55.19%, 0.0013  55.29%, 0.0011  55.35%, 0.0014  55.38%, 0.0014

200x200_30(2)  35.05%, 0.0155 35.57%, 0.0049 35.98%, 0.0019 36.00%, 0.0020  36.06%, 0.0019
200x200_30(4)  43.65%, 0.0272  44.58%,0.0231  45.21%,0.0162  45.56%, 0.0117  45.91%, 0.0173
200x200_30(6)  55.22%, 0.0346  56.54%, 0.0383  57.89%, 0.0358  58.38%, 0.0409  58.96%, 0.0358
200x200_30(9)  65.87%, 0.0400 67.83%, 0.0269  69.82%, 0.0250 70.50%, 0.0239  70.94%, 0.0261

300x300_30(6)  30.28%, 0.0130 = 31.39%, 0.0202  32.59%, 0.0251  32.90%, 0.0173  33.02%, 0.0168
300x300_30(12)  34.63%, 0.0228  36.24%, 0.0238  37.76%, 0.0215  38.25%, 0.0192 = 39.17%, 0.0064
300x300_30(18) 37.97%, 0.0188  39.63%, 0.0187 41.18%,0.0190 41.90%, 0.0189  42.54%, 0.0196
300x300_30(24) 40.83%, 0.0313  42.88%, 0.0207 44.35%,0.0200 45.13%, 0.0217  45.59%, 0.0176
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Table 5.6: Median hypervolume metric for each test case and stop condition, where higher hiper-
volumes obtained are shaded by considering all the metaheuristics. Part 3 of 3.

MO-GSA (Hyp %, IQR)

Evaluations (Stop condition)

100 000

200 000

300 000

400 000

Instance(S,) 50 000

50x50_30(1) 64.56%, 0.0000
100x100_30(2)  39.70%, 0.0090
100x100_30(3)  52.40%, 0.0074

200x200_30(2)
200x200_30(4)

32.53%, 0.0104
41.03%, 0.0178

200x200_30(6)  50.75%, 0.0368
200x200_30(9)  61.53%, 0.0253
300x300_30(6)  29.05%, 0.0090

300x300_30(12)
300x300_30(18)
300x300_30(24)

33.49%, 0.0131
37.57%, 0.0214
42.37%, 0.0313

64.56%, 0.0000

40.24%, 0.0082
53.15%, 0.0070

32.82%, 0.0095
42.97%, 0.0268
52.58%, 0.0264
63.79%, 0.0196

29.82%, 0.0105
34.74%, 0.0118
38.85%, 0.0193
44.51%, 0.0248

64.56%, 0.0000

40.77%, 0.0058
53.75%, 0.0040

33.21%, 0.0062
44.66%, 0.0151
55.82%, 0.0151
67.15%, 0.0210

30.81%, 0.0095
36.40%, 0.0115
41.62%, 0.0208
47.76%, 0.0220

64.56%, 0.0000

41.08%, 0.0046
54.05%, 0.0041

33.50%, 0.0047
45.62%, 0.0136
57.24%, 0.0176
69.10%, 0.0215

31.27%, 0.0071
37.68%, 0.0097
43.18%, 0.0241
49.86%, 0.0184

64.56%, 0.0000

41.21%, 0.0041
54.18%, 0.0028

33.59%, 0.0058
45.96%, 0.0136
57.98%, 0.0142
69.64%, 0.0201

31.47%, 0.0077
38.00%, 0.0092
43.72%, 0.0213
50.33%, 0.0132

MOEA/D(Hyp %, IQR)

Instance(S,)

Evaluations (Stop condition)

50 000

100 000

200 000

300 000

400 000

50x50_30(1)

100x100_30(2)
100x100_30(3)

200x200_30(2)

200x200_30(6)
200x200_30(9)

300x300_30(6)
300x300_30(12)
300x300_30(18)
300x300_30(24)

64.62%, 0.0001

41.07%, 0.0027
54.82%, 0.0047

32.32%, 0.0180
43.85%, 0.0451
57.48%, 0.0160
69.60%, 0.0167

30.54%, 0.0057
36.39%, 0.0152
40.53%, 0.0257
45.09%, 0.0202

64.62%, 0.0000

41.20%, 0.0021
55.12%, 0.0046

32.76%, 0.0186
44.82%, 0.0383
58.62%, 0.0155
70.96%, 0.0163

31.25%, 0.0077
37.56%, 0.0174
42.22%, 0.0266
47.51%, 0.0187

64.63%, 0.0000

41.31%, 0.0016
55.36%, 0.0063

33.27%, 0.0147
46.18%, 0.0234
59.56%, 0.0192
72.16%, 0.0177

31.82%, 0.0074
38.48%, 0.0174
43.92%, 0.0219
49.82%, 0.0242

64.63%, 0.0000

41.35%, 0.0015
55.42%, 0.0069

33.54%, 0.0116
46.72%, 0.0213
60.01%, 0.0180
72.87%, 0.0155

32.08%, 0.0069
38.85%, 0.0159
44.74%, 0.0168
51.04%, 0.0308

64.63%, 0.0000

41.39%, 0.0010
55.48%, 0.0068

33.71%, 0.0127
46.69%, 0.0198
60.38%, 0.0171
73.35%, 0.0150

32.26%, 0.0053
39.11%, 0.0154
45.21%, 0.0178
51.75%, 0.0275

Table 5.7: Algorithms providing the best significant performance for each test case and stop condi-
tion, based on the hypervolume metric and the Wilcoxon-Mann-Whitney’s test.

Evaluations (Stop condition)

Instance(,) 50 000 100 000 200 000 300 000 400 000
50x50(1) FA FA FA FA FA
100x100(2) VNS, VNS* VNS, VNS* VNS, VNS* VNS, VNS* VNS, VNS*
100x100(3) FA VNS, ABC,FA, MOEA/D,VNS, VNS, VNS* VNS, VNS*
VNS* MOEA/D VNS,VNS* VNS*
200x200(2) FA FA FA FA FA
200x200(4)  MOEA/D,FA, MOEA/D,FA,VNS*, MOEA/D,VNS*, MOEA/D,VNS*, MOEA/D,VNS,
NSGA-ILSPEA2  NSGA-ILSPEA2 =~ NSGA-ILSPEA2 NSGA-II VNS* NSGA-II
200x200(6) MOEA/D,FA MOEA/D,FA MOEA/D,FA MOEA/D,FA MOEA/D,FA
200x200(9) MOEA/D MOEA/D MOEA/D MOEA/D MOEA/D
300x300(6) FA,VNS, ABC.FA, FA FA FA
VNS* SPEA2 VNS*SPEA2
300x300(12) MOEA/D MOEA/D MOEA/D,FA MOEA/D,FA MOEA/D,FA
300x300(18) MOEA/D MOEA/D MOEA/D MOEA/D MOEA/D
300x300(24) MOEA/D MOEA/D MOEA/D MOEA/D MOEA/D
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pose, we consider both Kolmogorov-Smirnov-Lilliefor’s [67] and Shapiro-Wilk’s [68]] tests with
hypothesis Hy: data follow a normal distribution and H;: data do not follow a normal distri-
bution. Since all the p-values obtained were lower or equal than 0.05, we cannot assume H.
Consequently, hypervolume distributions are not modelled under a normal distribution and we
should consider the median and IQR as average value and statistical dispersion metric, respect-
ively. As expected, Tables[5.4] [5.5] and[5.6| were developed after performing this study.

The next step is to analyse if there are significant differences among the algorithms. To this
end, as samples are independent and data do not follow a normal distribution, we consider the
Wilcoxon-Mann-Whitney’s [69] test with hypothesis Ho: Hyp; < Hyp; and Hy: Hyp; >
Hyp;, with i,j = 1,2,...,8, 1=NSGA-II, 2=SPEA2, 3=MO-VNS, 4=MO-VNS*, 5=MO-
ABC, 6=MOFA, 7=MO-GSA, and 8=MOEA/D. MO-VNS is the algorithm without perturbation
mechanism and MO-VNS* includes this procedure. The p-values obtained are in Section|C.I|of
Appendix [C] specifically in Tables|C.1] [C.2] [C.3] [C.4] and [C.5]

According to these p-values and a significance level of 0.05, Table shows which al-
gorithms provide the best significant performance for each study case, i.e. a test case and a stop
condition. As stated in Section[d.7.2] it is possible that two algorithms appear in a same cell of
this table, meaning that there are not significant differences among them, but they are significant
better than the remaining ones. Note that in this table, the name of some of the metaheuristics
was shortened to reduce the size of the table. This way, MO-ABC, MO-GSA, MO-FA, MO-
VNS, and MO-VNS* were renamed to ABC, GSA, FA, VNS, and VNS*, respectively.

In addition to identify which algorithms provide the best significant performance for each
study case, it is also interesting to determine which metaheuristics provide the best average
behaviour attending to the instance size. To this end, we compare the algorithms two by two
in Table showing the percentage of study cases in which the metaheuristics are better and
worse than others. Note that average values in Percentage field are shaded from darker to lighter
tone, i.e. from better to worse average behaviour.

Analysing this table, we note that MO-FA provides the best behaviour for 50x50 instances,
followed by MOEA/D and MO-ABC. For 100x100 instances, we check that MO-VNS provides
the best behaviour, followed by MO-VNS* and MO-FA. In case of 200x200 instances, MO-
FA is the best algorithm, followed by MO-VNS* and MO-FA. For 300x300 instances, we find
that MO-FA is the best algorithm, followed by MOEA/D and MO-ABC. Regarding all the in-
stances, we reach that MO-FA is the algorithm providing the best average behaviour, followed
by MOEA/D and MO-VNS.

According to this analysis, we conclude that MO-FA is the best algorithm in average term.
However and based on the instance size, we recommend to consider MO-FA for small and
large instances, i.e. 50x50, 200x200, and 300x300 instances, and MO-VNS for medium size
instances, i.e. 100x100 instances. Thus, we notice that MO-FA is good to explore large search
spaces, such as 200x200 and 300x300 instances, and MO-VNS is good for medium size search
spaces (100x100 instances) because of neighbouring search procedures. The exception is for
small search spaces (50x50 instances), where most of the algorithms reach solutions near to the
optimal, falling into local optima. In such a case, MO-FA is able to avoid this situation.

5.4.3 Convergence Study Based on the Hypervolume Metric

Figures [5.3] and [5.4] show a convergence study based on the hypervolume metric. We note that
most of the algorithms have an homogeneous grown over stop conditions and an asymptotic
trend for 400 000 evaluations. This means that the set of stop conditions is representative to
analyse the behaviour of the algorithms, as discussed before in Section
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Table 5.8: Based on the hypervolume metric. percentage of test cases in which the metaheuristics
are significant better and worse. for all the test cases. 50x50 instances. 100x100 instances. 200x200
instances. and 300x300 instances.

A is worse than B (all the instances)
A\B MOEA/D MO-FA MO-VNS* MO-ABC NSGA-II SPEA2 MO-VNS MO-GSA Percentage

A is better than B

MOEA/D 0.00% 0.76% 1.20% 1.48% 1.40% 1.52% 1.36% 2.00% 9.74%
MO-FA 0.92% 0.00% 1.56% 1.36% 1.96% 1.72% 1.56% 2.52%
MO-VNS* 0.48% 0.28% 0.00% 1.12% 1.12% 0.88% 0.40% 1.12% 5.41%
MO-ABC 0.28% 0.40% 0.76% 0.00% 1.20% 1.20% 0.80% 1.00% 5.65%
NSGA-II 0.24% 0.00% 0.36% 0.76% 0.00% 0.16% 0.04% 1.12% 2.68%
SPEA2 0.32% 0.00% 0.80% 0.92% 1.28% 0.00% 0.40% 1.16% 4.89%
MO-VNS 0.48% 0.32% 0.76% 1.16% 1.40% 0.92% 0.00% 1.32% 6.37%
MO-GSA 0.00% 0.28% 0.60% 0.84% 0.80% 0.64% 0.48% 0.00% 3.65%
Percentage 272% 20a%m  6.05% 7.65% 9.17% 7.05% 5.05% 10.26% 100.00%
A is worse than B (50x50 instances)
A\B MOEA/D MO-FA MO-VNS* MO-ABC NSGA-II SPEA2 MO-VNS MO-GSA Percentage
= MOEA/D 0.00% 0.00% 1.53% 0.76% 1.91% 1.91% 1.91% 1.91% 9.92%
£ MO-FA 1.91% 0.00% 1.91% 1.91% 1.91% 1.91% 1.91% 1.91%
£ MO-VNS* 0.00% 0.00% 0.00% 0.00% 1.91% 1.91% 1.91% 1.91% 7.63%
=~ MO-ABC 0.76% 0.00% 1.15% 0.00% 1.91% 1.91% 1.91% 1.91% 9.54%
£ NSGA-II 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
2 SPEA2 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
o MO-VNS 0.00% 0.00% 0.00% 0.00% 1.91% 1.91% 0.00% 1.91% 5.73%
< MO-GSA 0.00% 0.00% 0.00% 0.00% 1.91% 1.91% 0.00% 0.00% 3.82%
Percentage 2.67% [H000% N  4.58% 2.67% 1145%  11.45% 7.63% 9.54% 100.00%
A is worse than B (100x100 instances)
A \B MOEA/D MO-FA MO-VNS* MO-ABC NSGA-II SPEA2 MO-VNS MO-GSA Percentage
= MOEA/D 0.00% 0.00% 0.00% 0.42% 1.05% 1.05% 0.00% 2.10% 4.62%
£ MO-FA 1.26% 0.00% 0.00% 1.05% 2.10% 2.10% 0.00% 2.10% 8.61%
£ MO-VNS* 1.47% 1.47% 0.00% 1.68% 2.10% 2.10% 0.00% 2.10% 10.92%
=~ MO-ABC 1.05% 0.00% 0.00% 0.00% 2.10% 2.10% 0.00% 2.10% 7.35%
£ NSGA-II 0.63% 0.00% 0.00% 0.00% 0.00% 0.42% 0.00% 2.10% 3.15%
2 SPEA2 0.63% 0.00% 0.00% 0.00% 1.05% 0.00% 0.00% 2.10% 3.78%
o MO-VNS 1.68% 1.68% 0.00% 1.89% 2.10% 2.10% 0.00% 2.10%
< MO-GSA 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Percentage 6.72% 3.15% [PN000% T 5.04% 10.50% 9.87% 0007 14.71% 100.00%
A is worse than B (200x200 instances)
A\B MOEA/D MO-FA MO-VNS* MO-ABC NSGA-II SPEA2 MO-VNS MO-GSA Percentage
= MOEA/D 0.00% 0.88% 1.38% 2.25% 1.25% 1.63% 1.75% 1.88% 11.00%
£ MO-FA 0.88% 0.00% 1.88% 2.50% 1.88% 1.25% 2.00% 2.13%
£ MO-VNS* 0.50% 0.00% 0.00% 2.38% 0.50% 0.50% 0.38% 1.25% 50%
= MO-ABC 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
£ NSGA-II 0.00% 0.00% 0.75% 2.38% 0.00% 0.25% 0.13% 1.63% 5.13%
2 SPEA2 0.00% 0.00% 1.00% 2.38% 1.00% 0.00% 1.00% 1.63% 7.00%
o MO-VNS 0.50% 0.00% 0.75% 2.38% 0.50% 0.50% 0.00% 1.50% 6.13%
< MO-GSA 0.00% 0.00% 0.38% 2.25% 0.00% 0.13% 0.00% 0.00% 2.75%
Percentage 1.88% OIB8%M 6.13% 16.50% 5.13% 4.25% 5.25% 10.00% 100.00%
A is worse than B (300x300 instances)
A\B MOEA/D MO-FA MO-VNS* MO-ABC NSGA-II SPEA2 MO-VNS MO-GSA Percentage
= MOEA/D 0.00% 1.25% 1.57% 1.57% 1.57% 1.57% 1.57% 2.09% 11.17%
£ MO-FA 0.52% 0.00% 1.98% 0.42% 1.98% 1.88% 1.88% 3.24%
£ MO-VNS* 0.10% 0.00% 0.00% 0.10% 0.94% 0.31% 0.21% 0.31% 98%
=~ MO-ABC 0.00% 1.04% 1.67% 0.00% 1.57% 1.57% 1.57% 1.04% 8.46%
£ NSGA-II 0.31% 0.00% 0.31% 0.00% 0.00% 0.00% 0.00% 0.52% 1.15%
2 SPEA2 0.52% 0.00% 1.25% 0.42% 1.98% 0.00% 0.21% 0.63% 5.01%
o MO-VNS 0.00% 0.00% 1.36% 0.10% 1.67% 0.42% 0.00% 0.63% 4.18%
< MO-GSA 0.00% 0.73% 1.25% 0.31% 1.57% 1.04% 1.25% 0.00% 6.16%
Percentage 67 3.03% 9.39% 2.92% 11.27% 6.78% 6.68% 8.46% 100.00%
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Figure 5.1: Convergence study based on the hypervolume metric. Part 1 of 2.
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Figure 5.2: Convergence study based on the hypervolume metric. Part 2 of 2.
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5. Solving the RNPP: three-objective Outdoor Approach

As noticed in Section MO-GSA is the algorithm having an uneven trend, because
of the way of working of this metaheuristic, e.g. in 100x100_30(2), 100x100_30(3), and
200x200_30(6). On the other hand, both MO-VNS and MO-VNS* show an uneven trend in
200x200_30(2), but only in this test case.

As discussed before, MO-FA and MOEA/D show a similar behaviour for large instances,
being MO-FA the best in average term. Analysing this convergence study, MOEA/D seems to
provide a better behaviour than MO-FA, when the number of RN is increased in such instances.
For example in 200x200_30(9), 300x300_30(18) and 300x300_30(24).

From this convergence study, we can conclude that the stop conditions are representative
to analyse the algorithms, the three better metaheuristics for all the instances (MO-FA, MO-
VNS, and MOEA/D) show an homogeneous grown over stop conditions, and MOEA/D seems
to outperform MO-FA in large instances, when the number of RNs is increased.

5.4.4 Set Coverage Analysis

In addition to hypervolume, we consider set coverage to analyse the behaviour of the algorithms.
Table shows the set coverage metric, comparing the metaheuristics two by two for all the
instances, 50x50 instances, 100x100 instances, 200x200 instances and 300x300 instances. The
Percentage field of this table shows the average set coverage regarding all other metaheuristics,
where better values are shaded from darker to lighter tone.

As stated in Section [4.7.4] the set coverage is calculated by assuming the median Pareto
fronts from the distribution of 31 samples. Note that the set coverage values shown in the table
are the average metric for all the stop conditions, full values are in Section [C.2]of Appendix [C]
specifically in Tables [C.6] [CL[C.9 and[C.1I0]

Analysing Table[5.9] we reach that MO-VNS* is the best algorithm for 50x50 instances, fol-
lowed by MOEA/D and MO-ABC. For 100x100 instances, MO-VNS is the algorithm providing
the best results, followed by MO-VNS* and MO-FA. In case of 200x200 instances, MO-FA is
the best algorithm, followed by MOEA/D and SPEA2. For 300x300 instances, MO-FA is the
best algorithm, followed by MOEA/D and MO-ABC. Finally, for all the instances, MO-FA is
the algorithm providing the best behaviour, followed by MOEA/D and MO-VNS.

From this analysis, we notice that the conclusions obtained through hypervolume in Section
[5.4.2] are similar to the obtained here by set coverage.

5.4.5 Median Pareto Fronts

Figures [5.3]and [5.4] show the median Pareto fronts obtained for 400 000 evaluations. Analysing
these fronts, we reach similar conclusions as notice with hypervolume and set coverage. We do
not include attainment surface due to this representation is not really clear for three objectives
while comparing several fronts.

As stated for the bi-objective approach, we note that the distribution of the points in the ob-
jective space is not homogeneous, i.e. we find zones which were not covered by any algorithm.
This could mean that the problem is not continuous.

As discussed before for hypervolume and set coverage, in case of 50x50_30(1), all the al-
gorithms provide a similar behaviour because of the instance size. This way, we check that all
the points are almost overlapped in this representation. On the other hand, we note that as the
test case is harder, the number of points in such representation is greater.
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Table 5.9: Average set coverage metric among all the metaheuristics, for all the instances, 50x50
instances, 100x100 instances, 200x200 instances, and 300x300 instances.

A dominates B (all the test cases)

A\B NSGA-II SPEA2 MO-VNS MO-VNS* MO-ABC MO-FA MO-GSA MOEA/D Percentage
NSGA-1II HHHHE 52,99% 13,42% 27,35% 17,18% 7,74% 53,46% 38,84% 30,14%
SPEA2 74,74% HitHHE 20,90% 30,64% 21,42% 12,68%  57,70% 40,18% 36,89%
MO-VNS 73,88% 65,02% HHHHH 52,55% 49,40% 35,07% 80,10% 69,61% 60,81%
MO-VNS*  63,20% 60,78% 36,22% HHHHH 53,27% 38,79%  71,61% 67,78% 55,95%
MO-ABC 65,72% 59,80% 30,54% 35,09% HiHHHE 2542%  56,74% 44,93% 45,46%
MO-FA 82,58% 78,65% 50,81% 51,26% 60,35% HHHHH 78.,83% 79,09%

MO-GSA 32,67% 31,00% 13,46% 21,20% 19,67% 15,52% HHHHE 40,72% 24,89%
MOEA/D 35,35% 32,25% 10,58% 14,13% 21,70% 6,22% 25,38% HiHHHH 20,80%

A is dominated by B

Percentage  61,16%  54,36% [12513% 0 33,18%  3471% [MRORIGAN 60.55%  54,45%

A dominates B (50x50 test cases)

A \B NSGA-II. SPEA2 MO-VNS MO-VNS* MO-ABC MO-FA MO-GSA MOEA/D Percentage
NSGA-II HiHHHH 100,00% 0,00% 7,55% 5,00% 2,04% 43,43% 2,13% 22,88%
SPEA2 100,00% HHHHHE 0,00% 7,55% 5,00% 2,04% 43,43% 2,13% 22,88%
MO-VNS 100,00%  100,00% HHHHH 39,87% 65,45% 47,69% 98,99% 94,68% 78,10%
MO-VNS*  80,17% 80,08% 51,37% HHHHH 87,50% 75,51% 98,99% 82,98%

MO-ABC 90,72% 90,68% 12,33% 16,98% HHHHE 10,20% 72,73% 34,04% 46,81%
MO-FA 100,00%  100,00%  41,78% 30,19% 92,50% HHHHH 96,97% 93,62% 79,29%
MO-GSA 51,13% 49,17% 0,34% 0,33% 7,27% 0,71% HitHHE 35,11% 20,58%
MOEA/D 90,72% 90,68% 1,71% 20,75% 57,50% 6,12% 32,32% HHAHE 42,83%

A is dominated by B

Percentage  87.53%  87,23% [NISBOYNN 17:60% 0 4575% | 20,62%  69.55%  49.24%

A dominates B (100x100 test cases)

A\B NSGA-II. SPEA2 MO-VNS MO-VNS* MO-ABC MO-FA MO-GSA MOEA/D Percentage
NSGA-II HHHEHE 64,70% 14,17% 1,49% 16,97% 6,14% 75,17% 43,87% 31,79%
SPEA2 70,89% HiHHH 7,46% 0,37% 18,33% 6,39% 72,90% 47,39% 31,96%
MO-VNS 70,85% 76,75% HiHHH 40,96% 61,24% 42,27% 89,21% 88,83% 67,16%
MO-VNS*  93,48% 96,69% 42,70% HHHHH 63,03% 52,46% 96,61% 88,94%

MO-ABC 54,64% 51,45% 17,51% 11,59% i 14,76% 53,46% 58,42% 37,40%
MO-FA 80,76% 82,72% 42,66% 29,85% 56,21% HHHH 94,55% 81,39% 66,88%
MO-GSA 5,18% 15,68% 7,58% 5,08% 24,51% 0,13% HHHHHE 44,44% 14,66%
MOEA/D 18,07% 16,58% 6,47% 1,27% 3,64% 1,90% 30,96% HHHHHH 11,27%

A is dominated by B

Percentage  5627%  57,79% | 19,79% [NIZNOATAEE 34.85% [ITI2% 7327%  64,75%

A dominates B (200x200 test cases)

A \B NSGA-II SPEA2 MO-VNS MO-VNS* MO-ABC MO-FA MO-GSA MOEA/D Percentage

= NSGA-II HittH 33,07% 15,00% 40,22% 43,33% 3,18% 66,63% 66,67% 38,30%
& SPEA2 59,94% #itHHE 34,04% 38,79% 51,12% 5,21% 79,86% 66,03% 47,86%
= MO-VNS 67,71% 44,72% HitHHHE 56,96% 47,84% 23,42% 85,65% 54,94% 54,46%
2 MO-VNS*  47,13% 49.91% 27,72% HitHHHE 56,65% 9,60% 61,78% 60,37% 44.74%
£ MO-ABC 34,18% 23,19% 27,18% 26,70% fiiiaiad 9,06% 52,68% 37,44% 30,06%
‘'E MO-FA 84,58% 88,46% 56,53% 73,07% 78,95% HitHHE 75,48% 88,21%

S MO-GSA 17,13% 10,21% 3,39% 18,97% 13,46% 15,71% it 31,51% 15,77%
© MOEA/D 8,35% 12,42% 10,70% 17,80% 14,60% 0,00% 29,91% HitHH 13,40%
<

Percentage  45,57% 37,43% 24,94% 38,93% 43,71% 967 64.57% 57,88%

A dominates B (300x300 test cases)

A \B NSGA-II. SPEA2 MO-VNS MO-VNS* MO-ABC MO-FA MO-GSA MOEA/D Percentage
NSGA-II HHHH 14,21% 24,52% 60,15% 3,42% 19,59% 28,61% 42,70% 27,60%
SPEA2 68,12% HHHHE 42,08% 75,86% 11,21% 37,09% 34,62% 45,18% 44,88%
MO-VNS 56,98% 38,63% HHHHH 72,42% 23,06% 2690%  46,57% 39,99% 43,51%
MO-VNS*  32,01% 16,45% 23,08% HHHHH 5,91% 17,59% 29,07% 38,85% 23,28%
MO-ABC 83,35% 73,88% 65,13% 85,11% HHHHE 67,65%  48,10% 49,81%

MO-FA 64,98 % 43,42% 62,28% 71,92% 13,76% HiHHHH 48,30% 53,16% 12%
MO-GSA 57,24% 48,94% 42,52% 60,44% 33,42% 45,52% HHHHH 51,83% 48,56%
MOEA/D 24,26% 9,31% 23,44% 16,71% 11,08% 16,87% 8,33% HHHHH 15,71%

A is dominated by B

Percentage  55.28%  34.98%  4044% = 6323% |[EEESSYEEN3303%0 34.80% 4593%
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Figure 5.3: Convergence study based on the hypervolume metric. Part 1 of 2.
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Figure 5.4: Convergence study based on the hypervolume metric. Part 2 of 2.

5.4.6 Impact of the Optimisation on the Fitness Functions

In this subsection, we analyse the impact of deploying RNs to traditional WSNs. Table [5.10]
shows the extreme values obtained by MO-FA for 400 000 evaluations. Each extreme value is
associated with the quality metrics I and /g . Both were discussed in Section

According to this table, AEC is decreased up to 63.54% in 200x200_30(9), ASA is increased
up to 16.36% in 300x300_30(24), and NR is increased up to 10.20% in 300x300_30(24). We no-
tice that higher efficiency values are often obtained by assuming a reduced number of RNs. This
way, the highest efficiency for AEC is 33.31% in 50x50_30(1), 2.64% for ASA in 300x300_-
30(6), and 1.56% for NR in 100x100_30(2).

In conclusion, the addition of RNs seems to be a good way to optimise traditional WSNss,
checking as AEC, ASA, and NR can be successfully optimised. However, the efficiency could
be reduced if many RNs are deployed.
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Table 5.10: Studying the extreme values of the median Pareto front obtained by MO-FA for 400 000 evaluations.

Instance(S,)

50x50_30(1)

100x100_30(2)
100x100_30(3)

200x200_30(2)
200x200_30(4)
200x200_30(6)
200x200_30(9)

300x300_30(6)

300x300_30(12)
300x300_30(18)
300x300_30(24)

max(f; : AEC) min(f; : AEC) max(fs : ASA) min(fs : ASA) max(fs : NR) min(f; : NR)

value I(;,IEF value I(; vIEF value I(;,IEF value I(;,IEF value I(;,IEF value I(;,IEF

0.0302 -14.39%,-14.39% 0.0235 -33.31%,-33.31% 92.07%  0.35%,0.35%  88.98% -3.02%,-3.02% 99.93%  0.29%,0.29%  99.86% 0.22%,0.22%
0.0712  -34.72%,-17.36% 0.0563  -48.38%,-24.19% 91.56%  2.60%,1.30%  87.34% -2.13%,-1.06% 98.65%  3.11%,1.56%  98.06% 2.50%,1.25%
0.0572  -47.54%,-15.85% 0.0430  -60.63%,-20.21% 91.61%  2.66%.,0.89%  82.40% -7.66%,-2.55% 99.21%  3.710%,1.23%  98.18% 2.63%,0.88%
02381  -14.71%,-7.35%  0.1874 -32.87%,-16.44% 88.79%  1.94%,097%  85.46% -1.88%,-094% 94.91% 1.81%,090%  94.00% 0.83%,0.41%
02514 -9.92%,-2.48%  0.1631 -41.57%,-10.39% 89.44%  2.69%,0.67%  85.18% -2.21%,-0.55% 95.73%  2.68%,0.67%  94.40% 1.26%,0.31%
0.2075  -25.64%,-427%  0.1257  -54.96%,-9.16%  90.01%  3.34%,0.56%  86.39% -0.82%,-0.14% 96.52%  3.53%,0.59%  94.58% 1.44%,0.24%
0.2085  -25.29%,-2.81%  0.1018  -63.54%,-7.06%  90.67%  4.09%,0.45%  85.61% -1.71%,-0.19% 97.07%  4.12%,0.46%  95.18% 2.09%,0.23%
03474 -17.79%,-2.96%  0.2306  -45.41%,-7.57%  88.57% 15.86%,2.64% 78.20%  2.31%,0.38% 9133%  7.09%,1.18%  85.95% 0.79%,0.13%
0.3218  -23.84%,-1.99%  0.1962  -53.57%,-4.46%  88.73% 16.08%,1.34% 77.97%  2.00%,0.17%  92.54%  8.51%,0.71%  86.40% 1.31%,0.11%
03146  -25.53%,-142%  0.1819  -56.94%,-3.16%  88.85% 16.23%,090% 78.04%  2.10%,0.12%  93.41%  9.54%,0.53%  86.84% 1.83%,0.10%
03719  -11.97%,-0.50%  0.1591  -62.34%,-2.60%  88.95% 16.36%,0.68% 75.77% -0.88%,-0.04% 93.98% 10.20%,0.43% 86.61% 1.56%,0.07%

Table 5.11: Solutions obtained through SPINDS heuristic.

Instance(S,)

50x50_30(1)

100x100_30(2)
100x100_30(3)

200x200_30(2)
200x200_30(4)
200x200_30(6)
200x200_30(9)

300x300_30(6)

300x300_30(12)
300x300_30(18)
300x300_30(24)

fi AEC fa: ASA f3:NR

value Ia Igr value Ia Igr value Ia Igr

0.0247  -29.89% -29.89% 88.98% -3.02% -3.02% 99.86% 0.22% 0.22%
0.0610 -44.11%  -22.06% 89.46% 0.25% 0.12% 98.54% 3.00% 1.50%
0.0534  -51.06% -17.02% 88.80% -0.49% -0.16% 98.95% 3.43% 1.14%
02655  -4.89% -2.44% 86.45% -0.75% -0.37% 94.13% 0.96% 0.48%
0.1851 -33.69%  -8.42% 86.22% -1.01% -0.25% 94.46% 1.32% 0.33%
0.1653  -40.77%  -6.80% 85.68% -1.63% -0.27% 94.46% 1.32% 0.22%
0.1171 -58.05%  -6.45% 86.15% -1.09% -0.12% 94.65% 1.52% 0.17%
0.3853  -8.80% -1.47% 80.38% 5.16% 0.86% 90.16% 5.72%  0.95%
0.3853  -8.80% -0.73% 80.38% 5.16% 0.43% 90.17% 5.74% 0.48%
03301 -21.86% -1.21% 78.04% 2.10%  0.12% 89.62% 5.09% 0.28%
03301 -21.86% -0.91% 78.04% 2.10%  0.09% 89.62% 5.08% 0.21%
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5.5 Scientific Achievements

5.4.7 Comparisons to Other Approaches

In this subsection, we compare the results obtained by our approach to another authors approach.
As stated in Section[d.7.7] we started this work by assuming an important limitation: we did not
find any paper fitting this problem definition. As a way to attenuate this deficiency, we imple-
mented the heuristic called SPINDS proposed by Hou et al. Specific details for implementing
this heuristic were discussed in Section [£.7.7]

Comparing Tables [5.10] and [5.11] we note that MO-FA provides a better behaviour than
SPINDS for all the test cases. In fact, all the results provided by SPINDS are dominated by
MOFA. This way, we check that our proposal provides a better behaviour than another authors
approach from the literature.

5.5 Scientific Achievements

In this chapter, we proposed and solved a three objective RNPP by assuming a wide range of
MO metaheuristics. The following contributions were obtained from performing this task:

International journals (ISI-SCI):

e Jose M. Lanza-Gutierrez and Juan A. Gomez-Pulido. Assuming multiobjective me-
taheuristics to solve a three-objective optimisation problem for relay node deploy-
ment in wireless sensor networks. Applied Soft Computing, 30:675-687, 2015.
Impact factor of 2.810 (Q1, T'1). In [84], we apply NSGA-II, SPEA2, MO-VNS,
MO-ABC, MO-FA, and MOEA/D for solving the problem.

e Jose M. Lanza-Gutierrez, Juan A. Gomez-Pulido, and Miguel A. Vega-Rodriguez.
A new realistic approach for the relay node placement problem in wireless sensor
networks by means of evolutionary computation. Ad Hoc and Sensor Wireless Net-
works, 26:193-209, 2015. Impact factor of 0.435 (Q4, T'3). In [83], we apply
NSGA-II and SPEA?2 for solving the problem in 100x100, 200x200, and 300x300
instances.

International book chapters:

e Jose M. Lanza-Gutierrez, Juan A. Gomez-Pulido, and Miguel A. Vega-Rodriguez. A
trajectory-based heuristic to solve a three-objective optimization problem for wire-
less sensor network deployment. In Applications of Evolutionary Computation,
volume 8602 of Lecture Notes in Computer Science, pages 27-38. Springer Ber-
lin / Heidelberg, 2014. In [86], we apply NSGA-II, SPEA2, and MO-VNS* for
optimising 100x100, 200x200, and 300x300 instances.

National conferences:

e Jose M. Lanza-Gutierrez, Juan A. Gomez-Pulido, and Miguel A. Vega-Rodriguez.
Un nuevo enfoque para el posicionamiento de routers sobre redes de sensores in-
aldmbricos. In Actas del XV Conferencia de la Asociacién Espafiola para la Inteli-
gencia Artificial (CAEPIA 13) - IX Congreso Espafiol sobre Metaheuristicas, Al-
goritmos Evolutivos y Bioinspirados (MAEB 2013), pages 743-752, 2013. In [87],
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5. Solving the RNPP: three-objective Outdoor Approach

we apply NSGA-II and SPEA?2 for optimising 100x100, 200x200, and 300x300 in-
stances. This is a very preliminary work.
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Solving the RNPP: a Novel
three-objective Indoor
Approach

In this chapter, we propose and solve a novel approach of the RNPP, where we try to leverage
existing infrastructure for indoor scenarios, while optimising three objectives. This approach is
based on the knowledge obtained from Chapters 4] and [5] This chapter is structured as follows.
The WSN model considered is presented in Section [6.1] The optimisation problem is defined
in Section[6.2] Section [6.3] discusses the data set considered for comparing the metaheuristics
while solving the problem. Chromosome definition and specific considerations for implement-
ing the metaheuristics are detailed in Sections and 6.5, respectively. Experimental results
are discussed in Section 6.6. Finally, we list the scientific achievements obtained from solving
this optimisation problem in Section 6.7.

6.1 The Wireless Sensor Network Model assumed

This section describes the WSN model considered in this three-objective indoor approach of
the RNPP. The notation assumed is listed in Section The general assumptions of the
model are presented in Section [6.1.2] Connectivity is defined in Section[6.1.3] Finally, energy
expenditure, coverage area, and network lifetime are discussed in Sections [6.1.4] [6.1.5] and

[6.1.6] respectively.

