Weyl Type Theorems for Restrictions of Bounded Linear Operators

C. Carpintero, O. García, D. Muñoz, E. Rosas, J. Sanabria
Departamento de Matemáticas, Escuela de Ciencias, Universidad UDO, Cumaná, Venezuela
carpintero.carlos@gmail.com, ogarciam554@gmail.com, damupi2001@yahoo.com, ennisrafael@gmail.com, jesanabri@gmail.com

Abstract: In this paper we give sufficient conditions for which Weyl's theorems for a bounded linear operator T, acting on a Banach space X, can be reduced to the study of Weyl's theorems for some restriction of T.
Key words: Weyl's theorem, a-Weyl's theorem, semi-Fredholm operator, pole of the resolvent.
AMS Subject Class. (2010): 47A10, 47A11, 47A53, 47A55.

1. Introduction

Throughout this paper $L(X)$ denotes the algebra of all bounded linear operators acting on an infinite-dimensional complex Banach space X. For $T \in L(X)$, we denote by $N(T)$ the null space of T and by $R(T)=T(X)$ the range of T. We denote by $\alpha(T):=\operatorname{dim} N(T)$ the nullity of T and by $\beta(T):=$ $\operatorname{codim} R(T)=\operatorname{dim} X / R(T)$ the defect of T. Other two classical quantities in operator theory are the ascent $p=p(T)$ of an operator T, defined as the smallest non-negative integer p such that $N\left(T^{p}\right)=N\left(T^{p+1}\right)$ (if such an integer does not exist, we put $p(T)=\infty)$, and the descent $q=q(T)$, defined as the smallest non-negative integer q such that $R\left(T^{q}\right)=R\left(T^{q+1}\right)$ (if such an integer does not exist, we put $q(T)=\infty)$. It is well known that if $p(T)$ and $q(T)$ are both finite then $p(T)=q(T)$. Furthermore, $0<p(\lambda I-T)=q(\lambda I-T)<\infty$ if and only if λ is a pole of the resolvent, see [12, Proposition 50.2]. An operator $T \in L(X)$ is said to be Fredholm (respectively, upper semi -Fredholm, lower semi-Fredholm), if $\alpha(T), \beta(T)$ are both finite (respectively, $R(T)$ closed and $\alpha(T)<\infty, \beta(T)<\infty) . \quad T \in L(X)$ is said to be semi-Fredholm if T is either an upper semi-Fredholm or a lower semi-Fredholm operator. If T is semi-Fredholm the index of T defined by ind $T:=\alpha(T)-\beta(T)$. Other two
important classes of operators in Fredholm theory are the classes of semiBrowder operators. These classes are defined as follows, $T \in L(X)$ is said to be Browder (resp. upper semi-Browder, lower semi-Browder) if T is a Fredholm (respectively, upper semi-Fredholm, lower semi-Fredholm) and both $p(T), q(T)$ are finite (respectively, $p(T)<\infty, q(T)<\infty)$. A bounded operator $T \in L(X)$ is said to be upper semi-Weyl (respectively, lower semi-Weyl) if T is upper Fredholm operator (respectively, lower semi-Fredholm) and index ind $T \leq 0$ (respectively, ind $T \geq 0$). $T \in L(X)$ is said to be Weyl if T is both upper and lower semi-Weyl, i.e. T is a Fredholm operator having index 0. The Browder spectrum and the Weyl spectrum are defined, respectively, by

$$
\sigma_{\mathrm{b}}(T):=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not Browder }\}
$$

and

$$
\sigma_{\mathrm{w}}(T):=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not Weyl }\}
$$

Since every Browder operator is Weyl then $\sigma_{\mathrm{w}}(T) \subseteq \sigma_{\mathrm{b}}(T)$. Analogously, The upper semi-Browder spectrum and the upper semi-Weyl spectrum are defined by

$$
\sigma_{\mathrm{ub}}(T):=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not upper semi-Browder }\}
$$

and

$$
\sigma_{\mathrm{uw}}(T):=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not upper semi-Weyl }\} .
$$

In the sequel we need the following basic result:
Lemma 1.1. If $T \in L(X)$ and $p=p(T)<\infty$, then the following statements are equivalent:
(i) There exists $n \geq p+1$ such that $T^{n}(X)$ is closed;
(ii) $T^{n}(X)$ is closed for all $n \geq p$.

