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1. Introduction

Throughout this paper L(X) denotes the algebra of all bounded linear
operators acting on an infinite-dimensional complex Banach space X. For
T ∈ L(X), we denote by N(T ) the null space of T and by R(T ) = T (X) the
range of T . We denote by α(T ) := dimN(T ) the nullity of T and by β(T ) :=
codimR(T ) = dimX/R(T ) the defect of T . Other two classical quantities
in operator theory are the ascent p = p(T ) of an operator T , defined as the
smallest non-negative integer p such thatN(T p) = N(T p+1) (if such an integer
does not exist, we put p(T ) = ∞), and the descent q = q(T ), defined as the
smallest non-negative integer q such that R(T q) = R(T q+1) (if such an integer
does not exist, we put q(T ) = ∞). It is well known that if p(T ) and q(T ) are
both finite then p(T ) = q(T ). Furthermore, 0 < p(λI−T ) = q(λI−T ) < ∞ if
and only if λ is a pole of the resolvent, see [12, Proposition 50.2]. An operator
T ∈ L(X) is said to be Fredholm (respectively, upper semi -Fredholm, lower
semi-Fredholm), if α(T ), β(T ) are both finite (respectively, R(T ) closed and
α(T ) < ∞ , β(T ) < ∞). T ∈ L(X) is said to be semi-Fredholm if T is
either an upper semi-Fredholm or a lower semi-Fredholm operator. If T is
semi-Fredholm the index of T defined by indT := α(T ) − β(T ). Other two

127

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutional Repository University of Extremadura

https://core.ac.uk/display/304881413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


128 c. carpintero et al.

important classes of operators in Fredholm theory are the classes of semi-
Browder operators. These classes are defined as follows, T ∈ L(X) is said
to be Browder (resp. upper semi-Browder, lower semi-Browder) if T is a
Fredholm (respectively, upper semi-Fredholm, lower semi-Fredholm) and both
p(T ), q(T ) are finite (respectively, p(T ) < ∞, q(T ) < ∞). A bounded operator
T ∈ L(X) is said to be upper semi-Weyl (respectively, lower semi-Weyl) if
T is upper Fredholm operator (respectively, lower semi-Fredholm) and index
indT ≤ 0 (respectively, indT ≥ 0). T ∈ L(X) is said to be Weyl if T is both
upper and lower semi-Weyl, i.e. T is a Fredholm operator having index 0.
The Browder spectrum and the Weyl spectrum are defined, respectively, by

σb(T ) := {λ ∈ C : λI − T is not Browder} ,

and

σw(T ) := {λ ∈ C : λI − T is not Weyl} .

Since every Browder operator is Weyl then σw(T ) ⊆ σb(T ). Analogously, The
upper semi-Browder spectrum and the upper semi-Weyl spectrum are defined
by

σub(T ) := {λ ∈ C : λI − T is not upper semi-Browder} ,

and

σuw(T ) := {λ ∈ C : λI − T is not upper semi-Weyl} .

In the sequel we need the following basic result:

Lemma 1.1. If T ∈ L(X) and p = p(T ) < ∞, then the following state-
ments are equivalent:

(i) There exists n ≥ p+ 1 such that Tn(X) is closed;

(ii) Tn(X) is closed for all n ≥ p.

Proof. Define c′i(T ) := dim(N(T i)/N(T i+1)). Clearly, p = p(T ) < ∞
entails that c′i(T ) = 0 for all i ≥ p, so ki(T ) := c′i(T ) − c′i+1(T ) = 0 for all
i ≥ p. The equivalence easily follows from [13, Lemma 12].