6.1.1 Notation

The following notation is considered for modelling the WSN definition:

o path loss exponent, « € [2,4];
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6. Solving the RNPP: a Novel three-objective Indoor Approach

amp

bricklost

COth

hye(t)

iec

transmission quality parameter, 3 > 0;
set of time periods, 7 = {0,1,2,...};

coverage area provided by the WSN at time ¢ > 0 € 7, according to the
transmission power level on the scenario;

variable assuming 1 if there is any sensor ¢ such that the transmission power
needed to reach the demand Point pis lower than tp;;,, and 0 otherwise, with
i€ Sp(t) U Sp(t) and p € Dy(t);

energy cost per bit of the power amplifier, amp > 0;

attenuation caused by a red brick wall, when a signal passes through it,
brick;,st > 0;

sink coordinates, ¢ = (z,y) where z € [0,d,] and y € [0, d,];
coverage threshold, coy, € [0, 1];

set of demand points at time ¢ > 0, Vp € Dp, p = (z,y) where z € [0, d,]
and y € [0,d,];

number of demand points. It is the cardinal of D,,(t);
distance between two neighbouring demand points;

number of disjoint paths between the sensor ¢ € S;(t) U S, (t) and the sink
node at time £ > 0;

width of the surface, d,, > 0;

height of the surface, d, > 0;

energy charge of a sensor powered by batteries i € S, (t) at time ¢;

energy expenditure of a sensor powered by batteries ¢ € Sy(t) attime ¢ > 0;
constant local channel error, err € [0, 1];

AEC of the sensors over the network lifetime;

ASA provided by the WSN over the network lifetime;

ANR provided by the WSN over the network lifetime;

number of hops in the [-th disjoint path between i € Sy, (t) U Sy (¢) and the
sink node at time ¢ > 0;

initial energy charge of the sensors powered by batteries, tec > 0;
information packet size in bits, k& > 0;
network lifetime of the WSN based on the coverage threshold cop,;

number of packets sent by the sensor powered by batteries ¢ € S(t) at time
t>0;

set of plugs on the scenario, Vp € P, p = (z,y), where z € [0,d,] and
ye [07 dy]’

reliability of the sensor ¢ € S,(t) U Sp(t) at time ¢ > 0;
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6.1 The Wireless Sensor Network Model assumed

test

tpin
tpn; j(t)

tp
tn

Sp(t)

Sb(t>

number of relayed packets sent by the sensor powered by batteries i € Sy (t)
at time ¢ > 0;

transmission constant, tcst > 0;

transmission power threshold, it determines if the transmission power level
is enough for receiving correctly a data packet;

transmission power needed to send data from ¢ to j at time ¢ > 0, with
i,7 € Sp(t) U Sp(t) + candi # j;

network lifetime of the WSN based on the coverage threshold co,;

set of initial sensor coordinates powered by batteries, Vb € Sb, b= (z,y)
where b € [0,d,] and b € [0,d,];

number of sensor coordinates powered by batteries. It is the cardinal of Sj;

set of initial sensor coordinates plugged into the grid, Vp € S,, p = (z,y),
where p € [0,d,] and p € [0,d,];

number of initial sensors plugged into the grid. It is the cardinal of S,;
set of sensor coordinates powered by batteries, holding that the energy

charge is greater than 0 and that there is any path to the sink node, both
attime ¢ > 0, Sp(t) C Sp;

number of sensors powered by batteries, holding that the energy charge is
greater than 0 and that there is any path to the sink node, both at time ¢ > 0.
It is the cardinal of Sy (¢), sp(t) < Sp;

number of sensors (including both types), which will be deployed in the
WSN, 53, > 0;

set of sensor coordinates plugged into the grid, holding that there is any
path to the sink node at time ¢ > 0, S, (t) C Sp;

number of sensors plugged into the grid, holding that there is any path to
the sink node at time ¢ > 0. It is the cardinal of S, (t), s, (t) < 3p;

variable which provides the next device in the minimum path between 7 €
Sp(t) U Sp(t) and the sink node at ¢ > 0, wi(t) € {Sp(t) US,(t)} +c—1i;

signal attenuation because of walls at ¢ > 0, when sending data from i to j,
with i, j € Sp(t) U Sp(t) + cand i # j;

set of red brick walls on the scenario, Vw € Wr, w = (x,y), where w €
[0,d;] and w € [0, d,];

variable assuming 1 if the signal emitted by ¢ € Sy,(¢) U S, () has to neces-

sarily pass through w € W, to reach j € Sy(t) U S, () + catt > 0, and 0
otherwise;

variable assuming 1 if ¢ € S,(t) U S, () is in the minimum path between
J € Sp(t) U S,(t) and the sink node at t > 0, and 0 otherwise.
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6. Solving the RNPP: a Novel three-objective Indoor Approach

6.1.2 Assumptions of the Wireless Aensor Network Model

The general assumptions of the network model are:

1.

10.

The network is composed of three types of wireless static devices: a sink node plugged
into the grid, &, sensors powered by batteries, and 5, sensors plugged into the grid. They
send messages by following a ST approach.

All the devices are placed on a same indoor 2D-surface of size d, x d,, which includes
red brick walls whose coordinates are given by W,.. We consider that there are not inter-
ferences from other electronic devices.

We suppose that the sensors powered by batteries can be placed on anywhere of the sur-
face, excepting on the walls. The sensors plugged into the grid can only be deployed in
one of the plugs given by F;. Such plugs are placed on the walls. Thus, we follow a
constrained approach of the RNPP.

Initially, at time ¢ = 0, all the sensors powered by batteries start with the same energy
capacity iec in their batteries. If during operation, ¢ > 0, a sensor is exhausted, it cannot
be linked again.

. The sink node is the only connection point of the network to the outside.

Both types of sensor capture information about the environment on a regular basis. Once
the information is captured, it is immediately sent to the sink node.

. Any two devices can be linked, if the transmission power needed is lower or equal than

tpen. In the case of sensors powered by batteries, the sensors must have enough energy
capacity in their batteries.

. The signal is attenuate, when it passes through a wall. The attenuation caused by a red

brick is given by brick;,st.

All the devices consider the same multi-hop routing protocol provided by Dijsktra’s Al-
gorithm, for minimum path length among devices.

We suppose a perfect synchronisation among devices and the use of an efficient MAC
protocol, such as S-MAC, which allows reducing energy cost on idle time.

6.1.3 Connectivity

In this chapter, we consider a more realistic approach, where connectivity is defined according
to the transmission power needed to send data between any two devices, including attenuation
because of walls. Thus, the transmission power needed tpn; ;(¢) to send data from i to j at time
t >0, withi,j € Sp(t) USy(t) + cand i # j, is given by

test

= — — 10wl05tl‘j (t)lOil, (61)
i = 3lla

tpn, ;(t)

where || - ||4 is the Euclidean distance between any two devices, tcst is a transmission constant,
and wlost;_;(t) is the signal attenuation because of walls at ¢, which is expressed as

’LUZOStiVj (t) = Z y;”’”] (t) bTiCklosb
w€V~VT
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6.1 The Wireless Sensor Network Model assumed

where y;"; (t) is a variable assuming 1 if the signal emitted by ¢ has to necessarily pass through
w E W,. to reach j at ¢, and O otherwise.

According to Equation (6.), any two devices can be linked directly if the transmission power
needed is lower than a certain threshold ¢p;, determined by the technical characteristics of the
device. We assume that all the devices have a same value for this threshold.

6.1.4 Energy Expenditure

Following the approach presented in Chapter[d] we consider the same energy model proposed by
Konstantinidis et al. [S5] to simulate the energy expenditure of the sensors powered by batteries.
We redefine this formulation because of the notation considered in this chapter is different.

Attending to this model, a sensor powered by batteries i € S(t), sends a number of data
packets Pb;(t) at time ¢ € 7 and ¢ > 0 given by

This means that Equation (6.2)) is given by the sum of the number of data packets generated by
7 at t (in this case, we consider that each sensor captures a data packet per time period) and the
number of relayed packets because of the multi-hop routing approach, which is expressed as

Rpb;(t) = > 254 (1). (6.3)

JE{Sp(t)US, (t)—i}

Note that for calculating Equation (6.3)), we consider that both types of sensor capture data.
Moreover,we should mention that control packets from routing and MAC protocols were not
simulated, because this is not the aim of this dissertation.
Based on this expression, the energy cost Eeb;(t) of a sensor powered by batteries 7 at time
t > 01is given by
Eeb;(t) = Pb(t) 8 amp k (|li — wi(t)[la)". (6.4)

This way, the energy charge of a sensor powered by batteries ¢ at time ¢ is given by

) _ Ecbi(t — 1) — E@bi(t) ift >0
Eebi(t) _{ iec ift=0"

If this value equals zero, the sensor is out of energy; otherwise, it is active.

6.1.5 Coverage Area

In Chaptersfd]and[5] we defined the coverage area of the WSN according to a constant sensitivity
radius for all the sensors. In this chapter, we consider a more realistic approach, where the
coverage is calculated based on the transmission power level on the scenario. Thus, we consider
that an area of the surface is non-covered if the transmission power needed to reach any active
device from this area is greater than the threshold tpy, .

As for the previous chapters, a set of demand points uniformly distributed on the surface
ﬁp(t) is assumed to approximate this area. Based on this idea, the coverage area provided by a
WSN at time ¢ > 0 is given by

) (6.5)
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where aff (t) is the indicator function expressed as

)

ey ) 1 if i€ Syp(t) US,(t) : tpngp(t) < tpen
aP(t) = .
0 otherwise

where tpn; ,(t) is given by Equation (6.1). Thus, a;”(¢) equals 1 if there is any sensor i such that
the transmission power needed to reach the demand point p is lower than ¢py;,, and O otherwise.
The accuracy of this metric was studied in Chapter[d] specifically in Section [.1.4]

6.1.6 Network Lifetime

We consider the same criteria for calculating the network lifetime as in Chapters 4 and[5] Con-
sequently, this value is defined according to the time until the information provided by the net-
work is not enough. To this end, we consider the new formulation for calculating the coverage
area. That is,

t = |l{t >0 €7: Ay (t) > com}ll, (6.6)

where Ay, () is given by Equation (6.5 and coy, is the coverage threshold.

6.1.7 Network Reliability

As in Chapter [5} we assume that the reliability is calculated according to the number of disjoint
paths between a given sensor and the sink node. However, in this approach, we consider that
this metric depends on the time instant. Thus, given a sensor ¢ € S; U S), the reliability refp (t)
of 7 at time ¢ > 0 is denoted as

djp§ (t) .
re(t)=1— H (1 — (1 —err) (t)) ,

=1

where djp$(t) is the number of disjoint paths between ¢ and the sink node at ¢, hf’c(t) is the
number of hops in the [-th disjoint path between both devices at ¢, and err is a constant local
channel error. Note that the disjoint paths are calculated through Suurballe’s Algorithm [82].

6.2 Problem Formulation

Let f1 be the AEC of the sensors over the network lifetime. That is expressed as

ttp
t=1 \ieS,(t) sp(t)

tp ’
n

where f; € R and both Eeb;(t) and t!? are given by Equations (6.4) and , respectively.
Let f5 be the ASA provided by the network, which is expressed as

6.7)

fi=

tp
tn

Z Atp (t)

f2 - tp ; (68)
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6.3 Description of the Dataset

where f> € [0, 1] and Ay (t) is given by Equation (6.5).
Let f3 be the ANR, showing the probability that the sensors successfully send information
to the sink node over the network lifetime. That is

gi S rel?(t)
. su(t) + sp(t)
t=1 \:€S5,(t)US,(t)
f3= — , (6.9)

where f3 € [0, 1] and re;(t) is given by Equation (6.1.7).

This way, we define the constrained indoor RNPP as a three-objective optimisation problem,
where given a scenario including walls and plugs, i.e. W, and P, the objective is to place 5y,
sensors (including both types) by assuming an ST network model to

min(f1), max(f2), and max(f3),

subject to o
Vi€ SyUS,, i=(z,y), i ¢ W, :z€0,d.]y<[0,d,],

Vi€ S,,ic P,
Vie Sy, id P,

Sp + 5~p = §bp-

6.3 Description of the Dataset

As for the outdoor approach, we did not find any data set fitting this problem definition. This
situation led us to define a new data set, with the purpose of providing a common framework
for studying the indoor RNPP in future works. The new data set is composed of two different
instances inspired by a real building with sizes 216.99m? and 577.28m?, including walls and
plugs, and is freely available in [65]]

As stated before, this WSN model includes several parameters. We consider o« = 2.00,
B = 1.00, cosp, = 0.70%, k = 10Kb, iec = 0.005], amp = 100pJ/bit/m?, err = 0.10, and
test = 100 from [81] [61], [88], and [66]. Figures @] and@] show detailed information of
these two instances according to the following criteria:

e a) Main features: We show the instance name, the position of the sink node, the refer-
ence points for calculating the hypervolume metric, which were obtained experimentally,
and the test cases. Note that we consider that a test case is the total number or sensors
(both types), which we deploy in the scenario. Being as adding such devices increases the
network cost, we consider a reduced number of sensors but enough for covering all the sur-
face. Thus, we define three test cases for 21.40x10.14 instance and seven for 32.80x17.60
Instance.

e b) Deployment details: We include two tables and a figure. The tables detail plug co-
ordinates and wall segments. The figure show the position of plugs and walls on the
scenario. Note that for the definition of wall segments, we consider starting and ending
points.
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Instance name Sink node Reference points (fi, f2, f3) Test cases (Spp)
(dxxdy) (x-coordinate, y-coordinate) ideal nadir
21.40x10.14 (10.70,5.07) (0.00000,100.00,100.00)  (0.00006,50.00,80.00) 2,3,4

(a) Main features.

P Plug coordinates: plugID , (x-coordinate, y-coordinate)

#1 (0.10,6.90) | #3  (1.30,3.50) | #5 (21.30,6.70) | #7 (18.70,0.00)
#2 (9.70,5.70) | #4 (15.10,10.30) | #6 (15.50,3.50) | #8 (7.90,10.30)

(P) Wall segments: wallID , (x-coordinate, y-coordinate)-(x-coordinat
#1 (0.10,6.90)-(0.10,6.90) | #3  (0.10,6.90)-(0.10,6.90)

y-coordinate)

(b) Deployment details.

Figure 6.1: Instace 21.40x10.14.

Instance name Sink node Reference points (fi, f2, f3) Test cases (Spp)
(dxxdy) (x-coordinate, y-coordinate) ideal nadir
32.80x17.60 (16.40,8.80) (0.00000,100.00,100.00)  (0.00025,15.00,70.00) 2,3,...,8

(a) Main features.

(P)) Plug coordinates: plugID , (x-coordinate, y-coordinate)

#1  (0.052.5) | #5 (14256.1) | #9  (9.5,1035) | #13  (25.5,10.65)
# (0.0511.5) | #6 (19.9,0.05) | #10 (5.85,16.7) | #14 (27.15,16.5)
#3(5856.1) | #7 (27.15,1.1) | #11 (13.717.55) | #15 (32.75,3.5)
#4 (13.95,1.1) | #8 (263,7.25) | #12 (15.85,15.7) | #16 (32.75,15.1)

(P) Wall segments: wallID , (x-coordinate, y-coordinate)-(x-coordinate, y-coordinate)

#1  (0.10,6.90)-(0.10,6.90) | #3  (0.10,6.90)-(0.10,6.90) | #5 (0.10,6.90)-(0.10,6.90)
#2  (0.10,6.90)-(0.10,6.90) | #4  (0.10,6.90)-(0.10,6.90) | #6 (0.10,6.90)-(0.10,6.90)

(b) Deployment details.

Figure 6.2: Instace 32.80x17.60.

116



6.4 Chromosome Definition

d; d; dgbp
|00yD)[02Y2)] - | (%, ¥sy)

d, €S, if z <=5, and d,e S, otherwise,
forz=1,2,....8,

(a) Formal definition.

d; dz d3
\ (9.70,5.70) | (5.85,5.65) | (19.41,5.24) |
Part 1:sensors plugged Part 2: sensors powered by
into the grid batteries
>
(b) Example.

Figure 6.3: Chromosome Statement.

6.4 Chromosome Definition

We consider a same chromosome structure for all the metaheuristics. As stated before, a chro-
mosome is a possible solution to the optimisation problem and the objective of the RNPP defined
in Section [6;2] is to place 3y, sensors. This way, as Figure [@ shows, we assume that a chro-
mosome consists of two parts, each one is composed of 5, and §; genes, respectively. The sum
of both parts equals 5, and a gene is bi-dimensional coordinate. We include an example of this
encoding in Figure[6.3b|by assuming the instance 21.40x10.14 and 5, = 2 and 5, = 1.

6.5 Scientific Achievements

In this chapter, we proposed and solved a novel three-objective indoor RNPP by considering
the two classic MO metaheuristics. The following scientific achievements were obtained from
performing this task:

International book chapters:

e Jose M. Lanza-Gutierrez, Juan A. Gomez-Pulido, S. Priem-Mendes, M. Ferreira,
and J.S. Pereira. Planning the deployment of indoor wireless sensor networks through
multiobjective evolutionary techniques. In Applications of Evolutionary Computa-
tion, volume 9028 of Lecture Notes in Computer Science, pages 128—139. Springer
International Publishing, 2015. In [89], we apply NSGA-II and SPEA?2 for solving
the problem.
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Conclusions and Future
Works

In this chapter, we include the conclusions obtained from performing the tasks presented in
this PhD thesis and the future extension lines of this research. Both in Sections [7.1] and
respectively.

7.1 Conclusions

In this PhD thesis, we have studied three different approaches of the RNPP for WSNs These
three approaches can be divided into two groups: outdoor and indoor networks. In the first
two approaches (Chapters [4] and [5)), we studied the deployment of RN in traditional low-cost
static previously-established outdoor WSNs, while optimising several relevant factors for the
industry: ASA and AC in Chapter @] and ASA, AC, and NR in Chapter 5] Thus, Chapter [3]
is the natural evolution of the research line in Chapter ] by including an additional conflicting
objective function to optimise.

Because of the RNPP was defined as an NP-hard optimisation problem in the literature, it
cannot be solved through exact techniques. Instead, we considered approximate techniques.
Specifically MO metaheuristics, which ,in general, provide a good behaviour solving such type
of problems. In this line, we assumed the two classic GAs NSGA-II and SPEA2, the trajectory
algorithm MO-VNS, three swarm intelligence algorithms MO-GSA, MO-ABC, and MO-FA,
and a state-of-the-art decomposition algorithm MOEA/D. Only four of these algorithms were
MO in the original definition, which were NSGA-II, SPEA2, MO-VNS, and MOEA/D. Hence,
the remainder algorithms were MO approaches proposed by ourselves, they are MO-GSA, MO-
ABC, and MO-FA.

All these MO metaheuristics were applied for solving the two outdoor RNPP approaches
by assuming a freely available data set. This benchmark was designed by ourselves at the
beginning of this research lines, because we did not find any work fitting this problem definition.
The results obtained were analysed by assuming three MO quality metrics (hypervolume, set
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coverage, and attainment surface) and a widely accepted statistical methodology. As a result,
we checked that the swarm intelligence algorithm MO-FA provides the best significant average
behaviour, when solving the first two outdoor approaches of the RNPP. Moreover, we studied the
effects in the objective functions of adding RNs in traditional WNSs, checked that the addition
of such devices was a good way to optimise previously established traditional WSNs, without
replacing the all network, which is important of the industry.

From this study, we also noted that the addition of RNs in outdoor WSNss is a really hard
problem, according to the instance size, as expected from an NP-hard problem. This means
that the metaheuristics can exploit all their potential. In fact, we checked that the implemented
methods provided better results than other approaches from the current literature.

Following with the second group (indoor networks). In Chapter [6] we proposed and solved
a novel approach of the RNPP, where we tried to leverage existing infrastructure. This problem
definition is interesting for industrial applications, whose aim is to provide localisation services
for indoor environments. The goal of levering infrastructures allow reducing the deployment
cost of the network, providing the benefit of assuming devices plugged into the grid.

This novel approach was defined by assuming the knowledge obtained by solving the two
previous outdoor approaches. This way, this model incorporated some elements, involving that
the computation cost of this problem was higher that the previous approach, such as the inclusion
of signal attenuation because of walls. This means that this problem was harder than the other
approaches, and then MO metaheuristics were good candidates to solve it. With this purpose, we
considered the two classic MO metaheuristics NSGA-II and SPEA?2 as a first approach in this
research line, checking as these algorithms provided a good behaviour by solving such problem.

7.2 Future Works

According to the knowledge obtained from this PdH thesis, we can define several future lines of
research. On the one hand, we could consider another optimisation problem and apply all the
knowledge obtained in solving methods to enhance this field. At this moment, we are sharing
our experiences in such MO algorithms with other researchers to solve a well-known NP-hard
problem from a novel MO approach.

On the other hand, we could work with WSNs, applying the results obtained to real networks.
Currently, we are exchanging experiences with an agriculture research center as a possible way
to transfer this knowledge to the real world. Moreover, we could define more instances for all the
approaches of the RNPP, including new solving method and simulating more realistic aspects of
WSNs, such as MAC and routing protocols.
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Scientific Production

In this chapter, we present the scientific achievements obtained during the course of this PhD
thesis. As we will discuss, we have obtained a total of 24 publications from 2011 to present,
directly or indirectly related to this thesis, including 8 international indexed journals (ISI-SCI),
5 international book chapters, 3 international conferences, and 8 national conferences. These
publications allow validating the quality and relevance of this thesis in the scientific literature.

This chapter is structured as follows. Section [8.1] details the scientific publications directly
related to this dissertation. Section [8.2] includes all the contributions partially related to this
thesis. Finally, Section [8.3]lists other merits obtained during this period.

8.1 Scientific Publications Directly Related to this Dissertation

In this section, we list the publications obtained directly related to this dissertation, including 6
international indexed journals (ISI-SCI), 5 international book chapters, 2 international confer-
ences, and 6 national conferences.

International indexed journals (ISI-SCI):

e Juan A. Gomez-Pulido and Jose M. Lanza-Gutierrez. Reliability and efficiency
in wireless sensor networks: heuristic approaches. Journal of Heuristics, 21(2):
141-143, 2015. Impact factor of 1.135 (@2, T'2). In [90], we provide a state-of-the-
art of authors solving WSN problems by heuristic approaches.

e Jose M. Lanza-Gutierrez and Juan A. Gomez-Pulido. Assuming multiobjective me-
taheuristics to solve a three-objective optimisation problem for relay node deploy-
ment in wireless sensor networks. Applied Soft Computing, 30:675-687, 2015. Im-
pact factor of 2.810 (Q1, T'1). In [84]], we apply NSGA-II, SPEA2, MO-VNS,
MO-ABC, MO-FA, and MOEA/D for solving the problem in Chapter 5]
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e Jose M. Lanza-Gutierrez, Juan A. Gomez-Pulido, and Miguel A. Vega-Rodriguez.
A new realistic approach for the relay node placement problem in wireless sensor
networks by means of evolutionary computation. Ad Hoc and Sensor Wireless Net-
works, 26:193-209, 2015. Impact factor of 0.435 (Q4, T'3). In [85], we apply
NSGA-II and SPEA2 for solving the problem in Chapter [5] for 100x100, 200x200,
and 300x300 instances.

e Jose M. Lanza-Gutierrez and Juan A. Gomez-Pulido. A gravitational search al-
gorithm for solving the relay node placement problem in wireless sensor networks.
International Journal of Communication Systems, page n/a (on-line), 2015. Impact
factor of 1.106 (Q3, T2). In [70], we apply NSGA-II, SPEA2, and MO-GSA for
optimising the problem in Chapter ] with 100x100 and 200x200 instances.

e Jose M. Lanza-Gutierrez and Juan A. Gomez-Pulido. Studying the multiobjective
variable neighbourhood search algorithm when solving the relay node placement
problem in wireless sensor networks. Soft Computing, page n/a (on-line), 2015.
Impact factor of 1.271 (@3, T2). In [71], we apply NSGA-II, SPEA2, MO-VNS,
and MO-VNS* for optimising the problem in Chapter [4] with all the instances.

e Jose M Lanza-Gutierrez, Juan A Gomez-Pulido, and Miguel A Vega-Rodriguez.
Intelligent relay node placement in heterogeneous wireless sensor networks for en-
ergy efficiency. International Journal of Robotics and Automation, 29:1-13, 2014.
Impact factor of 0.408 (Q4, T'3). In [72], we apply the metaheuristics NSGA-II,
SPEA2, and MO-ABC for solving the problem in Chapter[z_f] with 100x100, 200x200,
and 300x300 instances.

International book chapters:

e Jose M. Lanza-Gutierrez, Juan A. Gomez-Pulido, S. Priem-Mendes, M. Ferreira,
and J.S. Pereira. Planning the deployment of indoor wireless sensor networks through
multiobjective evolutionary techniques. In Applications of Evolutionary Computa-
tion, volume 9028 of Lecture Notes in Computer Science, pages 128—139. Springer
International Publishing, 2015. In [89], we apply NSGA-II and SPEA2 for optim-
ising the problem in Chapter 6]

e Jose M. Lanza-Gutierrez, Juan A. Gomez-Pulido, and Miguel A. Vega-Rodriguez. A
trajectory-based heuristic to solve a three-objective optimization problem for wire-
less sensor network deployment. In Applications of Evolutionary Computation,
volume 8602 of Lecture Notes in Computer Science, pages 27-38. Springer Berlin
/ Heidelberg, 2014. In [86], we apply NSGA-II, SPEA2, and MO-VNS* for optim-
ising the problem in Chapter 5| with 100x100, 200x200, and 300x300 instances.

e Jose M. Lanza-Gutierrez, Juan A. Gomez-Pulido, and Miguel A. Vega-Rodriguez.
A trajectory algorithm to solve the relay node placement problem in wireless sensor
networks. In Theory and Practice of Natural Computing, volume 8273 of Lecture
Notes in Computer Science, pages 145-156. Springer Berlin Heidelberg, 2013. In
[73]], we apply NSGA-II, SPEA2, and MO-VNS* for optimising the problem in
Chapterijith 100x100, 200x200, and 300x300 instances.

e Jose M. Lanza-Gutierrez, Juan A. Gomez-Pulido, Miguel A. Vega-Rodriguez, and
Juan M. Sanchez-Perez. Relay node positioning in wireless sensor networks by
means of evolutionary techniques. In Autonomous and Intelligent Systems, volume
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7326 of Lecture Notes in Computer Science, pages 18-25. Springer Berlin / Heidel-
berg, 2012. In [74], we apply NSGA-II and SPEA?2 for optimising the problem in
Chapter[d] with 100x100 and 200x200 instances. This is our first work exactly fitting
this problem approach.

e Jose M. Lanza-Gutierrez, Juan A. Gomez-Pulido, Miguel A. Vega-Rodriguez, and
Juan M. Sanchez-Perez. Optimizing energy consumption in heterogeneous wireless
sensor networks by means of evolutionary algorithms. In Applications of Evolu-
tionary Computation, volume 7248 of Lecture Notes in Computer Science, pages
1-10. Springer Berlin Heidelberg, 2012. In [[75], we apply NSGA-II and SPEA?2 for
optimising 100x100 and 200x200 instances with 50 000 evaluations. In this contri-
bution, we do not assume that the number of RNs should be significantly lower than
the number of sensors. This paper can be considered as a very preliminary approach
of the work in [[74], belonging to Chapter 4]

International conferences:

e Jose M. Lanza-Gutierrez, Juan A. Gomez-Pulido, Miguel A. Vega-Rodriguez, and
Juan M. Sanchez- Perez. A parallel evolutionary approach to solve the relay node
placement problem in wireless sensor networks. In Proceeding of GECCO, pages
1157-1164, 2013. ACM conference. In [76], we apply NSGA-II and SPEA2 for
solving the problem in Chapter 4| with 100x100 and 200x200 instances through
OpenMP with 32 cores.

e Jose M Lanza-Gutierrez, Juan Gomez-Pulido, Miguel Vega-Rodriguez, Juan M Sanc-
hez -Perez. Multi-objective evolutionary algorithms for energy-efficiency in hetero-
geneous wireless sensor networks. In IEEE Sensors Applications Symposium (SAS),
pages 1-6, 2012. IEEE conference. In [77]], we apply NSGA-II and SPEA2 for
solving a less realistic approach of work presented in Chapter f] This contribution
can be considered as one of our first steps in this research line and is a continuation
of the work in [78]].

National conferences:

e Jose M. Lanza-Gutierrez and Juan A. Gomez-Pulido. Optimizacién de redes de
sensores inalimbricos mediante computacién inteligente. In Actas del XV Confer-
encia de la Asociacion Espaiiola para la Inteligencia Artificial (CAEPIA 13) - Doc-
toral Consortium, pages 1672-1676, 2013. In [91]], we present the main objectives
and tasks for getting this PhD dissertation.

e Jose M. Lanza-Gutierrez, Juan A. Gomez-Pulido, and Miguel A. Vega-Rodriguez.
Un nuevo enfoque para el posicionamiento de routers sobre redes de sensores in-
alambricos. In Actas del XV Conferencia de la Asociacion Espariiola para la Inteli-
gencia Artificial (CAEPIA 13) - IX Congreso Espariol sobre Metaheuristicas, Algor-
itmos Evolutivos y Bioinspirados (MAEB 2013), pages 743-752, 2013. In [87], we
apply NSGA-II and SPEA2 for optimising the problem in Chapter [5| with 100x100,
200x200, and 300x300 instances. This is a very preliminary work.

e Jose M. Lanza-Gutierrez, Juan A. Gomez-Pulido, Miguel A. Vega-Rodriguez, and
Juan M. Sanchez-Perez. Optimizando la eficiencia energética en redes de sensores

123



8. Scientific Production

inaldmbricos mediante computacion evolutiva paralela. In Actas de las XXIII Jor-
nadas de Paralelismo (JP 2012), Servicio de Publicaciones. Universidad Miguel
Herndndez, pages 163—168, 2012. In [79]], we apply NSGA-II, SPEA2 for op-
timising the problem in Chapter 4] with 100x100 and 200x200 instances through
OpenMP with 8 cores.

e Jose M. Lanza-Gutierrez, Juan A. Gomez-Pulido, Miguel A. Vega-Rodriguez, and
Juan M. Sanchez-Perez. Posicionando routers en redes de sensores inaldmbricos me-
diante algoritmos evolutivos para el incremento de la eficiencia energética. In Actas
de las Il Jornadas de Computacion Empotrada (JCE 2012), Servicio de Publica-
ciones. Univ. Miguel Hernandez, pages 95-100, 2012. In [80], we apply NSGA-II
and SPEA2 for optimising the problem in Chapter f] with 100x100 and 200x200
instances with 50 000 evaluations. This is a very preliminary work before [[74].

e Jose M Lanza-Gutierrez, Juan A Gomez-Pulido, Oscar Gutierrez-Blanco, Miguel
A Vega- Rodriguez, and Juan M Sanchez. Diseflo eficiente de redes heterogéneas
de sensores inaldmbricos mediante computacién evolutiva multi-objetivo. In Actas
del VIII Congreso Espariol sobre Metaheuristicas, Algoritmos Evolutivos y Bioin-
spirados, Universidad de Castilla-La Mancha, pages 337-344, 2012. In [78]], we
apply NSGA-II and SPEA?2 for solving a less realistic approach of work performed
in Chapter[d] This paper can be considered as one of our first steps in this line.

e Juan A Gomez Pulido, Francisco L Morcillo Garcia, Eloy J Diaz Alvarez, Jose M
Lanza Gutierrez, Miguel A Vega Rodriguez, and Juan M Sanchez Perez. Experien-
cias con redes de sensores inaldmbricos en la escuela politécnica de la universidad de
extremadura. In Actas de las Il Jornadas de Computacion Empotrada (JCE 2012),
Servicio de Publicaciones. Universidad Miguel Herndndez, pages 114-119, 2012.
In [92], we share experiences by deploying WSNs in the University of Extremadura.

8.2 Other Scientific Publications Partially Related to this Dis-
sertation

This section lists other 5 scientific publications obtained partially related to this thesis, two of
them are collaborations with other research groups. We include 2 international indexed journals
(ISI-SCI), 1 international conference, and 2 national conferences.

International indexed journals (ISI-SCI):

e N.C. Caballe, I.T. Castro, C.J. Perez, and J.M. Lanza-Gutierrez. A condition-based
maintenance of a dependent degradation-threshold-shock model in a system with
multiple degradation processes. Reliability Engineering & System Safety, 134: 98-109,
2015. Impact factor of 2.410 (Q1, T'1). The paper in [93] is a collaboration with
Bayesian Inference and Decision Group of the University of Extremadura. Our con-
tribution to this paper was to apply an GA for getting a set of parameters, which a
system was subject to. This set allowed obtaining the maintenance strategy which
minimised the total cost.

e M Ferreira, J Bagaric, Jose M Lanza-Gutierrez, S Priem-Mendes, JS Pereira, and
Juan A Gomez-Pulido. On the use of perfect sequences and genetic algorithms for
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estimating the indoor location of wireless sensors. International Journal of Distrib-
uted Sensor Networks, 2015, 2015. Impact factor of 0.665 (@4, T'3). The paper in
[94] is a collaboration with both Polytechnic Institute of Leiria (Portugal) and Tele-
communications Institute of Leiria (Portugal). Our contribution to this paper was to
study the positioning of sensors in indoor environments through GAs. This paper is
partially inspired in the work done in Chapter 6.

International conferences:

e Jose M. Lanza-Gutierrez, Juan A. Gomez-Pulido, Miguel A. Vega-Rodriguez, and
Juan M. Sanchez-Perez. A multi-objective network design for real traffic models of
the internet by means of a parallel framework for solving np-hard problems. In Pro-
ceedings of the Third World Congress on Nature and Biologically Inspired Comput-
ing (NaBIC), pages 137-142, 2011. IEEE conference. In [95], we apply NSGA-II
and SPEA?2 for solving a multi-objective network design optimization problem for
real traffic models of the Internet. In this paper, we also propose a parallel MPI
version of a known framework for solving complex problems named PISA[H

National conferences:

e Jose M Lanza-Gutierrez, Juan A Gomez-Pulido, Miguel A Vega-Rodriguez, and
Juan M Sanchez. Paralelizacién de una plataforma para la resolucién de problemas
np-completos mediante algoritmos evolutivos. In Actas de las XXII Jornadas de
Paralelismo (JP2011), Servicio de Publicaciones. Universidad de La Laguna, pages
63-68, 2011. In [96]], we provide additional information of the parallelisation of
PISA framework in [95]].

e Jose M Lanza-Gutierrez, Juan A Gomez-Pulido, Miguel A Vega-Rodriguez, and
Juan M Sanchez. Resolviendo el disefio de redes para modelos de trafico reales de
internet mediante optimizacion multiobjetivo en multiprocesadores. In Actas de las
XXII Jornadas de Paralelismo (JP2011), Servicio de Publicaciones. Universidad
de La Laguna, pages 95-100, 2011. In [97], we provide additional information
by solving the multi-objective network design optimization problem for real traffic
models of the Internet in [95]].

8.3 Other Scientific Achievements

In this section, we list other scientific achievements obtained during this period, including 6
months and 1 week of international research stays, member of 1 international research group
(besides of the group in the University of Extremadura), organisation of 5 international confer-
ences/workshops, participation in 3 research projects, reviewer of 8 international indexed journ-
als (ISI-SCI), reviewer of 2 international conferences, and associate editor of 1 international
indexed journal (ISI-SCI).

Uhttp://www.tik.ee.ethz.ch/sop/pisa/
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International research stays:

o Institution: Pontificia Universidad Catélica de Valparaiso (PUCV).
Country: Chile.
Duration: 24°% August 2015 to 24'" November 2015 (3 months.)
Funding entity: Becas Santander Iberoamérica Jovenes Profesores e Investigadores
y Alumnos de Doctorado. Espaiia 2015. (Santander Bank of Spain).

o Institution: Polytechnic Institute of Leiria.
Country: Portugal.
Duration: 1°¢ June 2015 to 30*" June 2015 (1 month).
Funding entity: Visitas Docentes 'y Formativas ERASMUS+ 2014/2015 under Erasmus+
programme (European Commission).

o Institution: Polytechnic Institute of Leiria.
Country: Portugal.
Duration: 13! January 2014 to 13! March 2014 (2 months).
Funding entity: No funding.

o Institution: University of Coimbra.
Country: Portugal.
Duration: 17" June 2013 to 21°¢ June 2014 (1 week).
Funding entity: Visitas Formativas LLP/ERASMUS 2012/2013 under Erasmus pro-
gramme (European Commission).

Member of international research groups

o Institution: Center for research in Informatics and Communications of Polytechnic
Institute of Leiria.
Country: Portugal.
Position: Associate Member.