Proof. Define $c_{i}^{\prime}(T):=\operatorname{dim}\left(N\left(T^{i}\right) / N\left(T^{i+1}\right)\right)$. Clearly, $p=p(T)<\infty$ entails that $c_{i}^{\prime}(T)=0$ for all $i \geq p$, so $k_{i}(T):=c_{i}^{\prime}(T)-c_{i+1}^{\prime}(T)=0$ for all $i \geq p$. The equivalence easily follows from [13, Lemma 12].

Now, we introduce an important property in local spectral theory. The localized version of this property has been introduced by Finch [11], and in the framework of Fredholm theory this property has been characterized in several ways, see [1, Chapter 3]. A bounded operator $T \in L(X)$ is said to have the single valued extension property at $\lambda_{0} \in \mathbb{C}$ (abbreviated, SVEP at
λ_{0}), if for every open disc $\mathbb{D}_{\lambda_{0}} \subseteq \mathbb{C}$ centered at λ_{0} the only analytic function $f: \mathbb{D}_{\lambda_{0}} \rightarrow X$ which satisfies the equation

$$
(\lambda I-T) f(\lambda)=0 \quad \text { for all } \lambda \in \mathbb{D}_{\lambda_{0}},
$$

is the function $f \equiv 0$ on $\mathbb{D}_{\lambda_{0}}$. The operator T is said to have SVEP if T has the SVEP at every point $\lambda \in \mathbb{C}$. Evidently, $T \in L(X)$ has SVEP at every point of the resolvent $\rho(T):=\mathbb{C} \backslash \sigma(T)$. Moreover, from the identity theorem for analytic functions it is easily seen that T has SVEP at every point of the boundary $\partial \sigma(T)$ of the spectrum. In particular, T has SVEP at every isolated point of the spectrum. Note that (see [1, Theorem 3.8])

$$
\begin{equation*}
p(\lambda I-T)<\infty \quad \Rightarrow \quad T \text { has SVEP at } \lambda, \tag{1.1}
\end{equation*}
$$

and dually

$$
\begin{equation*}
q(\lambda I-T)<\infty \quad \Rightarrow \quad T^{*} \text { has SVEP at } \lambda . \tag{1.2}
\end{equation*}
$$

Recall that $T \in L(X)$ is said to be bounded below if T is injective and has closed range. Denote by $\sigma_{\text {ap }}(T)$ the classical approximate point spectrum defined by

$$
\sigma_{\text {ap }}(T):=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not bounded below }\} .
$$

Note that if $\sigma_{\mathrm{s}}(T)$ denotes the surjectivity spectrum

$$
\sigma_{\mathrm{s}}(T):=\{\lambda \in \mathbb{C}: \lambda I-T \text { is not onto }\},
$$

then $\sigma_{\text {ap }}(T)=\sigma_{\mathrm{s}}\left(T^{*}\right)$ and $\sigma_{\mathrm{s}}(T)=\sigma_{\text {ap }}\left(T^{*}\right)$.
It is easily seen from definition of localized SVEP that

$$
\begin{equation*}
\lambda \notin \operatorname{acc} \sigma_{\mathrm{ap}}(T) \quad \Rightarrow \quad T \text { has SVEP at } \lambda, \tag{1.3}
\end{equation*}
$$

where acc K means the set of all accumulation points of $K \subseteq \mathbb{C}$, and if T^{*} denotes the dual of T, then

$$
\begin{equation*}
\lambda \notin \operatorname{acc} \sigma_{\mathrm{s}}(T) \quad \Rightarrow \quad T \text { has SVEP at } \lambda . \tag{1.4}
\end{equation*}
$$

Remark 1.2. The implications (1.1), (1.2), (1.3) and (1.4) are actually equivalences whenever $T \in L(X)$ is semi-Fredholm (see [1, Chapter 3]).

