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Abstract : The notion of Small Combination of Slices (SCS) in the unit ball of a Banach
space was first introduced in [4] and subsequently analyzed in detail in [12] and [13]. In this
work, we introduce the notion of BSCSP, which can be seen as a generalization of dentability
in terms of SCS. We study certain stability results for the w∗-BSCSP leading to a discussion
on BSCSP in the context of ideals of Banach spaces. We prove that the w∗-BSCSP can be
lifted from a M -ideal to the whole Banach Space. We also prove similar results for strict
ideals and U -subspaces of a Banach space. We note that the space C(K,X)∗ has w∗-BSCSP
when K is dispersed and X∗ has the w∗-BSCSP.
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1. Introduction

Let X be a real Banach space and X∗ its dual. We will denote by BX , SX

and BX(x, r) the closed unit ball, the unit sphere and the closed ball of radius
r > 0 and center x. We refer to the monograph [2] for notions of convexity
theory that we will be using here.

Definition 1. (i) We say A ⊆ BX∗ is a norming set for X if ∥x∥ =
sup{|x∗(x)| : x∗ ∈ A}, for all x ∈ X. A closed subspace F ⊆ X∗ is a norming
subspace if BF is a norming set for X.

(ii) Let f ∈ X∗, α > 0 and C ⊆ X. Then the set

S(C, f, α) = {x ∈ C : f(x) > sup f(C)− α}

is called the open slice determined by f and α. We assume without loss of
generality that ∥f∥ = 1. One can analogously define w∗ slices in X∗
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(iii) A point x ̸= 0 in a convex set K ⊆ X is called a SCS (small combination
of slices) point of K, if for every ε > 0, there exist slices Si of K, and a
convex combination S =

∑n
i=1 λiSi such that x ∈ S and diam(S) < ε. One

can analogously define w∗-SCS point in X∗.

We introduce the following definition analogous to that of a unit ball being
dentable, see [2].

Definition 2. A Banach Space is said to have Ball-Small Combination
of Slices Property (BSCSP) if the unit ball has small combination of slices of
arbitrarily small diameter. Analogously we can define w∗-BSCSP in a dual
space.

Remark 3. (i) It is clear that if BX has a SCS point, then it has BSCSP.

(ii) Strongly Regular spaces studied in [4] and [13] were referred to as Small
Combination of Slices Property (SCSP) in [12].

SCS points were first introduced in [4] as a “slice generalization” of the
notion PC (i.e. points for which the identity mapping on the unit ball, from
weak topology to norm topology is continuous). It was proved in [4] that X is
strongly regular (respectively, X∗ is w∗-strongly regular) if and only if every
non empty bounded convex set K in X (respectively K in X∗) is contained
in the norm closure (respectively, w∗-closure) of SCS(K) (respectively w∗-
SCS(K)), i.e. the SCS points (w∗-SCS points) of K. Later, it was proved in
[13] that Banach space has Radon Nikodym Property (RNP) if and only if it
is strongly regular and has the Krein-Milman Property (KMP). Subsequently,
the concept of SCS points was used in [12] to investigate the structure of non
dentable closed bounded convex sets in Banach spaces. In this work, we study
certain stability results for w∗−BSCSP leading to a discussion on BSCSP
in the context of ideals of Banach spaces, see [5] and [12]. We use various
techniques from the geometric theory of Banach spaces to achieve this. The
spaces that we will be considering have been well studied in the literature.
A large class of function spaces like the Bloch spaces, Lorentz and Orlicz
spaces, spaces of vector-valued functions and spaces of compact operators are
examples of the spaces we will be considering: for details, see [6]. We provide
some descriptions of w∗-SCS points in Banach spaces in different contexts.
We need the following definition.
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Definition 4. Let X be a Banach space.

(i) A linear projection P on X is called an M-projection if

∥x∥ = max{∥Px∥, ∥x− Px∥},

for all x ∈ X; A linear projection P on X is called an L-projection if

∥x∥ = ∥Px∥+ ∥x− Px∥

for all x ∈ X.

(ii) A subspace M ⊆ X is called an M -summand if it is the range of an M -
projection. A closed subspace M ⊆ X is called an L-summand if it is the
range of an L-projection.