Organisation of conferences and workshops:

e Title: Third International Workshop on Parallelism in Bioinformatics (PBio) in 13th
IEEE International Symposium on Parallel and Distributed Processing with Applic-
ations (IEEE ISPA) conference.

Country: Finland.

City: Helsinki.

Position: Program committee.

Duration: 20" August 2015 to 22"¢ August 2015.

e Title: Second Congress on Multicore and GPU Programming (PPMG).
Country: Spain.
City: Caceres.
Position: Local committee.
Duration: 5! March 2015 to 6'* March 2015.

e Title: Second International Workshop on Parallelism in Bioinformatics (PBio) in
IEEECluster 2014 conference.
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Country: Spain.

City: Madrid.

Position: Program committee.

Duration: 24'" September 2014 to 26" September 2014.

e Title: Second International Conference on the Theory and Practice of Natural Com-
puting 2013 (TPNC).
Country: Spain.
City: Caceres.
Position: Local committee.
Duration: 3"¢ December 2013 to 5** December 2013.

e Title: International Workshop on Parallelism in Bioinformatics (PBio) in EuroMPI
2013 conference.
Country: Spain.
City: Madrid.
Position: Program committee.
Duration: 15" September 2013 to 18" September 2013.

Participation in research projects:

e Title: Optimizacion Multiobjetivo y Paralelismo en Bioinformdtica (B10).
Reference: TIN2012-30685.
Funding entity: Ministerio de Economia y Competitividad. Plan Nacional de In-
vestigacion Cientifica, Desarrollo e Innovacion Tecnoldgica 2012 (Spain).
Duration: 1°¢ January 2013 to 31%¢ December 2015 (3 years).
Budget: 110.823, 90 euros.
Institutions: University of Extremadura.
Main researcher: Miguel A. Vega-Rodriguez.
Number of researchers: 12.

o Title: Multiobjective Metaheuristics and Parallelism in Communications (MSTAR).
Reference: TIN2008-06491-C04-04.
Funding entity: Ministerio de Ciencia e Innovacion. Plan Nacional de Investiga-
cion Cientifica, Desarrollo e Innovacion Tecnolégica 2008 (Spain).
Duration: 1°¢ January 2009 to 31% December 2011 (3 years).
Budget: 110.110 euros.
Institutions: University of Extremadura, University of Malaga (Spain), University
of La Laguna (Spain), and University Carlos III (Spain).
Main researcher: Miguel A. Vega-Rodriguez (University of Extremadura node)
and E. Alba (coordinate project)
Number of researchers: 39.

e Title: De Quatris IManager a VManager: Estrategias para el Almacenamiento y
Biisqueda en Colecciones de Documentos de Video Digital.
Reference: TIN2008-03063.
Funding entity: Ministerio de Ciencia e Innovacion. Plan Nacional de Investiga-
cion Cientifica, Desarrollo e Innovacion Tecnoldgica 2008 (Spain).
Duration: 15! January 2009 to 31%¢ December 2011 (3 years).
Institutions: University of Extremadura.
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Main researcher: Manuel Barrena Garcia.
Number of researchers: 14.

Reviewer of international journals (ISI-SCI) :

Computers & Operations Research. Impact factor of 1.861 (Q1,7'1).

Parallel Computing: Systems & Applications. Impact factor of 1.511 (Q1,71).
Journal of Network and Computer Applications. Impact factor of 2.229 (Q1,7°1).
IEEE Transactions on Wireless Communications. Impact factor of 2.496 (Q1,7°1).
Expert system with applications. Impact factor of 2.240 (Q1,7°1).

IEEE sensors journal. Impact factor of 1.762 (Q2,1'1).

Autonomous Agents and MultiAgent Systems. Impact factor of 1.254 (@)3,72).
Journal of Heuristics. Impact factor of 1.135 (Q2,7°2).

Reviewer of international conferences:

2014 IEEE International Symposium on Circuits and Systems (ISCAS).
2013 IEEE Wireless Communications and Networking Conference (WCNC).

Associate editor of international journals (ISI-SCI):

Journal of Heuristics. Impact factor of 1.135 (Q2,7'2).
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Additional Information for
Implementing MOEA/D

In this appendix, we include additional information for implementing MOEA/D. In Section
we provide the mathematical model needed for scaling the CHIM for two objectives. In
Section[A.3] we develop the model for scaling the CHIM for three objectives.

A.1 Scaling Procedure of the CHIM for two objectives

In this section, we provide the mathematical developed need for scaling the CHIM by assuming
a problem with two objectives. The procedure is described below:
Let F; = (x1,y1) and Fy» = (x2,y2) be with F; # F», two given points delimiting the
objective space R? and let R; be the straight line which contains F; and F», expressed as
rT—T1  Y—Uh

T2 — 1 Y2 — U1

Since x1, y1, 2, and ys are constants and known, (zo — x1) and (ya — y;1) are constants and
known. We consider
m=(xy—x1) and n=(ya2—y1).

Thus
Tr — T Yy—Yy

m n
Hence, the straight line R?; is given by the equation

m m
p— Lyt Dy =0, (A1)
n n

Let ¢ = (2, y.) be the midpoint between F; and F; contained in R, where . and y, are
given by

1+ o Y1+ Y2
Te = 5 and y. = 5
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Let p = (xp,yp) be a point of R; which is located at a given distance d of the point c. By
using the formula for the distance between two points, we have

d(e,p) = /(2 — 20)2 + (5 — ve)?, (A2)

where d(c,p) = d.
The point p is contained in R; and is located at a distance d if, and only if holds the following

system of equations given by (A.T)) and (A-2)
{ d=/(wy = 7)> + (Yp — ve)°
Tp— Typ+ Tyr — 21 =0

N d? = a2 + 22 = 2apxe + Y2 4 yZ — 2upYe
Tp =Ty, +t

)

where t = x1 — Ty,
Then, by using the substitution method for solving system of equations, we have

m m
a2 = (xp = ;yp + t)2 + 1;3 — 2.176(.%‘1, = ;yp +t)+ yf) + yf — 2YpYe

2 t—x,
= ((m) +1>y§+2<M—yc>yp+t2+x§—2xct+y§.
n

n
That is
ayg+byp+u:0,

where

mA 2

- ()
n
b=2 (m(t — Te) C) ,

n

and

u=t?+ 2% — 2.t +y? — d>.
By using the method for solving the second grade equations
—b+Vb? —4dau
I = 2a ’

Thus, we get two points py = (2p,, Yp, ) and pa = (xp,, yp, ) equidistant from the point ¢ with
a distance d and contained in the straight line R;, which links F} and F5, where

_ —b+Vb? —4dau —b— vb% — dau

P 2a » Y 2a ’

and therefore

m [ —b+ Vb2 — dau
Ty = — | g |+t 1y, =

s |3

2a 2a

(—b— Vb2 —4au> o

. 2 _
beingm = (z2 — 1), n = (y2 —y1). t = 21 — Ly, a = (2) +1,b:2(W—yc),
and u = t? + 22 — 2zt + y2 — d°.
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A.2 Normal Vector for two Objectives

Let Iy = (z1,y1) and F» = (2, y2) be with Fy # F, two given points delimiting the objective
space R? and let R; be the straight line which contains F; and F5, expressed as

rT—x1 _ Y—Uh

T2 — 1 Y2 — U1

Based on Section[A.T] the equation for the straight line Ry is given by (A.T)). That is,
m m
r——y+—y—x1=0,
n n

where

m= (v —z1) and n=(y2 —y1).

Let v, = (=B, A) be the direction vector for a straight line with equation
Az + By+ C =0,

and let v = (A, B) be the perpendicular direction vector of vi.
Then, for the straight line R,

7= (@1) and V.= (1,f@).
n n

A.3 Scaling Procedure of the CHIM for three objectives

In this section, we develop the scaling procedure of the CHIM for three objectives. In Sec-
tion[A.3.1] we provide a preliminary model. In Section[A.3.2] we include the definitive model
considered in this dissertation.

A.3.1 Preliminary Model

In this subsection, we provide a preliminary model for scaling the CHIM for three objectives.
This model considers that we have three points in R?, defining a triangle. The objective of this
procedure is to scale the triangle by assuming parallel lines at a given distance of the triangle
centroid. This is a preliminary model which should be converted to R>.

Let F? = (w;,y;) be the i-th extreme point delimiting the objective space R? with i =
1,2,3, let FZFZ, F7F2, and F2F? be the straight lines which contain the points (F7, F3),
(F§,F%?), and (F2, F?), respectively, and let C* = (z.,9.) be the centroid of the triangle
generated by F2F3, F7FZ, and F2F?.

A general straight line has a equation given by the expression

ax +by+c=0.

Based on Section the straight line F2 F$ is given by the expression li That is,

T2 —T1 y1($2 - 561)
T —

—x1:0.
Y2 — Y1 y2 —yl

131



A. Additional Information for Implementing MOEA/D

Then, for F2FZ,

a=1, b= 27T g oo nl@mm)

— . (A.3)
Y2 — Y1 y2 —yl

Let F2FZ ! and F'2FZ ? be the two possible parallel straight line which are located at a given

distance d of F2F3. In a straight line parallel to F?FZ, a and b will remain constant and ¢ will
vary and let ¢’ be this variation of the parameter c. Then, the parallel straight line F12F22u of
F2F? for u = 1,2 holds the following equation

X9 — I
Y2 — U

x +d =0.

By applying the known formula for the distance between two parallel straight lines, we have
el

VaZ 2’

for u = 1,2, and where a, b, and c are given by lb and d (FfFQQ, F2F2 “) =d.
Then,

d (Fng, F2F2 “) -

y1(z2—x1)
y2—yl

1+ (_M)2
Y2—Y

;sd\/H(M)Z
Y2 — Y1

Hence, ¢’ can have two values, ¢} and ¢, given by

—x;—¢

d:

y1(£€2 - $1)

y yl 71‘170/
5 —

2
d=dy/1+ (332 xl) +2111(952 1) —
Y2 — 1 y2 —yl

and

2
cy=—d 1+<x2 xl) +y1(x2 ml)—ml.
Y2 — Y1 y2 —yl

Thus, the expressions for FZF2 ! and F2F2 2 are given by

F12F22151+21y+t1+h1:0,

and
F12F222£$+21y7t1+h1:0,
where
t1=d 1+Z%, and hlzyl 21 — T1,
being
XTo — I
z2p = —.
Y2 — Y1
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Let FZF2 ! andFZ F? 2 be the two possible parallel straight line which are located at a given
distance d of F2FZ and let F2F2 ! and F2F2 2 be the two possible parallel straight line which
are located at a given distance d of FZF.

Based on the previous procedure, the corresponding parallel straight lines are given by the
expressions

F3F3 ' =0+ 29y —ta + hy = 0,
F22F322£x+22y7t2+h2:0,

F12F3215l‘+2’3y—t3+h3=0,

and
F2F?2 =0+ 23y —t3 + hy =0,
where
tQZd\/l-i-Z%, and ho = ys 29 — X9,
and
tgzd\/l—i-z%, and hs =y; 23 — 21,
being
T3 — To xr3 — T1
Zg = ———— and 23 = ——.
Ys — Y2 Ys — U1
Let Ffuv = (%i,uv, Yi,uv) be the i-th point located at a distance d of its corresponding point

F? = (z;,y;) fori = 1,2, 3 and generated by the cut-off point of the calculated parallel straight
lines FZF2 v, FZF2 ¥ withu,v = 1,234,/ = 1,2,3, and i < j.
There are four possible cut-off points of the parallel straight lines F;?F? “ and F2F? ¥ with

u,v=1,2;4,7 =1,2,3,and ¢ < j, corresponding to the four possible combinations for u and
v. Thus,

o If u = 1and v = 1, the cut-off point F}?;; = (x;,11,¥:,11) of the straight lines FZ?Fj2 L
and F7F? " withi,j = 1,2,3, and i < j is given by the following system of equations

Tin + ziYi i+ hi =0
Ti11 + ZYi11 + tj + hj =0

o) mn = Ay — t; — hy
Tian + 2y +t;+Fh; =0 7

By using the substitution method for solving system of equations, we have

—ziYia1 — ti — hi + zjyi11 + ¢+ hy = 0.

Then
(t; —tj) + (h;y — hy)
Yi,11 = ,
Zj — Z;
and
Tin1 = —2 ((ti —t;)+ (h; — hj)) —t—h,
Zj — Z;
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e If u = 1 and v = 2, the cut-off point Ffu = (@i12,¥i,12) of the straight lines FfFj2 1
and F2F? ? withi,j = 1,2,3, and i < j is given by the following system of equations
Ti12 + 2iYiie +ti +hi =0
Titz + 2y —t; +hy =0

Tite = —ZYii2 —ti — Ry
Ttz +2yi2 —t; +hy =0 7

By using the substitution method for solving system of equations, we have

—ziYine —ti — hi + 2yi12 — t; + hy = 0.

Then
(ti +t;) + (hi — hj)
Yi2 = s
Zj — Z;
and _—
t; +1; i— h;
fEi,lQZi(( +1t5) +( ])>tihi~
Zj — Z;

e If u = 2 and v = 1, the cut-off point Fle = (@21, Yi21) of the straight lines FfFjQ 2
and F7F? ' with,j = 1,2,3,and i < j is given by the following system of equations

Ti21 + ZiYi2r —ti +hy =0
i + %Y1+t +h; =0

) min =AY +1t; — hy
i+ 2y +tp+h; =07

By using the substitution method for solving system of equations, we have

—ziYi1 +ti — hi + 2yi11 +t; + hy; = 0.

Then
_ (=ti=tj) + (hi — hy)
Yi,11 = s
Z]' — Z;
and W h
$i711=—2i(( 2+ J))—&—ti—hi.
Z5 — %

e If u = 2 and v = 2, the cut-off point Ff22 = (@22, Yi22) of the straight lines FfFj2 2
and F2F? ? withi,j = 1,2,3,and i < j is given by the following system of equations

Ti22 + 2iYi22 —ti +hy =0
Tigo + 2jYio2 —t; + hj =0

= Ti,22 = —ZiYi,22 +t; — h,
Ti22 + 2Yi22 —tj +h; =0

)

By using the substitution method for solving system of equations, we have

=211+t — hi + z5y511 — t; + hy = 0.
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Then
(—ti +1t;) + (hi — hy)
Yiil = ,
Zj — Z;
and I
_ti t i — .
961‘,11:—21'(( il j)>+ti_hi.
Zj — Z;

Let F2C? be for i = 1,2, 3 the straight line which contains the points (£, C?). Based on
Section , the general equation for F?C? is given by
Te—x  YelTe — )

T — Y+ —z.=0. (A4)
Ye — Yi Ye — W1

Then, the point E? searched for each F? will be the farthest from the centroid C? which
holds the Equation (A.4) with i = 1,2, 3.

A.3.2 Definitive Model

In this subsection, we provide the definitive model for scaling the CHIM for three objectives.
In a first step, we decided to consider the approach in Section[A.3.1] However, this procedure
generates an infinite number of scaled triangles for three objectives. This situation led us to
develop another approach based on the distance between centroid and vertices.

Let F? = (4, y;, 2;) be the i-th extreme point delimiting the objective space R? with i =
1,2,3,let C3 = (., y., z.) be the centroid of the triangle generated by the points F, F3, and
F3, and let F?C? be the straight line which contain the points (£, C®) for i = 1,2,3. The

equation for the straight line F?C? is expressed as

ToTi _Y“Y _ ETE (A.5)

Te — X4 Ye — Yi Ze — X4

Let p; = (Zp,, Yp; s 2p; ) be apointof F3C3 fori = 1,2, 3 which is located at a given distance
d of the point C3. By using the formula for the distance between two points, we have

A(C*,0) = (@, — )% + (W, — 9)? + (2, — 20)2, (A.6)

where d(C3,p;) = d.
The point p; for i = 1,2, 3 is contained in F>C? and is located at a distance d if, and only if
holds the following system of equations given by (A.3) and (A.6)

LTp, =i __ Yp;, —Yi
LTe—T; Ye—Yi
Tp, —Ti _ Zp, —Zi

where t = x1 — Ty1.
Since Z., Ye, Ze» Tis Yi, and z; are constants and known, (z. — x;), (Y. — ¥;), and (2. — 2;)
are constants and known for ¢ = 1, 2, 3. We consider

m:(zc*xi)v n:(yc*yi% and l:(chzi)'
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Then,
(:Epi —x)n = (ypi —yi)m
(Tp, — i)l = (Zpl zi) m
d= \/ xpl Te)? + (Yp, — Ye)? + (2p, — 20)?
Tp, = Ypi7, n m—j
= Tp;, = qu T k )
d= \/ (Tp; —e)* + (Yp, — Ye)* + (2p, — 2c)?
where - o
Y —z; and k="——ua,.
n l
Thus,

{ ypi%_j:'zpi%_k 9
d* = [(ypl% —J - mc)] + (ypi - yc)2 + (Zpi - Zc)2
:>{ Yp: = (sz% _k+j) %2
d* = [(ypi% —-Jj- xc)] + (ypz - yc)2 + (Zpi - 20)2 7
By using the substitution method for solving system of equations, we have
m N nmo 2 n 2
= (o7 b)) g —imwe) + (s —kd) g —we) + =)
m 2 n . n 2
= (szT — k- ‘TC) + (szj + (] - k)% - yC) + (Zpi - 26)2

:zgi [(7>2+ (7)2+1} + 2zp, [Qb% 72a% fgzc} Fa? bt 22,

where n
a=k+z. and b= (j—k)— — ye.
m
That is
rzgiJrszpith:O,
where 5
r:(m+n) +1,
l
bn —
8:2<n/am_%>7
l
and

t=a®+b*+ 22 - d°
By using the method for solving the second grade equations
—s+ /82 —4drt

Thus, for each F? with i = 1,2,3, we get two points p; 1 = (Tp; 1 Ypins Zpiy) and ;o =
(Zpi 2> Yps.2» Zps.») €quidistant from the point C* with a distance d and contained in the straight

line F2C3, which links F and C?, where
—s5+Vs? —4drt —5 — /8% —4rt

Zp. 4 = Zp: 5 —
Pi,1 QT ) Pi,2 2T ’
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and therefore

m . n m ' n
Ypin = (Zpi,17 —k +]) E, Ypio = (Zpi,zT —k +J) E,
and . -
xlh,l = ypm; - ]7 ,’Epi’z = ypi,z; _ ]

Then, the point E3 searched for each F? will be the farthest from the centroid C® between
pi,1 and p; o with ¢ = 1,2, 3.

A.4 Normal Vector for Three Objectives

Let F1 = (l’l,yl, Zl), FQ = ({EQ, Y2, 22), and Fd = (.’E37y3, 23) be with F1 7& FQ 75 F3, three
given points delimiting the objective space R? and let 7 be the plain which contains Fy, Fy, and
Fs.

Let P = (x,y, z) be an unknown point of the plain 7. Since two points delimit a vector,

Flﬁ =(x -2,y —y1,2 — 21),

—
F1F2 = (22 — 21,92 — y1, 22 — 21),
and
—
F1F3 = (23 — 21,93 — y1,23 — 21).
We know that the implicit form of the equation of a plain is given by
r—=Tr1 T2—T1 I3 —T1
Y=y 22—y ys—y1 | =0
zZ— z1 Z9 — 21 Z3 — 21

Developing the determinant, we have
Alx—x1)+ Bz —21)+C(z — z1) =0,
where

Y2 —Y1 Ys— Y1
zZ9 — 21 zZ3 — 21

To —T1 X3z — X1 To — o1 T3 — X1

Y2—Y Ys— W

(A7)
Hence, the general equation of the plain 7 which contains the points F, Fb, F5 and P is given
by

A:

7B:_

)

22 — 21 23 — 21

Az +By+Cz+ D =0,
where A, B, and C are given by (A.7) and D is defined as

D =—Axy — By, — Cz.
In this way, a normal vector v—n> of the plain 7 is defined as
Vi =(A,B,0),
where A, B, and C are given by (A.7).
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Additional Information for
Solving the RNPP:
bi-objective Outdoor
Approach

This appendix contains additional information for solving the bi-objective outdoor RNPP
discussed in Chapter[d Thus, Sections[B.T|and[B.2]include the p-values and set coverage metrics
obtained by comparing the metaheuristics two by two, respectively.

B.1 Statistical Analysis Based on the Hypervolume Metric

In this section, we include all the p-values obtained by comparing the algorithms through
Wilcoxon-Mann-Whitney’s test and hypothesis Hy : Hyp, < Hyp; and Hy : Hyp, > Hyp,,
withi, 7 =1,2,...,8, 1=NSGA-II, 2=SPEA2, 3=MO-VNS, 4=MO-VNS*, 5=MO-ABC, 6=MO-
FA, 7=MO-GSA, and 8=MOEA/D. Because of the symmetry observed in the p-values obtained,
while comparing any two algorithms ¢ and j, i.e. 72 vs j and 7 vs 7. In the following tables,
p-values lower than 0.05 means that Hyp; > Hyp; (they appear shaded) and p-values higher
than 0.95 means that ij > Hyp, (they appear in boldface). These p-values are in Tables

B-1B2[B.3[B4 B3 [B.6 andB7

B.2 Set Coverage Analysis

This section contains all the set coverage metrics obtained by comparing the metaheuristics two

by two. These values are in Tables [B.§] [B.10] [B.11] [B.12} [B.13] [B.14] [B.13] [B.16} [B.17]
[B.18] [B.191[B.20 and[B.21}
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Table B.1: P-values obtained by comparing the metaheuristics through Wilcoxon-Mann-Whitney’s
test. Part 1 of 7.

NSGA-II vs SPEA2 NSGA-II vs MO-VNS
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50000 100 000 200 000 300 000 400 000 50000 100 000 200 000 300 000 400 000

50x50_30(1) 0,5000 0,5000  0,5000  0,5000  0,5000 0,9991  1,0000 1,0000 1,0000 1,0000
50x50_60(1) 0,5000  0,5000  0,5000  0,5000  0,5000 1,0000 1,0000  1,0000 1,0000 1,0000

100x100_30(2) | 0,0002 0,1520 | 0,0077  0,0000  0,0000 1,0000 1,0000  1,0000 1,0000  1,0000
100x100_30(3)  0,0000 0,0000  0,0000  0,0000  0,0000 1,0000 1,0000  1,0000 1,0000 1,0000

100x100_60(2) ' 0,0000 0,0000  0,0210  0,0067  0,0000 1,0000 1,0000  1,0000  1,0000  1,0000
100x100_60(3)  0,0000 0,0000  0,0000  0,0000  0,0000 1,0000 1,0000  1,0000  1,0000  1,0000

200x200_30(2)  0,2014 = 0,0034  0,0000  0,0000  0,0000 1,0000 1,0000  1,0000  1,0000  1,0000
200x200_30(4)  0,9235 0,7157  0,2138  0,0988  0,1064 1,0000 1,0000  1,0000 1,0000 1,0000

_30(6) 08816 0,2458 = 0,0006  0,0007  0,0007 1,0000 1,0000 09993  0,9998  0,9998
200x200_30(9) | 0,0000 0,0000  0,0000  0,0000  0,0000 0,9643 04200 03086 02795  0,4468

200x200_60(2)  0,9999 0,9987  0,9991 09982  0,9938 1,0000 1,0000 1,0000 1,0000  1,0000
200x200_60(4)  1,0000 1,0000 09961 09979  0,9847 1,0000 1,0000  1,0000 1,0000  1,0000
200x200_60(6) | 0.0264 0,0000  0,0000  0,0000  0,0000 1,0000 1,0000 1,0000 1,0000 1,000
200x200_60(9)  0,0000 0.0000  0,0000  0.0000 0,000 1,0000 1,0000 1,0000 1,0000 0,999

300x300_30(6)  0,9978 0,9974 09669 08829  0,6402 1,0000 0,9997 09982  0,9968  0,9905
300x300_30(12) 0,9926 09873  0,7304  0,7157  0,3206 0,9676 0,5630  0,0361  0,1933  0,0800
300x300_30(18) 0,9985 0,8831  0,1342  0,1513  0,0971 0,9912 0,0282  0,0000  0,0000  0,0000
300x300_30(24) 1,0000 1,0000 09993 09235 0,7658 1,0000 0,0178  0,0000  0,0000  0,0000

300x300_60(6)  1,0000 1,0000 09994  0,9696 0,9106 1,0000 0,9990 09993  0,9977  0,9990
300x300_60(12) 1,0000 1,0000 1,0000 0,9997  0,9751 0,9349  0,1710 = 0,0001  0,0000  0,0000
300x300_60(18)  1,0000 1,0000  1,0000 0,9945  0,9879 0,9590 0,0107 = 0,0000  0,0000  0,0000
300x300_60(24) 1,0000 1,0000 1,0000 1,0000  0,9959 1,0000 0,9984 ~ 0,0248  0,0000  0,0000

NSGA-II vs MO-VNS#* NSGA-II vs MO-ABC
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50000 100 000 200 000 300 000 400 000 50000 100 000 200 000 300 000 400 000
50x50_30(1) 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 11,0000 1,0000 1,0000 1,0000

50x50_60(1) 1,0000 1,0000  1,0000 1,0000 1,0000 1,0000 1,0000  1,0000 1,0000 1,0000

100x100_30(2) 04209 07482  0,9898  1,0000  1,0000 1,0000 1,0000 1,0000 1,0000  1,0000
100x100_303)  1,0000 1,0000 1,0000  1,0000  1,0000 1,0000  1,0000  1,0000  1,0000  1,0000

100x100_60(2)  1,0000 1,0000  1,0000  1,0000  1,0000 1,0000 1,0000  1,0000  1,0000  1,0000
100x100_60(3)  1,0000 1,0000  1,0000 1,0000  1,0000 1,0000 1,0000  1,0000 1,0000 1,0000

200x200_30(2) 09235  0,9977  0,9996  0,9992  0,9995 1,0000 1,0000  0,9999  0,9937  0,9553
200x200_30(4)  1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000
200x200_30(6)  1,0000 1,0000 1,0000 1,0000 1,0000 0,9899 08691  0,9976  1,0000  1,0000
200x200_30(9)  1,0000 1,0000 1,0000  1,0000  1,0000 0,0547 0,0127 02011  0,9889  1,0000

200x200_60(2)  1,0000 1,0000 1,0000  1,0000  1,0000 1,0000 1,0000 1,0000 1,0000  1,0000
200x200_60(4)  1,0000 1,0000 1,0000  1,0000  1,0000 1,0000  1,0000  1,0000 1,0000  1,0000
200x200_60(6)  1,0000 1,0000 1,0000  1,0000  1,0000 1,0000 1,0000 1,0000 1,0000 1,0000
200x200_60(9)  1,0000 1,0000 1,0000 09998  0,9867 09998  0.84290 09331 09998  1,0000

300x300_30(6) 1,0000 1,0000 1,0000 1,0000  0,9999 1,0000 1,0000 1,0000 1,0000  1,0000
300x300_30(12) 1,0000 1,0000 0,9949 09841  0,6107 1,0000 1,0000 1,0000  1,0000 1,000
300x300_30(18) 1,0000 1,0000 06080 03068  0.0922 1,0000 1,0000  1,0000 1,0000  1,0000
300x300_30(24) 1,0000 1,0000 09918 07701 04191 1,0000 1,0000 1,0000 1,0000  0,9999

300x300_60(6)  1,0000 1,0000 1,0000 1,0000 1,0000 0,9995 0,9862 1,0000 1,0000 1,0000
300x300_60(12) 1,0000 1,0000 09999  0,9918  0,6027 0,0291  0,0001  0,0000  0,0000  0,0000
300x300_60(18) 1,0000 0,9699 = 0,0000  0,0000  0,0000 1,0000 0,9996 08258  0,1199  0,0582
300x300_60(24) 1,0000 1,0000 0,8829 = 0,0000  0,0000 1,0000 1,0000  1,0000 0,9885  0,2748
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Table B.2: P-values obtained by comparing the metaheuristics through Wilcoxon-Mann-Whitney’s
test. Part 2 of 7.

NSGA-II vs MO-FA NSGA-II vs MO-GSA
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s;) 50000 100 000 200 000 300000 400 000 50000 100 000 200 000 300000 400 000

50x50_30(1) 1,0000 1,0000  1,0000 1,0000  1,0000 1,0000 1,0000  1,0000 1,0000  1,0000
50x50_60(1) 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000

100x100_30(2)  1,0000 1,0000  1,0000  1,0000  1,0000 1,0000 1,0000  1,0000 1,0000  1,0000
100x100_30(3)  1,0000 1,0000 1,0000 1,0000  1,0000 0,9897 09999  1,0000 1,0000 1,0000

100x100_60(2)  1,0000 1,0000  1,0000  1,0000  1,0000 1,0000 1,0000  1,0000 1,0000  1,0000
100x100_60(3)  1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000

200x200_30(2)  1,0000 1,0000 1,0000 1,0000  1,0000 1,0000  1,0000 09999  1,0000  1,0000
200x200_30(4)  1,0000 1,0000 09998 09996  0,9992 1,0000 09999 09998  1,0000  1,0000
200x200_30(6)  1,0000 1,0000 1,0000  1,0000  1,0000 09991 09893 09279 09966  0,9994
200x200_30(9)  1,0000 1,0000  1,0000 1,0000 1,000 0,0078  0,0005  0,0103 = 0,0988 04655

200x200_60(2)  1,0000 1,0000  1,0000  1,0000  1,0000 0,5894  0,9957  1,0000  1,0000  1,0000
200x200_60(4)  1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000
200x200_60(6)  1,0000 1,0000 1,0000 1,0000  0,9994 0,9669 03865 09387  0,9921  0,9912
200x200_60(9)  1,0000 1,0000 1,0000  1,0000  1,0000 0,0000 0,0000 0,1376  0,6764  0,9191

300x300_30(6) 1,0000 1,0000 09962 09775  0,8818 0,0410° 00264 0,1256 02386 03136
300x300_30(12) 1,0000 1,0000  1,0000 1,0000 1,000 00579 00922 03808 08290 0.8997
300x300_30(18) 1,0000 1,0000 1,0000 1,0000 1,000 09972 09625  0,9923  0,9988  1,0000
300x300_30(24) 1,0000 1,0000 1,0000 1,0000 1,000 1,0000 1,0000 1,0000 1,0000 1,0000

300x300_60(6) 1,0000 1,0000 1,0000 1,0000 1,000 06189 02299 09680 0,9957  0,9988
300x300_60(12) 1,0000 1,0000 1,0000  1,0000  1,0000 0,9999 09992 08715 08593  0,9653
300x300_60(18) 1,0000 1,0000 1,0000 1,0000  0,9998 1,0000 0,9901 09999 09986  1,0000
300x300_60(24) 1,0000 1,0000 1,0000 1,0000 1,000 0,9999  1,0000 1,0000 1,0000  1,0000

NSGA-II vs MO-MOEA/D SPEA2 vs MO-VNS
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000

50x50_30(1) 1,0000 1,0000 1,0000 1,0000 1,0000 0,5849  0,7482  0,9857  1,0000  1,0000
50x50_60(1) 1,0000 1,0000 1,0000 1,0000  1,0000 1,0000 1,0000 1,0000 1,0000 1,0000

100x100_30(2)  1,0000 1,0000 1,0000 1,0000  1,0000 1,0000 1,0000 1,0000 1,0000  1,0000
100x100_30(3)  1,0000 1,0000  1,0000  1,0000  1,0000 1,0000 1,0000 1,0000 1,0000  1,0000

100x100_60(2)  1,0000 1,0000 1,0000 1,0000  1,0000 09314 09992  0,9999  0,9998  1,0000
100x100_60(3) © 0,0000  0,0000  0.0000  0,0000  0,0000 0,9998  1,0000 1,0000  1,0000  1,0000

200x200_30(2)  1,0000 1,0000 0,9998 09980  0,9975 1,0000 1,0000 1,0000 1,0000  1,0000
200x200_30(4)  0,9999 09998  0,9917  0,9852  0,9841 1,0000 1,0000 1,0000 1,0000  1,0000
200x200_30(6) 1,0000 0,9857 | 0,0442 00245  0,0130 0,9948  1,0000 1,0000 1,0000  1,0000
200x200_30(9) 09620 02022 = 0,0066 0,006  0,0004 1,0000 1,0000 1,0000 1,0000 1,0000

200x200_60(2)  1,0000 1,0000 1,0000 1,0000  1,0000 1,0000 1,0000 1,0000 1,0000  1,0000
200x200_60(4)  0,9826 0.8066 0,1857 © 0,0398  0,0133 1,0000  1,0000 1,0000 1,0000  1,0000
200x200_60(6) | 0,0047 0,0000  0,0000  0.0000  0,0000 1,0000 0,9999 09997 09997  0,9998
200x200_60(9)  0,0000 0,0000  0,0000  0.,0000  0,0000 1,0000 09996 09480 09577 0.8218

300x300_30(6)  0,0988 ' 0,0007  0,0000  0,0000  0,0000 1,0000 1,0000 09865 0,6579  0,4468
300x300_30(12) 0,9969 0,6024  0,1776 02173  0,0767 1,0000 0,6180  0,1571  0,0765 | 0,0423
300x300_30(18)  1,0000 1,0000  0,9998  0,9991  0,9887 1,0000 1,0000  1,0000 1,0000 1,0000
300x300_30(24) 11,0000 1,0000 09998 0,8962  0,5532 1,0000 10,9915 0,1710 = 0,0163  0,0182

300x300_60(6)  1,0000 1,0000 0,9999  0,9917  0,9480 0,3338 = 0,0000  0,0000  0,0000  0,0000
300x300_60(12) 1,0000 0,9992  0,1605 = 0,0004  0,0000 1,0000 0,9194 = 0,0000  0,0000  0,0000
300x300_60(18)  1,0000 0,9060 = 0,0000  0,0000  0,0000 1,0000 1,0000  1,0000 1,0000  1,0000
300x300_60(24) 1,0000 1,0000 0,5698 | 0,0000  0,0000 1,0000 1,0000  1,0000 1,0000 1,0000
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B. Additional Information for Solving the RNPP: bi-objective Outdoor Approach

Table B.3: P-values obtained by comparing the metaheuristics through Wilcoxon-Mann-Whitney’s
test. Part 3 of 7.