Now, we introduce an important property in local spectral theory. The
localized version of this property has been introduced by Finch [11], and in
the framework of Fredholm theory this property has been characterized in
several ways, see [1, Chapter 3]. A bounded operator T ∈ L(X) is said to
have the single valued extension property at λ0 ∈ C (abbreviated, SVEP at
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λ0), if for every open disc Dλ0 ⊆ C centered at λ0 the only analytic function
f : Dλ0 → X which satisfies the equation

(λI − T )f(λ) = 0 for all λ ∈ Dλ0 ,

is the function f ≡ 0 on Dλ0 . The operator T is said to have SVEP if T has
the SVEP at every point λ ∈ C. Evidently, T ∈ L(X) has SVEP at every
point of the resolvent ρ(T ) := C \ σ(T ). Moreover, from the identity theorem
for analytic functions it is easily seen that T has SVEP at every point of the
boundary ∂σ(T ) of the spectrum. In particular, T has SVEP at every isolated
point of the spectrum. Note that (see [1, Theorem 3.8])

p(λI − T ) < ∞ ⇒ T has SVEP at λ , (1.1)

and dually

q(λI − T ) < ∞ ⇒ T ∗ has SVEP at λ . (1.2)

Recall that T ∈ L(X) is said to be bounded below if T is injective and has
closed range. Denote by σap(T ) the classical approximate point spectrum
defined by

σap(T ) := {λ ∈ C : λI − T is not bounded below} .

Note that if σs(T ) denotes the surjectivity spectrum

σs(T ) := {λ ∈ C : λI − T is not onto} ,

then σap(T ) = σs(T
∗) and σs(T ) = σap(T

∗).

It is easily seen from definition of localized SVEP that

λ /∈ accσap(T ) ⇒ T has SVEP at λ , (1.3)

where accK means the set of all accumulation points of K ⊆ C, and if T ∗

denotes the dual of T , then

λ /∈ accσs(T ) ⇒ T has SVEP at λ . (1.4)

Remark 1.2. The implications (1.1), (1.2), (1.3) and (1.4) are actually
equivalences whenever T ∈ L(X) is semi-Fredholm (see [1, Chapter 3]).
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Denote by isoK the set of all isolated points of K ⊆ C. Let T ∈ L(X),
define

π00(T ) = {λ ∈ isoσ(T ) : 0 < α(λI − T ) < ∞} ,

πa
00(T ) = {λ ∈ isoσap(T ) : 0 < α(λI − T ) < ∞} .

Clearly, for every T ∈ L(X) we have π00(T ) ⊆ πa
00(T ).

Let T ∈ L(X) be a bounded operator. Following Coburn [8], T is said to
satisfy Weyl’s theorem, in symbol (W), if σ(T ) \ σw(T ) = π00(T ). According
to Rakoc̆ević [15], T is said to satisfy a-Weyl’s theorem, in symbol (aW), if
σap(T ) \ σuw(T ) = πa

00(T ).
Note that

a-Weyl’s theorem ⇒ Weyl’s theorem ,

see for instance [1, Chapter 3]. The converse of these implication in general
does not hold.

Weyl type theorems have been recently studied by several authors ([2],
[3], [5], [6], [8], [9], [10], [15] and [16]). In these papers several results are
obtained, by considering an operator T ∈ L(X) in the whole space X. In this
paper we give sufficient conditions for which Weyl type theorems holds for T ,
if and only if there exists n ∈ N such that the range R(Tn) of Tn is closed
and Weyl type theorems holds for Tn, where Tn denote the restriction of T on
the subspace R(Tn) ⊆ X.

2. Preliminaries

In this section we establish several lemmas that will be used throughout
the paper. We begin examinig some algebraic relations between T and Tn, Tn

viewed as a operator from the space R(Tn) in to itself.

Lemma 2.1. Let T ∈ L(X) and Tn, n ∈ N, be the restriction of the
operator T on the subspace R(Tn) = Tn(X). Then, for all λ ̸= 0, we have:

(i) N((λI − Tn)
m) = N((λI − T )m), for any m;

(ii) R((λI − Tn)
m) = R((λI − T )m) ∩R(Tn), for any m;

(iii) α(λI − Tn) = α(λI − T );

(iv) p(λI − Tn) = p(λI − T );

(v) β(λI − Tn) = β(λI − T ).
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Proof. (i) For m = 0,

N((λI − Tn)
m) = N((λI − T )m)

holds trivially. Let x ∈ N((λI − T )m), m ≥ 1, then

0 = (λI − T )mx =

m∑
k=0

m!

k!(m− k)!
(−1)kλm−kT kx

= λmx+

m∑
k=1

m!

k!(m− k)!
(−1)kλm−kT kx .