(iii) A subspace M ⊆ X is called an M -ideal if M⊥ is the kernel of an L-
projection in X∗

We recall from [6, Chapter I] that when M ⊂ X is an M -ideal, elements
of M∗ have unique norm-preserving extension to X∗ and one has the identifi-
cation, X∗ = M∗ ⊕1 M

⊥. Several examples from among function spaces and
spaces of operators that satisfy these geometric properties can be found in the
monograph [6], see also [8]. First, we prove that for an L-summand M ⊂ X, if
a SCS point of BX has a non-zero component m ∈ M , then m is a SCS point
of BM . For an M - ideal M ⊂ X, this yields: any w∗-SCS point of BX∗ , if its
restriction to M , say m∗, has the same norm, then m∗ it is a w∗-SCS point
of BM∗ . We prove a similar result for a U -subspace of a Banach space of X.
We prove a converse statement for a strict ideal Y ⊂ X (see Section 2 for the
definition) i.e., we prove that a w∗-SCS point of a strict ideal continues to be
so in the bigger space. We also prove corresponding results for the BSCSP.

2. Stability results

We will use the standard notation of ⊕1, ⊕∞ to denote the ℓ1 and ℓ∞-direct
sum of two or more Banach spaces.

Proposition 5. Suppose X, Y , Z are Banach spaces such that Z =
X ⊕1 Y ; suppose z0 = (x0, y0) ∈ BZ is a SCS point of BZ with both the
components non-zero, then x0 and y0 are SCS points of BX and BY respec-
tively.
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Proof. Since z0 is a SCS point ofBZ , we have for any ε > 0, z0 =
∑n

i=1 λizi,
where zi ∈ Si and for z∗i = (x∗i , y

∗
i ) with 1 = ∥z∗i ∥ = max{∥x∗i ∥, ∥y∗i ∥},

Si = {z ∈ BZ/z
∗
i (z) > 1− εi} and diam(

∑n
i=1 λiSi) < ε,

Si = {z ∈ BZ/z
∗
i (x, y) > 1− εi} = {z ∈ BZ/x

∗
i (x) + y∗i (y) > 1− εi}.

Since zi = (xi, yi) ∈ Si, then x∗i (xi) + y∗i (yi) > 1− εi.

Case 1 : ∥z∗i ∥ = ∥x∗i ∥ = 1. Then,

x∗i (xi) + y∗i (yi) > 1− εi = ∥x∗i ∥ − εi,

=⇒ x∗i (xi) > ∥x∗i ∥ − εi − y∗i (yi),

=⇒ 1 ≥ x∗i (xi) > ∥x∗i ∥ − βi, where βi = εi + y∗i (yi),

=⇒ εi + y∗i (yi) > 0.

So we have, xi ∈ SiX={x ∈BX/x∗i (x)>1−βi}. Then (xi, yi)∈ SiX×{yi}⊆Si.

Case 2: ∥z∗i ∥ = ∥y∗i ∥ = 1. We may assume that 0 < ∥x∗i ∥ < 1, and let
δi = ∥y∗i ∥ − ∥x∗i ∥. Then,

x∗i (xi) + y∗i (yi) > 1− εi = ∥y∗i ∥ − εi = ∥x∗i ∥+ δi − εi

=⇒ x∗i (xi) > ∥x∗i ∥+ δi − εi − y∗i (yi),

=⇒ ∥x∗i ∥ ≥ x∗i (xi) > ∥x∗i ∥ − ri, where ri = δi − εi − y∗i (yi) > 0,

=⇒ xi ∈ SiX = {x ∈ BX/x∗i (x) > 1− ri}.

Then (xi, yi) ∈ SiX × {yi} ⊆ Si.

Let x0 =
∑n

i=1 λixi and y0 =
∑n

i=1 λiyi. Now x0 ∈
∑n

i=1 λiSiX . Also,

n∑
i=1

λi[SiX × yi] ⊆
n∑

i=1

λiSi,

=⇒
n∑

i=1

λi[SiX ]× {y0} ⊆
n∑

i=1

λi[SiX × yi] ⊆
n∑

i=1

λiSi,

=⇒ diam

( n∑
i=1

λiSiX

)
< ε,

=⇒ x0 is a SCS point of BX .