SPEA2 vs MO-VNS#* SPEA2 vs MO-ABC
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50000 100 000 200000 300 000 400 000 50000 100 000 200000 300000 400 000

50x50_30(1) 0,5849 00,7482 0,9857  1,0000  1,0000 1,0000 1,0000  1,0000  1,0000  1,0000
50x50_60(1) 1,0000 1,0000  1,0000 1,0000  1,0000 1,0000 1,0000  1,0000  1,0000  1,0000

100x100_30(2)  1,0000 1,0000  1,0000  1,0000  1,0000 1,0000 1,0000  1,0000  1,0000 1,0000
100x100_303)  1,0000 1,0000 1,0000 1,0000  1,0000 1,0000 1,0000  1,0000 1,0000 1,0000

100x100_60(2)  0,9314  0,9992  0,9999  0,9998  1,0000 1,0000 1,0000  1,0000 1,0000 1,0000
100x100_60(3)  0,9998 1,0000 1,0000 1,0000  1,0000 1,0000 1,0000  1,0000 1,0000 1,0000

200x200_30(2)  1,0000 1,0000 1,0000  1,0000 1,0000 0,9951 09973  1,0000 1,0000 1,0000
200x200_30(4)  1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 0,9987  1,0000 1,0000 1,0000

_30(6)  0,9948 1,0000  1,0000  1,0000  1,0000 1,0000 1,0000  1,0000  1,0000  1,0000
200x200_30(9)  1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000  1,0000 1,0000 1,0000

200x200_60(2)  1,0000 1,0000 1,0000  1,0000  1,0000 1,0000 1,0000 1,0000 1,0000  1,0000
200x200_60(4)  1,0000 1,0000 1,0000  1,0000  1,0000 1,0000 1,0000  1,0000 1,0000  1,0000

60(6)  1,0000 09999 09997 09997  0,9998 1,0000 1,0000 10000 1,0000 1,0000
200x200_60(9)  1,0000 09996 09480 09577  0,8218 1,0000 1,0000  1,0000 1,0000  1,0000

300x300_30(6)  1,0000 1,0000 09865 0,6579  0,4468 1,0000 11,0000 1,0000 1,0000 1,0000
300x300_30(12) 1,0000 0,6189  0,1571  0,0765 | 0,0423 1,0000 09495  0,9918  1,0000  1,0000
300x300_30(18)  1,0000 1,0000  1,0000 1,0000 1,0000 0,0001  0,0059  0,9994  1,0000 1,0000
300x300_30(24) 1,0000 09915 0,1710 = 0,0163  0,0182 0,0000  0,0000  0,0000  0,0000  0,0000

300x300_60(6)  0,3338 " 0,0000 0,0000° 0,0000 " 0,0000 0,0001  0,0019  0,0021  0,0001  0,0002
300x300_60(12) 1,0000 09194  0,0000  0.0000  0,0000 1,0000 1,0000 05809 ~ 0,0030  0,0002
300x300_60(18) 1,0000 1,0000  1,0000 1,0000  1,0000 1,0000 1,0000  1,0000 1,0000 1,0000
300x300_60(24) 1,0000 1,0000 1,0000 1,0000  1,0000 1,0000 1,0000 1,0000 1,0000 1,0000

SPEA2 vs MO-FA SPEA2 vs MO-GSA
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000

50x50_30(1) 1,0000 1,0000  1,0000 1,0000 1,0000 1,0000 1,0000  1,0000  1,0000  1,0000
50x50_60(1) 1,0000 1,0000  1,0000 1,0000 1,0000 1,0000  1,0000  1,0000  1,0000  1,0000

100x100_30(2)  1,0000 1,0000 1,0000 1,0000  1,0000 1,0000  1,0000  1,0000  1,0000  1,0000
100x100_30(3)  1,0000 1,0000  1,0000 1,0000  1,0000 1,0000  1,0000  1,0000  1,0000  1,0000

100x100_60(2)  1,0000 1,0000  1,0000  1,0000  1,0000 1,0000  1,0000  1,0000  1,0000  1,0000
100x100_60(3)  1,0000 1,0000  1,0000  1,0000  1,0000 0,9999  1,0000  1,0000  1,0000  1,0000

200x200_30(2)  1,0000 1,0000  1,0000  1,0000  1,0000 0,9999  1,0000  1,0000  1,0000  1,0000
200x200_30(4)  1,0000 1,0000 1,0000 1,0000 1,0000 0,9989 0,9060  0,9996  1,0000 1,0000
200x200_30(6)  1,0000 1,0000 1,0000 1,0000 1,0000 0,0668 0,7879  1,0000  1,0000  1,0000
200x200_30(9)  1,0000 1,0000  1,0000  1,0000  1,0000 1,0000  1,0000  1,0000  1,0000  1,0000

200x200_60(2)  1,0000 1,0000 1,0000 1,0000 1,0000 0,9998 1,0000 1,0000  1,0000  1,0000

_60(4)  1,0000 1,0000 1,0000 1,0000 1,0000 0,0765  0,7061 1,0000  1,0000  1,0000
200x200_60(6)  1,0000 0,9953  0,8594  0,8480  0,8525 0,0000 0,0000 0,0024  0,0248  0,0871
200x200_60(9)  1,0000 1,0000 1,0000 1,0000 1,0000 0,0001  0,0026 02132 0,7299  0,9637

300x300_30(6)  1,0000 1,0000 1,0000 1,0000  1,0000 04136 07254  0,9998  1,0000  1,0000
300x300_30(12) 1,0000 1,0000 1,0000 1,0000  1,0000 1,0000 09999 09998  1,0000  1,0000
300x300_30(18) 1,0000 1,0000  1,0000  1,0000  1,0000 0,0000 0.0000  0,0301 © 07701  0,9590
300x300_30(24) 1,0000 1,0000 1,0000 1,0000  1,0000 0,0000 00011 00002 00032 03565

300x300_60(6)  1,0000 1,0000  1,0000 09999 09577 0,0000 0,0000  0,6354 07646  0,9836
300x300_60(12) 1,0000 1,0000 1,0000 1,0000  0,9995 0,0000 00871 08496  0,9990  0,9970
300x300_60(18) 1,0000 1,0000 1,0000 1,0000  1,0000 1,0000 1,0000 1,0000 1,0000 1,0000

300x300_60(24) 11,0000 1,0000  1,0000  1,0000  1,0000 1,0000 1,0000  1,0000  1,0000 1:0000
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B.2 Set Coverage Analysis

Table B.4: P-values obtained by comparing the metaheuristics through Wilcoxon-Mann-Whitney’s
test. Part 4 of 7.

SPEA2 vs MOEA/D MO-VNS vs MO-VNS#*
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s;) 50000 100 000 200 000 300000 400 000 50000 100 000 200 000 300000 400 000

50x50_30(1) 1,0000 1,0000  1,0000 1,0000  1,0000 0,0025 0,0005  0,0004  0,1377  0,0138
50x50_60(1) 1,0000 1,0000 1,0000 1,0000 1,0000 0,3677  0,1447 | 0,0004  0,0000  0,0000

100x100_30(2)  1,0000 1,0000  1,0000  1,0000  1,0000 0,0005  0,0009  0,0000  0,0000  0,0000
100x100_30(3)  0,2429 | 0,0183  0,0034  0,2173 | 0,0248 0,0616 = 0,0014  0,1064  0,5734 09232

100x100_60(2)  1,0000 1,0000  1,0000  1,0000  1,0000 0,0082 0,0117 0,0778  0,0075  0,0008
100x100_60(3)  0,9998 0,9998  0,9999  1,0000 1,0000 0,0024 0,0025 0,0019 0,0017  0,0326

200x200_30(2)  0,9998 0,9999 08066  0,7205  0,6687 0,9944  0,9758 09741 09741  0,9520
200x200_30(4)  1,0000 0,9901 09424 09022  0,8860 1,0000 1,0000 1,0000 1,0000 1,0000
200x200_30(6)  1,0000 1,0000  1,0000  0,9982  0,9885 0,0001  0,0067  0,0113  0,0415  0,1121
200x200_30(9) 0,5365 0,1439 = 0,0177 0,0010  0,0009 0,9996 0,9722  0,9404  0,7082  0,7325

200x200_60(2)  0,1064 = 0,0002  0,0000  0,0000  0,0000 0,9995 0,9975 09577 09172 09332
200x200_60(4)  0,1779 = 0,0000  0,0000  0,0000  0,0000 0,9255 0,8290  0,7061  0,4357  0,1895
200x200_60(6) ' 0,0000 0,0000  0,0000  0,0000  0,0000 0,9996 09981  0,9912  0,9699  0,9768
200x200_60(9)  0,8254 02299  0,1038  0,1013  0,0940 1,0000 1,0000  1,0000 0,9998  0,9912

300x300_30(6)  1,0000 1,0000 1,0000 1,0000  0,9996 1,0000 1,0000 1,0000 1,0000 1,0000
300x300_30(12) 1,0000 0,9959 05809 03037 02386 1,0000 1,0000 1,0000 1,0000  1,0000
300x300_30(18) 1,0000 09637 08987  0.7658  0.6559 1,0000 09999 09974 09897  0,9538
300x300_30(24) 0,0883 ©0,0004 0,0000" 0,0000  0,0000 1,0000 1,0000 1,0000 1,0000 1,0000

300x300_60(6)  0,2257 | 0,0000  0,0000 0,0000  0,0000 1,0000 10,9999  0,7482 03236  0,1090
300x300_60(12)  0,9999 0,7252 = 0,0000  0,0000  0,0000 1,0000 1,0000 0,9996  0,9985  0,9982
300x300_60(18)  1,0000 1,0000  1,0000  1,0000  1,0000 0,1468 | 0,0001  0,0003  0,0117  0,2681
300x300_60(24) 11,0000 1,0000 1,0000 1,0000 1,0000 0,0000 0,0001  0,0143  0,5844  0,9061

MO-VNS vs MO-ABC MO-VNS vs MO-FA
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000

50x50_30(1) 0,8539 ~ 0,0000  0,0000  0,0000  0,0000 0,9998 08347  0,9595  0,9995  0,9989
50x50_60(1) 1,0000 1,0000 0,9982  0,7205  0,1227 0,9956  0,6925  0,2868  0,1503 | 0,0006

100x100_30(2)  0,0000 0,0000  0,0000  0,0000  0,0000 0,0000  0,0000  0,0000  0,0000  0,0000
100x100_30(3)  0,0765 | 0,0093  0,0000  0,0000  0,0000 0,0566  0,0001  0,0000  0,0000  0,0000

100x100_60(2)  0,0785 | 0,0025  0,0000  0,0000  0,0000 0,8685 0,6889  0,9996 09385  0,2027
100x100_60(3) ' 0,0000  0,0000  0,0000  0,0001 0,0000 0,0240  0,0291 0,0092  0,0070  0,0013

200x200_30(2) | 0,0000 0,0000 0,1227 09797  0,9970 0,9994  0,9970  0,9458 00,9489  0,8628
200x200_30(4)  0,0017 0,1227  0,5140  0,9927  1,0000 1,0000 1,0000 1,0000 1,0000 1,0000
200x200_30(6)  0,9947 0,9805 0,6053 03273  0,2032 0,5973  0,2266  0,1100  0,1951  0,4057
200x200_30(9) | 0,0000 09608 1,0000 09974  0,9818 09835  0,6456 | 0,0319  0,0005  0,0001

200x200_60(2) | 0,0000 0,0000 00520 09744  0,9995 08966 06622 02173  0,0830 | 0,0304
200x200_60(4)  0,0000 0,0000 ~0,0000  0.1315  0,9998 1,0000 1,0000 0,9989 09727  0.8857
200x200_60(6) 09835 0,9997  1,0000 1,0000  1,0000 0,9867 09450  0,6422 04500  0.3082
200x200_60(9)  1,0000 1,0000 1,0000 1,0000 1,000 1,0000 1,0000 1,0000 1,0000 1,0000

300x300_30(6)  1,0000 1,0000 1,0000 1,0000 1,000 1,0000 1,0000 1,0000 1,0000  1,0000
300x300_30(12) 1,0000 1,0000 1,0000 1,0000 1,000 1,0000 1,0000 1,0000 1,0000 1,0000
300x300_30(18) | 0,0002 0,0085 09367  1,0000  1,0000 1,0000 1,0000 1,0000 09990  0,9914
300x300_30(24) 0,003] 00045 01199 04246  0.8936 1,0000 1,0000 1,0000 1,0000 1,0000

300x300_60(6)  0,9989  1,0000  1,0000 1,0000 1,000 1,0000  1,0000 1,0000 1,0000  1,0000
300x300_60(12) 1,0000 1,0000 1,0000 1,0000 1,000 1,0000 1,0000 1,0000 1,0000  1,0000
300x300_60(18) 1,0000 1,0000 1,0000 1,0000  1,0000 1,0000 1,0000 10000 1,0000 1,0000
300x300_60(24) 1,0000 1,0000  1,0000 1,0000  1,0000 1,0000 1,0000 1,0000 1,0000  1,0000
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B. Additional Information for Solving the RNPP: bi-objective Outdoor Approach

Table B.5: P-values obtained by comparing the metaheuristics through Wilcoxon-Mann-Whitney’s
test. Part 5 of 7.

MO-VNS vs MO-GSA MO-VNS vs MOEA/D
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s;) 50000 100 000 200 000 300000 400 000 50000 100000 200000 300000 400 000

50x50_30(1) 0,0013  0,0000  0,0000  0,0000  0,0000 0,0175  0,0000  0,0000  0,0000  0,0000
50x50_60(1) 0,0000  0,0000  0,0000  0,0000  0,0000 0,0258  0,0001  0,0000  0,0000  0,0000

100x100_30(2) ' 0,0000 0,0000  0,0000  0,0000  0,0000 0,0000  0,0000  0,0000  0,0000  0,0000
100x100_30(3) ~ 0,0000 0,0000  0,0000  0,0000  0,0000 0,0000 0,0000  0,0000 0,0000  0,0000

100x100_60(2)  0,0256  0,0000  0,0000  0,0000  0,0000 0,0633  0,0014  0,0000  0,0000  0,0000
100x100_60(3) ~ 0,0000 0,0000  0,0000  0,0000  0,0000 0,0001  0,0000  0,0000 0,0000  0,0000

200x200_30(2) | 0,0000 0,000 00043 00133  0,0535 0,0002  0,0002  0,0000 0,0000  0,0000
200x200_30(4)  0,0003 0,0189 0,1143  0,2939  0,5744 0,5324 03153 = 0,0373  0,0146  0,0032
200x200_30(6)  0,0000  0,0000  0,0000  0,0000  0,0003 0,0000  0,0000  0,0000  0,0000  0,0000
200x200_30(9)  0,0000 0,0000 0,0000  0,0000  0,0000 0,0000  0,0000  0,0000  0,0000  0,0000

200x200_60(2) ' 0,0000 0,0000 0,0000 0,0002 0,0013 0,0000  0,0000  0,0000  0,0000  0,0000
200x200_60(4)  0,0000 0,0000 0,0000 0,0000 0,0010 0,0000  0,0000  0,0000  0,0000  0,0000
200x200_60(6)  0,0000 0,0000  0,0002  0,0005 0,0027 0,0000  0,0000  0,0000  0,0000  0,0000
200x200_60(9)  0,0008 0,1117 08910  0,9689  0,9970 09294  0,6349 03864  0,2795  0,1895

300x300_30(6)  0,6662  1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000
300x300_30(12) 1,0000 1,0000 1,0000  1,0000  1,0000 1,0000 1,0000  1,0000 1,0000 1,0000
300x300_30(18) = 0,0000 0,0001  0,0153  0,1227  0,2299 0,9590 0,7701  0,5253  0,2386  0,0582
300x300_30(24) 0,9524  0,9999  1,0000 1,0000 1,0000 0,9998 09995  0,9862 0.8561  0,6136

300x300_60(6) 09887 1,0000 1,0000 1,0000 1,000 1,0000 0,9991 08685 07157  0,6027
300x300_60(12) | 0,0264 09930  1,0000  1,0000  1,0000 1,0000 09995 09852 09776  0.9465
300x300_60(18) 1,0000 1,0000  1,0000 1,0000  1,0000 1,0000 1,0000 1,0000 1,0000  1,0000
300x300_60(24) 1,0000 1,0000 1,0000 1,0000 1,000 1,0000 1,0000 1,0000 1,0000 1,0000

MO-VNS* vs MO-ABC MO-VNS vs MO-FA*
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50 000 100 000 200 000 300 000 400 000 50000 100000 200000 300 000 400 000

50x50_30(1) 1,0000 0,8655  0,0694  0,0000  0,0000 1,0000 0,9999  1,0000 1,0000 1,0000
50x50_60(1) 1,0000 1,0000 1,0000 1,0000  1,0000 0,9870  0,9943  1,0000  1,0000  1,0000

100x100_30(2) | 0,0186 0,0000  0,0000  0,0000  0,0000 0,0000  0,0000  0,0000 0,0000  0,0000
100x100_30(3)  0,6082  0,8181  0,1571 ~ 0,0000  0,0000 0,4972  0,4524  0,0745 ~ 0,0000  0,0000

100x100_60(2) 09776  0,3390 | 0,0177  0,0062  0,0016 0,9976 0,9847  1,0000  0,9999  0,9967
100x100_60(3)  0,3441  0,2386  0,5864  0,3493  0,0138 0,8561  0,7482  0,4691 0,3186  0,0596

200x200_30(2) ' 0,0000 0,0000 0,0002 06192  0,9407 0,6755 0,7487  0,6599  0,6013  0,4809
200x200_30(4)  0,0000 0,0000 0,0000 0,000l  0,0871 09852  0,9947  0,9926 09953  0,9848
200x200_30(6)  1,0000 1,0000 0,9959 09042  0,4942 0,9998 09720 08817 0,7326  0,6885
200x200_30(9) | 0,0000 02055 09946 09912  0,9235 0,0135  0,0185  0,0010  0,0000  0,0000

200x200_60(2) ' 0,0000 0,0000 0,0001 0,7482  0,9940 0,0240  0,0301  0,0051  0,0016  0,0001
200x200_60(4)  0,0000 0,0000  0,0000 02011 0,9988 1,0000 0,9993  0,9450  0,9060  0,8801
200x200_60(6)  0,0079 0,2843 04136  0,6559  0,9036 0,1117  0,0725 © 0,0226  0,0182  0,0144
200x200_60(9)  0,8857  1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000

300x300_30(6)  0,9995 1,0000 1,0000 1,0000  1,0000 1,0000 1,0000 1,0000 1,0000  1,0000
300x300_30(12) 00651 09993  1,0000 10000 1,000 1,0000 1,0000 1,0000 1,0000 1,0000
300x300_30(18) | 0,0000 0,0000  0,0423 09945  1,0000 0,9889 09877 09858 09164 08816
300x300_30(24) 0,0000 0,0000  0,0000  0,0000  0,0000 1,0000 1,0000 1,0000 1,0000 1,0000

300x300_60(6) | 0,0004 0,9590  1,0000 1,0000 1,000 1,0000 1,0000 1,0000 1,0000  1,0000
300x300_60(12) 00045 0,9940  1,0000 1,0000  1,0000 1,0000 1,0000 1,0000 1,0000 1,0000
300x300_60(18) 1,0000 1,0000 1,0000 10000 1,000 1,0000 1,0000 10000 1,0000 1,0000
300x300_60(24) 1,0000 1,0000 1,0000 1,0000 1,000 1,0000 1,0000 1,0000 1,0000  1,0000
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B.2 Set Coverage Analysis

Table B.6: P-values obtained by comparing the metaheuristics through Wilcoxon-Mann-Whitney’s
test. Part 6 of 7.

MO-VNS#* vs MO-GSA MO-VNS* vs MOEA/D
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s;) 50000 100 000 200 000 300000 400 000 50000 100 000 200 000 300000 400 000

50x50_30(1) 0,7725  0,4598 ' 0,0110  0,0000  0,0000 0,8417 0,4288 ' 0,0081  0,0000  0,0000
50x50_60(1) 0,0000  0,0000  0,0000  0,0000  0,0000 0,0203  0,0000  0,0000  0,0000  0,0000

100x100_30(2) = 0,0000 0,0000  0,0000 0,0000  0,0000 0,0000  0,0000  0,0000  0,0000  0,0000
100x100_30(3)  0,0687 = 0,0273  0,0177  0,0000  0,0000 0,0000 0,0000  0,0000  0,0000  0,0000

100x100_60(2)  0,9614 0,1117 | 0,0128  0,0076  0,0025 09434 0,2474 = 0,0196  0,0060  0,0016
100x100_60(3)  0,1143  0,0599 02257  0,1345 | 0,0025 0,2988  0,0988 ~ 0,0264  0,0011  0,0001

200x200_30(2) ' 0,0000 0,0000 0,0000 0,0000 0,0001 0,0000  0,0000  0,0000  0,0000  0,0000
200x200_30(4)  0,0000 0,0000 0,0000 0,0000  0,0000 0,0000  0,0000  0,0000  0,0000  0,0000
200x200_30(6)  0,0040  0,0000  0,0022  0,0008  0,0009 0,5744  0,0038  0,0000  0,0000  0,0000
200x200_30(9)  0,0000 0,0000 0,0000 0,0000 0,0000 0,0000  0,0000  0,0000  0,0000  0,0000

200x200_60(2) ' 0,0000 0,0000 0,0000 0,0000  0,0000 0,0000  0,0000  0,0000  0,0000  0,0000
200x200_60(4)  0,0000 0,0000 0,0000 0,0003 0,0746 0,0000  0,0000  0,0000  0,0000  0,0000
200x200_60(6)  0,0000 0,0000  0,0000 0,0000  0,0000 0,0000  0,0000  0,0000  0,0000  0,0000
200x200_60(9)  0,0000 0,0000 0,0058 02215  0,8962 0,0153  0,0177  0,0171  0,0291  0,0398

300x300_30(6) | 0,0000  0,0010 " 0,9942  1,0000 1,000 0,9997 09997  0,9999  0,9998 0,999
300x300_30(12) 09274 1,0000  1,0000 1,0000  1,0000 0,9999 09995  0,9983  0,9980  0,9927
300x300_30(18) | 0,0000 0,0000  0,0000 0,000  0,0023 0,0006 0,0003  0,0023  0,0008  0,0004
300x300_30(24) 0,0000 0,0000 0,0016  0,0838  0,9709 0,0000 00000  0,0000  0,0000  0.0000

300x300_60(6) | 0,00000 0,8582  1,0000 1,0000  1,0000 02988 04082  0,6027 0,6243  0,7571
300x300_60(12)  0,0000 00043~ 1,0000  1,0000  1,0000 03086 02132 0,1746 02386 02011
300x300_60(18) 1,0000 1,0000 1,0000  1,0000 1,000 1,0000 1,0000 1,0000 1,0000  1,0000
300x300_60(24) 1,0000 1,0000 1,0000 1,0000 1,000 1,0000 1,0000 1,0000 1,0000 1,0000

MO-ABC vs MO-FA MO-ABC vs MO-GSA
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000

50x50_30(1) 0,9999 1,0000 1,0000 1,0000 1,0000 0,0000 0,0000  0,0000  0,0000 0,0010
50x50_60(1) 0,0028  0,0000  0,0000  0,0000  0,0000 0,0000  0,0000  0,0000  0,0000  0,0000

100x100_30(2) = 0,0000 0,0000  0,0003 0,1013  0,4302 0,0000 0,0000 0,0002 0,0512  0,3651
100x100_30(3)  0,4691 | 0,0210 0,3973  0,9376  0,9963 0,0000  0,0000  0,0000  0,0000  0,0002

100x100_60(2)  0,9776  0,9835  1,0000  1,0000  1,0000 02701  0,0828  0,4804  0,9551  0,9912
100x100_60(3)  0,9727 0,9255  0,6027  0,4747  0,3976 0,1013  0,0550 | 0,0196  0,0849  0,2609

200x200_30(2)  1,0000 1,0000 0,9997  0,5383  0,0684 09551  0,9453  0,1013 = 0,0000  0,0000
200x200_30(4)  1,0000 1,0000 1,0000 1,0000 0,9998 0,0894 0,1090 ' 0,0363  0,0004  0,0000
200x200_30(6)  0,0161 = 0,0013  0,0339  0,1572  0,3781 0,0000  0,0000  0,0000  0,0000  0,0000
200x200_30(9)  1,0000 ~ 0,0242  0,0000  0,0000  0,0000 0,0000  0,0000  0,0000  0,0000  0,0000

200x200_60(2)  1,0000 1,0000 0,6764 = 0,0001  0,0000 0,0000  0,0000  0,0000  0,0000  0,0000
200x200_60(4)  1,0000 1,0000  1,0000 0,9965 = 0,0073 0,0000  0,0000 0,0111  0,0003  0,0000
200x200_60(6)  0,8529  0,1571 | 0,0014  0,0001  0,0000 0,0000  0,0000  0,0000  0,0000  0,0000
200x200_60(9)  1,0000 10,9996 09889 0,6610 0,4143 0,0000 0,0000  0,0000  0,0000  0,0000

300x300_30(6)  1,0000 1,0000 1,0000 1,0000 1,0000 0,0000 0,0000  0,0001  0,0026  0,0043
300x300_30(12) 1,0000 1,0000 1,0000 1,0000 1,0000 0,9944 09942  0,9775  0,8027 00,9029
300x300_30(18)  1,0000 1,0000  1,0000 0,1772 | 0,0002 0,0067  0,0018  0,0000  0,0000  0,0000
300x300_30(24) 11,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000

300x300_60(6)  1,0000 1,0000 1,0000 1,0000  1,0000 0,1365 0,1140  0,9964  0,9999  1,0000
300x300_60(12) 1,0000 1,0000 1,0000 1,0000 1,0000 0,0000  0,0000 0,8028  1,0000  1,0000
300x300_60(18)  0,5000  0,5000  0,5000  0,5000  0,5000 0,5000  0,5000  0,5000  0,5000  0,5000
300x300_60(24) 0,5000 0,5000  0,5000  0,5000  0,5000 0,5000  0,5000  0,5000  0,5000  0,5000
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B. Additional Information for Solving the RNPP: bi-objective Outdoor Approach

Table B.7: P-values obtained by comparing the metaheuristics through Wilcoxon-Mann-Whitney’s
test. Part 7 of 7.

MO-ABC vs MOEA/D MO-FA vs MO-GSA
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s;) 50000 100 000 200 000 300000 400 000 50000 100000 200000 300000 400 000

50x50_30(1) 0,0000  0,0000  0,0000  0,0000  0,0000 0,0000  0,0000  0,0000  0,0000  0,0000
50x50_60(1) 0,0000  0,0000  0,0000  0,0000  0,0000 0,0000 0,0000  0,0000  0,0000  0,0000

100x100_30(2) ' 0,0000 0,0000  0,0000  0,0000  0,0000 0,0000 0,0005 02518 03211  0,3598
100x100_30(3) ~ 0,0000 0,0000  0,0000  0,0000  0,0000 0,0000 0,0000  0,0000 0,0000  0,0000

100x100_60(2)  0,5140  0,5588  0,7989  0,8744  0,9510 0,0103  0,0031  0,0000  0,0000  0,0000
100x100_60(3)  0,4747 0,2299 | 0,0016  0,0004  0,0017 0,0053 0,0171  0,2609  0,4027  0,6245

200x200_30(2)  0,9953 09314 = 0,0003  0,0000  0,0000 0,0000  0,0000  0,0000  0,0000  0,0011
200x200_30(4)  0,9974 0,7003 = 0,0217  0,0000  0,0000 0,0000  0,0000  0,0000  0,0000  0,0000
200x200_30(6) ' 0,0000  0,0000  0,0000  0,0000  0,0000 0,0000  0,0000 0,000l  0,0000  0,0004
200x200_30(9)  0,0000 0,0000 0,0000  0,0000  0,0000 0,0000  0,0000  0,0000 0,0000 0,0188

200x200_60(2)  0,0000 0,0000 0,0000  0,0000  0,0000 0,0000  0,0000  0,0000 0,0109  0,1272
200x200_60(4)  0,0000 0,0000 0,0000 0,0000  0,0000 0,0000  0,0000  0,0000  0,0000  0,0001
200x200_60(6)  0,0000 0,0000  0,0000 0,0000  0,0000 0,0000 0,0000  0,0005  0,0051  0,0522
200x200_60(9)  0,0037 0,0000  0,0000  0,0000  0,0000 0,0000  0,0000  0,0000  0,0000  0,0000

300x300_30(6)  0,9995 02748 = 0,0006  0,0002  0,0000 0,0000  0,0000  0,0000  0,0000  0,0000
300x300_30(12) 1,0000 0,8593 = 0,0004  0,0000  0,0000 0,0000  0,0000  0,0000  0,0000  0,0000
300x300_30(18)  1,0000 0,9998  0,0633 ~ 0,0000  0,0000 0,0000  0,0000  0,0000  0,0000  0,0001
300x300_30(24) 1,0000 1,0000  0,9996  0,9689  0,3493 0,0000  0,0000  0,0000  0,0000  0,0000

300x300_60(6)  0,9908 ' 0,0321  0,0000  0,0000  0,0000 0,0000 0,0000  0,0000 0,0006 0,7372
300x300_60(12) 0,8910 =~ 0,0111  0,0000  0,0000  0,0000 0,0000  0,0000  0,0000 0,0025  0,5448
300x300_60(18) 0,5000 0,5000  0,5000  0,5000  0,5000 0,5000  0,5000  0,5000  0,5000  0,5000
300x300_60(24) 0,5000 0,5000  0,5000  0,5000  0,5000 0,5000 0,5000  0,5000  0,5000  0,5000

MO-FA vs MOEA/D MO-GSA vs MOEA/D
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50 000 100 000 200 000 300 000 400 000 50000 100000 200000 300 000 400 000

50x50_30(1) 0,0000 0,0000  0,0000  0,0000  0,0000 0,9994 00,5509  0,0000  0,0000  0,0000
50x50_60(1) 0,0000  0,0000  0,0000  0,0000  0,0000 1,0000 1,0000  1,0000 1,0000 0,9995

100x100_30(2) ' 0,0085 0,0596 = 0,0025  0,0000  0,0000 0,3390 0,3757 © 0,0067 0,0004  0,0000
100x100_30(3)  0,0000 0,0000  0,0000  0,0000  0,0000 0,0000  0,0000  0,0000  0,0000  0,0000

100x100_60(2) ' 0,0143  0,0053  0,0000  0,0000  0,0000 0,7658 09434  0,7658 03704  0,2215
100x100_60(3)  0,0410 0,0232  0,0398  0,0291  0,0922 0,7827 0,5864  0,0806 = 0,0076  0,0045

200x200_30(2) ' 0,0000 0,0000 0,0000  0,0000  0,0000 0,9450 0,4813 | 0,0051  0,0001  0,0000
200x200_30(4)  0,0000 0,0000 0,0000 0,0000 0,0000 0,9996 09189 0,2187 ~ 0,0241  0,0016
200x200_30(6)  0,0000 0,0000 0,0000 0,0000 0,0000 0,9997 09979 = 0,0411  0,0097  0,0000
200x200_30(9)  0,0000 0,0000  0,0000  0,0000  0,0000 0,0000  0,0000  0,0000  0,0000  0,0000

200x200_60(2) ' 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000  0,0000  0,0000 0,0000  0,0000

300x300_30(6) ' 0,0476  0,0000  0,0000  0,0000  0,0000 1,0000 1,0000 0,8857  0,5588 | 0,0331
300x300_30(12)  0,0073  0,0000  0,0000  0,0000  0,0000 09775  0,0547 | 0,0000  0,0000 0,0000
300x300_30(18)  0,0000 0,0000  0,0000  0,0000  0,0000 1,0000 1,0000 0,9940 0,5532  0,1376
300x300_30(24)  0,0000 0,0000 0,0000 0,0000  0,0000 0,9942 04860 ' 0,0203  0,0000  0,0000

300x300_60(6)  0,0000 0,0000 0,0000 0,0000 0,0000 0,9992  0,2411 ' 0,0000 0,0000  0,0000
300x300_60(12) = 0,0000 0,0000  0,0000 0,0000  0,0000 1,0000 10,9129 = 0,0000  0,0000  0,0000
300x300_60(18)  0,5000  0,5000  0,5000  0,5000  0,5000 0,5000  0,5000  0,5000  0,5000  0,5000
300x300_60(24) 0,5000 0,5000  0,5000  0,5000  0,5000 0,5000  0,5000  0,5000  0,5000  0,5000
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B.2 Set Coverage Analysis

Table B.8: Set coverage metric by comparing all the metaheuristics two by two. Part 1 of 14.

Isc(NSGA-IIL,SPEA2)

Isc(NSGA-II,MO-VNS)

Evaluations (Stop condition)

Evaluations (Stop condition)

Instance(s;) 50 000 100 000 200 000 300 000 400 000 50000 100000 200 000 300000 400 000
50x50_30(1) 56,52%  77,01%  96,81%  92,11%  96,49% 0,00% 0,00% 0,00% 0,00% 0,00%
50x50_60(1) 74,11%  9297%  8520%  99,97%  100,00% 0,00% 0,00% 0,00% 8,00% 5,00%
100x100_30(2) 54,00%  6047%  7746%  81,86%  91.87% 0,00% 0,00% 0,72% 0,00% 1,43%
100x100_30(3) 63,37%  90,72%  37.85%  78,19%  74,60% 0,00% 0,00% 0,00% 0,45% 0,00%
100x100_60(2) 98,67% 11,05%  97,62% 0,00% 100,00% 0,00% 0,00% 0,00% 0,00% 16,67%
100x100_60(3) 80,00%  92,60%  7543%  100,00% 100,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(2) 91,67%  55,00% 0,00% 0,19% 100,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(4) 4,76% 97,06%  99,89%  100,00%  100,00% 9,09%  25,00% 12,50%  27,27%  83,33%
200x200_30(6) 16,67% 0,00% 10,71%  34,78%  54,55% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(9) 0,00% 35,71% 11,11% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_60(2) 92,59%  2632%  93,22%  28,40%  28,57% 4,00% 3,13% 31,25% 14,71% 0,00%
200x200_60(4) 88,89%  64,29% 15,69%  30,56%  100,00% 0,00% 0,00% 21,43%  24,14% 0,00%
200x200_60(6) 5,45% 18,18% 0,55% 1,62% 0,15% 0,00% 18,18% 0,00% 45,00%  27,27%
200x200_60(9) 0,00% 92,07%  7399%  96,35% 4,94% 38,46% 83,33%  69,23%  85,71%  53.85%
300x300_30(6) 20,33%  8245%  99.88%  95,81%  100,00% 0,00%  41,67%  100,00% 100,00% 100,00%
300x300_30(12)  0,00% 0,00% 0,00% 0,00% 0,00% 0,00%  100,00% 100,00% 100,00% 100,00%
300x300_30(18)  0,00% 0,00% 0,00% 0,00% 6,67% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(24)  0,00% 16,67% 11,90% 13,16% 0,00% 37,50%  80,00%  100,00% 89.47%  92,86%
300x300_60(6) 0,00% 30,00% 0,00% 3333%  77,08% 57,14%  68,75%  68,18%  75,76%  100,00%
300x300_60(12) 54,17%  26,92% 0,00% 0,00% 70,00% 61,11%  57,14% 19,05%  100,00%  100,00%
300x300_60(18) 100,00% 100,00% 100,00% 100,00% 100,00% 20,00%  20,00%  20,00%  20,00%  20,00%
300x300_60(24) 100,00% 100,00% 100,00% 100,00% 100,00% 20,00%  20,00%  20,00%  20,00%  20,00%
Isc(NSGA-II,MO-VNS#*) Isc(NSGA-IL,MO-ABC)
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50 000 100 000 200 000 300 000 400 000 50000 100000 200 000 300000 400 000
50x50_30(1) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,67% 0,00% 16,06%
50x50_60(1) 0,00% 0,00% 0,00% 0,00% 5,88% 0,00% 0,00% 0,00% 16,34% 4,73%
100x100_30(2) 0,00% 0,00% 0,00% 0,00% 0,00% 1,89% 1,77% 0,92% 2,30% 2,39%
100x100_30(3) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
100x100_60(2) 50,00%  50,00% 0,00% 40,00% 0,00% 31,36%  0,00% 0,29% 0,00% 42,59%
100x100_60(3) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(2) 0,00% 0,00% 0,00% 0,00% 33,33% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(4) 0,00% 0,00% 0,00% 28,57% 0,00% 0,00%  91,67%  98,15%  24,56% 13,52%
200x200_30(6) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 38,24% 0,00%
200x200_30(9) 0,00% 0,00% 5,26% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_60(2) 0,00% 0,00% 0,00% 0,00% 0,00% 2,44% 0,00% 0,89% 1,75% 0,00%
200x200_60(4) 0,00% 0,00% 0,00% 0,00% 0,00% 50,88%  3529%  89,89% 9,38% 17,11%
200x200_60(6) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 9,18% 0,00% 0,00% 0,00%
200x200_60(9) 2727%  22,22%  4444%  52,94%  50,00% 7,96% 0,59% 0,22% 0,34% 1,84%
300x300_30(6) 0,00% 14,29%  60,00% 0,00% 75,00% 9,38% 0,00% 4,81% 6,25% 20,51%
300x300_30(12)  0,00% 0,00% 28,57%  25,00%  100,00% 0,00%  33,33% 0,00% 0,00% 0,00%
300x300_30(18)  0,00% 0,00% 16,67% 0,00% 0,00% 8,33% 10,00% 0,00% 0,00% 0,00%
300x300_30(24)  0,00% 0,00% 16,67%  20,83% 0,00% 18,18% 100,00% 94,12%  100,00%  12,50%
300x300_60(6) 0,00% 87,50%  33,33%  100,00% 100,00% 385%  76,19%  40,00%  83,13%  92,86%
300x300_60(12)  0,00% 20,00% 0,00% 12,50% 9,09% 58,33% 6198%  4237%  60,37%  77,36%
300x300_60(18)  9,09% 9,09% 9,09% 9,09% 9,09% 1L11%  11,11% 11,11% 11,11% 11,11%
300x300_60(24)  9,09% 9,09% 9,09% 9,09% 9,09% 1L,11%  11,11% 11,11% 11,11% 11,11%

147



B. Additional Information for Solving the RNPP: bi-objective Outdoor Approach

Table B.9: Set coverage metric by comparing all the metaheuristics two by two. Part 2 of 14.