Thus 0 = λmx+ h(T )x, where

h(T ) =

m∑
k=1

m!

k!(m− k)!
(−1)kλm−kT k.

Hence −λmx = h(T )x, and since λ ̸= 0, then x = −λ−mh(T )x. From this
equality, it follows that

(−λ−mh(T ))2x = −λ−mh(T )(−λ−mh(T )x)

= −λ−mh(T )x = x .

Consequently x = (−λ−mh(T ))2x. By repeating successively the same
argument, we obtain that x = (−λ−mh(T ))jx, for all j ∈ N. But since
−λ−mh(T )x ∈ R(T ), then (−λ−mh(T ))jx ∈ R(T j), for all j ∈ N. Therefore
x = (−λ−mh(T ))nx ∈ R(Tn), and since R(Tn) is T -invariant subspace, we
conclude that

0 = (λI − T )mx =

m∑
k=0

m!

k!(m− k)!
(−1)kλm−kT kx

=

m∑
k=0

m!

k!(m− k)!
(−1)kλm−k(Tn)

kx = (λI − Tn)
mx .

So x ∈ N((λI − Tn)
m), and we get the inclusion

N((λI − T )m) ⊆ N((λI − Tn)
m) .

On the other hand, since Tn is the restriction of T on R(Tn), and R(Tn) is
invariant under T , it then follows the inclusion

N((λI − Tn)
m) ⊆ N((λI − T )m) .
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From which, we obtain that N((λI − Tn)
m) = N((λI − T )m).

(ii) Since Tn is the restriction of T on R(Tn), and R(Tn) is invariant under
T , then

R((λI − Tn)
m) ⊆ R((λI − T )m) ∩R(Tn) .

Now, we show the inclusion R((λI−T )m)∩R(Tn) ⊆ R((λI−Tn)
m). For this,

it will suffice to show that for m ∈ N, the implication

(λI − T )mx ∈ R(Tn) ⇒ x ∈ R(Tn) ,

holds. For m = 1. Let y ∈ R(λI − T ) ∩R(Tn), then there exists x ∈ X such
that λx − Tx = (λI − T )x = y ∈ R(Tn), so λ2x − λTx = λy ∈ R(Tn). But
since λTx− T 2x = Ty ∈ R(Tn), because λx− Tx = y and R(Tn) is invariant
under T , we have that λ2x− λTx, λTx− T 2x ∈ R(Tn). Then

λ2x− T 2x = λ2x− λTx+ λTx− T 2x ∈ R(Tn) .

Thus λ2x− T 2x ∈ R(Tn). Hence λ3x− λT 2x = λ(λ2x− T 2x) ∈ R(Tn), and
since λT 2x − T 3x = T 2y ∈ R(Tn), we have that λ3x − λT 2x, λT 2x − T 3x ∈
R(Tn). From which,

λ3x− T 3x = λ3x− λT 2x+ λT 2x− T 3x ∈ R(Tn) .

That is, λ3x−T 3x ∈ R(Tn). Now, suppose that λjx−T jx ∈ R(Tn), for some
j ∈ N. From this, λj+1x−λT jx = λ(λjx−T jx) ∈ R(Tn), and λT jx−T j+1x =
T jy ∈ R(Tn), thus λj+1x− λT jx, λT jx− T j+1x ∈ R(Tn). From which,

λj+1x− T j+1x = λj+1x− λT jx+ λT jx− T j+1x ∈ R(Tn) .

Consequently, by mathematical induction, we obtain that λjx−T jx ∈ R(Tn)
for all j ∈ N. In particular, λnx− Tnx ∈ R(Tn), and since λ ̸= 0, then

x = λ−n((λnx− Tnx) + Tnx) ∈ R(Tn) .