Similarly it follows that y0 is a SCS point of BY .
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Arguments similar to the ones given above in the context of a ℓ∞-sum
yield the following corollary.

Corollary 6. Suppose X, Y , Z are Banach spaces such that Z =
X ⊕∞ Y , suppose z∗ = (x∗, y∗) ∈ BZ∗ is a w∗-SCS point of BZ∗ with both
the components non-zero, then x∗ and y∗ are w∗-SCS points of BX∗ and BY ∗

respectively.

Remark 7. Since in the sequence space ℓ∞ any weakly open set has norm
diameter 2, by taking X = c0 and Y = ℓ1, Z = X⊕∞ Y , any w∗-SCS point of
BZ∗ has its second component 0. We thank the referee for this observation.

Definition 8. We recall that a closed subspace Y of a Banach space X
is called a U -subspace if for y∗ ∈ Y ∗ there exists a unique norm preserving
extension of y∗ in X∗. We continue to denote the unique extension also by y∗.

See the discussion on [6, page 44] and the references in that monograph
for several examples of U -subspaces from among classical function spaces and
spaces of operators.

Before the next result we also need a definition from [5]. See also [11] for
more information and several examples from spaces of operators and tensor
product spaces.

Definition 9. A closed subspace Y of a Banach Space X is said to be an
ideal of X if there is a linear projection P : X∗ → X∗ of norm one such that
ker(P ) = Y ⊥.

For x∗ ∈ X∗ since P (x∗)− x∗ = 0 on Y , as ∥P∥ = 1, we see that P (x∗) is
a norm-preserving extension of x∗|Y .

Theorem 10. Suppose Y is an ideal which is also a U -subspace of X. If
y∗ ∈ SY ∗ is a w∗-SCS point of BX∗ , then y∗ is a w∗-SCS point of BY ∗ .

Proof. Let y∗0 ∈ SY ∗ be a w∗-SCS point of BX∗ , hence for any ε > 0 there
exist w∗ slices Si, 0 ≤ λi ≤ 1, i = 1, 2, . . . , n, Si = {x∗ ∈ BX∗/x∗(xi) > 1−αi}
and diam(

∑n
i=1 λiSi) < ε and y∗0 =

∑
λix

∗
0i. Since y∗0 ∈ SY ∗ and Y is a U-

subspace, y∗0 has unique norm preserving extension in X∗. Let P : X∗ −→ X∗

be the canonical projection. Then ∥P (y∗0)∥ = ∥y∗0∥ = 1, Also,

1 = ∥y∗0∥ =

∥∥∥∥ n∑
i=1

λix
∗
0i

∥∥∥∥ ≤
n∑

i=1

λi∥P (x
∗
0i)∥ ≤ 1.
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This implies ∥P (x∗0i)∥ = ∥x0i∗∥ = 1 for all i = 1, . . . , n. Thus by hypothesis,
P (x∗0i) and the restriction of x∗0i to Y are denoted by y∗0i. Now y∗0i ∈ Si,
then y∗0i(xi) > 1 − αi. Also, since Y is an ideal, there exists an operator
T : span{xi} −→ Y such that ∥T (xi)∥ ≤ (1 + ε)∥xi∥ = 1 + ε.

Let yi = T (xi). Hence,

y∗0i(xi) > 1− αi =⇒ y∗0i(yi − yi + xi) > 1− αi,

=⇒ y∗0i(yi) + y∗0i(xi − yi) > 1− αi,

=⇒ y∗0i(yi) > 1− αi − y∗0i(xi − yi).

Case 1: ∥yi∥ =1. So we have

1 > y∗0i(yi) > 1− αi−y∗0i(xi − yi) = 1− βi,

=⇒ y∗0i ∈ SiY = {y∗ ∈ BY ∗/y∗(yi) > 1− βi}.