Isc(NSGA-IILMO-FA)

Isc(NSGA-IILMO-GSA)

Evaluations (Stop condition)

Evaluations (Stop condition)

Instance(s,) 50000 100000 200000 300000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 0,00% 0,00% 0,00% 0,00% 0,00% 9,09% 9,09% 0,00% 0,00% 9,09%
50x50_60(1) 6,67% 6,25% 0,00% 6,25% 11,76% 60,00%  40,00% 0,00% 0,00% 0,00%
100x100_30(2) 1,05% 0,00% 0,87% 0,00% 2,33% 1,23% 0,00% 1,85% 0,00% 1,85%
100x100_30(3) 0,00% 0,00% 0,00% 0,00% 0,00% 1,06% 0,00% 1,22% 0,00% 2,50%
100x100_60(2) 0,00%  20,00%  20,00% 0,00% 16,67% 44,44%  22,22%  20,00% 0,00% 25,00%
100x100_60(3) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(2) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 33,33%
200x200_30(4) 0,00% 0,00% 0,00% 0,00% 0,00% 71,43% 0,00% 0,00% 100,00%  50,00%
200x200_30(6) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 7,69% 9,09%
200x200_30(9) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_60(2) 8,11% 3.51% 0,00% 13,46% 0,00% 70,00% 4,55% 34,48% 2,38% 25,00%
200x200_60(4) 0,00% 0,00% 0,00% 0,00% 0,00% 94,29%  86,67% 8,70% 9,00% 19,70%
200x200_60(6) 0,00%  12,50% 0,00% 0,00% 87,50% 50,00%  40,00%  46,67%  81,25%  58,82%
200x200_60(9) 0,00% 0,00% 0,00% 7,69% 11,11% 66,67%  4545%  57,14%  57,14%  44,44%
300x300_30(6) 0,00% 0,00% 0,00% 0,00% 0,00% 40,00% 16,67%  38,46%  66,67% 16,67%
300x300_30(12)  0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(18)  0,00% 0,00% 0,00% 0,00% 0,00% 44,44%  53,85% 7,14% 50,00% 0,00%
300x300_30(24)  0,00% 0,00% 0,00% 0,00% 0,00% 42,86%  63,16%  73,08%  33.33% 12,50%
300x300_60(6) 0,00% 0,00% 0,00% 0,00% 0,00% 1429%  66,67%  27,66%  78,57%  26,67%
300x300_60(12)  0,00% 0,00% 0,00% 0,00% 0,00% 66,67% 0,00% 22,45% 19,05% 0,00%
300x300_60(18) 11,11% 11,11% 11,11% 11,11% 11,11% 11,11% 11,11% 11,11% 11,11% 11,11%
300x300_60(24) 11,11% 11,11% 11,11% 11,11% 11,11% 11,11% 11,11% 11,11% 11,11% 11,11%
Isc(NSGA-ILLMOEA/D) Isc(SPEA2,NSGA-II)
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50000 100000 200000 300000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 7,69% 7,14% 13,33%  20,00% 0,00% 51,56%  57,718%  76,77%  79,17%  72,97%
50x50_60(1) 18,18%  25,00% 8,33% 16,67%  25,00% 35,64% 6,77% 70,63%  38,59%  50,50%
100x100_30(2) 6,52% 5,19% 9,76% 11,86% 8,33% 51,24%  69,09%  74,64%  63,54%  80,80%
100x100_30(3) 15,69% 18.87%  17,86% 12,77%  21,57% 20,42%  35,58%  42,58% 17,06%  39,80%
100x100_60(2) 16,67%  42,86% 0,00% 16,67%  50,00% 73,08%  97,69%  96,00% 0,00% 20,81%
100x100_60(3) 0,00%  12,50% 0,00% 28,57% 0,00% 4439%  4797%  48,59% 0,00% 0,00%
200x200_30(2) 0,00% 0,00% 0,00% 25,00%  75,00% 5,06% 67,86%  70,09% = 72,32% 0,00%
200x200_30(4) 0,00% 0,00%  100,00% 100,00% 100,00% 94,78% 5,01% 0,00% 0,00% 0,00%
200x200_30(6) 0,00% 8,33% 0,00% 16,67%  28,57% 62,50%  85,71%  94,74%  7647%  67,39%
200x200_30(9) 0,00%  20,00% 42,86%  64,00%  66,67% 90,00%  20,00%  5833%  95,00%  47,06%
200x200_60(2) 7143% 6538%  8571%  96,15%  81,25% 0,00% 58,43% 4,11% 1,35% 41,12%
200x200_60(4)  73,08% 81,82%  88,89%  6897%  74,19% 21,21%  58,33% 19,74%  36,54% 0,00%
200x200_60(6)  22,22% 50,00%  61,54%  57,14%  62,50% 70,00% 0,54% 79,10%  57,75%  87,05%
200x200_60(9) 55,56% 72,73%  61,54%  66,67%  100,00% 99.,41% 2,52% 52,46%  51,72%  92,82%
300x300_30(6) 0,00% 0,00% 30,77% 12,50% 10,00% 92,92% 15,89% 0,00% 12,36% 0,00%
300x300_30(12)  0,00% 0,00% 0,00% 0,00% 42,86% 100,00%  100,00% 100,00% 100,00% 100,00%
300x300_30(18) 14,29%  0,00% 20,00%  30,00%  52,63% 66,67%  100,00% 100,00% 41,18%  26,67%
300x300_30(24) 0,00% 62,50% 48,15%  52,00%  82,61% 100,00% 54,55%  36,84%  89,36%  95.83%
300x300_60(6)  50,00% 51,85% 100,00% 91,43%  97,14% 100,00% 40,00%  88,89%  21,52% 4,00%
300x300_60(12) 46,15% 74,42%  80,65%  78,95%  83,33% 44,44%  46,15%  86,79%  100,00%  13,64%
300x300_60(18) 11,11% 11,11% 11,11% 11,11% 11,11% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_60(24) 11,11% 11,11% 11,11% 11,11%  100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
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B.2 Set Coverage Analysis

Table B.10: Set coverage metric by comparing all the metaheuristics two by two. Part 3 of 14.

Isc(SPEA2,MO-VNS)

Isc(SPEA2,MO-VNS¥)

Evaluations (Stop condition)

Evaluations (Stop condition)

Instance(s,) 50 000 100 000 200 000 300 000 400 000 50000 100000 200000 300000 400 000
50x50_30(1) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
50x50_60(1) 0,00% 0,00% 0,00% 8,00% 5,00% 0,00% 6,67% 0,00% 0,00% 5,88%
100x100_30(2) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
100x100_30(3) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
100x100_60(2) 0,00% 12,50% 0,00% 0,00% 16,67% 50,00%  50,00% 0,00% 0,00% 0,00%
100x100_60(3) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(2) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(4) 0,00% 16,67% 12,50% 18,18% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(6) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(9) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 10,53% 9,52% 0,00%
200x200_60(2) 0,00% 6,25% 9,38% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_60(4) 0,00% 0,00% 9.52% 13,79% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_60(6) 0,00% 0,00% 1429%  50,00%  54,55% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_60(9) 61,54%  91,67%  69,23%  8571%  53,85% 4545% 2222%  66,67%  64,71%  40,00%
300x300_30(6) 2222%  41,67%  72,73%  100,00%  90,00% 0,00% 0,00% 20,00% 0,00% 62,50%
300x300_30(12) 92,31% 100,00% 100,00% 100,00% 100,00% 13,33%  0,00%  100,00% 100,00% 100,00%
300x300_30(18) 42.86%  52,94%  73.33%  41,18% 0,00% 0,00% 0,00% 16,67%  43,75% 0,00%
300x300_30(24) 75,00%  100,00% 100,00% 100,00% 100,00% 0,00% 0,00% 8,33% 83,33%  30,00%
300x300_60(6) 9524%  62,50%  9545%  96,97%  100,00% 2941% 87,50%  83,33%  100,00%  100,00%
300x300_60(12) 61,11%  64,29%  47,62%  100,00%  96,00% 17,65%  46,67% 0,00% 16,67% 9,09%
300x300_60(18)  20,00%  20,00%  20,00%  20,00%  20,00% 62,50% 12,50%  50,00%  55,56%  33,33%
300x300_60(24) 20,00%  20,00%  20,00%  20,00%  20,00% 50,00% 57,14%  25,00%  44,44%  20,00%
Isc(SPEA2,MO-ABC) Isc(SPEA2,MO-FA)
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50 000 100 000 200 000 300 000 400 000 50000 100000 200000 300000 400 000
50x50_30(1) 0,00% 0,00% 0,67% 0,00% 0,73% 0,00% 0,00% 0,00% 0,00% 0,00%
50x50_60(1) 0,00% 0,00% 0,00% 15,84% 4,73% 1333%  6,25% 0,00% 6,25% 11,76%
100x100_30(2) 1,05% 1,77% 1,84% 0,00% 2,55% 1,05% 0,00% 0,00% 0,00% 0,00%
100x100_30(3) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
100x100_60(2) 28,07% 0,11% 0,00% 0,00% 6,26% 0,00%  40,00%  20,00% 0,00% 0,00%
100x100_60(3) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(2) 0,00% 0,00% 87,34% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(4) 0,00% 11,67% 3,70% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(6) 0,00% 0,00% 0,00% 47,06% 18,18% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(9) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_60(2) 0,00% 0,00% 0,00% 0,00% 0,87% 0,00% 351% 0,00% 13,46% 0,00%
200x200_60(4) 7,02% 3725%  52.81% 0,00% 1,32% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_60(6) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 42,86%  93,75%
200x200_60(9) 45,13% 0,59% 0,22% 3,40% 19,20% 0,00% 0,00% 0,00% 7,69% 22,22%
300x300_30(6) 14,06% 0,00% 0,39% 6,25% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(12) 27.27%  33,33% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(18) 91,67%  95,00% 10,71% 0,00% 0,00% 0,00% 0,00% 7,69% 0,00% 0,00%
300x300_30(24) 100,00% 100,00% 100,00% 100,00% 100,00% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_60(6) 61,54%  90,48%  96,67%  83,13%  90,48% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_60(12) 29,17%  61,98%  96,05%  99,39%  77,36% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_60(18) 11,11% 11,11% 11,11% 11,11% 11,11% 1L11% 11,11% 11,11% 11,11% 11,11%
300x300_60(24) 11,11% 11,11% 11,11% 11,11% 11,11% 1L,11%  11,11%  11,11% 11,11% 11,11%
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B. Additional Information for Solving the RNPP: bi-objective Outdoor Approach

Table B.11: Set coverage metric by comparing all the metaheuristics two by two. Part 4 of 14.

Isc(SPEA2,MO-GSA)

Isc(SPEA2,MOEA/D)

Evaluations (Stop condition)

Evaluations (Stop condition)

Instance(s,) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 9,09% 9,09% 0,00% 0,00% 0,00% 0,00% 7.14% 13,33% 13,33% 0,00%
50x50_60(1) 53,33% 0,00% 0,00% 0,00% 0,00% 18,18% 8,33% 8,33% 16,67% 16,67%
100x100_30(2) 1,23% 0,00% 0,00% 0,00% 0,00% 4,35% 5,19% 9,76% 11,86% 8,33%
100x100_30(3) 0,00% 0,00% 0,00% 0,00% 0,83% 7,84% 11,32% 14,29% 10,64% 19,61%
100x100_60(2) 22,22%  44,44% 0,00% 0,00% 0,00% 16,67%  42,86% 0,00% 0,00% 50,00%
100x100_60(3) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 12,50% 0,00% 0,00% 0,00%
200x200_30(2) 0,00% 0,00% 14,29% 0,00% 22,22% 0,00% 0,00% 40,00%  50,00%  25,00%
200x200_30(4) 0,00% 0,00% 0,00% 75,00%  33,33% 0,00% 0,00% 66,67%  33,33% 0,00%
200x200_30(6) 0,00% 0,00% 0,00% 15,38% 9,09% 0,00% 58,33% 0,00% 16,67%  28,57%
200x200_30(9) 8,33% 0,00% 0,00% 0,00% 4,76% 7,69% 10,00%  57,14% 100,00%  91,67%
200x200_60(2) 0,00% 0,00% 3,45% 2,38% 5,77% 57,14%  80,77%  85.71%  96,15%  90,63%
200x200_60(4) 48,57%  70,00% 6,52% 5,00% 9,09% 5385%  84,85%  80,56%  68,97%  70,97%
200x200_60(6) 7143%  46,67% 60,00  81,25%  82,35% 3333% 50,00  61,54%  6429%  87,50%
200x200_60(9) 88,89%  54,55%  6429%  57,14%  33,33% 55,56%  63,64%  69.23%  71,43%  81,82%
300x300_30(6) 86,67% 0,00% 23,08%  50,00% 0,00% 0,00% 0,00% 0,00% 12,50% 10,00%
300x300_30(12)  0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 50,00%  50,00%  100,00%
300x300_30(18) 100,00% 100,00% 100,00%  0,00% 56,25% 42,86%  50,00%  45,00%  45,00%  52,63%
300x300_30(24) 92.86% 100,00% 6538%  8095%  75,00% 31,25%  62,50%  48,15%  80,00%  95,65%
300x300_60(6) 85,71%  61,90%  53,19%  76,19% 18,33% 90,00%  70,37%  100,00%  74,29%  100,00%
300x300_60(12) 100,00%  17,.95%  28,57%  52,38% 0,00% 6538%  81,40%  87,10%  100,00%  92,59%
300x300_60(18) 11,11% 11,11% 11,11% 11,11% 11,11% 11,11% 11,11% 11,11% 11,11% 11,11%
300x300_60(24) 11,11% 11,11% 11,11% 11,11% 11,11% 11,11% 11,11% 11,11% 11,11%  100,00%
Isc(MO-VNS,NSGA-II) Isc(MO-VNS,SPEA2)
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 100,00%  56,67%  100,00% 100,00% 100,00% 91,30%  90,80%  100,00% 100,00% 100,00%
50x50_60(1) 29,70%  87,22%  100,00%  79,35%  45,71% 72,32%  9297%  100,00%  99.97% 6,33%
100x100_30(2) 95,02%  99,55%  96,58%  98,25%  94,80% 99,00%  100,00% 100,00% 100,00% 100,00%
100x100_30(3) 100,00% 100,00%  96,65%  94,88%  100,00% 100,00%  98,97%  100,00%  99.47%  100,00%
100x100_60(2) 96,15%  99,23%  100,00%  99,50%  34,77% 100,00%  83,14%  100,00%  0,00% 99,68%
100x100_60(3) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
200x200_30(2) 100,00%  98,21%  99,11%  100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
200x200_30(4) 99,13% 3,34% 0,63% 0,00% 0,00% 100,00%  14,71% 0,00% 0,00% 100,00%
200x200_30(6) 100,00%  92,86%  94,74%  100,00% 100,00% 100,00%  92,86%  100,00%  95,65%  90,91%
200x200_30(9) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
200x200_60(2) 72,22%  8539%  52,05%  86,49%  87.85% 100,00%  23,68%  7797%  30,25%  94.81%
200x200_60(4) 9394%  88,89%  88,16%  66,03%  97,62% 100,00% 100,00%  90,20%  22,22%  100,00%
200x200_60(6) 100,00%  80,65%  99,75%  37,715%  95,68% 69,09%  83,64%  44,99% 3,78% 0,63%
200x200_60(9) 31,95% 0,19% 0,07% 4,31% 44,50% 11,76% 17,07% 0,21% 0,88% 6,46%
300x300_30(6) 92,92%  38,32% 0,00% 0,00% 0,00% 2520%  23,94% 0,59% 0,00% 0,00%
300x300_30(12)  88,64% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(18) 100,00% 100,00%  88,89%  100,00% 100,00% 66,67% 5,26% 0,00% 0,00% 46,67%
300x300_30(24)  40,00% 0,00% ,00% 23,40% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_60(6) 3571%  20,00% 7,41% 0,00% 0,00% 0,00% 13,33% 0,00% 0,00% 0,00%
300x300_60(12)  33,33% 0,00% 47,17% 0,00% 0,00% 33,33% 11,54%  21,21% 0,00% 0,00%
300x300_60(18) 88,89%  88,89%  88,89%  88,89%  88.89% 88,89%  88,89%  88,89%  88,89%  88,89%
300x300_60(24) 88,89%  88.,89%  88,89%  88,89%  88,89% 88,89%  88,89%  88,89%  88,89%  88,89%

150



B.2 Set Coverage Analysis

Table B.12: Set coverage metric by comparing all the metaheuristics two by two. Part 5 of 14.

Isc(MO-VNS,MO-VNS#)

Isc(MO-VNS,MO-ABC)

Evaluations (Stop condition)

Evaluations (Stop condition)

Instance(s;) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 75,00%  81,82%  92,86%  92,86%  100,00% 70,86%  52,59%  9597%  97.88%  97,08%
50x50_60(1) 66,67%  66,67%  83,33%  76,92%  88,24% 50,65%  97,58%  95,50%  90.84%  79,59%
100x100_30(2) 9528%  97,76%  97.81%  100,00%  99,28% 99,37%  99,65%  96,31%  99,84%  99,84%
100x100_30(3) 7,37% 51,05%  6587%  59,05%  79.45% 5495%  4221%  53,76%  54,72%  86,81%
100x100_60(2) 100,00% 100,00%  75,00%  100,00% 100,00% 64,04%  99,89%  100,00% 9991%  9991%
100x100_60(3) 100,00% 100,00% 100,00% 100,00%  60,00% 100,00% 100,00% 100,00% 100,00% 100,00%
200x200_30(2) 0,00% 0,00% 42,86% 0,00% 33,33% 100,00% 100,00% 100,00%  8,82% 0,00%
200x200_30(4) 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 51,67%  68,52% 0,00% 0,77%
200x200_30(6) 100,00% 100,00%  90,91%  87,50%  100,00% 81,82%  45,00%  82,35%  8235%  9545%
200x200_30(9) 0,00% 36,36%  31,58%  71,43% 0,00% 100,00%  45,45% 0,00% 31,82% 7.41%
200x200_60(2) 0,00% 0,00% 0,00% 14,81% 0,00% 46,34%  69,57%  20,54% 14,04%  35,65%
200x200_60(4) 0,00% 0,00% 0,00% 0,00% 86,96% 94,74%  96,08%  56,18% 12,50%  53,95%
200x200_60(6) 20,00% 11,11% 0,00% 6,67% 5,26% 0,00% 33,67% 5,19% 0,00% 47,97%
200x200_60(9) 45,45% 0,00% 0,00% 2941%  20,00% 8,85% 0,59% 0,00% 0,00% 0,32%
300x300_30(6) 0,00% 0,00% 0,00% 0,00% 25,00% 6,25% 0,00% 0,00% 0,00% 0,00%
300x300_30(12)  0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 33,33% 0,00% 0,00% 0,00%
300x300_30(18)  0,00% 0,00% 16,67% 0,00% 0,00% 41,67%  20,00% 0,00% 8,33% 1,82%
300x300_30(24)  0,00% 0,00% 0,00% 8,33% 0,00% 18,18%  93,33%  47,06%  96,55% 0,00%
300x300_60(6) 5,88% 43,75% 8,33% 11,76%  27,78% 0,00% 64,29%  41,67% 2,41% 26,19%
300x300_60(12)  0,00% 0,00% 0,00% 0,00% 0,00% 45,83% 14,05% 3,39% 6,71% 13,21%
300x300_60(18) 87,50%  87,50%  83,33%  88,89%  83,33% 88,89%  88,89%  88,89%  8889%  88,89%
300x300_60(24) 75,00%  85,71%  75,00%  88,89%  80,00% 88,89%  88,89%  88,89%  88,89%  88,89%
Isc(MO-VNS,MO-FA) Isc(MO-VNS,MO-GSA)
Evaluations (Stop condition) Evaluations (Stop condition)

Instance(s,) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 57,14%  9333%  92,86%  93,33%  93,33% 72,73%  100,00% 100,00% 100,00% 100,00%
50x50_60(1) 53,33%  68,75%  80,00%  81,25%  82,35% 80,00%  80,00%  100,00% 83,33%  85,71%
100x100_30(2) 92,63%  98,20%  96,52%  100,00%  99,22% 100,00% 100,00%  97,22%  99,14%  97,22%
100x100_30(3) 73.87%  84,13%  56,80%  80,29%  85,12% 92,55%  98,48%  96,34%  87,50%  94,17%
100x100_60(2) 0,00% 80,00%  80,00%  66,67%  83,33% 88,89%  88,89%  100,00% 83,33%  75,00%
100x100_60(3) 100,00% 100,00% 100,00%  0,00% 0,00% 100,00% 100,00% 100,00% 100,00% 100,00%
200x200_30(2) 0,00% 0,00% 33,33% 0,00% 50,00% 100,00%  90,91%  100,00% 100,00%  66,67%
200x200_30(4) 7,14% 0,00% 0,00% 0,00% 0,00% 100,00%  0,00% 0,00% 50,00%  50,00%
200x200_30(6) 3333%  100,00% 50,00%  61,54%  100,00% 100,00% 100,00% 50,00%  76,92%  72,73%
200x200_30(9) 0,00% 13,33% 0,00% 25,00% 0,00% 100,00%  92,31%  4737%  78,57%  90,48%
200x200_60(2) 8,11% 43,86% 9,52% 15,38%  70,15% 95,00%  36,36%  51,72%  66,67%  100,00%
200x200_60(4) 0,00% 0,00% 0,00% 0,00% 0,00% 91,43%  9333%  80,43% 5,00% 89,39%
200x200_60(6) 0,00% 0,00% 9,09% 28,57%  93,75% 57,14% 100,00% 86,67%  87,50%  64,71%
200x200_60(9) 0,00% 0,00% 0,00% 0,00% 0,00% 88,89% 9,09% 1429%  42,86%  22,22%
300x300_30(6) 0,00% 0,00% 0,00% 0,00% 0,00% 40,00% 16,67% 0,00% 0,00% 0,00%
300x300_30(12)  0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(18)  0,00% 0,00% 0,00% 0,00% 0,00% 77,78%  9231%  7143%  50,00%  81,25%
300x300_30(24)  0,00% 0,00% 0,00% 0,00% 0,00% 28,57%  65,719% 0,00% 0,00% 0,00%
300x300_60(6) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 61,90% 4,26% 0,00% 0,00%
300x300_60(12)  0,00% 0,00% 0,00% 0,00% 0,00% 62,96% 0,00% 0,00% 0,00% 0,00%
300x300_60(18) 88,89%  88,89%  88.89%  88,89%  88,89% 88,89%  88,89%  88,89%  88,89%  88,89%
300x300_60(24) 88,89%  88,89%  88.89%  88,89%  88,89% 88,89%  88,89%  88,89%  8889%  88,89%
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B. Additional Information for Solving the RNPP: bi-objective Outdoor Approach

Table B.13: Set coverage metric by comparing all the metaheuristics two by two. Part 6 of 14.

Isc(MO-VNS,MOEA/D)

Isc(MO-VNS*,NSGA-II)

Evaluations (Stop condition)

Evaluations (Stop condition)

Instance(s,) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 100,00% 100,00% 100,00% 100,00% 100,00% 71,88%  98,89%  100,00% 100,00% 100,00%
50x50_60(1) 100,00%  91,67%  100,00% 100,00%  91,67% 29,710%  83,46%  91,14%  100,00% 15,77%
100x100_30(2) 100,00%  97,40%  98,78%  100,00% 100,00% 95,02%  99,55%  96,58%  96,51%  94,80%
100x100_30(3) 64,71%  88,68%  82,14%  100,00%  98,04% 97,89%  100,00% 94,74%  100,00% 100,00%
100x100_60(2) 83,33%  100,00% 100,00%  83,33%  100,00% 30,77% 1,54% 98,00%  30,20%  33,76%
100x100_60(3) 100,00% 100,00% 100,00% 100,00% 100,00% 20,56%  100,00% 100,00% 100,00% 100,00%
200x200_30(2) 100,00%  71,43%  100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%  0,00%
200x200_30(4) 0,00% 0,00% 66,67% 0,00% 100,00% 100,00% 100,00% 100,00%  0,00% 3.41%
200x200_30(6) 100,00% 100,00% 100,00%  83,33%  100,00% 100,00%  92,86%  94,74%  100,00% 100,00%
200x200_30(9) 100,00% 100,00% 100,00% 100,00%  91,67% 100,00% 100,00%  83,33%  100,00% 100,00%
200x200_60(2) 71,43%  6538%  8571%  88,46%  84,38% 94,44%  83,15%  5890%  89,19%  80,37%
200x200_60(4) 73,08%  9091%  83,33%  68,97%  70,97% 100,00% 86,11%  98,68%  98,08%  99,21%
200x200_60(6) 88,89%  80,00%  76,92%  100,00%  50,00% 100,00%  100,00% 100,00% 100,00% 100,00%
200x200_60(9) 55,56% 0,00% 0,00% 42,86%  4091% 73,96% 7,75% 2,39% 5.17% 53,42%
300x300_30(6) 0,00% 0,00% 0,00% 0,00% 0,00% 100,00%  72,90% 1,55% 39,01% 0,00%
300x300_30(12)  0,00% 0,00% 0,00% 0,00% 0,00% 100,00%  100,00% 1,61% 1,22% 0,00%
300x300_30(18) 42,86%  50,00%  45,00%  50,00%  63,16% 100,00% 100,00%  83,33%  100,00%  100,00%
300x300_30(24) 18,75%  50,00%  40,74%  56,00%  78.26% 100,00% 100,00%  78,95%  65.96%  93,75%
300x300_60(6) 53,33%  40,74%  68,00%  31,43%  80,00% 100,00%  0,00% 25,93% 0,00% 0,00%
300x300_60(12) 4231%  72,09%  61,29%  6842%  64.81% 100,00%  9231%  47,17%  83,02%  59,09%
300x300_60(18) 88,89%  88,89%  88,89%  8889%  88,89% 3333%  88,89%  66,67%  3333%  44,44%
300x300_60(24) 88,89%  88,89%  88,89%  88,89%  100,00% 22,22%  22,22%  55,56%  77,78%  77,78%
Isc(MO-VNS*,SPEA2) Isc(MO-VNS#,MO-VNS)
Evaluations (Stop condition) Evaluations (Stop condition)

Instance(s,) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 65,22%  80,46%  100,00% 100,00% 100,00% 0,00% 0,00% 92,86%  92,86%  100,00%
50x50_60(1) 72,32%  96,62%  96,55%  100,00%  0,63% 90,00%  92,86%  64,29%  60,00%  50,00%
100x100_30(2) 99,00%  100,00% 100,00%  99,85%  99,88% 89,31%  9197%  96,38%  99,29%  98,57%
100x100_30(3) 99,42%  9897%  100,00% 100,00% 100,00% 91,72%  70,39%  74,63%  90,54%  79,30%
100x100_60(2) 1,77% 1,16% 89,88% 0,00% 92,60% 0,00% 0,00% 66,67%  50,00%  83,33%
100x100_60(3) 95,00% 100,00% 100,00% 100,00% 100,00% 0,00% 0,00% 0,00% 0,00% 40,00%
200x200_30(2) 100,00% 100,00% 100,00% 100,00%  82,79% 8333%  87,50%  50,00%  25,00% 12,50%
200x200_30(4) 100,00% 100,00% 100,00%  99,85%  99.,83% 100,00% 100,00% 100,00% 100,00%  50,00%
200x200_30(6) 100,00%  85,71%  100,00%  95,65%  90,91% 0,00% 72,73%  83,33%  72,73%  100,00%
200x200_30(9) 100,00% 100,00%  88,89%  68,75%  91,67% 100,00%  38,46%  72,73%  37.50%  76,47%
200x200_60(2) 100,00%  31,58%  57,63%  2531%  57,14% 100,00%  96,88%  78,13%  50,00%  91,89%
200x200_60(4) 100,00% 100,00% 100,00% 100,00% 100,00% 96,30%  96,97%  9524%  74,14% 6,82%
200x200_60(6) 100,00% 100,00% 100,00% 100,00% 100,00% 87,50%  72,73%  85,71%  70,00%  77,27%
200x200_60(9) 97,65%  99,70% 1,50% 0,83% 9,51% 61,54%  100,00% 76,92%  57,14%  38,46%
300x300_30(6) 100,00%  89,36% 13,65%  99,19% 11,04% 66,67%  91,67%  100,00% 100,00%  60,00%
300x300_30(12)  76,92%  25,00% 0,00% 0,00% 0,00% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_30(18) 100,00% 100,00%  62,50%  42,86%  53,33% 85,71% 100,00% 93,33%  76,47%  90,00%
300x300_30(24) 81,82%  38,89%  59,52% 0,00% 43,40% 100,00% 100,00% 100,00%  78,95%  100,00%
300x300_60(6) 52,63% 0,00% 11,90% 0,00% 0,00% 9524%  43775%  81,82%  54,55%  66,67%
300x300_60(12) 70,83%  6538%  75,76%  20,69%  63,33% 94,44%  85,71%  100,00% 81,82%  88,00%
300x300_60(18) 3333%  88,89%  66,67%  3333%  44.44% 40,00%  80,00%  50,00%  40,00%  40,00%
300x300_60(24) 2222%  2222%  5556%  711,718%  77,78% 30,00%  40,00%  40,00%  60,00%  60,00%
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B.2 Set Coverage Analysis

Table B.14: Set coverage metric by comparing all the metaheuristics two by two. Part 7 of 14.

Isc(MO-VNS*,MO-ABC)

Isc(MO-VNS#*,MO-FA)

Evaluations (Stop condition)

Evaluations (Stop condition)

Instance(s;) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 30,46%  34,07%  98,66%  100,00%  97,08% 14,29% 6,67% 92,86%  9333%  93,33%
50x50_60(1) 51,95%  97,58%  91,50%  96,53%  60,65% 60,00%  81,25%  66,67%  87,50%  64,71%
100x100_30(2) 94,76%  96,99%  96,31%  99.84%  99,84% 88,42%  91,89%  95,65% 100,00%  97,67%
100x100_30(3) 80,22%  53,90%  50,18%  86,94%  80,49% 95,50%  92,06%  44,80%  94,89%  61,98%
100x100_60(2) 0,00% 0,34% 99,90%  99,35%  99.91% 0,00% 20,00%  60,00%  33,33%  83,33%
100x100_60(3) 28,07% 0,00% 96,27%  100,00% 100,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(2) 100,00% 100,00% 100,00%  47,06% 1,41% 75,00%  28,57%  66,67%  40,00% 0,00%
200x200_30(4) 100,00% 100,00% 100,00%  17,54% 1,63% 42,86%  33,33% 0,00% 0,00% 0,00%
200x200_30(6) 0,00% 3500%  44,12%  82,35%  95,45% 0,00% 72,73%  50,00%  61,54%  100,00%
200x200_30(9) 100,00% 54,55%  2857%  2727%  77,78% 15,38% 13,33%  31,25%  62,50%  81,25%
200x200_60(2) 97,56%  82,61%  34,82%  42,11%  36,52% 8,11% 100,00% 100,00%  26,92%  100,00%
200x200_60(4) 94,74%  68,63%  59,55%  57.81%  5526% 1,30% 79,41% 0,00% 0,00% 0,00%
200x200_60(6) 75,00%  100,00%  98,52%  34,84%  39,02% 54,55%  75,00%  36,36%  100,00% 100,00%
200x200_60(9) 71,68% 1,78% 43,67% 0,00% 12,88% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(6) 29,69% 5,14% 3,55% 6,25% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(12) 100,00%  33,33% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(18) 100,00% 100,00%  64,29%  27,78% 12,73% 0,00% 5.88% 0,00% 0,00% 0,00%
300x300_30(24) 100,00% 100,00% 100,00%  96,55%  100,00% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_60(6) 76,92% 14,29%  33,33% 4,82% 50,00% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_60(12) 79,17%  64,46% 8,47% 21,34%  49,06% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_60(18) 3333%  66,67%  4444%  3333%  33,33% 3333%  66,67%  4444%  3333%  33,33%
300x300_60(24) 11,11%  2222%  33,33%  55,56%  55,56% 1,11%  2222%  33,33%  5556%  55,56%
Isc(MO-VNS#,MO-GSA) Isc(MO-VNS#*,MOEA/D)
Evaluations (Stop condition) Evaluations (Stop condition)

Instance(s,) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 27,27% 9,09% 100,00%  100,00%  100,00% 1538%  21,43%  100,00% 100,00%  100,00%
50x50_60(1) 80,00%  90,00%  72,73%  91,67%  71,43% 100,00% 100,00%  91,67%  100,00% 91,67%
100x100_30(2) 96,30%  98,78%  98,15%  99,14%  97,22% 100,00%  98,70%  98,78%  100,00% 100,00%
100x100_30(3) 97,87%  80,30%  84,15%  97,50%  90,00% 76,47%  7136%  60,71%  100,00% 100,00%
100x100_60(2) 0,00% 3333% 80,00  83,33%  75,00% 0,00% 100,00%  75,00%  66,67%  100,00%
100x100_60(3) 57,14%  50,00%  50,00%  80,00%  100,00% 80,00%  87,50%  100,00% 100,00% 100,00%
200x200_30(2) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%  25,00%
200x200_30(4) 100,00% 100,00% 100,00% 100,00% 100,00% 50,00%  100,00% 100,00% 100,00% 100,00%
200x200_30(6) 2727%  78,57%  50,00%  61,54%  72,73% 33,33%  91,67%  100,00% 100,00% 100,00%
200x200_30(9) 100,00%  84,62%  89,47%  42,86%  100,00% 100,00%  70,00%  85,71%  100,00%  91,67%
200x200_60(2) 100,00%  63,64%  89,66%  85,71%  90,38% 92,86%  76,92%  85,71%  88,46%  81,25%
200x200_60(4) 94,29%  8333%  100,00%  99,00%  28,79% 76,92%  87,88%  83,33%  68,97%  74,19%
200x200_60(6) 92,86%  100,00% 100,00% 100,00% 100,00% 100,00%  70,00%  76,92%  92,86%  87,50%
200x200_60(9) 71,78%  72,73%  42,86%  42,86%  22,22% 55,56%  81,82%  61,54%  76,19%  86,36%
300x300_30(6) 100,00%  33,33% 1538%  66,67% 0,00% 0,00% 7,14% 0,00% 25,00% 0,00%
300x300_30(12) 1% 0,00% 0,00% 0,00% 0,00% 0,00% 8,33% 0,00% 50,00% 14,29%
300x300_30(18) 100,00% 100,00%  92,86%  50,00%  100,00% 71,43%  70,00% 60,00  65,00%  73,68%
300x300_30(24) 100,00%  78,95%  96,15%  28,57%  87,50% 56,25%  62,50%  51,85%  96,00%  82,61%
300x300_60(6) 28,57% 9.52% 0,00% 0,00% 0,00% 63,33%  51,85% 80,00  48,57%  68,57%
300x300_60(12) 85,19%  5897%  81,63%  46,03% 0,00% 57,69%  7442%  7742%  7895%  66,67%
300x300_60(18) 3333%  66,67%  44.44%  3333%  33,33% 3333%  66,67%  44,44%  3333%  33,33%
300x300_60(24) 11,11%  22,22%  33,33%  5556%  55.,56% 1,11%  2222%  33,33%  55,56%  100,00%
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B. Additional Information for Solving the RNPP: bi-objective Outdoor Approach

Table B.15: Set coverage metric by comparing all the metaheuristics two by two. Part 8 of 14.