By the above reasoning, we conclude that, for m = 1, the implication

(λI − T )x ∈ R(Tn) ⇒ x ∈ R(Tn)

holds.
Now, suppose that for m ≥ 1,

(λI − T )mx ∈ R(Tn) ⇒ x ∈ R(Tn) .
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If (λI−T )m+1x ∈ R(Tn), then (λI−T )((λI−T )mx) ∈ R(Tn). From the proof
of case m = 1, we conclude that (λI−T )mx ∈ R(Tn). Therefore by inductive
hypothesis, x ∈ R(Tn). Then, by mathematical induction, we conclude that
for all m ∈ N

(λI − T )mx ∈ R(Tn) ⇒ x ∈ R(Tn)

holds.
Finally, if y ∈ R((λI − T )m) ∩ R(Tn) there exists x ∈ X such that (λI −

T )mx = y ∈ R(Tn), then (λI − T )mx ∈ R(Tn). As the above proof, we
conclude that x ∈ R(Tn). Thus

y = (λI − T )mx =

m∑
k=0

m!

k!(m− k)!
λm−kT kx

=

m∑
k=0

m!

k!(m− k)!
λm−k(Tn)

kx = (λI − Tn)
mx ,

then y ∈ R((λI − Tn)
m). This shows that,

R((λI − T )m) ∩R(Tn) ⊆ R((λI − Tn)
m) .

Consequently, R((λI − Tn)
m) = R((λI − T )m) ∩R(Tn).

(iii) and (iv), it follows immediately from the equality

N((λI − Tn)
m) = N((λI − T )m) for all m ∈ N .

(v) Observe that R(λI−Tn) is a subspace of R(Tn). Let M be a subspace
of R(Tn) such that R(Tn) = R(λI − Tn) ⊕M . Since R(λI − Tn) = R(λI −
T ) ∩R(Tn), we have

R(λI − T ) ∩M = R(λI − T ) ∩R(Tn) ∩M

= R(λI − Tn) ∩M = 0 .

Thus R(λI − T ) ∩M = {0}. Now, we show that X = R(λI − T ) +M .
Let µ ∈ C such that µI−T is invertible in L(X), then (µI−T )j is invertible

in L(X), for all j ∈ N. In particular (µI − T )m is invertible in L(X), for all
m ≥ n. Thus, if y ∈ X there exists x ∈ X such that y = (µI − T )mx. Thus,

y = (µI − T )mx =
m∑
j=0

m!

j!(m− j)!
(−1)jµm−jT jx

=
n−1∑
j=0

m!

j!(m− j)!
(−1)jµm−jT jx +

m∑
j=n

m!

j!(m− j)!
(−1)jµm−jT jx .
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Since R(T j) ⊆ R(Tn), for n ≤ j ≤ m, then we can write y = u+ v, where:

u =

n−1∑
j=0

m!

j!(m− j)!
(−1)jµm−jT jx ∈ X ,

v =
m∑

j=n

m!

j!(m− j)!
(−1)jµm−jT jx ∈ R(Tn) .

Now, from the above decomposition and for any λ ̸= 0, we obtain a sequence
(yk)

∞
k=0, where yk = λ−k−1(λI − T )T ku, for k = 0, 1, . . . , such that

u = y0 + y1 + · · ·+ yn−1 + λ−nTnu ∈ R(λI − T ) +R(Tn) ,

because yk = λ−k−1(λI − T )T ku ∈ R(λI − T ) and λ−nTnu ∈ R(Tn).
On the other hand,

v + λ−nTnu ∈ R(Tn) +R(Tn) = R(Tn) = R(λI − Tn) +M .

Thus v + λ−nTnu = z + m, where z ∈ R(λI − Tn) and m ∈ M . From this,
and since R(λI − Tn) ⊆ R(λI − T ), we obtain that

y = u+ v = y0 + y1 + · · ·+ yn−1 + λ−nTnu+ v

= y0 + y1 + · · ·+ yn−1 + z +m

= (y0 + y1 + · · ·+ yn−1 + z) +m ∈ R(λI − T ) +M .

Therefore, we have thatX ⊆ R(λI−T )+M , consequentlyX = R(λI−T )+M .
But since R(λI−T )∩M = {0}, and hence it follows that X = R(λI−T )⊕M ,
which implies that

β(λI − T ) = dimM = β(λI − Tn) .

This shows that β(λI − T ) = β(λI − Tn).

The following result concerning the ranges of the powers of λI − T , where
λ ∈ C and T ∈ L(X), plays an important role in this paper. In the proof of
this corollary we use the notion of paraclosed (or paracomplete) subspace and
the Neubauer Lemma (see [14]).