Denote by iso K the set of all isolated points of $K \subseteq \mathbb{C}$. Let $T \in L(X)$, define

$$
\begin{aligned}
& \pi_{00}(T)=\{\lambda \in \text { iso } \sigma(T): 0<\alpha(\lambda I-T)<\infty\} \\
& \pi_{00}^{a}(T)=\left\{\lambda \in \text { iso } \sigma_{\mathrm{ap}}(T): 0<\alpha(\lambda I-T)<\infty\right\}
\end{aligned}
$$

Clearly, for every $T \in L(X)$ we have $\pi_{00}(T) \subseteq \pi_{00}^{a}(T)$.
Let $T \in L(X)$ be a bounded operator. Following Coburn [8], T is said to satisfy Weyl's theorem, in symbol (W), if $\sigma(T) \backslash \sigma_{\mathrm{w}}(T)=\pi_{00}(T)$. According to Rakoc̆ević [15], T is said to satisfy a-Weyl's theorem, in symbol (aW), if $\sigma_{\text {ap }}(T) \backslash \sigma_{\text {uw }}(T)=\pi_{00}^{a}(T)$.

Note that

$$
a \text {-Weyl's theorem } \quad \Rightarrow \quad \text { Weyl's theorem }
$$

see for instance [1, Chapter 3]. The converse of these implication in general does not hold.

Weyl type theorems have been recently studied by several authors ([2], [3], [5], [6], [8], [9], [10], [15] and [16]). In these papers several results are obtained, by considering an operator $T \in L(X)$ in the whole space X. In this paper we give sufficient conditions for which Weyl type theorems holds for T, if and only if there exists $n \in \mathbb{N}$ such that the range $R\left(T^{n}\right)$ of T^{n} is closed and Weyl type theorems holds for T_{n}, where T_{n} denote the restriction of T on the subspace $R\left(T^{n}\right) \subseteq X$.

2. Preliminaries

In this section we establish several lemmas that will be used throughout the paper. We begin examinig some algebraic relations between T and T_{n}, T_{n} viewed as a operator from the space $R\left(T^{n}\right)$ in to itself.

Lemma 2.1. Let $T \in L(X)$ and $T_{n}, n \in \mathbb{N}$, be the restriction of the operator T on the subspace $R\left(T^{n}\right)=T^{n}(X)$. Then, for all $\lambda \neq 0$, we have:
(i) $N\left(\left(\lambda I-T_{n}\right)^{m}\right)=N\left((\lambda I-T)^{m}\right)$, for any m;
(ii) $R\left(\left(\lambda I-T_{n}\right)^{m}\right)=R\left((\lambda I-T)^{m}\right) \cap R\left(T^{n}\right)$, for any m;
(iii) $\alpha\left(\lambda I-T_{n}\right)=\alpha(\lambda I-T)$;
(iv) $p\left(\lambda I-T_{n}\right)=p(\lambda I-T)$;
(v) $\beta\left(\lambda I-T_{n}\right)=\beta(\lambda I-T)$.

Proof. (i) For $m=0$,

$$
N\left(\left(\lambda I-T_{n}\right)^{m}\right)=N\left((\lambda I-T)^{m}\right)
$$

holds trivially. Let $x \in N\left((\lambda I-T)^{m}\right), m \geq 1$, then

$$
\begin{aligned}
0 & =(\lambda I-T)^{m} x=\sum_{k=0}^{m} \frac{m!}{k!(m-k)!}(-1)^{k} \lambda^{m-k} T^{k} x \\
& =\lambda^{m} x+\sum_{k=1}^{m} \frac{m!}{k!(m-k)!}(-1)^{k} \lambda^{m-k} T^{k} x
\end{aligned}
$$

Thus $0=\lambda^{m} x+h(T) x$, where

$$
h(T)=\sum_{k=1}^{m} \frac{m!}{k!(m-k)!}(-1)^{k} \lambda^{m-k} T^{k} .
$$

Hence $-\lambda^{m} x=h(T) x$, and since $\lambda \neq 0$, then $x=-\lambda^{-m} h(T) x$. From this equality, it follows that

$$
\begin{aligned}
\left(-\lambda^{-m} h(T)\right)^{2} x & =-\lambda^{-m} h(T)\left(-\lambda^{-m} h(T) x\right) \\
& =-\lambda^{-m} h(T) x=x .
\end{aligned}
$$