Case 2: ∥yi∥ < 1. Let ∥yi∥ = 1− δi. Then

∥yi∥ > y∗0i(yi) > ∥yi∥+ δi − βi = ∥yi∥ − (βi − δi) = ∥yi∥ − γi, γi > 0,

=⇒ y∗0i ∈ SiY = {y∗ ∈ BY ∗/y∗(yi) > ∥yi∥ − γi}.

Case 3: ∥yi∥ = 1 + δi. Then

1 + δi > y∗0i(yi) > 1− βi = 1 + δi − (βi + δi),

=⇒ y∗0i ∈ SiY = {y∗ ∈ BY ∗/y∗(yi) > ∥yi∥ − (βi + δi}.

Hence

y∗0 =
n∑

i=1

λiy
∗
0i ∈

n∑
i=1

λiSiY ⊆
n∑

i=1

λiSi.

Hence

diam

( n∑
i=1

λiSiY

)
< diam

( n∑
i=1

λiSi

)
< ε.

Thus y∗0 is w∗-SCS point of BY ∗ .

Let M ⊆ X be an M -ideal. It follows from the results in [6, Chapter I]
that any x∗ ∈ X∗, if ∥m∗∥ = ∥x∗|M∥ = ∥x∗∥, then x∗ is the unique norm
preserving extension of m∗. For notational convenience we denote both the
functionals by m∗. Clearly any M -ideal is also an ideal. Thus the following
corollary answers a natural question in this context for w∗-SCS points of the
unit sphere. We omit its easy proof.
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Corollary 11. Suppose M ⊆ X is a M -ideal in X. If m∗ ∈ SX∗ is
w∗-SCS point of BX∗ , then m∗ ∈ SM∗ is a w∗-SCS point of BM∗ .

Remark 12. The referee has kindly pointed out an independent proof to
show that for Z = X ⊕1 Y , Z has the BSCSP if and only if X or Y has the
BSCSP.

Arguments similar to the ones given during the proof of Proposition 5 can
be used to show that for Z = X ⊕∞ Y , if X∗ or Y ∗ has the w∗-BSCSP then
so does Z∗.

In the case of an M -ideal M ⊂ X, for the sake of completeness we give a
detailed proof of the following result.

Proposition 13. Let M ⊆ X be a M -ideal, then if M∗ has the w∗-
BSCSP then X∗ has the w∗-BSCSP.

Proof. Suppose M∗ has the w∗-BSCSP, then for any ε > 0 there exists
slices SiM and 0 ≤ λi ≤ 1, i = 1, 2, . . . , n, SiM = {m∗ ∈ BM∗/m∗(mi) >
1− αi} and diam(

∑n
i=1 λiSiM ) < ε. Since M is an M - ideal, for any x∗ ∈ X∗

we have the unique decomposition, x∗ = m∗ + m⊥, where m∗ ∈ M∗ and
m⊥ ∈ M⊥. Suppose we have 0 < µi < αi. Then

SiX = {x∗ ∈ BX∗/x∗(mi) > 1− µi}
= {x∗ ∈ BX∗/m∗(mi) +m⊥(mi) > 1− µi},
⊆ SiM × µiBM⊥ ,

=⇒
n∑

i=1

λiSiX ⊆
n∑

i=1

λiSiM × µiBM⊥ .

Choose βi = min(µi, ε). Then

S′
iX = {x∗ ∈ BX∗/x∗(mi) > 1− βi} ⊆ SiX × βiBM⊥ ,

=⇒
n∑

i=1

λiS
′
iX ⊆

( n∑
i=1

λiSiM × βiBM⊥

)

=⇒
n∑

i=1

λiS
′
iX ⊆

( n∑
i=1

λiSiM × βiBM⊥

)
.

Thus diam(
∑n

i=1 λiS
′
iX) ≤ diam(

∑n
i=1 λiSiM ) + 2ε < ε+ 2ε = 3ε. Also, since

∥mi∥ = 1, there exists m∗
i ∈ BM∗ such that m∗

i (mi) > 1−βi. Hence m∗
i ∈ S′

iX .
Similarly,

∑n
i=1 λim

∗
i ∈

∑n
i=1 λiS

′
iX =⇒

∑n
i=1 λiS

′
i ̸= ∅.
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Since any summand in a ℓ∞-direct sum is in particular an M -ideal of the
sum, the following corollary is easy to prove.