Lemma 2.2. If R(Tn) is closed inX and R((λI−Tn)
m) is closed in R(Tn),

then there exists k ∈ N such that R((λI − T )k) is closed in X.



weyl type theorems 135

Proof. Observe that for λ = 0,

R((0I − Tn)
m) = R((Tn)

m) = R(Tm+n) .

Then R(Tm+n) is a closed subspace of R(Tn). Since R(Tn) is closed, we have
that R((0I − T )m+n) = R(Tm+n) is closed. On the other hand, if λ ̸= 0
and R((λI − Tn)

m) is a closed subspace of R(Tn), since R(Tn) is closed in
X, we have that R((λI − Tn)

m) is closed in X. But, from the incise (ii) in
Lemma 2.1,

R((λI − Tn)
m) = R((λI − T )m) ∩R(Tn) .

Thus R((λI − T )m) ∩ R(Tn) is closed in X. Also, if λ ̸= 0 the polynomials
(λ − z)m and zn have no common divisors, so there exist two polynomials
u and v such that 1 = (λ − z)mu(z) + znv(z), for all z ∈ C. Hence I =
(λI − T )mu(T ) + Tnv(T ) and so R((λI − T )m) + R(Tn) = X. Since both
R((λI−T )m) and R(Tn) are paraclosed subspaces, and R((λI−T )m)∩R(Tn)
and R((λI−T )m)+R(Tn) are closed, using Neubauer Lemma [14, Proposition
2.1.2], we have that R((λI − T )m) is closed.

Recall that for an operator T ∈ L(X), 0 < p(λI − T ) = q(λI − T ) < ∞
precisely when λ is a pole of the resolvent of T (see [12, Proposition 50.2]).

Lemma 2.3. If 0 is not a pole of the resolvent of T ∈ L(X) and R(Tn)
is closed, then π00(T ) ⊆ π00(Tn).

Proof. By Lemma 2.1, σ(Tn) \ {0} = σ(T ) \ {0}. Also, 0 /∈ σ(T ) implies T
bijective, thus T = Tn. Hence σ(Tn) ⊆ σ(T ). Moreover, isoσ(T ) ⊆ isoσ(Tn).
Since, if λ ∈ isoσ(T ), then σ(T ) ∩ Dλ = {λ} for some open disc Dλ ⊆ C
centered at λ. Thus,

σ(Tn) ∩ Dλ ⊆ σ(T ) ∩ Dλ = {λ} .

Consequently σ(Tn) ∩ Dλ = {λ} or σ(Tn) ∩ Dλ = ∅. If σ(Tn) ∩ Dλ = ∅, then
λ /∈ σ(Tn), so that p(λI − Tn) = β(λI − Tn) = 0. For the case λ ̸= 0, from
Lemma 2.1, p(λI −T ) = 0 and β(λI −T ) = 0, then λ /∈ σ(T ) a contradiction.
In the case where λ = 0, p(Tn) = q(Tn) = 0 implies, by [7, Lemma 2 and
Lemma 3] and [12, Proposition 38.6], that 0 < p(T ) = q(T ) < ∞, which
is impossible, because 0 is not a pole of the resolvent of T . Consequently,
σ(Tn) ∩ Dλ = {λ}, so we have that λ ∈ isoσ(Tn).

Now, the following argument shows that π00(T ) ⊆ π00(Tn). If λ ∈ π00(T ),
we have that λ ∈ isoσ(Tn), because λ ∈ isoσ(T ). On the other hand, for
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λ ̸= 0, Lemma 2.1 implies that α(λI−T ) = α(λI−Tn), so 0 < α(λI−Tn) < ∞.
For λ = 0, we claim that α(Tn) > 0. If α(Tn) = 0, we have that p(Tn) = 0.
By [7, Lemma 2], p(T ) < ∞. Moreover [7, Remark 1],

p(T ) = inf{k ∈ N : Tk is injective} ≤ n .