Isc(MO-ABC,NSGA-II)

Isc(MO-ABC,SPEA2)

Evaluations (Stop condition)

Evaluations (Stop condition)

Instance(s,) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 100,00% 100,00% 100,00% 100,00%  94,59% 100,00% 100,00%  98,94%  100,00%  98,25%
50x50_60(1) 86,14%  100,00% 100,00%  75,54%  46,31% 100,00% 100,00% 100,00%  99,93% 6,38%
100x100_30(2) 95,02%  99,55%  96,58%  96,51%  94,80% 99,00%  100,00% 100,00%  99.85%  99,88%
100x100_30(3) 100,00% 100,00% 100,00% 95,56%  100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
100x100_60(2) 96,15% 100,00%  97,00%  100,00%  78,68% 100,00%  66,28%  100,00%  0,00% 100,00%
100x100_60(3) 100,00% 100,00% 100,00% 100,00%  98,09% 100,00% 100,00% 100,00% 100,00% 100,00%
200x200_30(2) 100,00%  95,54%  97,77%  100,00%  100,00% 100,00% 100,00%  0,80% 100,00%  100,00%
200x200_30(4) 99,13%  50,36% 0,00% 36,67% 3,86% 8571%  64,71%  98,44% 0,12% 100,00%
200x200_30(6) 100,00%  92,86%  94,74%  88,24%  97,83% 100,00%  92,86%  100,00%  95.,65%  86,36%
200x200_30(9) 100,00% 100,00% 100,00% 100,00% 100,00% 80,00% 100,00% 100,00% 100,00% 100,00%
200x200_60(2) 88,89%  93,26%  97.26%  89,19%  100,00% 100,00% 100,00%  98,31%  100,00%  76,62%
200x200_60(4) 30,30%  44,44% 6,58% 96,15%  62,70% 88,89%  64,29% 0,00% 100,00%  87,76%
200x200_60(6) 100,00%  98,39%  100,00% 100,00% 100,00% 98,18%  100,00% 100,00%  47,03%  100,00%
200x200_60(9) 67,46% 6,59% 2,60% 17,24%  95,13% 97,65%  81,25% 2,04% 0.91% 15,21%
300x300_30(6) 76,99%  100,00% 1,55% 40,66% 0,00% 5691%  100,00%  94.59% 18,29%  100,00%
300x300_30(12) 100,00%  2,33% 2,41% 100,00%  92,31% 1538%  25,00% 12,82% 3,23% 6,14%
300x300_30(18) 50,00%  28,57%  100,00% 100,00% 100,00% 0,00% 0,00% 87,50% 100,00%  86,67%
300x300_30(24)  0,00% 0,00% 0,00% 0,00% 66,67% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_60(6) 89,29%  33,33%  51,85% 11,39% 0,00% 15,79% 3,33% 2,38% 20,51% 0,00%
300x300_60(12)  44,44% 0,00% 28,30% 0,00% 11,36% 66,67% 15,38% 3,03% 0,00% 6,67%
300x300_60(18) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_60(24) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
Isc(MO-ABC,MO-VNS) Isc(MO-ABC,MO-VNS*)
Evaluations (Stop condition) Evaluations (Stop condition)

Instance(s,) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 41,67%  35771%  50,00%  64,29%  50,00% 100,00% 100,00% 57,14%  7143%  50,00%
50x50_60(1) 40,00%  85,71%  85,71%  44,00%  70,00% 3333% 80,00  88.89%  76,92% = 94,12%
100x100_30(2) 49,62%  59,12%  5290%  4429% = 44,29% 52,76%  59,70%  54,01%  44,60%  44,60%
100x100_30(3) 31,36%  46,37%  56,22%  53,60%  30,84% 4,74% 3882%  5595%  4526%  37,15%
100x100_60(2) 16,67% 0,00% 0,00% 0,00% 16,67% 100,00%  66,67% 0,00% 40,00% 0,00%
100x100_60(3) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 80,00% 0,00% 0,00% 0,00%
200x200_30(2) 0,00% 0,00% 0,00% 50,00%  100,00% 0,00% 0,00% 0,00% 20,00%  33,33%
200x200_30(4) 0,00% 16,67% 1250%  81,82%  66,67% 0,00% 0,00% 0,00% 0,00% 16,67%
200x200_30(6) 75,00%  81,82%  83,33%  63,64%  72,73% 100,00% 100,00% 9091%  50,00%  72,73%
200x200_30(9) 0,00% 46,15%  100,00%  56,25%  58.82% 0,00% 9,09% 68,42%  66,67%  29,63%
200x200_60(2) 8,00% 28,13% 50,000  64,71%  37,84% 0,00% 0,00% 0,00% 38,89% 0,00%
200x200_60(4) 0,00% 0,00% 21,43%  32,76% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_60(6) 75,00%  54,55%  57,14%  85,00%  77,27% 20,00% 0,00% 0,00% 5333%  42,11%
200x200_60(9) 61,54%  91,67%  92,31%  85,71%  84,62% 18,18%  4444%  4444%  88,24%  70,00%
300x300_30(6) 44,44%  91,67%  81,82%  81,25%  100,00% 57,14%  57,14%  80,00%  42,86%  100,00%
300x300_30(12) 100,00%  50,00%  100,00% 100,00% 100,00% 0,00% 66,67%  85,71%  100,00% 100,00%
300x300_30(18) 42.86%  3529%  9333%  88,24%  90,00% 0,00% 0,00% 16,67%  43,715%  66,67%
300x300_30(24) 62,50% 10,00%  60,00% 0,00% 92,86% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_60(6) 100,00%  12,50%  36,36%  63,64%  52,38% 17,65%  5625%  41,67%  70,59%  38,89%
300x300_60(12) 66,67%  28,57%  47,62% 18,18%  52,00% 17,65%  26,67% 0,00% 0,00% 4,55%
300x300_60(18) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_60(24) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%  100,00% 100,00% 100,00% 100,00%
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B.2 Set Coverage Analysis

Table B.16: Set coverage metric by comparing all the metaheuristics two by two. Part 9 of 14.

Isc(MO-ABC,MO-FA)

Isc(MO-ABC,MO-GSA)

Evaluations (Stop condition)

Evaluations (Stop condition)

Instance(s;) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 50,00%  40,00%  50,00%  66,67%  53,33% 100,00%  72,73%  80,00%  93,33%  100,00%
50x50_60(1) 40,00%  87,50%  80,00%  75,00%  82,35% 100,00% 100,00% 100,00%  75,00%  92,86%
100x100_30(2) 73,68%  7387%  68,70%  57,72%  60,47% 74,07%  76,83%  61,59%  52,59%  53,70%
100x100_30(3) 47,75%  77,718%  68,80%  78,10%  51,24% 8511%  92,42%  90,24%  7833%  50,83%
100x100_60(2) 0,00% 40,00%  40,00% 0,00% 0,00% 71,78%  71,718%  90,00%  50,00% 0,00%
100x100_60(3) 0,00% 0,00% 0,00% 0,00% 0,00% 42,86% 100,00% 50,00%  80,00%  80,00%
200x200_30(2) 0,00% 0,00% 0,00% 0,00% 83,33% 25,00%  36,36%  42,86%  100,00% 100,00%
200x200_30(4) 0,00% 0,00% 0,00% 0,00% 0,00% 85,71% 0,00% 0,00% 100,00%  100,00%
200x200_30(6) 3333%  9091%  60,00%  84,62%  72,73% 100,00% 100,00%  50,00%  92,31%  72,73%
200x200_30(9) 0,00% 0,00% 31,25%  37,50%  68,75% 75,00%  9231%  94,74%  8571%  90,48%
200x200_60(2) 8,11% 3.51% 1,19% 25,00%  37,31% 85,00%  771,27%  8621%  97,62%  96,15%
200x200_60(4) 0,00% 0,00% 0,00% 0,00% 0,00% 97,14%  96,67% 8,70% 11,00% 19,70%
200x200_60(6) 18,18%  37,50%  36,36%  100,00% 100,00% 85,71%  100,00%  86,67%  93,75%  100,00%
200x200_60(9) 0,00% 20,00%  2727%  3846%  44,44% 66,67%  63,64% 50,00  71,43%  88,89%
300x300_30(6) 7,14% 11,76% 0,00% 38,46% 0,00% 53,33% 100,00%  30,77%  83,33%  50,00%
300x300_30(12)  0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 72,73% 0,00% 0,00% 15,38%
300x300_30(18)  0,00% 0,00% 7,69% 0,00% 18,75% 77,718%  7692%  100,00% 100,00% 100,00%
300x300_30(24)  0,00% 0,00% 0,00% 0,00% 0,00% 28,57% 5,26% 19,23% 0,00% 12,50%
300x300_60(6) 0,00% 0,00% 0,00% 0,00% 0,00% 42,86%  2381% 3191% 2143% 0,00%
300x300_60(12)  0,00% 0,00% 0,00% 0,00% 0,00% 92,59% 0,00% 16,33% 0,00% 0,00%
300x300_60(18) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_60(24) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
Isc(MO-ABC,MOEA/D) Isc(MO-FA,NSGA-II)
Evaluations (Stop condition) Evaluations (Stop condition)

Instance(s,) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 92,31%  78,57%  100,00% 100,00%  93,33% 100,00%  56,67%  100,00% 100,00% 100,00%
50x50_60(1) 63,64%  91,67% 100,00% 91,67%  91,67% 5347%  7932%  98,49%  75,54% 15,77%
100x100_30(2) 91,30%  83,12%  70,73%  57,63%  58,33% 95,02%  99,55%  96,58%  96,51%  94,80%
100x100_30(3) 70,59%  81,13%  83,93%  100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
100x100_60(2) 50,00%  57,14%  25,00% 16,67%  66,67% 96,15%  8538% 98,00  99,50%  97,72%
100x100_60(3) 0,00% 87,50%  90,91%  100,00% 100,00% 100,00% 100,00% 100,00% 1,67% 32,06%
200x200_30(2) 0,00% 42,86%  20,00%  100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
200x200_30(4) 0,00% 0,00% 55,56%  100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
200x200_30(6) 100,00%  91,67%  100,00% 100,00% 100,00% 100,00%  92,86%  94,74%  94,12%  100,00%
200x200_30(9) 53,85%  80,00%  100,00% 100,00% 91,67% 100,00% 100,00% 100,00% 100,00% 100,00%
200x200_60(2) 92,86%  80,77%  85,71%  100,00%  90,63% 60,67%  78,65%  5342%  62,16%  80,37%
200x200_60(4) 80,77%  84,85%  91,67%  6897%  100,00% 100,00%  88,89%  98,68%  98,08%  97,62%
200x200_60(6) 100,00%  60,00%  69,23%  100,00%  87,50% 100,00% 93,01% 100,00%  95,50% 2,88%
200x200_60(9) 66,67%  72,73%  69,23%  90,48%  86,36% 99,41%  100,00% 100,00%  37,93%  96,87%
300x300_30(6) 0,00% 2143%  38,46%  75,00%  60,00% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_30(12)  0,00% 50,00%  50,00%  50,00%  57,14% 100,00%  100,00% 100,00% 100,00%  100,00%
300x300_30(18) 42,86%  20,00% 60,00  55,00%  100,00% 100,00% 100,00%  83,33%  100,00% 100,00%
300x300_30(24)  0,00% 0,00% 48,15%  36,00%  78,26% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_60(6) 70,00%  66,67%  80,00%  74,29%  85,71% 100,00% 100,00%  74,07%  39,24%  84,00%
300x300_60(12) 61,54%  86,05%  7742%  71,05%  77,78% 100,00% 100,00% 100,00% 100,00%  97,73%
300x300_60(18) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%  100,00%
300x300_60(24) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
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B. Additional Information for Solving the RNPP: bi-objective Outdoor Approach

Table B.17: Set coverage metric by comparing all the metaheuristics two by two. Part 10 of 14.

Isc(MO-FA,SPEA2)

Isc(MO-FA,MO-VNS)

Evaluations (Stop condition)

Evaluations (Stop condition)

Instance(s,) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 100,00%  90,80%  100,00% 100,00% 100,00% 75,00%  100,00% 100,00% 100,00%  92,86%
50x50_60(1) 72,32%  92,88%  99,94% 0,15% 0,63% 90,00%  85,71%  85,71%  44,00%  55,00%
100x100_30(2) 99,00%  100,00% 100,00%  99,85%  100,00% 32,82%  50,36%  56,52%  48,57%  57,86%
100x100_30(3) 99,42%  100,00% 100,00% 100,00% 100,00% 23.08%  29,61%  23,88%  2523% 13,66%
100x100_60(2) 100,00% 1,16% 89,88% 0,00% 92,60% 100,00%  37,50% 16,67%  100,00%  83,33%
100x100_60(3) 100,00% 100,00% 100,00% 100,00% 100,00% 0,00% 0,00% 0,00% 0,00% 20,00%
200x200_30(2) 100,00% 100,00% 100,00% 100,00% 100,00% 83,33%  100,00%  0,00% 25,00%  50,00%
200x200_30(4) 100,00% 100,00% 100,00% 100,00% 100,00% 63,64%  100,00% 100,00% 100,00% 100,00%
200x200_30(6) 100,00%  92,86%  100,00%  95.,65%  90,91% 3333%  9091%  75,00%  54,55%  100,00%
200x200_30(9) 100,00% 100,00% 88,89%  81,25%  83,33% 81,82%  7692%  86,36%  5625%  52,94%
200x200_60(2) 77,78%  30,26%  57,63% 11,73%  55,84% 72,00%  62,50%  68,75%  55,88% 13,51%
200x200_60(4) 100,00% 100,00% 100,00% 61,11%  97,96% 100,00% 100,00% 97,62%  87,93%  95.45%
200x200_60(6) 100,00%  97,27%  100,00%  2,43% 0,00% 87,50%  63,64%  7143%  60,00% 4,55%
200x200_60(9) 100,00% 100,00%  99,20%  64,34% 15,21% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_30(6) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 91,67%  100,00% 100,00% 100,00%
300x300_30(12) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_30(18) 100,00%  94,74%  62,50%  100,00%  53,33% 100,00% 100,00%  93,33%  100,00%  100,00%
300x300_30(24) 81,82%  4444%  8095%  93,42%  88.68% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_60(6) 63,16%  46,67%  73,81%  53,85%  72,92% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_60(12) 100,00% 100,00% 100,00% 93,10%  83,33% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_60(18) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_60(24) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
Isc(MO-FA,MO-VNS*) Isc(MO-FA,MO-ABC)
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 100,00%  90,91%  100,00% 100,00%  92,86% 99,34%  52,59%  99,33%  100,00%  100,00%
50x50_60(1) 100,00%  80,00%  88,89%  84,62%  88,24% 57,14%  97,58%  95,00%  67,08%  60,36%
100x100_30(2) 36,22%  52,24%  57,66%  48,92%  56,83% 80,71%  89,89%  93,09%  96,22%  96,50%
100x100_30(3) 0,00% 13,50%  36,90% 3,88% 26,88% 27,47% 14,94%  23,66% 8,89% 42,58%
100x100_60(2) 100,00%  66,67%  25,00%  100,00% 100,00% 100,00%  0,46% 99,90%  9991%  99.91%
100x100_60(3) 100,00% 100,00%  83,33% 0,00% 0,00% 100,00% 100,00%  99,25% 0,51% 0,00%
200x200_30(2) 80,00%  20,00%  57,14% 0,00% 33,33% 100,00% 100,00%  92,41%  41,18% 0,00%
200x200_30(4) 0,00% 66,67%  75,00%  100,00% 100,00% 100,00% 100,00% 100,00% 100,00%  100,00%
200x200_30(6) 100,00% 100,00%  63,64%  37,50%  100,00% 68,18%  45,00%  88,24%  8529%  9545%
200x200_30(9) 4545%  50,00%  63,16%  76,19%  40,74% 100,00%  72,73%  42,86%  4091%  59,26%
200x200_60(2) 56,67% 0,00% 0,00% 38,89% 0,00% 29.27%  82,61%  34,82%  45,61% 14,78%
200x200_60(4) 94,74% 16,67%  96,15%  93,10%  95,65% 100,00% 100,00%  59,55%  53,13%  48,68%
200x200_60(6) 40,00%  2222%  53,85% 0,00% 0,00% 51,67%  55,10%  25,19% 0,00% 0,00%
200x200_60(9) 100,00% 100,00% 100,00% 100,00%  100,00% 100,00%  98,82%  87,72% 6,80% 25,04%
300x300_30(6) 100,00% 100,00% 100,00% 100,00% 100,00% 98,44%  99,36%  99,92% 6,25% 100,00%
300x300_30(12) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_30(18) 71,43%  28,57%  83,33% 100,00% 100,00% 100,00%  85,00%  67,86%  41,67%  40,00%
300x300_30(24) 100,00% 100,00% 100,00%  83,33%  100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_60(6) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%  97,62%  95,00%  30,12%  88,10%
300x300_60(12) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 61,59%  100,00%
300x300_60(18) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_60(24) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%  100,00% 100,00% 100,00% 100,00%
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B.2 Set Coverage Analysis

Table B.18: Set coverage metric by comparing all the metaheuristics two by two. Part 11 of 14.

Isc(MO-FA,MO-GSA)

Isc(MO-FA,MOEA/D)

Evaluations (Stop condition)

Evaluations (Stop condition)

Instance(s;) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 100,00%  100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
50x50_60(1) 80,00%  80,00%  81,82%  8333%  92,86% 100,00% 100,00% 100,00% 91,67%  91,67%
100x100_30(2) 60,49%  8049%  76,85%  56,90%  72,22% 6522%  61,04%  70,73%  67,80%  70,00%
100x100_30(3) 76,60%  75,776%  68,29%  41,67%  4833% 62,75%  4717%  83,93%  89,36%  86,27%
100x100_60(2) 88,89%  66,67% 80,00  8333%  75,00% 83,33%  85,71%  75,00%  83,33%  100,00%
100x100_60(3) 100,00% 100,00% 100,00%  40,00%  60,00% 100,00%  87,50%  100,00% 85,71%  80,00%
200x200_30(2) 100,00% 100,00% 100,00% 100,00%  88,89% 100,00% 100,00% 100,00% 100,00% 100,00%
200x200_30(4) 100,00%  66,67%  100,00% 100,00% 100,00% 25,00%  75,00%  100,00% 100,00% 100,00%
200x200_30(6) 81,82% 100,00%  75,00%  100,00%  72,73% 55,56%  91,67%  91,67% 100,00% 100,00%
200x200_30(9) 100,00%  92,31%  94,74%  78,57%  90.48% 100,00%  90,00%  100,00% 100,00% 91,67%
200x200_60(2) 60,00%  50,00%  82,76%  78,57%  90,38% 57,14%  73,08%  85,71%  73,08%  78,13%
200x200_60(4) 100,00% 100,00% 100,00%  96,00%  95.45% 88,46%  93,94%  8333%  6897%  70,97%
200x200_60(6) 92,86%  100,00%  93,33%  81,25% 11,76% 88,89% 60,00  9231%  71,43% 12,50%
200x200_60(9) 100,00% 100,00%  85,71%  85,71%  100,00% 88,89%  100,00% 92,31%  90,48%  90,91%
300x300_30(6) 100,00%  100,00% 100,00% 100,00% 100,00% 40,00%  57,14%  100,00%  87,50%  100,00%
300x300_30(12) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%  58,33%  100,00% 100,00% 100,00%
300x300_30(18) 100,00% 100,00%  92,86%  75,00%  100,00% 57,14%  100,00% 100,00% 100,00% 100,00%
300x300_30(24) 100,00%  92,11%  100,00% 100,00% 100,00% 75,00%  62,50%  70,37%  76,00%  86,96%
300x300_60(6) 7143% 100,00 70,21%  78,57%  83,33% 73,33%  55,56%  84,00%  65,71%  80,00%
300x300_60(12) 100,00% 100,00% 100,00%  96,83%  93,02% 65,38%  86,05%  90,32%  8421%  77,78%
300x300_60(18) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_60(24) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
Isc(MO-GSA,NSGA-II) Isc(MO-GSA,SPEA2)
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 87,50%  38,89%  66,67%  98,96%  94,59% 69,57%  77,01%  94,68%  99,12%  98,25%
50x50_60(1) 10,89%  30,08%  93,52%  100,00% 100,00% 4,46% 97,08%  100,00% 100,00% 100,00%
100x100_30(2) 90,55%  99,55%  95,73%  95.85%  94,80% 92,50%  99,36%  100,00%  99,56%  100,00%
100x100_30(3) 96,48%  99,52%  94,74%  93,86%  97,28% 98,84%  100,00% 100,00%  98,94%  99,50%
100x100_60(2) 73,08%  98,46%  96,00%  91,58%  97,72% 92,04%  50,00%  95,24% 0,00% 92,60%
100x100_60(3) 20,56%  100,00% 100,00% 100,00%  98,09% 95,00%  100,00% 100,00% 100,00% 100,00%
200x200_30(2) 100,00% 100,00% 100,00% 100,00%  0,00% 91,67%  100,00%  0,80% 100,00%  0,00%
200x200_30(4) 97,39%  96,42%  97.49% 0,00% 0,00% 57,14%  97,06%  100,00%  0,00% 0,07%
200x200_30(6) 100,00%  92,86%  100,00%  88,24%  89,13% 100,00%  85,71%  92,86%  95,65%  72,73%
200x200_30(9) 90,00%  100,00% 100,00% 100,00% 100,00% 40,00%  100,00% 100,00% 100,00%  75,00%
200x200_60(2) 44,44%  88,76%  54,719%  86,49%  57,01% 100,00% 100,00%  67,80%  21,60%  64,94%
200x200_60(4) 0,00% 1389%  86,84%  7821%  78,57% 38,89% 7,14% 82,35%  27,78%  32,65%
200x200_60(6) 45,00% 2,69% 14,68% 1,00% 67,63% 1,82% 9,09% 22,59% 2,16% 0,13%
200x200_60(9) 1,18% 1,36% 0,07% 3,45% 44,84% 8,24% 18,60% 0,21% 0,75% 14,45%
300x300_30(6) 76,99%  92,52% 1,55% 39,29%  45,50% 51,22%  86,70%  94,82%  81,95%  99,86%
300x300_30(12) 100,00% 100,00% 100,00% 100,00%  100,00% 100,00% 100,00% 100,00%  3,23% 100,00%
300x300_30(18)  50,00% 1429%  77,718%  3529%  93.,33% 0,00% 0,00% 0,00% 1429%  46,67%
300x300_30(24)  40,00% 0,00% 0,00% 61,70%  93,75% 0,00% 0,00% 30,95% 0,00% 0,00%
300x300_60(6) 89,29%  33,33%  59,26%  60,76%  48,00% 36,84% 13,33%  2381%  23,08%  64,58%
300x300_60(12) 3333%  76,92%  47,17%  8491%  100,00% 0,00% 46,15%  4545%  27,59%  90,00%
300x300_60(18) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%  100,00% 100,00% 100,00%  100,00%
300x300_60(24) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
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B. Additional Information for Solving the RNPP: bi-objective Outdoor Approach

Table B.19: Set coverage metric by comparing all the metaheuristics two by two. Part 12 of 14.

Isc(MO-GSA,MO-VNS)

Isc(MO-GSA,MO-VNS¥*)

Evaluations (Stop condition)

Evaluations (Stop condition)

Instance(s,) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 0,00% 28,57% 0,00% 1429%  28,57% 25,00%  54,55% 0,00% 1429%  28,57%
50x50_60(1) 0,00% 7,14% 0,00% 12,00% 15,00% 0,00% 6,67% 16,67% 0,00% 23,53%
100x100_30(2) 15,27% 5,84% 3043%  57,86%  50,00% 14,96% 5,22% 31,39%  5827%  51,08%
100x100_30(3) 2,96% 0,00% 1,00% 5,86% 6,17% 0,53% 10,13%  24,60% 0,86% 17,00%
100x100_60(2) 16,67% 0,00% 0,00% 0,00% 0,00% 100,00%  50,00% 0,00% 40,00% 0,00%
100x100_60(3) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 50,00% 0,00% 0,00%
200x200_30(2) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(4) 0,00% 16,67% 12,50% 9,09% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(6) 0,00% 2727%  3333%  27.27% 0,00% 68,75%  36,36%  27.27% 0,00% 0,00%
200x200_30(9) 0,00% 0,00% 31,82% 6,25% 11,76% 0,00% 9,09% 21,05% 19,05% 0,00%
200x200_60(2) 0,00% 28,13%  21,88%  20,59% 0,00% 0,00% 0,00% 0,00% 16,67% 0,00%
200x200_60(4) 0,00% 0,00% 19,05%  46,55% 6,82% 0,00% 0,00% 0,00% 0,00% 62,32%
200x200_60(6) 12,50% 0,00% 0,00% 0,00% 31,82% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_60(9) 0,00% 75,00%  53,85%  71,43% 15,38% 9,09% 2222%  4444%  47,06%  30,00%
300x300_30(6) 2222%  41,67%  100,00% 100,00% 100,00% 0,00% 1429%  60,00% 1429%  100,00%
300x300_30(12) 100,00% 100,00% 100,00% 100,00% 100,00% 66,67%  100,00% 100,00% 100,00% 100,00%
300x300_30(18) 42,86% 0,00% 0,00% 17,65% 0,00% 0,00% 0,00% 0,00% 25,00% 0,00%
300x300_30(24)  62,50% 0,00% 100,00%  94,74%  100,00% 0,00% 0,00% 8,33% 41,67% 0,00%
300x300_60(6) 85,71%  50,00%  9545%  75,76%  100,00% 2941%  75,00%  100,00%  88,24%  100,00%
300x300_60(12) 27,78%  85,71%  95,24%  100,00% 100,00% 0,00% 46,67% 0,00% 37,50%  63,64%
300x300_60(18) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_60(24) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
Isc(MO-GSA,MO-ABC) Isc(MO-GSA,MO-FA)
Evaluations (Stop condition) Evaluations (Stop condition)

Instance(s,) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 0,00% 20,00%  72,48%  56,08%  59,12% 0,00% 26,67% 0,00% 13,33%  26,67%
50x50_60(1) 0,00% 0,00% 2,50% 28,22%  53,25% 0,00% 12,50% 0,00% 18,75% 11,76%
100x100_30(2) 38,78%  47,87%  70,05%  82,92%  88,69% 32,63% 17,12%  4435%  66,67%  65,89%
100x100_30(3) 12,09% 4,55% 2,15% 5,56% 22,53% 10,81%  22,22% 14,40%  40,88%  27,27%
100x100_60(2) 0,44% 0,00% 21,84%  97.85%  99.36% 50,00%  20,00%  20,00% 0,00% 16,67%
100x100_60(3) 28,07% 0,00% 15,67% 1,03% 23,35% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(2) 10,00%  20,00%  87.34% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(4) 4533%  95,00%  37,04% 0,00% 0,00% 0,00% 8,33% 0,00% 0,00% 0,00%
200x200_30(6) 0,00% 30,00% 14,71% 17,65% 13,64% 3333%  27,27% 10,00%  30,77% 0,00%
200x200_30(9) 26,67% 13,64% 4,76% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_60(2) 0,00% 13,04% 0,00% 12,28% 1,74% 8,11% 3.51% 0,00% 15,38% 0,00%
200x200_60(4) 0,00% 0,00% 5393%  29,69%  34,21% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_60(6) 0,00% 0,00% 4,44% 0,00% 0,00% 9,09% 0,00% 9,09% 14,29%  87,50%
200x200_60(9) 3,54% 0,59% 0,22% 0,34% 0,48% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(6) 9,38% 0,00% 4.81% 0,00% 0,48% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(12) 100,00%  33,33%  90,48% 7,69% 1,64% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(18)  41,67% 10,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(24) 36,36%  93,33%  58,82%  100,00%  50,00% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_60(6) 69,23%  76,19%  95,00%  81,93%  90,48% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_60(12)  0,00% 61,16%  93,22%  100,00%  88,68% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_60(18) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_60(24) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%  100,00% 100,00% 100,00% 100,00%
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B.2 Set Coverage Analysis

Table B.20: Set coverage metric by comparing all the metaheuristics two by two. Part 13 of 14.

Isc(MO-GSA,MOEA/D)

Isc(MOEA/D,NSGA-II)

Evaluations (Stop condition)

Evaluations (Stop condition)

Instance(s,) 50000 100000 200 000 300000 400 000 50000 100000 200 000 300000 400 000
50x50_30(1) 23,08%  1857%  46,67%  66,67%  73.33% 62,50%  38,89%  39,39%  28,13%  86,49%
50x50_60(1) 18,18%  16,67%  25,00%  33,33%  33,33% 19,80%  71.43%  18,14%  27,72%  24,55%
100x100_30(2) 56,52%  50,65%  60,98%  6271%  68,33% 76,62%  80,00%  75,50%  76,42%  82,80%
100x100_30(3) 62,75%  5849%  62,50%  100,00%  74,51% 4507%  28,37%  59.81%  5427%  58,16%
100x100_60(2) 16,67%  57,14%  25,00% 16,67%  83,33% 73,08% 0,00% 73,00%  29,70% 13,20%
100x100_60(3) 40,00%  62,50%  100,00% 100,00% 100,00% 13,55%  61,68%  30,92%  9997%  32,24%
200x200_30(2) 0,00% 28,57%  60,00%  100,00%  25,00% 100,00%  9821%  6122%  24,22% 8,75%
200x200_30(4) 0,00% 0,00% 77,718% 0,00% 33,33% 99,13%  99,76% 0,00% 0,00% 0,00%
200x200_30(6) 4444%  91,671%  66,67%  50,00%  42,86% 87,50%  57,14%  78,95%  82,35%  82,61%
200x200_30(9) 38,46%  70,00%  100,00% 100,00%  91,67% 90,00%  40,00%  25,00% 15,00% 5,88%
200x200_60(2) 8571%  80,77%  85,71%  80,77%  84,38% 2222%  42770%  41,10% 0,00% 14,02%
200x200_60(4) 76,92%  81,82%  80,56%  6897%  74,19% 0,00% 25,00% 0,00% 0,00% 0,00%
200x200_60(6) 71,78%  40,00%  69,23%  57,14%  62,50% 35,00% 0,54% 3,48% 1,00% 9.71%
200x200_60(9) 5556%  4545%  53,85%  8095% = 77.27% 72,78%  68,02% 2,39% 3,45% 0,00%
300x300_30(6) 0,00% 0,00% 23,08%  12,50%  30,00% 100,00%  99,53% 1,55% 40,66%  15,30%
300x300_30(12)  0,00% 58,33%  100,00%  50,00%  100,00% 100,00% 100,00% 100,00% 100,00%  46,15%
300x300_30(18)  42,86% 0,00% 30,00%  45,00%  63,16% 50,00%  57,14%  55,56%  58,82%  20,00%
300x300_30(24)  0,00% 0,00% 51,85%  48,00%  86,96% 80,00% 0,00% 0,00% 6,38% 0,00%
300x300_60(6) 66,67%  51,85%  100,00% 100,00% 100,00% 32,14% 0,00% 0,00% 0,00% 0,00%
300x300_60(12) 53.85%  81,40%  8387%  94,74%  90,74% 44,44% 0,00% 0,00% 0,00% 0,00%
300x300_60(18) 100,00% 100,00% 100,00% 100,00%  100,00% 100,00% 100,00% 100,00% 100,00%  100,00%
300x300_60(24) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%  0,00%
Isc(MOEA/D,SPEA2) Isc(MOEA/D,MO-VNS)
Evaluations (Stop condition) Evaluations (Stop condition)

Instance(s,) 50000 100000 200 000 300000 400 000 50000 100000 200 000 300000 400 000
50x50_30(1) 86,96%  7701%  8723%  8596%  78,95% 25,00%  28,57%  28,57%  28,57%  14,29%
50x50_60(1) 72,32% 0,55% 0,27% 99,82% 1,67% 30,00%  42,86%  57,14%  32,00%  45,00%
100x100_30(2) 82,50%  86,97%  91,55%  86,65%  89,93% 0,00% 0,73% 2,17% 12,14%  12,14%
100x100_30(3) 22,09%  22,68%  87,69%  60,64%  53.,55% 15,98% 2,79% 1,99% 0,00% 2,64%
100x100_60(2) 95,58% 1,16% 67,86% 0,00% 0,32% 16,67% 0,00% 0,00% 0,00% 0,00%
100x100_60(3) 20,00% 1,08% 72,77%  100,00% 100,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(2)  100,00% 100,00%  0,68% 8,74% 99,81% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(4)  100,00% 100,00%  0,56% 0,06% 0,14% 63,64%  33,33% 6,25% 27,27% 0,00%
200x200_30(6) 83,33% 1429%  8571%  7826%  72,73% 0,00% 0,00% 0,00% 9,09% 9,09%
200x200_30(9) 60,00%  7143%  11,11% 0,00% 16,67% 0,00% 0,00% 0,00% 0,00% 17,65%
200x200_60(2) 14,81% 1,32% 37,29% 0,00% 0,00% 0,00% 3,13% 18,75% 0,00% 0,00%
200x200_60(4) 16,67% 7,14% 0,00% 0,00% 0,00% 3,70% 0,00% 0,00% 15,52% 0,00%
200x200_60(6) 10,91% 6,36% 0,55% 2,16% 0,06% 0,00% 18,18%  1429% 0,00% 27,27%
200x200_60(9) 97,65%  82,01% 1,29% 0,53% 4,56% 61,54%  91,67%  84,62%  50,00%  30,77%
300x300_30(6)  100,00% 92,55%  94.82%  88,56%  98,53% 55,56%  58,33% 100,00% 100,00% 100,00%
300x300_30(12) 92,31%  100,00%  82,05% 0,00% 0,00% 100,00% 100,00% 100,00% 100,00%  100,00%
300x300_30(18)  33,33% 5,26% 0,00% 0,00% 0,00% 42.86%  47,06%  20,00%  41,18% 0,00%
300x300_30(24)  36,36% 5,56% 64,29% 0,00% 0,00% 62,50%  20,00%  30,00% 0,00% 0,00%
300x300_60(6) 0,00% 0,00% 0,00% 20,51% 0,00% 4,76% 6,25% 9,09% 12,12% 0,00%
300x300_60(12)  0,00% 11,54% 0,00% 0,00% 0,00% 3333%  1429%  14,29% 9,09% 12,00%
300x300_60(18) 100,00% 100,00% 100,00% 100,00%  100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_60(24) 100,00% 100,00% 100,00% 100,00%  0,00% 100,00% 100,00% 100,00% 100,00%  0,00%

159



B. Additional Information for Solving the RNPP: bi-objective Outdoor Approach

Table B.21: Set coverage metric by comparing all the metaheuristics two by two. Part 14 of 14.

Isc(MOEA/D,MO-VNS*

Isc(MOEA/D,MO-ABC)

Evaluations (Stop condition)

Evaluations (Stop condition)

Instance(s,) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 25,00%  36,36%  28,57%  28,57% 14,29% 29,80% 19.26%  46,31%  42,86%  54,01%
50x50_60(1) 25,00%  40,00%  44,44%  61,54% = 52,94% 44,16%  79,03%  87,00%  80.45%  60,06%
100x100_30(2) 0,00% 1,49% 2,19% 12,23% 12,23% 8,39% 10,99% 8,29% 3,94% 541%
100x100_30(3) 9,47% 11,39%  20,24% 0,00% 2,77% 12,09% 1,30% 0,72% 0,00% 3,85%
100x100_60(2) 87,50% 0,00% 0,00% 0,00% 0,00% 0,66% 0,34% 0,29% 0,37% 0,09%
100x100_60(3) 0,00% 0,00% 0,00% 0,00% 0,00% 15,79% 0,00% 0,00% 0,00% 0,00%
200x200_30(2) 0,00% 0,00% 0,00% 0,00% 22,22% 60,00%  40,00%  87,34% 0,00% 0,00%
200x200_30(4) 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 100,00%  66,67% 0,00% 0,00%
200x200_30(6) 50,00% 0,00% 0,00% 12,50% 9,09% 0,00% 0,00% 0,00% 5,88% 9,09%
200x200_30(9) 0,00% 9,09% 10,53% 0,00% 0,00% 13,33% 18,18% 0,00% 0,00% 0,00%
200x200_60(2) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 4,46% 0,00% 0,87%
200x200_60(4) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 31,37% 0,00% 0,00% 0,00%
200x200_60(6) 0,00% 11,11% 0,00% 0,00% 0,00% 0,00% 6,12% 0,00% 0,00% 25,20%
200x200_60(9) 36,36% 1,11%  22,22% 17,65% 10,00% 75,22% 0,59% 0,07% 0,34% 0,00%
300x300_30(6) 71,43%  57,14%  80,00%  42,86%  100,00% 100,00%  17,68% 4.81% 6,25% 0,32%
300x300_30(12)  93,33% 0,00% 57,14%  37,50%  46,67% 100,00%  33,33% 0,00% 0,00% 0,00%
300x300_30(18)  0,00% 0,00% 0,00% 0,00% 0,00% 33,33% 10,00% 0,00% 2,78% 0,00%
300x300_30(24)  0,00% 0,00% 0,00% 0,00% 0,00% 100,00%  93,33%  5294%  68,97% 0,00%
300x300_60(6) 11,76% 6,25% 0,00% 11,76% 11,11% 7,69% 0,00% 10,00% 0,00% 0,00%
300x300_60(12) 17,65%  20,00% 0,00% 0,00% 4,55% 0,00% 2,48% 89,27%  38,41% 0,00%
300x300_60(18) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_60(24) 100,00% 100,00% 100,00% 100,00%  0,00% 100,00% 100,00% 100,00% 100,00%  0,00%
Isc(MOEA/D,MO-FA) Isc(MOEA/D,MO-GSA)
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 14,29%  26,67%  28,57%  26,67% 13,33% 36,36%  54,55%  30,00%  46,67%  27,27%
50x50_60(1) 20,00%  37,50%  53,33%  50,00%  52,94% 7333%  60,00%  36,36%  66,67%  57,14%
100x100_30(2) 5,26% 16,22% 11,30% 12,20% 12,40% 14,81% 15,85%  20,37% 9,48% 10,19%
100x100_30(3) 19,82%  23,02% 5,60% 2,19% 4,13% 40,43% 13,64% 7.32% 0,00% 8,33%
100x100_60(2) 50,00% 0,00% 20,00% 0,00% 0,00% 77,78% 11,11% 10,00%  50,00%  50,00%
100x100_60(3) 0,00% 0,00% 0,00% 0,00% 0,00% 28,57% 0,00% 0,00% 0,00% 0,00%
200x200_30(2) 0,00% 0,00% 0,00% 0,00% 0,00% 100,00%  63,64% 0,00% 0,00% 11,11%
200x200_30(4) 28,57% 8,33% 0,00% 0,00% 0,00% 100,00%  66,67% 0,00% 50,00%  33,33%
200x200_30(6) 33,33% 0,00% 0,00% 7,69% 9,09% 18,18% 0,00% 0,00% 23,08%  4545%
200x200_30(9) 0,00% 0,00% 0,00% 0,00% 0,00% 25,00%  23,08% 0,00% 0,00% 4,76%
200x200_60(2) 2,70% 3,51% 0,00% 13,46% 0,00% 0,00% 0,00% 3,45% 2,38% 0,00%
200x200_60(4) 0,00% 0,00% 0,00% 0,00% 0,00% 2,86% 16,67% 0,00% 4,00% 0,00%
200x200_60(6) 0,00% 0,00% 0,00% 28,57%  81,25% 0,00% 46,67%  26,67% 18,75% 5,88%
200x200_60(9) 0,00% 0,00% 0,00% 0,00% 11,11% 77,78%  63,64%  50,00%  28,57% 0,00%
300x300_30(6) 14,29% 17,65% 0,00% 0,00% 0,00% 100,00% 100,00%  61,54%  66,67%  33,33%
300x300_30(12)  0,00% 0,00% 0,00% 0,00% 0,00% 33,33% 0,00% 0,00% 0,00% 0,00%
300x300_30(18)  0,00% 0,00% 0,00% 0,00% 0,00% 4444%  69,23%  64,29%  50,00% 18,75%
300x300_30(24)  0,00% 0,00% 0,00% 0,00% 0,00% 92,86%  84,21% 3,85% 28,57% 0,00%
300x300_60(6) 0,00% 0,00% 0,00% 0,00% 0,00% 42,86% 4,76% 0,00% 0,00% 0,00%
300x300_60(12)  0,00% 0,00% 0,00% 0,00% 0,00% 33,33% 0,00% 0,00% 0,00% 0,00%
300x300_60(18) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_60(24) 100,00% 100,00% 100,00% 100,00%  0,00% 100,00% 100,00% 100,00% 100,00%  0,00%
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Additional Information for
Solving the RNPP:
three-objective Outdoor
Approach

This appendix includes additional information for solving the three-objective outdoor RNPP
discussed in Chapter[5} Thus, Sections|C.T]and[C.2]include the p-values and set coverage metrics
obtained by comparing the metaheuristics two by two, respectively.