Consequently $x=\left(-\lambda^{-m} h(T)\right)^{2} x$. By repeating successively the same argument, we obtain that $x=\left(-\lambda^{-m} h(T)\right)^{j} x$, for all $j \in \mathbb{N}$. But since $-\lambda^{-m} h(T) x \in R(T)$, then $\left(-\lambda^{-m} h(T)\right)^{j} x \in R\left(T^{j}\right)$, for all $j \in \mathbb{N}$. Therefore $x=\left(-\lambda^{-m} h(T)\right)^{n} x \in R\left(T^{n}\right)$, and since $R\left(T^{n}\right)$ is T-invariant subspace, we conclude that

$$
\begin{aligned}
0 & =(\lambda I-T)^{m} x=\sum_{k=0}^{m} \frac{m!}{k!(m-k)!}(-1)^{k} \lambda^{m-k} T^{k} x \\
& =\sum_{k=0}^{m} \frac{m!}{k!(m-k)!}(-1)^{k} \lambda^{m-k}\left(T_{n}\right)^{k} x=\left(\lambda I-T_{n}\right)^{m} x .
\end{aligned}
$$

So $x \in N\left(\left(\lambda I-T_{n}\right)^{m}\right)$, and we get the inclusion

$$
N\left((\lambda I-T)^{m}\right) \subseteq N\left(\left(\lambda I-T_{n}\right)^{m}\right) .
$$

On the other hand, since T_{n} is the restriction of T on $R\left(T^{n}\right)$, and $R\left(T^{n}\right)$ is invariant under T, it then follows the inclusion

$$
N\left(\left(\lambda I-T_{n}\right)^{m}\right) \subseteq N\left((\lambda I-T)^{m}\right) .
$$

From which, we obtain that $N\left(\left(\lambda I-T_{n}\right)^{m}\right)=N\left((\lambda I-T)^{m}\right)$.
(ii) Since T_{n} is the restriction of T on $R\left(T^{n}\right)$, and $R\left(T^{n}\right)$ is invariant under T, then

$$
R\left(\left(\lambda I-T_{n}\right)^{m}\right) \subseteq R\left((\lambda I-T)^{m}\right) \cap R\left(T^{n}\right)
$$

Now, we show the inclusion $R\left((\lambda I-T)^{m}\right) \cap R\left(T^{n}\right) \subseteq R\left(\left(\lambda I-T_{n}\right)^{m}\right)$. For this, it will suffice to show that for $m \in \mathbb{N}$, the implication

$$
(\lambda I-T)^{m} x \in R\left(T^{n}\right) \quad \Rightarrow \quad x \in R\left(T^{n}\right),
$$

holds. For $m=1$. Let $y \in R(\lambda I-T) \cap R\left(T^{n}\right)$, then there exists $x \in X$ such that $\lambda x-T x=(\lambda I-T) x=y \in R\left(T^{n}\right)$, so $\lambda^{2} x-\lambda T x=\lambda y \in R\left(T^{n}\right)$. But since $\lambda T x-T^{2} x=T y \in R\left(T^{n}\right)$, because $\lambda x-T x=y$ and $R\left(T^{n}\right)$ is invariant under T, we have that $\lambda^{2} x-\lambda T x, \lambda T x-T^{2} x \in R\left(T^{n}\right)$. Then

$$
\lambda^{2} x-T^{2} x=\lambda^{2} x-\lambda T x+\lambda T x-T^{2} x \in R\left(T^{n}\right) .
$$

Thus $\lambda^{2} x-T^{2} x \in R\left(T^{n}\right)$. Hence $\lambda^{3} x-\lambda T^{2} x=\lambda\left(\lambda^{2} x-T^{2} x\right) \in R\left(T^{n}\right)$, and since $\lambda T^{2} x-T^{3} x=T^{2} y \in R\left(T^{n}\right)$, we have that $\lambda^{3} x-\lambda T^{2} x, \lambda T^{2} x-T^{3} x \in$ $R\left(T^{n}\right)$. From which,

$$
\lambda^{3} x-T^{3} x=\lambda^{3} x-\lambda T^{2} x+\lambda T^{2} x-T^{3} x \in R\left(T^{n}\right)
$$