Thus, by Lemma 1.1, Tn is bounded below, because Tn is injective and
R(Tn) = R(Tn+1) is closed, so Tn is semi-Fredholm. Also (Tn)

∗ has SVEP at
0, because 0 ∈ isoσ(Tn), then q(Tn) < ∞ ([1, Chapter 3]), which implies that
q(T ) < ∞ ([7, Lemma 3]). Hence 0 < p(T ) = q(T ) < ∞, a contradiction,
since 0 is not a pole of the resolvent of T . Thus 0 < α(Tn) = α(0I − Tn).
Finally, since N(Tn) ⊆ N(T ) and α(T ) < ∞ it then follows the equality
α(Tn) = α(0I − Tn) < ∞. Thus, 0 ∈ isoσ(Tn) and 0 < α(0I − Tn) < ∞.
Consequently λ ∈ π00(Tn), for each λ ∈ π00(T ), so we have the inclusion
π00(T ) ⊆ π00(Tn).

The result of Lemma 2.3 may be extended as follows.

Lemma 2.4. If 0 is not a pole of the resolvent of T ∈ L(X) and R(Tn) is
closed, then πa

00(T ) ⊆ πa
00(Tn).

Proof. If λ /∈ σap(T ), then λI − T is injective and R(λI − T ) is closed.
Now, here we consider the two different cases λ ̸= 0 and λ = 0. If λ ̸= 0, by
Lemma 2.1, N(λI − Tn) = N(λI − T ) and R(λI − Tn) = R(λI − T ) ∩R(Tn)
is closed. Hence λI − Tn is bounded below, and so λ /∈ σap(Tn). In the other
case, −T bounded below implies that 0 = p(T ) = p(Tn) and R(T ) is closed.
Thus Tn is inyective and, by Lemma 1.1, R(Tn) = R(Tn+1) is closed. From
this we obtain that Tn is bounded below. Consequently, σap(Tn) ⊆ σap(T ).
Similarly, as in the proof of Lemma 2.3 and taking into account Lemma 2.2,
we can prove that isoσap(T ) ⊆ isoσap(Tn).

Finally, to show πa
00(T ) ⊆ πa

00(Tn). Observe that, if λ ∈ πa
00(T ) then

λ ∈ isoσap(T ) and 0 < α(λI − T ) < ∞. Thus λ ∈ isoσ(Tn). For λ ̸= 0, by
Lemma 2.1, α(λI−T ) = α(λI−Tn), and so 0 < α(λI−Tn) < ∞. In the case
λ = 0, p(Tn) = 0 and R(Tn) is closed. Similarly to the case p(Tn) = 0 and
R(Tn) closed in the proof of Lemma 2.3, one shows that 0 < α(0I−Tn) < ∞.
Consequently πa

00(T ) ⊆ πa
00(Tn).

3. Weyl’s theorems and restrictions

In this section we give conditions for which Weyl’s theorem (resp. a-Weyl’s
theorem) for an operator T ∈ L(X) is equivalent to Weyl’s theorem (resp. a-
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Weyl’s theorem) for certain restriction Tn of T .
It is well known that if λ is a pole of the resolvent of T , then λ is an

isolated point of the spectrum σ(T ). Thus, the following result is an immediate
consequence of Lemma 2.1 and Lemma 2.3.

Theorem 3.1. Suppose that 0 is not an isolated point of σ(T ). Then T
satisfies (W) if and only if there exists n ∈ N such that R(Tn) is closed and
Tn satisfies (W).

Proof. (Necessity) Assume that there exists n ∈ N such that R(Tn) is
closed and Tn satisfies (W). Let λ ∈ π00(T ), i.e. λ ∈ isoσ(T ) and 0 < α(λI −
T ) < ∞. By hypothesis and Lemma 2.3, 0 ̸= λ ∈ π00(Tn) = σ(Tn) \ σw(Tn).
Then α(λI − Tn) = β(λI − Tn) < ∞ since λI − Tn is a Weyl operator, and so
by Lemma 2.1

α(λI − T ) = α(λI − Tn) = β(λI − Tn) = β(λI − T ) < ∞ .

Furthermore, λ ∈ σ(T ) because λ ∈ σ(Tn) ⊆ σ(T ). Thus λI − T is Weyl, and
hence λ ∈ σ(T ) \ σw(T ). But since σ(T ) \ σw(T ) ⊆ π00(T ), it then follows
that π00(T ) = σ(T ) \ σw(T ), which implies that T satisfies (W).