Corollary 14. Suppose X = ⊕ℓ∞Xi. If X
∗
i has the w∗-BSCSP for some

i, then X∗ has the w∗-BSCSP.

The above arguments extend easily to vector-valued continuous functions.
We recall that for a compact Hausdorff space K, C(K,X) denotes the space of
continuous X-valued functions on K, equipped with the supremum norm. We
recall from [9] that dispersed compact Hausdorff spaces have isolated points.

Corollary 15. SupposeK is a compact Hausdorff space with an isolated
point. If X∗ has the w∗-BSCSP, then C(K,X)∗ has the w∗-BSCSP.

Proof. Suppose X∗ has the w∗-BSCSP. For an isolated point k0 ∈ K, the
map F → χk0F is an M -projection in C(K,X) whose range is isometric to
X. Hence we see that C(K,X)∗ has the w∗-BSCSP.

We recall that an ideal Y is said to be a strict ideal if for a projection
P : X∗ → X∗ with ∥P∥ = 1, ker(P ) = Y ⊥, one also has BP (X∗) is w∗-dense
in BX∗ or in other words BP (X∗) is a norming set for X.

In the case of an ideal also one has that Y ∗ embeds (though there may not
be uniqueness of norm-preserving extensions) as P (X∗). Thus we continue to
write X∗ = Y ∗⊕Y ⊥. In what follows we use a result from [11], that identifies
strict ideals as those for which Y ⊂ X ⊂ Y ∗∗ under the canonical embedding
of Y in Y ∗∗.

Proposition 16. Suppose Y is a strict ideal of X. If y∗ ∈ BY ∗ is a
w∗-SCS point of BY ∗ , then y∗ is a w∗-SCS point of BX∗ .

Proof. Since y∗ ∈ BY ∗ is a w∗-SCS point of BY ∗ , for any ε > 0 there exists
w∗ slices Si and 0 ≤ λi ≤ 1, i = 1, 2, . . . , n, Si = {y∗ ∈ BY ∗/y∗(yi) > 1− αi}
and diam(

∑n
i=1 λiSi) < ε. Since Y is a strict ideal in X, we have BX∗ =

BY ∗
w∗

, hence we have the following:

S′
i = {x∗ ∈ BX∗/x∗(xi) > 1− αi} = {x∗ ∈ BY ∗

w∗
/x∗(xi) > 1− αi},

=⇒ diam

( n∑
i=1

λiS
′
i

)
⊆ diam

( n∑
i=1

λiSi

)
< ε,

=⇒ diam

( n∑
i=1

λiS
′
i

)
< ε.
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Hence y∗ is a w∗-SCS point of BY ∗ .

Arguing similarly it follows that:

Proposition 17. Suppose Y is a strict ideal of X. If Y ∗ has w∗-BSCSP
then X∗ has w∗-BSCSP.

Remark 18. A prime example of a strict ideal is a Banach space X under
its canonical embedding inX∗∗. It is known that any w∗-denting point of BX∗∗

is a point of X. Now let x∗∗ ∈ BX∗∗ be a w∗-SCS point. The referee has kindly
pointed out that since BX is weak∗ dense in BX∗∗ , for any ϵ > 0, there is a
convex combination

∑n
i=1 λixi of vectors in X so that ∥x∗∗ −

∑n
i=1 λixi∥ ≤ ϵ.

Hence x∗∗ ∈ X.

We conclude the paper with a set of remarks and questions. See also the
recent paper [1] for other possible geometric connections. Let us consider the
following densities of w∗-SCS points of BX∗ .

(i) All points of SX∗ are w∗-SCS points of BX∗ .

(ii) The w∗-SCS points of BX∗ are dense in SX∗ .

(iii) BX∗ is contained in the closure of w∗-SCS points of BX∗ .

(iv) BX∗ is the closed convex hull of w∗-SCS points of BX∗ .

(v) X∗ is the closed linear span of w∗-SCS points of BX∗ .

Questions:

(i) How can each of these properties be realized as a ball separation property
considered in [3]?

(ii) What stability results will hold for these properties?
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