C.1 Statistical Analysis Based on the Hypervolume Metric

This section includes all the p-values obtained by comparing the algorithms through Wilcoxon-
Mann-Whitney’s test and hypothesis Hy : Hyp, < Hyp; and Hy : Hyp; > Hyp;, with
i, = 1,2,...,8, I=NSGA-II, 2=SPEA2, 3=MO-VNS, 4=MO-VNS*, 5=MO-ABC, 6=MO-
FA, 7=MO-GSA, and 8=MOEA/D. Because of the symmetry observed in the p-values obtained,
while comparing any two algorithms ¢ and j, i.e. 72 vs j and 7 vs 7. In the following tables,
p-values lower than 0.05 means that Hyp; > Hyp; (they appear shaded) and p-values higher
than 0.95 means that Hiypj > Hyp, (they appear in boldface). These p-values are in Tables

and[C.5}

C.2 Set Coverage Analysis

This section contains all the set coverage metrics obtained by comparing the metaheuristics two

by two. These values are in Tables [C.6} [C.7] [C.8] [C.9] [C.I0]| [C.IT] [C.12] [C.13][C.14] and[C.15]
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C. Additional Information for Solving the RNPP: three-objective Outdoor Approach

Table C.1: P-values obtained by comparing the metaheuristics through Wilcoxon-Mann-Whitney’s
test. Part 1 of 5.

NSGA-II vs SPEA2

NSGA-II vs MO-VNS

Evaluations (Stop condition)

Evaluations (Stop condition)

Instance(s,) 50000 100000 200000 300000 400 000 50000 100000 200000 300 000 400 000
50x50_30(1) 0.5000  0.5000  0.5000  0.5000  0.5000 1.0000  1.0000  1.0000  1.0000  1.0000
100x100_30(2) 0.9930  0.5000  0.8333 = 0.0004  0.0001 1.0000  1.0000  1.0000  1.0000  1.0000
100x100_30(3) 0.9960 0.9976  0.9976  0.9489  0.9999 1.0000  1.0000 1.0000  1.0000  1.0000
200x200_30(2) 0.7391 04412  0.0616  0.0257  0.0071 0.4082  0.9852  1.0000 1.0000  1.0000
200x200_30(4) 0.3493  0.1782  0.2891 0.1171 0.0785 0.0047  0.0535  0.1710  0.2051 0.3918
200x200_30(6) 09811  0.9524 09418  0.9465  0.9602 0.1038  0.1227  0.4524  0.6082  0.7989
200x200_30(9) 0.9984  0.9999 09996 0.9998  0.9998 0.3757 0.1782  0.0616  0.0988  0.2518
300x300_30(6) 09752  0.9083 09876 0.9841  0.9679 09736  0.5560 0.8429  0.8655 0.8744
300x300_30(12) 0.9988  0.9993  1.0000 1.0000  1.0000 0.9995  0.9963 09867 0.9908  0.9841
300x300_30(18)  1.0000  1.0000  1.0000  1.0000  1.0000 1.0000  1.0000  1.0000  0.9998  0.9999
300x300_30(24) 0.9999  1.0000  1.0000 1.0000  1.0000 1.0000  1.0000  1.0000  1.0000  1.0000
NSGA-II vs MO-VNS#* NSGA-II vs MO-ABC
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50000 100000 200000 300000 400 000 50000 100000 200 000 300 000 400 000
50x50_30(1) 0.9998  1.0000 1.0000 1.0000  1.0000 1.0000  1.0000  1.0000  1.0000  1.0000
100x100_30(2) 1.0000  1.0000  1.0000  1.0000  1.0000 0.9999  0.9989 09970  0.9963  0.9993
100x100_30(3) 1.0000  1.0000  1.0000 1.0000  1.0000 1.0000  1.0000  1.0000  0.9998  0.9998
200x200_30(2) 0.6559  1.0000  1.0000 1.0000  1.0000 0.4302  0.0341  0.0001  0.0000 0.0000
200x200_30(4) 0.1285  0.3390  0.2215 02173  0.2795 0.0000  0.0000  0.0000  0.0000  0.0000
200x200_30(6) 0.7820  0.8106  0.1140 = 0.0093  0.0015 0.0000  0.0000  0.0000  0.0000  0.0000
200x200_30(9) 0.4860 ~ 0.0000  0.0000  0.0000  0.0000 0.0000  0.0000  0.0000  0.0000  0.0000
300x300_30(6) 0.9907 0.4804 0.0547 = 0.0079  0.0027 0.3136  0.3236  0.4468  0.2474  0.3037
300x300_30(12) 0.9997 0.8496  0.3598  0.0917 = 0.0148 1.0000  1.0000 1.0000 1.0000  1.0000
300x300_30(18)  1.0000  1.0000  0.9985  0.8272  0.3545 1.0000  1.0000  1.0000  1.0000  1.0000
300x300_30(24) 1.0000  1.0000  0.9999  0.9824  0.8884 1.0000  1.0000  1.0000  1.0000  1.0000
NSGA-II vs MO-FA NSGA-II vs MO-GSA
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(S,) 50000 100 000 200 000 300000 400 000 50000 100000 200 000 300000 400 000
50x50_30(1) 1.0000  1.0000  1.0000  1.0000  1.0000 1.0000  1.0000  1.0000  1.0000  1.0000
100x100_30(2) 1.0000  1.0000  1.0000  1.0000  1.0000 0.0000  0.0000  0.0000  0.0000  0.0000
100x100_30(3) 1.0000  1.0000  1.0000  1.0000  1.0000 0.0000  0.0000  0.0000  0.0000  0.0000
200x200_30(2) 1.0000  1.0000  1.0000  1.0000  1.0000 0.6533  0.0785 ' 0.0331 0.1396  0.2535
200x200_30(4) 0.6864  0.5140  0.1471 0.0725  0.0785 0.0000  0.0006 0.0088  0.0582  0.0449
200x200_30(6) 0.9992  0.9918 09915  0.9940  0.9973 0.0000  0.0000  0.0000 0.0025  0.0217
200x200_30(9) 1.0000  1.0000  1.0000  0.9993  0.9993 0.0003  0.0000 0.0047 0.7658  0.7277
300x300_30(6) 09012  0.9577 09997  0.9999  0.9999 0.0000  0.0000 0.0005 0.0047  0.0070
300x300_30(12) 1.0000 1.0000 1.0000 1.0000  1.0000 0.9648  0.9551 09999 1.0000  1.0000
300x300_30(18)  1.0000  1.0000  1.0000  1.0000  1.0000 1.0000  1.0000  1.0000  1.0000  1.0000
300x300_30(24) 1.0000  1.0000  1.0000 1.0000  1.0000 1.0000  1.0000  1.0000  1.0000  1.0000
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C.2 Set Coverage Analysis

Table C.2: P-values obtained by comparing the metaheuristics through Wilcoxon-Mann-Whitney’s
test. Part 2 of 5.

NSGA-II vs MOEA/D SPEA2 vs MO-VNS
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50000 100000 200000 300000 400 000 50000 100000 200000 300000 400000
50x50_30(1) 1.0000  1.0000  1.0000  1.0000  1.0000 1.0000  1.0000  1.0000  1.0000  1.0000
100x100_30(2) 0.7743 ~ 0.0119  0.0088  0.0000  0.0000 1.0000  1.0000  1.0000  1.0000  1.0000
100x100_30(3) 1.0000  1.0000  1.0000 1.0000  1.0000 1.0000  1.0000  1.0000  1.0000  1.0000
200x200_30(2) 0.6864  0.3704 0.1171 03170  0.4541 0.2891  0.9897  1.0000 1.0000  1.0000
200x200_30(4) 0.9434 09510 0.9868  0.9875  0.9480 0.0079  0.1605 0.3186  0.5196  0.7012
200x200_30(6) 1.0000  1.0000  1.0000  1.0000  1.0000 0.0067 0.0119 0.0806  0.1285  0.2051
200x200_30(9) 1.0000  1.0000  1.0000  1.0000  1.0000 0.0015  0.0000 0.0000 0.0001  0.0003
300x300_30(6) 0.9992 09804 09905 0.9551  0.9502 04972 0.0964 0.0745  0.1256  0.1782
300x300_30(12) 1.0000  1.0000 1.0000  1.0000  1.0000 0.6296  0.3287  0.0633 | 0.0490 0.0210
300x300_30(18)  1.0000  1.0000  1.0000  1.0000  1.0000 0.9669  0.5973 04246  0.1972  0.1047
300x300_30(24) 1.0000  1.0000  1.0000  1.0000  1.0000 1.0000 0.9997 0.9885 0.7701  0.8027
SPEA2 vs MO-VNS#* SPEA2 vs MO-ABC
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50000 100000 200 000 300 000 400 000 50000 100000 200000 300000 400 000
50x50_30(1) 0.9998  1.0000 1.0000 1.0000  1.0000 1.0000  1.0000  1.0000  1.0000  1.0000
100x100_30(2) 1.0000  1.0000  1.0000  1.0000  1.0000 0.9969  0.9988 09875  0.9969  0.9994
100x100_30(3) 1.0000  1.0000  1.0000  1.0000  1.0000 1.0000  1.0000  0.9991  0.9975  0.9905
200x200_30(2) 0.6349  1.0000  1.0000 1.0000  1.0000 0.2891 0.0375  0.0055 0.0010  0.0004
200x200_30(4) 0.2655  0.6189 03973  0.5864  0.7482 0.0000  0.0000  0.0000  0.0000  0.0000
200x200_30(6) 0.2309  0.2552 | 0.0035  0.0001 0.0000 0.0000  0.0000  0.0000  0.0000  0.0000
200x200_30(9) 0.0012  0.0000  0.0000  0.0000  0.0000 0.0000  0.0000  0.0000  0.0000  0.0000
300x300_30(6) 0.4541 0.0687 = 0.0005 0.0000  0.0000 0.0321  0.0894  0.0232  0.0094 0.0107
300x300_30(12) 0.3484 | 0.0035  0.0000  0.0000  0.0000 0.9996 0.9999  1.0000  0.9993  0.9829
300x300_30(18)  1.0000 0.4916 = 0.0018  0.0000  0.0000 1.0000  1.0000  1.0000  1.0000  1.0000
300x300_30(24) 1.0000  0.9999 0.0616 = 0.0000  0.0000 1.0000  1.0000  1.0000  1.0000  1.0000
SPEA2 vs MO-FA SPEA2 vs MO-GSA
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50000 100000 200 000 300000 400 000 50000 100000 200 000 300000 400 000
50x50_30(1) 1.0000  1.0000  1.0000 1.0000  1.0000 1.0000  1.0000  1.0000  1.0000  1.0000
100x100_30(2) 1.0000  1.0000  1.0000  1.0000  1.0000 0.0000  0.0000  0.0000  0.0000  0.0000
100x100_30(3) 1.0000  1.0000 1.0000  1.0000  1.0000 0.0000  0.0000  0.0000  0.0000  0.0000
200x200_30(2) 1.0000  1.0000  1.0000 1.0000  1.0000 0.4804  0.0669 0.3598  0.8254  0.9510
200x200_30(4) 0.7827  0.7701 0.2748  0.2429  0.4468 0.0000  0.0086  0.0264  0.3651 0.4860
200x200_30(6) 0.9953 09709 09679 0.9674  0.9776 0.0000  0.0000  0.0000  0.0000  0.0000
200x200_30(9) 09215 0.7109 0.9418 09151 0.8593 0.0000  0.0000  0.0000 0.0013  0.0013
300x300_30(6) 0.3864  0.7252  0.9959 09974  0.9969 0.0000  0.0000  0.0000 0.0000 0.0001
300x300_30(12) 0.9857  0.9970  0.9998  0.9996  1.0000 0.0706 = 0.0248  0.2386  0.9480  0.7949
300x300_30(18)  1.0000  1.0000  1.0000  1.0000  1.0000 1.0000  0.9987  1.0000  1.0000  1.0000
300x300_30(24) 1.0000  1.0000 1.0000  1.0000  1.0000 1.0000  1.0000  1.0000  1.0000  1.0000
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C. Additional Information for Solving the RNPP: three-objective Outdoor Approach

Table C.3: P-values obtained by comparing the metaheuristics through Wilcoxon-Mann-Whitney’s
test. Part 3 of 5.

SPEA2 vs MOEA/D MO-VNS vs MO-VNS#*

Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50000 100000 200000 300000 400 000 50000 100000 200000 300 000 400 000
50x50_30(1) 1.0000  1.0000 1.0000  1.0000  1.0000 0.9790  0.9988  1.0000 1.0000  1.0000
100x100_30(2) 0.0183  0.0103  0.0000 0.0000  0.0000 09170  0.7909  0.6687  0.6998  0.2820
100x100_30(3) 1.0000  1.0000  1.0000  1.0000  1.0000 0.5913  0.4471 0.0823  0.5973  0.6764
200x200_30(2) 04916  0.3287  0.3651 0.7205  0.8857 0.4357  0.8741 0.6243  0.2946 09172
200x200_30(4) 0.9835  0.9841  0.9957  0.9990 0.9973 0.9538 0.8529  0.6027  0.5973  0.5365
200x200_30(6) 1.0000  1.0000  1.0000  1.0000  1.0000 0.9643 09534 0.2016 = 0.0132  0.0004
200x200_30(9) 1.0000  1.0000  1.0000  1.0000  1.0000 0.6136 ~ 0.0036  0.0000 0.0000  0.0000
300x300_30(6) 0.8181 0.5196  0.3572 02215  0.3037 0.5230 0.4468 = 0.0122  0.0008  0.0001
300x300_30(12) 1.0000  1.0000 1.0000 1.0000  1.0000 0.2628 | 0.0196  0.0030  0.0001 0.0000
300x300_30(18)  1.0000  1.0000  1.0000  1.0000  1.0000 0.9669  0.3313 ~ 0.0040  0.0001 0.0000
300x300_30(24) 1.0000  1.0000  1.0000 1.0000  1.0000 0.9699  0.3646 = 0.0001  0.0000  0.0000

MO-VNS vs MO-ABC MO-VNS vs MO-FA

Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50000 100000 200000 300000 400 000 50000 100000 200 000 300 000 400 000
50x50_30(1) 1.0000  1.0000  1.0000  1.0000  1.0000 1.0000  1.0000  1.0000  1.0000  1.0000
100x100_30(2) 0.0001  0.0000 0.0000 0.0000  0.0000 0.0002  0.0000 0.0000  0.0000  0.0000
100x100_30(3) 0.0490 0.1779  0.0138  0.0011 0.0010 0.5588  0.5804 = 0.0417 0.0153  0.0291
200x200_30(2) 0.6082 ~ 0.0041  0.0000 0.0000  0.0000 1.0000  1.0000  1.0000  1.0000  1.0000
200x200_30(4) 0.0002  0.0000  0.0000  0.0000  0.0000 0.9977 09450  0.5643  0.4082  0.2725
200x200_30(6) 0.0000  0.0000  0.0000  0.0000  0.0000 0.9998  0.9986 09930 0.9885  0.9915
200x200_30(9) 0.0000  0.0000  0.0000  0.0000  0.0000 0.9999  1.0000 1.0000  0.9998  0.9995
300x300_30(6) 0.0189  0.3390 0.1746  0.0651  0.0651 0.4191 0.9367  0.9990  0.9996  0.9991
300x300_30(12) 0.9976  1.0000 1.0000 1.0000  1.0000 0.9659  0.9989  1.0000 1.0000  1.0000
300x300_30(18)  1.0000  1.0000  1.0000  1.0000  1.0000 0.9997  1.0000  1.0000  1.0000  1.0000
300x300_30(24) 1.0000  1.0000  1.0000 1.0000  1.0000 0.9988  1.0000 1.0000 1.0000  1.0000

MO-VNS vs MO-GSA MO-VNS vs MOEA/D

Evaluations (Stop condition) Evaluations (Stop condition)
Instance(S,) 50000 100 000 200 000 300000 400 000 50000 100000 200 000 300 000 400 000
50x50_30(1) 0.0000  0.0000  0.0000  0.0000  0.0000 1.0000  1.0000 1.0000  1.0000  1.0000
100x100_30(2) 0.0000  0.0000  0.0000  0.0000  0.0000 0.0000  0.0000  0.0000  0.0000  0.0000
100x100_30(3) 0.0000  0.0000  0.0000  0.0000  0.0000 0.1117 | 0.0430 0.0894 = 0.0331 0.0256
200x200_30(2) 0.7012 ~ 0.0045  0.0000  0.0000  0.0000 0.7061 0.0273  0.0000  0.0000  0.0000
200x200_30(4) 0.0206  0.0668  0.1439 03918  0.2429 0.9991  0.9835 09910 0.9870  0.8829
200x200_30(6) 0.0041  0.0001 0.0012 0.0043  0.0017 1.0000  1.0000  1.0000  1.0000  1.0000
200x200_30(9) 0.0018 0.0017 0.4136  0.9313  0.8667 1.0000  1.0000  1.0000  1.0000  1.0000
300x300_30(6) 0.0000  0.0000 0.0000 0.0003  0.0005 0.8624  0.9401 0.8496  0.7571 0.7345
300x300_30(12) 0.0273  0.0725  0.8987  0.9985  0.9985 1.0000  1.0000  1.0000  1.0000  1.0000
300x300_30(18)  0.9942  0.9977  1.0000  1.0000  1.0000 1.0000  1.0000  1.0000  1.0000  1.0000
300x300_30(24) 1.0000  1.0000  1.0000 1.0000  1.0000 1.0000  1.0000  1.0000  1.0000  1.0000
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C.2 Set Coverage Analysis

Table C.4: P-values obtained by comparing the metaheuristics through Wilcoxon-Mann-Whitney’s
test. Part 4 of 5.

MO-VNS#* vs MO-ABC MO-VNS#* vs MO-FA

Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50000 100000 200000 300000 400 000 50000 100000 200000 300000 400000
50x50_30(1) 1.0000  1.0000 0.9966  0.9084  0.3036 1.0000  1.0000  1.0000  1.0000  1.0000
100x100_30(2) 0.0000  0.0000 0.0000  0.0000  0.0000 0.0000  0.0000 0.0000  0.0000  0.0000
100x100_30(3) 0.0324  0.1598  0.2351 =~ 0.0008  0.0002 04313  0.6759  0.5662 = 0.0148  0.0048
200x200_30(2) 0.3545 ~ 0.0000 0.0000 0.0000  0.0000 1.0000  1.0000  1.0000  1.0000  0.9986
200x200_30(4) 0.0000  0.0000  0.0000  0.0000  0.0000 09215  0.7157 04246 02342 0.2748
200x200_30(6) 0.0000  0.0000  0.0000  0.0000  0.0000 0.9962  0.9893 09986  0.9995  1.0000
200x200_30(9) 0.0000  0.0032  0.0005 0.0002  0.0000 1.0000  1.0000  1.0000  1.0000  1.0000
300x300_30(6) 0.0063  0.3086  0.8047  0.9331 0.9699 04712 0.9551 09999 1.0000  1.0000
300x300_30(12) 1.0000  1.0000 1.0000  1.0000  1.0000 0.9959  1.0000 1.0000 1.0000  1.0000
300x300_30(18)  1.0000  1.0000  1.0000  1.0000  1.0000 0.9993  1.0000  1.0000  1.0000  1.0000
300x300_30(24) 1.0000  1.0000  1.0000  1.0000  1.0000 0.9564  1.0000  1.0000 1.0000  1.0000

MO-VNS#* vs MO-GSA MO-VNS* vs MOEA/D

Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50000 100000 200 000 300 000 400 000 50000 100000 200000 300000 400 000
50x50_30(1) 0.0009  0.0003  0.0000  0.0000  0.0000 1.0000  1.0000  0.9998  0.9977  0.9285
100x100_30(2) 0.0000  0.0000  0.0000  0.0000  0.0000 0.0000  0.0000 0.0000 0.0000  0.0000
100x100_30(3) 0.0000  0.0000  0.0000  0.0000  0.0000 0.1302  0.1128  0.5288 ~ 0.0256  0.0171
200x200_30(2) 0.3598  0.0000 0.0000 0.0000  0.0000 0.5028 ~ 0.0000  0.0000  0.0000  0.0000
200x200_30(4) 0.0002  0.0056 0.0706  0.2748  0.2386 0.9897  0.9480 09940  0.9951  0.9465
200x200_30(6) 0.0000  0.0000 0.0007 0.3755  0.9083 1.0000  1.0000  1.0000  1.0000  1.0000
200x200_30(9) 0.0001  0.2055  1.0000 1.0000  1.0000 1.0000  1.0000  1.0000 1.0000  1.0000
300x300_30(6) 0.0000 0.0000 0.0136  0.4691 0.7785 09191  0.9790  1.0000 1.0000  1.0000
300x300_30(12) 0.0500  0.8378 1.0000  1.0000  1.0000 1.0000  1.0000  1.0000  1.0000  1.0000
300x300_30(18) 09172 0.9993  1.0000  1.0000  1.0000 1.0000  1.0000  1.0000  1.0000  1.0000
300x300_30(24) 1.0000  1.0000 1.0000  1.0000  1.0000 1.0000  1.0000  1.0000  1.0000  1.0000

MO-ABC vs MO-FA MO-ABC vs MO-GSA

Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50000 100000 200 000 300000 400 000 50000 100000 200 000 300000 400 000
50x50_30(1) 1.0000  1.0000 1.0000  1.0000  1.0000 0.0000  0.0000  0.0000  0.0000  0.0000
100x100_30(2) 0.9751  0.9879 09987  0.9997  1.0000 0.0000  0.0000  0.0000  0.0000  0.0000
100x100_30(3) 0.9349  0.7039  0.7180  0.9036  0.9313 0.0000  0.0000  0.0000  0.0000  0.0000
200x200_30(2) 1.0000  1.0000  1.0000  1.0000  1.0000 0.7345  0.6296  0.9852  0.9999  1.0000
200x200_30(4) 1.0000  1.0000  1.0000  1.0000  1.0000 0.9951 1.0000  1.0000  1.0000  1.0000
200x200_30(6) 1.0000  1.0000  1.0000  1.0000  1.0000 1.0000  1.0000  1.0000  1.0000  1.0000
200x200_30(9) 1.0000  1.0000  1.0000  1.0000  1.0000 09847 0.9776  1.0000 1.0000  1.0000
300x300_30(6) 09106  0.9313  0.9992  0.9998  0.9998 0.0000  0.0000 0.0024 0.0599 0.0745
300x300_30(12) 0.3186  0.3864  0.8655  0.8883  0.9999 0.0000  0.0000  0.0000 0.0128  0.0633
300x300_30(18) ' 0.0001 0.0000  0.0000  0.0000  0.0000 0.0000  0.0000 0.0014  0.1227  0.1156
300x300_30(24) 0.0000  0.0000 0.0000  0.0000  0.0000 0.1227  0.2091 0.9985  1.0000  1.0000
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C. Additional Information for Solving the RNPP: three-objective Outdoor Approach

Table C.5: P-values obtained by comparing the metaheuristics through Wilcoxon-Mann-Whitney’s
test. Part 5 of 5.

MO-ABC vs MOEA/D

MO-FA vs MO-GSA

Evaluations (Stop condition)

Evaluations (Stop condition)

Instance(s,) 50000 100000 200000 300000 400 000 50000 100000 200000 300000 400 000
50x50_30(1) 0.0000  0.0006  0.9297  0.9988  1.0000 0.0000  0.0000  0.0000  0.0000  0.0000
100x100_30(2) 0.0006  0.0004 0.0025 0.0005  0.0005 0.0000  0.0000  0.0000  0.0000  0.0000
100x100_30(3) 0.8028  0.6082  0.9625  0.9862  0.9940 0.0000  0.0000  0.0000  0.0000  0.0000
200x200_30(2) 0.6764  0.7743  0.9418  0.9962  0.9996 0.0000  0.0000  0.0000  0.0000  0.0000
200x200_30(4) 1.0000  1.0000  1.0000  1.0000  1.0000 0.0000 0.0010 0.1143  0.6814  0.5973
200x200_30(6) 1.0000  1.0000  1.0000  1.0000  1.0000 0.0000  0.0000  0.0001  0.0002  0.0001
200x200_30(9) 1.0000  1.0000  1.0000  1.0000  1.0000 0.0000  0.0000  0.0000 0.0013  0.0013
300x300_30(6) 0.9989  0.9689 09867 0.9893  0.9935 0.0000  0.0000  0.0000  0.0000  0.0000
300x300_30(12) 1.0000  0.9998  0.9987  0.9955  0.9982 0.0002  0.0000 0.0001  0.0051 0.0000
300x300_30(18)  0.9994  0.9993  0.9999  0.9999  0.9999 0.1143 © 0.0159  0.7526  0.9970  0.9920
300x300_30(24) 1.0000  1.0000  1.0000 1.0000  1.0000 0.9995  0.9998  1.0000 1.0000  1.0000
MO-FA vs MOEA/D MO-GSA vs MOEA/D
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s;) 50000 100000 200000 300000 400 000 50000 100000 200 000 300 000 400 000
50x50_30(1) 0.0000  0.0000  0.0000  0.0000  0.0000 1.0000  1.0000 1.0000  1.0000  1.0000
100x100_30(2) 0.0000  0.0000  0.0000  0.0000  0.0000 1.0000  1.0000  1.0000  1.0000  0.9987
100x100_30(3) 0.0633 ~ 0.0217 0.6726  0.5643  0.5809 1.0000  1.0000 1.0000  1.0000  1.0000
200x200_30(2) 0.0000  0.0000  0.0000  0.0000  0.0000 0.5309 0.5698  0.4136 04747  0.6507
200x200_30(4) 0.8801 0.8962  0.9968  0.9983  0.9918 1.0000  0.9997  0.9999  0.9997  0.9987
200x200_30(6) 0.9210  0.8801 0.7482  0.7109  0.6914 1.0000  1.0000  1.0000  1.0000  1.0000
200x200_30(9) 1.0000  1.0000  1.0000  1.0000  1.0000 1.0000  1.0000  1.0000  1.0000  1.0000
300x300_30(6) 0.8218  0.2748 | 0.0040  0.0004  0.0003 1.0000  1.0000  1.0000  1.0000  1.0000
300x300_30(12) 1.0000  0.9997 0.8829  0.8624  0.3629 1.0000  1.0000 1.0000  1.0000  1.0000
300x300_30(18)  1.0000  1.0000  1.0000  1.0000  1.0000 1.0000  1.0000  1.0000  0.9994  0.9995
300x300_30(24) 1.0000  1.0000  1.0000 1.0000  1.0000 1.0000  1.0000  1.0000  0.9960  0.9995
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C.2 Set Coverage Analysis

Table C.6: Set coverage metric by comparing all the metaheuristics two by two. Part 1 of 10.

Isc(NSGA-ILSPEA2)

Isc(NSGA-II,MO-VNS)

Evaluations (Stop condition)

Evaluations (Stop condition)

Instance(s;) 50000 100000 200000 300000 400 000 50000 100000 200000 300000 400 000
50x50_30(1) 56,52% 77,01% 9681%  92,11%  96,49% 0,00% 0,00% 0,00% 0,00% 0,00%
100x100_30(2) 54,00% 60,47% 77,46% 81.86%  91.87% 0,00% 0,00% 0,72% 0,00% 1,43%
100x100_30(3)  63,37% 90,72% 37,85%  78,19%  74,60% 0,00% 0,00% 0,00% 0,45% 0,00%
200x200_30(2) 91,67% 55,00%  0,00% 0,19% 100,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(4) 4,76%  97,06% 99,89% 100,00% 100,00% 9,09%  25,00%  12,50%  27,27%  83,33%
200x200_30(6) 16,67% 0,00% 10,71%  34,718%  54,55% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(9) 0,00%  3571% 11,11%  0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(6) 20,33% 8245% 99,.88%  95.81%  100,00% 0,00%  41,67%  100,00% 100,00% 100,00%
300x300_30(12) 0,00%  0,00% 0,00% 0,00% 0,00% 0,00%  100,00% 100,00% 100,00% 100,00%
300x300_30(18) 0,00%  0,00% 0,00% 0,00% 6,67% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(24) 0,00% 16,67% 11,90%  13,16% 0,00% 37,50%  80,00%  100,00%  89.47%  92,86%
Isc(NSGA-II,MO-VNS*) Isc(NSGA-II,MO-ABC)
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s;) 50000 100000 200000 300000 400 000 50000 100000 200000 300000 400 000
50x50_30(1) 0,00%  0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,67% 0,00% 16,06%
100x100_30(2) 0,00%  0,00% 0,00% 0,00% 0,00% 1,89% 1,77% 0,92% 2,30% 2,39%
100x100_30(3) 0,00%  0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(2) 0,00%  0,00% 0,00% 0,00% 33,33% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(4) 0,00%  0,00% 0,00% 28,57% 0,00% 0,00%  91,67%  98,15%  24,56% 13,52%
200x200_30(6) 0,00%  0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 38,24% 0,00%
200x200_30(9) 0,00%  0,00% 5,26% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(6) 0,00% 1429% 60,00%  0,00% 75,00% 9,38% 0,00% 4,81% 6,25% 20,51%
300x300_30(12) 0,00%  0,00%  28,57%  25,00%  100,00% 0,00%  33,33% 0,00% 0,00% 0,00%
300x300_30(18) 0,00% 0,00 16,67%  0,00% 0,00% 8,33% 10,00% 0,00% 0,00% 0,00%
300x300_30(24) 0,00%  0,00% 16,67%  20,83% 0,00% 18,18% 100,00%  94,12%  100,00%  12,50%
Isc(NSGA-ILMO-FA) Isc(NSGA-II,MO-GSA)
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s;) 50000 100000 200000 300000 400 000 50000 100000 200 000 300 000 400 000
50x50_30(1) 0,00%  0,00% 0,00% 0,00% 0,00% 9,09% 9,09% 0,00% 0,00% 9,09%
100x100_30(2) 1,05%  0,00% 0,87% 0,00% 2,33% 1,23% 0,00% 1,85% 0,00% 1,85%
100x100_30(3) 0,00%  0,00% 0,00% 0,00% 0,00% 1,06% 0,00% 1,22% 0,00% 2,50%
200x200_30(2) 0,00%  0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 33,33%
200x200_30(4) 0,00%  0,00% 0,00% 0,00% 0,00% 71,43%  0,00% 0,00% 100,00%  50,00%
200x200_30(6) 0,00%  0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 7,69% 9,09%
200x200_30(9) 0,00%  0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(6) 0,00%  0,00% 0,00% 0,00% 0,00% 40,00%  16,67%  38,46%  66,67% 16,67%
300x300_30(12) 0,00%  0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(18) 0,00%  0,00% 0,00% 0,00% 0,00% 44,44%  53,85% 7,14% 50,00% 0,00%
300x300_30(24) 0,00%  0,00% 0,00% 0,00% 0,00% 42,86%  63,16%  73,08%  33,33% 12,50%
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C. Additional Information for Solving the RNPP: three-objective Outdoor Approach

Table C.7: Set coverage metric by comparing all the metaheuristics two by two. Part 2 of 10.

Isc(NSGA-II,MOEA/D)

Isc(SPEA2,NSGA-II)

Evaluations (Stop condition)

Evaluations (Stop condition)

Instance(s,) 50 000 100 000 200 000 300 000 400 000 50000 100000 200000 300000 400 000
50x50_30(1) 7,69% 7,14% 13,33%  20,00% 0,00% 51,56%  57,78%  76,77%  79,17%  72,97%
100x100_30(2) 6,52% 5,19% 9,76% 11,86% 8,33% 51,24%  69,09%  74,64%  63,54%  80,80%
100x100_30(3) 15,69% 18,87% 17,86% 12,77%  21,57% 20,42%  35,58%  42,58% 17,06%  39,80%
200x200_30(2) 0,00% 0,00% 0,00% 25,00%  75,00% 5,06% 67,86%  70,09%  72,32% 0,00%
200x200_30(4) 0,00% 0,00% 100,00% 100,00% 100,00% 94,78% 5,01% 0,00% 0,00% 0,00%
200x200_30(6) 0,00% 8,33% 0,00% 16,67%  28,57% 62,50%  85,71%  94,74%  76,47%  67,39%
200x200_30(9) 0,00% 20,00%  42,86%  64,00%  66,67% 90,00%  20,00%  5833%  95,00%  47,06%
300x300_30(6) 0,00% 0,00% 30,77% 12,50% 10,00% 92,92% 15,89% 0,00% 12,36% 0,00%
300x300_30(12)  0,00% 0,00% 0,00% 0,00% 42,86% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_30(18)  14,29% 0,00% 20,00%  30,00%  52,63% 66,67%  100,00% 100,00% 41,18%  26,67%
300x300_30(24)  0,00% 62,50%  48,15%  52,00%  82,61% 100,00%  54,55%  36,84%  89,36%  95,83%
Isc(SPEA2,MO-VNS) Isc(SPEA2,MO-VNS#)
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50000 100000 200000 300000 400 000 50000 100000 200000 300000 400 000
50x50_30(1) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
100x100_30(2) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
100x100_30(3) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(2) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(4) 0,00% 16,67% 12,50% 18,18% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(6) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(9) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 10,53% 9,52% 0,00%
300x300_30(6) 2222%  41,67%  72,73%  100,00%  90,00% 0,00% 0,00% 20,00% 0,00% 62,50%
300x300_30(12) 92,31%  100,00% 100,00% 100,00% 100,00% 13,33% 0,00% 100,00% 100,00%  100,00%
300x300_30(18) 42,86%  52,94%  7333%  41,18% 0,00% 0,00% 0,00% 16,67%  43,75% 0,00%
300x300_30(24) 75,00% 100,00% 100,00% 100,00% 100,00% 0,00% 0,00% 8,33% 83,33%  30,00%
Isc(SPEA2,MO-ABC) Isc(SPEA2,MO-FA)
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50000 100000 200000 300000 400 000 50000 100000 200000 300000 400 000
50x50_30(1) 0,00% 0,00% 0,67% 0,00% 0,73% 0,00% 0,00% 0,00% 0,00% 0,00%
100x100_30(2) 1,05% 1,77% 1,84% 0,00% 2,55% 1,05% 0,00% 0,00% 0,00% 0,00%
100x100_30(3) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(2) 0,00% 0,00% 87,34% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(4) 0,00% 11,67% 3,70% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(6) 0,00% 0,00% 0,00% 47,06% 18,18% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(9) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(6) 14,06% 0,00% 0,39% 6,25% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(12) 2727%  33,33% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(18) 91,67%  95,00% 10,71% 0,00% 0,00% 0,00% 0,00% 7,69% 0,00% 0,00%
300x300_30(24) 100,00% 100,00% 100,00% 100,00% 100,00% 0,00% 0,00% 0,00% 0,00% 0,00%
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C.2 Set Coverage Analysis

Table C.8: Set coverage metric by comparing all the metaheuristics two by two. Part 3 of 10.