(Sufficiency) Suppose that T satisfies (W). Then for n = 0, R(T 0) = X is
closed and T0 = T satisfies (W).

In the same way as in Theorem 3.1, we have the following characteriza-
tion of a-Weyl theorem for an operator throughout a-Weyl theorem for some
restriction of the operator.

Theorem 3.2. Suppose that 0 is not an isolated point of σ(T ). Then T
satisfies (aW) if and only if there exists n ∈ N such that R(Tn) is closed and
Tn satisfies (aW).

Proof. (Necessity) Suppose that there exists n ∈ N such that R(Tn) is
closed and Tn satisfies (aW). Let λ ∈ πa

00(T ), by hypothesis and Lemma 2.4,
λ ∈ πa

00(Tn) = σap(Tn) \ σuw(Tn). Thus λI − Tn is a upper semi-Fredholm
operator, because λI−Tn is a upper semi-Weyl operator. Since λI−Tn is upper
semi-Fredholm, it follows that R((λI−Tn)

m) is closed in R(Tn) for all m ∈ N,
and so by Lemma 2.2, there exists k ∈ N such that R((λI−T )k) is closed. But
since α(λI − T ) < ∞, then α((λI − T )k) < ∞. That is, (λI − T )k is a upper
semi-Fredholm operator, which implies that λI − T is upper semi-Fredholm.
Furthermore, T has SVEP at λ because λ ∈ isoσap(T ). Consequently, if
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λ ∈ πa
00(T ) then λI − T is upper semi-Fredholm and p(λI − T ) < ∞. Hence

λI − T is upper semi-Weyl and λ ∈ σap(T ), thus λ ∈ σap(T ) \ σuw(T ), and we
obtain the inclusion πa

00(T ) ⊆ σap(T ) \ σuw(T ). But since σap(T ) \ σuw(T ) ⊆
πa
00(T ), it then follows that πa

00(T ) = σap(T ) \ σuw(T ), which implies that T
satisfies (aW).

(Sufficiency) If T satisfies (aW). Then for n = 0, trivially R(T 0) = X is
closed and T0 = T satisfies (aW).

Clearly, T has SVEP at every isolated point of σ(T ). Thus, by Theorem
3.1 and Theorem 3.2, we have the following corollary.

Corollary 3.3. If T does not have SVEP at 0, then:

(i) there exists n ∈ N such that R(Tn) is closed and Tn satisfies (W) if and
only if T satisfies (W).

(ii) there exists n ∈ N such that R(Tn) is closed and Tn satisfies (aW) if
and only if T satisfies (aW).

Remark 3.4. There are more alternative ways to express Corollary 3.3.
We may replace the assumption T does not have SVEP at 0 by: 0 /∈ ∂σ(T ),
p(T ) = ∞ or q(T ) = ∞.
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[7] C. Carpintero, O. Garćıa, E. Rosas, J. Sanabria, B-Browder spec-
tra and ocalized SVEP, Rend. Circ. Mat. Palermo (2) 57 (2008), 241 – 255.

[8] L.A. Coburn, Weyl’s Theorem for nonnormal operators, Michigan Math. J.
13 (1966), 285 – 288.



weyl type theorems 139

[9] R. Curto, Y.M. Han, Generalized Browder’s and Weyl’s theorems for Ba-
nach space operators, J. Math. Anal. Appl. 336 (2007), 1424 – 1442.

[10] B.P. Duggal, Polaroid operators satisfying Weyl’s theorem, Linear Algebra
Appl. 414 (2006), 271 – 277.

[11] J.K. Finch, The single valued extension property on a Banach space, Pacific
J. Math. 58 (1975), 61 – 69.

[12] H. Heuser, “Functional Analysis ”, John Wiley & Sons, Chichester, 1982.

[13] M. Mbekhta, V. Müller, On the axiomatic theory ofthe spectrum II,
Studia Math. 119 (1996), 129 – 147.

[14] J.P. Labrousse, Les opérateurs quasi Fredholm: une généralization des
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