Isc(SPEA2,MO-GSA) Isc(SPEA2,MOEA/D)

Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s;) 50 000 100 000 200 000 300000 400 000 50 000 100 000 200 000 300000 400 000
50x50_30(1) 9,09% 9,09% 0,00% 0,00% 0,00% 0,00% 7,14% 13,33% 13,33% 0,00%
100x100_30(2) 1,23% 0,00% 0,00% 0,00% 0,00% 4,35% 5,19% 9,76% 11,86% 8,33%
100x100_30(3) 0,00% 0,00% 0,00% 0,00% 0,83% 7,84% 11,32% 14,29% 10,64% 19,61%
200x200_30(2) 0,00% 0,00% 14,29% 0,00% 22,22% 0,00% 0,00% 40,00%  50,00%  25,00%
200x200_30(4) 0,00% 0,00% 0,00% 75,00%  33,33% 0,00% 0,00% 66,67%  33,33% 0,00%
200x200_30(6) 0,00% 0,00% 0,00% 15,38% 9,09% 0,00% 58,33% 0,00% 16,67%  28,57%
200x200_30(9) 8,33% 0,00% 0,00% 0,00% 4,76% 7,69% 10,00%  57,14%  100,00% 91,67%
300x300_30(6) 86,67% 0,00% 23,08%  50,00% 0,00% 0,00% 0,00% 0,00% 12,50% 10,00%
300x300_30(12)  0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 50,00%  50,00%  100,00%
300x300_30(18) 100,00% 100,00% 100,00%  0,00% 56,25% 42,86%  50,00%  45,00%  45,00%  52,63%
300x300_30(24) 92,86%  100,00%  6538%  8095%  75,00% 31,25%  62,50%  48,15%  80,00%  95,65%

Isc(MO-VNS,NSGA-II) Isc(MO-VNS,SPEA2)

Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s;) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 100,00%  56,67%  100,00% 100,00%  100,00% 91,30%  90,80%  100,00% 100,00% 100,00%
100x100_30(2) 95,02%  99,55%  96,58%  98,25% = 94,80% 99,00%  100,00% 100,00% 100,00% 100,00%
100x100_30(3) 100,00% 100,00%  96,65%  94,88%  100,00% 100,00%  98,97%  100,00%  99.47%  100,00%
200x200_30(2) 100,00%  98,21%  99,11%  100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
200x200_30(4) 99,13% 3,34% 0,63% 0,00% 0,00% 100,00%  14,71% 0,00% 0,00% 100,00%
200x200_30(6) 100,00%  92,86%  94,74%  100,00% 100,00% 100,00%  92,86%  100,00%  95,65%  90,91%
200x200_30(9) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_30(6) 92,92%  38,32% 0,00% 0,00% 0,00% 2520%  23,94% 0,59% 0,00% 0,00%
300x300_30(12)  88,64% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(18) 100,00% 100,00%  88,89%  100,00% 100,00% 66,67% 5,26% 0,00% 0,00% 46,67%
300x300_30(24)  40,00% 0,00% 0,00% 23,40% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%

Isc(MO-VNS,MO-VNS#) Isc(MO-VNS,MO-ABC)

Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s;) 50 000 100 000 200 000 300000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 75,00%  81,82%  92,86%  92,86%  100,00% 70,86%  52,59%  9597%  97.88%  97,08%
100x100_30(2) 9528%  97,76%  97.81%  100,00%  99,28% 99,37%  99,65%  96,31%  99,84%  99,84%
100x100_30(3) 7,37% 51,05%  6587%  59,05%  79.45% 5495%  4221%  53,76%  54,72%  86,81%
200x200_30(2) 0,00% 0,00% 42,86% 0,00% 33,33% 100,00% 100,00% 100,00%  8,82% 0,00%
200x200_30(4) 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 51,67%  68,52% 0,00% 0,77%
200x200_30(6) 100,00% 100,00%  90,91%  87,50%  100,00% 81,82%  45,00%  82,35%  8235%  9545%
200x200_30(9) 0,00% 36,36%  31,58%  71,43% 0,00% 100,00%  45,45% 0,00% 31,82% 7.41%
300x300_30(6) 0,00% 0,00% 0,00% 0,00% 25,00% 6,25% 0,00% 0,00% 0,00% 0,00%
300x300_30(12)  0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 33,33% 0,00% 0,00% 0,00%
300x300_30(18)  0,00% 0,00% 16,67% 0,00% 0,00% 41,67%  20,00% 0,00% 8,33% 1,82%
300x300_30(24)  0,00% 0,00% 0,00% 8,33% 0,00% 18,18%  93,33%  47,06%  96,55% 0,00%
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C. Additional Information for Solving the RNPP: three-objective Outdoor Approach

Table C.9: Set coverage metric by comparing all the metaheuristics two by two. Part 4 of 10.

Isc(MO-VNS,MO-FA)

Isc(MO-VNS,MO-GSA)

Evaluations (Stop condition)

Evaluations (Stop condition)

Instance(s,) 50 000 100 000 200 000 300 000 400 000 50000 100000 200000 300000 400 000
50x50_30(1) 57,14%  93,33%  92,86%  93,33%  93,33% 72,73%  100,00% 100,00% 100,00% 100,00%
100x100_30(2) 92,63%  9820%  96,52%  100,00%  99,22% 100,00% 100,00%  97,22%  99,14%  97,22%
100x100_30(3) 7387%  84,13%  56,80%  80,29%  85,12% 92,55%  98,48%  96,34%  87,50%  94,17%
200x200_30(2) 0,00% 0,00% 33,33% 0,00% 50,00% 100,00% 9091%  100,00% 100,00%  66,67%
200x200_30(4) 7,14% 0,00% 0,00% 0,00% 0,00% 100,00%  0,00% 0,00% 50,00%  50,00%
200x200_30(6) 33,33% 100,00% 50,00%  61,54%  100,00% 100,00% 100,00%  50,00%  76,92%  72,73%
200x200_30(9) 0,00% 13,33% 0,00% 25,00% 0,00% 100,00%  9231%  4737%  78,57%  90,48%
300x300_30(6) 0,00% 0,00% 0,00% 0,00% 0,00% 40,00% 16,67% 0,00% 0,00% 0,00%
300x300_30(12)  0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(18)  0,00% 0,00% 0,00% 0,00% 0,00% 77,78%  9231%  7143%  50,00%  81,25%
300x300_30(24)  0,00% 0,00% 0,00% 0,00% 0,00% 28,57%  65,79% 0,00% 0,00% 0,00%
Isc(MO-VNS,MOEA/D) Isc(MO-VNS*,NSGA-II)
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50000 100000 200000 300000 400 000 50000 100000 200000 300000 400 000
50x50_30(1) 100,00% 100,00% 100,00% 100,00% 100,00% 71,88%  98,89%  100,00% 100,00% 100,00%
100x100_30(2)  100,00% 97,40%  98,78%  100,00% 100,00% 95,02%  99,55%  96,58%  96,51%  94,80%
100x100_30(3) 64,71%  88,68%  82,14%  100,00%  98,04% 97,89%  100,00%  94,74%  100,00% 100,00%
200x200_30(2)  100,00% 71,43%  100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%  0,00%
200x200_30(4) 0,00% 0,00% 66,67% 0,00% 100,00% 100,00% 100,00% 100,00%  0,00% 3,.41%
200x200_30(6)  100,00% 100,00% 100,00%  83,33%  100,00% 100,00%  92,86%  94,74%  100,00% 100,00%
200x200_30(9)  100,00% 100,00% 100,00% 100,00% 91,67% 100,00% 100,00%  83,33%  100,00% 100,00%
300x300_30(6) 0,00% 0,00% 0,00% 0,00% 0,00% 100,00%  72,90% 1,55% 39,01% 0,00%
300x300_30(12)  0,00% 0,00% 0,00% 0,00% 0,00% 100,00%  100,00% 1,61% 1,22% 0,00%
300x300_30(18) 42,86% 50,00  45,00%  50,00%  63,16% 100,00% 100,00%  83,33%  100,00%  100,00%
300x300_30(24) 18,75%  50,00%  40,74%  56,00%  78,26% 100,00% 100,00% 78,95%  6596%  93,75%
Isc(MO-VNS*,SPEA2) Isc(MO-VNS*,MO-VNS)
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50000 100000 200000 300000 400 000 50000 100000 200000 300000 400 000
50x50_30(1) 6522%  80,46%  100,00% 100,00% 100,00% 0,00% 0,00% 92,86%  92,86%  100,00%
100x100_30(2) 99,00%  100,00% 100,00%  99,85%  99,88% 8931%  9197%  96,38%  9929%  98,57%
100x100_30(3) 99,42%  9897%  100,00% 100,00% 100,00% 91,72%  70,39%  74,63%  90,54%  79,30%
200x200_30(2)  100,00% 100,00% 100,00% 100,00%  82,79% 8333%  87,50%  50,00%  25,00% 12,50%
200x200_30(4)  100,00% 100,00% 100,00% 99,85%  99,83% 100,00% 100,00% 100,00% 100,00%  50,00%
200x200_30(6) 100,00%  85,71%  100,00%  95,65%  90,91% 0,00% 72,73%  8333%  72,73%  100,00%
200x200_30(9)  100,00% 100,00%  88,89%  68,75%  91,67% 100,00%  38,46%  72,73%  37,50%  76,47%
300x300_30(6)  100,00%  89,36% 13,65%  99,19% 11,04% 66,67%  91,67%  100,00% 100,00%  60,00%
300x300_30(12) 76,92%  25,00% 0,00% 0,00% 0,00% 100,00% 100,00% 100,00% 100,00%  100,00%
300x300_30(18) 100,00% 100,00%  62,50%  42,86%  53.33% 85,71%  100,00% 93,33%  76,47%  90,00%
300x300_30(24) 81,82%  38,89%  59,52% 0,00% 43,40% 100,00% 100,00% 100,00%  78,95%  100,00%
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C.2 Set Coverage Analysis

Table C.10: Set coverage metric by comparing all the metaheuristics two by two. Part 5 of 10.

Isc(MO-VNS*,MO-ABC)

Isc(MO-VNS#,MO-FA)

Evaluations (Stop condition)

Evaluations (Stop condition)

Instance(s;) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300000 400 000
50x50_30(1) 30,46%  34,07%  98,66%  100,00%  97,08% 14,29% 6,67% 92,86%  9333%  93,33%
100x100_30(2) 94,76%  96,99%  96,31%  99,84%  99,84% 88,42%  91,89%  95,65% 100,00%  97.67%
100x100_30(3) 80,22%  53,90%  50,18%  86,94%  80,49% 95,50%  92,06%  44,80%  94,89%  61,98%
200x200_30(2) 100,00% 100,00% 100,00%  47,06% 1,41% 75,00%  28,57%  66,67%  40,00% 0,00%
200x200_30(4) 100,00% 100,00% 100,00%  17,54% 1,63% 42,86%  33,33% 0,00% 0,00% 0,00%
200x200_30(6) 0,00% 3500%  44,12%  82,35%  95,45% 0,00% 72,73%  50,00%  61,54%  100,00%
200x200_30(9) 100,00%  54,55%  28,57%  2727%  77,718% 15,38% 1333%  31,25%  62,50%  81,25%
300x300_30(6) 29,69% 5,14% 3,55% 6,25% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(12) 100,00%  33,33% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(18) 100,00% 100,00%  64.29%  27,78% 12,73% 0,00% 5,88% 0,00% 0,00% 0,00%
300x300_30(24) 100,00% 100,00% 100,00%  96,55%  100,00% 0,00% 0,00% 0,00% 0,00% 0,00%
Isc(MO-VNS#,MO-GSA) Isc(MO-VNS*,MOEA/D)
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 27,27% 9,09% 100,00% 100,00%  100,00% 1538%  21,43%  100,00% 100,00%  100,00%
100x100_30(2) 96,30%  98,78%  98,15%  99,14%  97,22% 100,00%  98,70%  98,78%  100,00% 100,00%
100x100_30(3) 97.87%  80,30%  84,15%  97,50%  90,00% 7647%  71,36%  60,71%  100,00%  100,00%
200x200_30(2) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%  25,00%
200x200_30(4) 100,00%  100,00% 100,00% 100,00%  100,00% 50,00%  100,00% 100,00% 100,00% 100,00%
200x200_30(6) 2727%  7857%  50,00%  61,54%  72,73% 3333%  91,67% 100,00% 100,00% 100,00%
200x200_30(9) 100,00% 84,62%  89,47%  42,86%  100,00% 100,00%  70,00%  85,71%  100,00% 91,67%
300x300_30(6) 100,00%  33,33% 1538%  66,67% 0,00% 0,00% 7,14% 0,00% 25,00% 0,00%
300x300_30(12) 11,11% 0,00% 0,00% 0,00% 0,00% 0,00% 8,33% 0,00% 50,00% 14,29%
300x300_30(18) 100,00% 100,00%  92,86%  50,00%  100,00% 71,43%  70,00% 60,00  65,00%  73,68%
300x300_30(24) 100,00%  78,95%  96,15%  28,57%  87,50% 56,25%  62,50%  51,85%  96,00%  82,61%
Isc(MO-ABC,NSGA-II) Isc(MO-ABC,SPEA2)
Evaluations (Stop condition) Evaluations (Stop condition)

Instance(s,) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 100,00% 100,00% 100,00% 100,00%  94,59% 100,00% 100,00%  98,94%  100,00%  98,25%
100x100_30(2) 95,02%  99,55%  96,58%  96,51% = 94,80% 99,00%  100,00% 100,00%  99,85%  99,88%
100x100_30(3) 100,00% 100,00% 100,00%  95,56%  100,00% 100,00%  100,00% 100,00% 100,00% 100,00%
200x200_30(2) 100,00%  95,54%  97,77%  100,00% 100,00% 100,00% 100,00%  0,80% 100,00%  100,00%
200x200_30(4) 99,13%  50,36% 0,00% 36,67% 3,86% 85,71%  64,71%  98,44% 0,12% 100,00%
200x200_30(6) 100,00%  92,86%  94,74%  88,24%  97,83% 100,00%  92,86%  100,00%  95,65%  86,36%
200x200_30(9) 100,00% 100,00% 100,00% 100,00% 100,00% 80,00%  100,00% 100,00% 100,00% 100,00%
300x300_30(6) 76,99%  100,00% 1,55% 40,66% 0,00% 56,91%  100,00%  94,59% 18,29%  100,00%
300x300_30(12) 100,00%  2.33% 2,41% 100,00%  92,31% 1538%  25,00% 12,82% 3,23% 6,14%
300x300_30(18) 50,00%  28,57%  100,00% 100,00% 100,00% 0,00% 0,00% 87,50%  100,00%  86,67%
300x300_30(24)  0,00% 0,00% 0,00% 0,00% 66,67% 0,00% 0,00% 0,00% 0,00% 0,00%
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C. Additional Information for Solving the RNPP: three-objective Outdoor Approach

Table C.11: Set coverage metric by comparing all the metaheuristics two by two. Part 6 of 10.

Isc(MO-ABC,MO-VNS)

Isc(MO-ABC,MO-VNS¥)

Evaluations (Stop condition)

Evaluations (Stop condition)

Instance(s,) 50000 100000 200000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 41,67%  3571%  50,00%  6429%  50,00% 100,00% 100,00% 57,14%  71,43%  50,00%
100x100_30(2) 49,62%  59,12%  52,90%  4429%  44,29% 52,76%  59,70%  54,01%  44,60%  44,60%
100x100_30(3) 31,36% 46,37%  56,22%  53,60%  30,84% 4,74% 38,82%  5595%  4526%  37,15%
200x200_30(2) 0,00% 0,00% 0,00% 50,00%  100,00% 0,00% 0,00% 0,00% 20,00%  33,33%
200x200_30(4) 0,00% 16,67%  12,50%  81,82%  66,67% 0,00% 0,00% 0,00% 0,00% 16,67%
200x200_30(6) 75,00%  81,82%  8333%  63,64%  72,73% 100,00% 100,00% 90,91%  50,00%  72,73%
200x200_30(9) 0,00%  46,15% 100,00%  56,25%  58,82% 0,00% 9,09% 68,42%  66,67%  29,63%
300x300_30(6) 44,44%  91,67% 81,82%  81,25%  100,00% 57,14%  57,14%  80,00%  42,86%  100,00%
300x300_30(12) 100,00% 50,00% 100,00% 100,00%  100,00% 0,00% 66,67%  85,71%  100,00% 100,00%
300x300_30(18) 42.86%  3529%  9333%  88,24%  90,00% 0,00% 0,00% 16,67%  43,15%  66,67%
300x300_30(24) 62,50%  10,00%  60,00% 0,00% 92,86% 0,00% 0,00% 0,00% 0,00% 0,00%
Isc(MO-ABC,MO-FA) Isc(MO-ABC,MO-GSA)
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50000 100000 200000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 50,00%  40,00%  50,00%  66,67%  53,33% 100,00%  72,73%  80,00%  93,33%  100,00%
100x100_30(2) 73,68%  73.87% 68,10%  57,72%  60.47% 74,07%  76,83%  61,59%  52,59%  53,70%
100x100_30(3) 47,75%  71,78%  68,80%  78,10%  51,24% 85,11%  92,42%  90,24%  7833%  50,83%
200x200_30(2) 0,00% 0,00% 0,00% 0,00% 83,33% 25,00%  36,36%  42,86%  100,00% 100,00%
200x200_30(4) 0,00% 0,00% 0,00% 0,00% 0,00% 85,71% 0,00% 0,00% 100,00%  100,00%
200x200_30(6) 3333% 9091% 60,00  84,62%  72,73% 100,00% 100,00% 50,00%  92,31%  72,73%
200x200_30(9) 0,00% 0,00%  31,25%  37,50%  68,75% 75,00%  9231%  94,74%  85,71%  90,48%
300x300_30(6) 7,14% 11,76%  0,00% 38,46% 0,00% 53,33% 100,00%  30,77%  83,33%  50,00%
300x300_30(12)  0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 72,73% 0,00% 0,00% 15,38%
300x300_30(18)  0,00% 0,00% 7,69% 0,00% 18,75% 77,78%  76,92%  100,00% 100,00% 100,00%
300x300_30(24)  0,00% 0,00% 0,00% 0,00% 0,00% 28,57% 5,26% 19,23% 0,00% 12,50%
Isc(MO-ABC,MOEA/D) Isc(MO-FANSGA-II)
Evaluations (Stop condition) Evaluations (Stop condition)

Instance(s,) 50000 100000 200000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 9231%  78,57% 100,00% 100,00%  93.33% 100,00%  56,67%  100,00% 100,00% 100,00%
100x100_30(2) 91,30%  83,12%  70,73%  57,63%  58,33% 95,02%  99,55%  96,58%  96,51% = 94,80%
100x100_30(3) 70,59%  81,13%  83,93%  100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
200x200_30(2) 0,00%  42,86%  20,00%  100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
200x200_30(4) 0,00% 0,00%  55,56%  100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
200x200_30(6) 100,00%  91,67% 100,00% 100,00% 100,00% 100,00%  92,86%  94,74%  94,12%  100,00%
200x200_30(9) 53,85%  80,00% 100,00% 100,00% 91,67% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_30(6) 0,00% 21,43%  38,46%  75,00%  60,00% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_30(12)  0,00% 50,00%  50,00%  50,00%  57,14% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_30(18) 42,86%  20,00%  60,00%  55,00%  100,00% 100,00% 100,00%  83,33%  100,00% 100,00%
300x300_30(24)  0,00% 0,00%  48,15%  36,00%  78,26% 100,00% 100,00% 100,00% 100,00% 100,00%
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C.2 Set Coverage Analysis

Table C.12: Set coverage metric by comparing all the metaheuristics two by two. Part 7 of 10.

Isc(MO-FA,SPEA2)

Isc(MO-FA,MO-VNS)

Evaluations (Stop condition)

Evaluations (Stop condition)

Instance(s;) 50 000 100 000 200 000 300000 400 000 50 000 100 000 200 000 300000 400 000
50x50_30(1) 100,00%  90,80%  100,00% 100,00% 100,00% 75,00%  100,00% 100,00% 100,00%  92,86%
100x100_30(2) 99,00%  100,00% 100,00%  99,85%  100,00% 3282%  50,36%  56,52%  48,57%  57.86%
100x100_30(3) 99,42%  100,00% 100,00% 100,00% 100,00% 23,08%  29,61%  23,88%  2523% 13,66%
200x200_30(2) 100,00% 100,00% 100,00% 100,00% 100,00% 83,33%  100,00%  0,00% 25,00%  50,00%
200x200_30(4) 100,00% 100,00% 100,00% 100,00% 100,00% 63,64% 100,00% 100,00% 100,00% 100,00%
200x200_30(6) 100,00%  92,86%  100,00%  95,65%  90,91% 3333% 9091%  75,00%  54,55%  100,00%
200x200_30(9) 100,00% 100,00%  88,89%  81,25%  83,33% 81,82%  76,92%  86,36%  5625%  52,94%
300x300_30(6) 100,00%  100,00% 100,00% 100,00%  100,00% 100,00%  91,67%  100,00% 100,00% 100,00%
300x300_30(12) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
300x300_30(18) 100,00% 94,74%  62,50%  100,00%  53,33% 100,00% 100,00%  93,33%  100,00% 100,00%
300x300_30(24) 81.82%  4444%  80.95%  93.42%  88,68% 100,00% 100,00% 100,00% 100,00% 100,00%
Isc(MO-FA,MO-VNS*) Isc(MO-FA,MO-ABC)
Evaluations (Stop condition) Evaluations (Stop condition)

Instance(s;) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 100,00%  90,91%  100,00% 100,00%  92,86% 99,34%  52,59%  99,33%  100,00% 100,00%
100x100_30(2) 36,22%  52,24%  57,66%  4892%  56,83% 80,71%  89,89%  93,09%  9622%  96,50%
100x100_30(3) 0,00% 13,50%  36,90% 3,88% 26,88% 27,47% 1494%  23,66% 8,89% 42,58%
200x200_30(2) 80,00%  20,00%  57,14% 0,00% 33,33% 100,00% 100,00% 92,41%  41,18% 0,00%

200x200_30(4) 0,00% 66,67%  75,00%  100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
200x200_30(6) 100,00% 100,00%  63,64%  37,50%  100,00% 68,18%  45,00%  88,24%  8529%  95,45%
200x200_30(9) 4545%  50,00%  63,16%  76,19%  40,74% 100,00%  72,73%  4286%  4091%  59,26%
300x300_30(6) 100,00% 100,00% 100,00% 100,00% 100,00% 98,44%  9936%  99,92% 6,25% 100,00%
300x300_30(12) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%  100,00% 100,00% 100,00%  100,00%
300x300_30(18) 71,43%  28,57%  83,33%  100,00% 100,00% 100,00%  85,00%  67,86%  41,67%  40,00%
300x300_30(24) 100,00% 100,00% 100,00%  83,33%  100,00% 100,00% 100,00% 100,00% 100,00% 100,00%

Isc(MO-FA,MO-GSA) Isc(MO-FA,MOEA/D)
Evaluations (Stop condition) Evaluations (Stop condition)

Instance(s;) 50 000 100 000 200 000 300000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%
100x100_30(2) 60,49%  8049%  76,85%  56,90% = 72,22% 6522%  61,04%  70,73%  67,80%  70,00%
100x100_30(3) 76,60%  75,776%  68,29%  41,67%  4833% 62,75%  4717%  83,93%  89,36%  86,27%
200x200_30(2) 100,00% 100,00% 100,00% 100,00%  88,89% 100,00% 100,00% 100,00% 100,00% 100,00%
200x200_30(4) 100,00%  66,67%  100,00% 100,00% 100,00% 25,00%  75,00%  100,00% 100,00% 100,00%
200x200_30(6) 81,82%  100,00%  75,00%  100,00%  72,73% 55,56%  91,67%  91,67% 100,00% 100,00%
200x200_30(9) 100,00%  92,31%  94,74%  78,57%  90.,48% 100,00%  90,00%  100,00% 100,00% 91,67%
300x300_30(6) 100,00% 100,00% 100,00% 100,00% 100,00% 40,00%  57,14%  100,00%  87,50%  100,00%
300x300_30(12) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%  58,33%  100,00% 100,00% 100,00%
300x300_30(18) 100,00% 100,00%  92,86%  75,00%  100,00% 57,14%  100,00% 100,00% 100,00% 100,00%
300x300_30(24) 100,00%  92,11%  100,00% 100,00% 100,00% 75,00%  62,50%  70,37%  76,00%  86,96%
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C. Additional Information for Solving the RNPP: three-objective Outdoor Approach

Table C.13: Set coverage metric by comparing all the metaheuristics two by two. Part 8 of 10.

Isc(MO-GSANSGA-II)

Isc(MO-GSA,SPEA2)

Evaluations (Stop condition)

Evaluations (Stop condition)

Instance(s,) 50 000 100 000 200 000 300 000 400 000 50000 100000 200000 300000 400 000
50x50_30(1) 87,50%  38,89%  66,67%  98,96% = 94,59% 69,57%  77,01%  94,68%  99,12%  98,25%
100x100_30(2) 90,55%  99,55%  95.73%  95.85% = 94,80% 92,50%  99,36%  100,00%  99,56%  100,00%
100x100_30(3) 96,48%  99,52%  94,74%  93,86%  97,28% 98,84%  100,00% 100,00%  98,94%  99,50%
200x200_30(2) 100,00% 100,00% 100,00% 100,00%  0,00% 91,67%  100,00%  0,80% 100,00%  0,00%
200x200_30(4) 97,39%  9642%  97,49% 0,00% 0,00% 57,14%  97,06%  100,00%  0,00% 0,07%
200x200_30(6) 100,00%  92,86%  100,00%  88,24%  89,13% 100,00%  85,71%  92,86%  95,65%  72,73%
200x200_30(9) 90,00%  100,00% 100,00% 100,00% 100,00% 40,00%  100,00% 100,00% 100,00%  75,00%
300x300_30(6) 76,99%  92,52% 1,55% 3929%  45,50% 51,22%  86,70%  94,82%  81,95%  99,86%
300x300_30(12) 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00% 100,00%  3,23% 100,00%
300x300_30(18)  50,00% 1429%  77,78%  3529%  93,33% 0,00% 0,00% 0,00% 14,29%  46,67%
300x300_30(24)  40,00% 0,00% 0,00% 61,70%  93,75% 0,00% 0,00% 30,95% 0,00% 0,00%
Isc(MO-GSA,MO-VNS) Isc(MO-GSA,MO-VNS*)
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50000 100000 200000 300000 400 000 50000 100000 200000 300000 400 000
50x50_30(1) 0,00% 28,57% 0,00% 1429%  28,57% 25,00%  54,55% 0,00% 1429%  28,57%
100x100_30(2) 15,27% 5,84% 30,43%  57,86%  50,00% 14,96% 5,22% 31,39%  5827%  51,08%
100x100_30(3) 2,96% 0,00% 1,00% 5,86% 6,17% 0,53% 10,13%  24,60% 0,86% 17,00%
200x200_30(2) 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(4) 0,00% 16,67% 12,50% 9,09% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(6) 0,00% 2727%  3333%  27,27% 0,00% 68,75%  36,36%  27,27% 0,00% 0,00%
200x200_30(9) 0,00% 0,00% 31,82% 6,25% 11,76% 0,00% 9,09% 21,05% 19,05% 0,00%
300x300_30(6) 2222%  41,67% 100,00% 100,00% 100,00% 0,00% 14,29%  60,00% 14,29%  100,00%
300x300_30(12) 100,00% 100,00% 100,00% 100,00% 100,00% 66,67%  100,00% 100,00% 100,00% 100,00%
300x300_30(18)  42,86% 0,00% 0,00% 17,65% 0,00% 0,00% 0,00% 0,00% 25,00% 0,00%
300x300_30(24) 62,50% 0,00% 100,00%  94,74%  100,00% 0,00% 0,00% 8,33% 41,67% 0,00%
Isc(MO-GSA,MO-ABC) Isc(MO-GSA,MO-FA)
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s,) 50000 100000 200000 300000 400 000 50000 100000 200000 300000 400 000
50x50_30(1) 0,00% 20,00%  72,48%  56,08%  59,12% 0,00% 26,67% 0,00% 13,33%  26,67%
100x100_30(2) 38,78%  47.87%  70,05%  82,92%  88,69% 32,63% 17,12%  4435%  66,67%  65,89%
100x100_30(3) 12,09% 4,55% 2,15% 5,56% 22,53% 10,81%  22,22% 14,40%  40,88%  27,27%
200x200_30(2) 10,00%  20,00%  87,34% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(4) 4533%  95,00%  37,04% 0,00% 0,00% 0,00% 8,33% 0,00% 0,00% 0,00%
200x200_30(6) 0,00% 30,00% 14,71% 17,65% 13,64% 3333%  27,27% 10,00%  30,77% 0,00%
200x200_30(9) 26,67% 13,64% 4,76% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(6) 9,38% 0,00% 4.81% 0,00% 0,48% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(12) 100,00%  33,33%  90,48% 7,69% 1,64% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(18) 41,67% 10,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00% 0,00%
300x300_30(24) 36,36%  93.33%  58,82%  100,00%  50,00% 0,00% 0,00% 0,00% 0,00% 0,00%
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C.2 Set Coverage Analysis

Table C.14: Set coverage metric by comparing all the metaheuristics two by two. Part 9 of 10.

Isc(MO-GSA,MOEA/D)

Isc(MOEA/D,NSGA-II)

Evaluations (Stop condition)

Evaluations (Stop condition)

Instance(s;) 50 000 100 000 200 000 300000 400 000 50 000 100 000 200 000 300000 400 000
50x50_30(1) 23,08%  78,57%  46,67%  66,67%  73,33% 62,50%  3889%  39,39%  28,13%  86,49%
100x100_30(2) 56,52%  50,65%  60,98%  62,71%  68,33% 76,62%  80,00%  75,50%  76,42%  82,80%
100x100_30(3) 62,75%  5849%  62,50%  100,00%  74,51% 45,07%  2837%  5981%  54,27%  58,16%
200x200_30(2) 0,00% 28,57%  60,00%  100,00%  25,00% 100,00% 9821%  6122%  24,22% 8,75%
200x200_30(4) 0,00% 0,00% 77,78% 0,00% 33,33% 99,13%  99,76% 0,00% 0,00% 0,00%
200x200_30(6) 4444%  91,671%  66,67%  50,00%  42,86% 87,50%  57,14%  78,95%  8235%  82,61%
200x200_30(9) 38,46%  70,00%  100,00% 100,00%  91,67% 90,00%  40,00%  25,00% 15,00% 5,88%
300x300_30(6) ,00% 0,00% 23,08% 12,50%  30,00% 100,00%  99,53% 1,55% 40,66% 15,30%
300x300_30(12)  0,00% 58,33%  100,00%  50,00%  100,00% 100,00% 100,00% 100,00% 100,00%  46,15%
300x300_30(18) 42,86% 0,00% 30,00%  45,00%  63,16% 50,00%  57,14%  55,56%  58,82%  20,00%
300x300_30(24)  0,00% 0,00% 51,85%  48,00%  86,96% 80,00% 0,00% 0,00% 6,38% 0,00%
Isc(MOEA/D,SPEA2) Isc(MOEA/D,MO-VNS)
Evaluations (Stop condition) Evaluations (Stop condition)
Instance(s;) 50 000 100 000 200 000 300 000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 86,96%  77,01%  8723%  8596%  78,95% 25,00%  28,57%  28,57%  28,57% 14,29%
100x100_30(2) 82,50%  86,97%  91,55%  86,65%  89,93% 0,00% 0,73% 2,17% 12,14% 12,14%
100x100_30(3) 22,09%  22,68%  87,69%  60,64%  53,55% 15,98% 2,79% 1,99% 0,00% 2,64%
200x200_30(2) 100,00% 100,00%  0,68% 8,74% 99,81% 0,00% 0,00% 0,00% 0,00% 0,00%
200x200_30(4) 100,00% 100,00%  0,56% 0,06% 0,14% 63,64%  33,33% 6,25% 27,27% 0,00%
200x200_30(6) 83,33% 1429%  8571%  78,26%  72,73% 0,00% 0,00% 0,00% 9,09% 9,09%
200x200_30(9) 60,00%  71,43% 11,11% 0,00% 16,67% 0,00% 0,00% 0,00% 0,00% 17,65%
300x300_30(6) 100,00%  92,55%  94,82%  88,56%  98.53% 55,56%  5833% 100,00% 100,00% 100,00%
300x300_30(12) 92,31%  100,00%  82,05% 0,00% 0,00% 100,00%  100,00% 100,00% 100,00% 100,00%
300x300_30(18)  33,33% 5,26% 0,00% 0,00% 0,00% 42,86%  47,06%  20,00%  41,18% 0,00%
300x300_30(24) 36,36% 5,56% 64,29% 0,00% 0,00% 62,50%  20,00%  30,00% 0,00% 0,00%
Isc(MOEA/D,MO-VNS* Isc(MOEA/D,MO-ABC)
Evaluations (Stop condition) Evaluations (Stop condition)

Instance(s;) 50 000 100 000 200 000 300000 400 000 50 000 100 000 200 000 300 000 400 000
50x50_30(1) 25,00%  36,36%  28,57%  28.57% 14,29% 29,80% 1926%  4631%  42,86%  54,01%
100x100_30(2) 0,00% 1,49% 2,19% 12,23% 12,23% 8,39% 10,99% 8,29% 3,94% 541%
100x100_30(3) 9,47% 11,39%  20,24% 0,00% 2,77% 12,09% 1,30% 0,72% 0,00% 3,85%
200x200_30(2) 0,00% 0,00% 0,00% 0,00% 22,22% 60,00%  40,00%  87,34% 0,00% 0,00%
200x200_30(4) 0,00% 0,00% 0,00% 0,00% 0,00% 100,00% 100,00%  66,67% 0,00% 0,00%
200x200_30(6) 50,00% 0,00% 0,00% 12,50% 9,09% 0,00% 0,00% 0,00% 5,88% 9,09%
200x200_30(9) 0,00% 9,09% 10,53% 0,00% 0,00% 13,33% 18,18% 0,00% 0,00% 0,00%
300x300_30(6) 71,43%  57,14%  80,00%  42,86%  100,00% 100,00%  17,68% 4,81% 6,25% 0,32%
300x300_30(12) 93,33% 0,00% 57,14%  37,50%  46,67% 100,00%  33,33% 0,00% 0,00% 0,00%
300x300_30(18)  0,00% 0,00% 0,00% 0,00% 0,00% 33,33% 10,00% 0,00% 2,78% 0,00%
300x300_30(24)  0,00% 0,00% 0,00% 0,00% 0,00% 100,00%  93,33%  52,94%  68,97% 0,00%
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C. Additional Information for Solving the RNPP: three-objective Outdoor Approach

Table C.15: Set coverage metric by comparing all the metaheuristics two by two. Part 10 of 10.

Isc(MOEA/D,MO-FA)

Isc(MOEA/D,MO-GSA)

Evaluations (Stop condition)

Evaluations (Stop condition)

Instance(s,) 50000 100 000 200 000 300 000 400 000 50000 100 000 200 000 300 000 400 000
50x50_30(1) 1429%  26,67% 28,57% 26,67% 13,33% 36,36%  54,55%  30,00% 46,67% 2727%
100x100_30(2) 526% 1622% 11,30% 12,20% 12,40% 1481%  15.85% 20,37%  9.48%  10,19%
100x100_30(3)  19,82% 23,02%  5,60% 2,19% 4,13% 40,43% 13,64%  7,32% 0,00% 8,33%

200x200_30(2) 0,00%  0,00% 0,00% 0,00% 0,00% 100,00%  63,64%  0,00% 0,00%  11,11%
200x200_30(4)  28,57%  8,33% 0,00% 0,00% 0,00% 100,00%  66,67%  0,00%  50,00%  33,33%
200x200_30(6)  33,33%  0,00% 0,00% 7,69% 9,09% 18,18% 0,00% 0,00%  23,08% 45,45%
200x200_30(9) 0,00%  0,00% 0,00% 0,00% 0,00% 25,00%  23,08%  0,00% 0,00% 4,76%

300x300_30(6)  14,29% 17,65%  0,00% 0,00% 0,00% 100,00% 100,00% 61,54% 66,67% 33,33%
300x300_30(12) 0,00%  0,00% 0,00% 0,00% 0,00% 33,33% 0,00% 0,00% 0,00% 0,00%
300x300_30(18)  0,00%  0,00% 0,00% 0,00% 0,00% 44,44%  6923%  6429%  50,00%  18,75%
300x300_30(24) 0,00%  0,00% 0,00% 0,00% 0,00% 92,86%  8421%  3,85%  28,57%  0,00%
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