That is, $\lambda^{3} x-T^{3} x \in R\left(T^{n}\right)$. Now, suppose that $\lambda^{j} x-T^{j} x \in R\left(T^{n}\right)$, for some $j \in \mathbb{N}$. From this, $\lambda^{j+1} x-\lambda T^{j} x=\lambda\left(\lambda^{j} x-T^{j} x\right) \in R\left(T^{n}\right)$, and $\lambda T^{j} x-T^{j+1} x=$ $T^{j} y \in R\left(T^{n}\right)$, thus $\lambda^{j+1} x-\lambda T^{j} x, \lambda T^{j} x-T^{j+1} x \in R\left(T^{n}\right)$. From which,

$$
\lambda^{j+1} x-T^{j+1} x=\lambda^{j+1} x-\lambda T^{j} x+\lambda T^{j} x-T^{j+1} x \in R\left(T^{n}\right)
$$

Consequently, by mathematical induction, we obtain that $\lambda^{j} x-T^{j} x \in R\left(T^{n}\right)$ for all $j \in \mathbb{N}$. In particular, $\lambda^{n} x-T^{n} x \in R\left(T^{n}\right)$, and since $\lambda \neq 0$, then

$$
x=\lambda^{-n}\left(\left(\lambda^{n} x-T^{n} x\right)+T^{n} x\right) \in R\left(T^{n}\right)
$$

By the above reasoning, we conclude that, for $m=1$, the implication

$$
(\lambda I-T) x \in R\left(T^{n}\right) \quad \Rightarrow \quad x \in R\left(T^{n}\right)
$$

holds.
Now, suppose that for $m \geq 1$,

$$
(\lambda I-T)^{m} x \in R\left(T^{n}\right) \quad \Rightarrow \quad x \in R\left(T^{n}\right)
$$

If $(\lambda I-T)^{m+1} x \in R\left(T^{n}\right)$, then $(\lambda I-T)\left((\lambda I-T)^{m} x\right) \in R\left(T^{n}\right)$. From the proof of case $m=1$, we conclude that $(\lambda I-T)^{m} x \in R\left(T^{n}\right)$. Therefore by inductive hypothesis, $x \in R\left(T^{n}\right)$. Then, by mathematical induction, we conclude that for all $m \in \mathbb{N}$

$$
(\lambda I-T)^{m} x \in R\left(T^{n}\right) \quad \Rightarrow \quad x \in R\left(T^{n}\right)
$$

holds.
Finally, if $y \in R\left((\lambda I-T)^{m}\right) \cap R\left(T^{n}\right)$ there exists $x \in X$ such that ($\lambda I-$ $T)^{m} x=y \in R\left(T^{n}\right)$, then $(\lambda I-T)^{m} x \in R\left(T^{n}\right)$. As the above proof, we conclude that $x \in R\left(T^{n}\right)$. Thus

$$
\begin{aligned}
y & =(\lambda I-T)^{m} x=\sum_{k=0}^{m} \frac{m!}{k!(m-k)!} \lambda^{m-k} T^{k} x \\
& =\sum_{k=0}^{m} \frac{m!}{k!(m-k)!} \lambda^{m-k}\left(T_{n}\right)^{k} x=\left(\lambda I-T_{n}\right)^{m} x
\end{aligned}
$$

then $y \in R\left(\left(\lambda I-T_{n}\right)^{m}\right)$. This shows that,

$$
R\left((\lambda I-T)^{m}\right) \cap R\left(T^{n}\right) \subseteq R\left(\left(\lambda I-T_{n}\right)^{m}\right) .
$$

Consequently, $R\left(\left(\lambda I-T_{n}\right)^{m}\right)=R\left((\lambda I-T)^{m}\right) \cap R\left(T^{n}\right)$.
(iii) and (iv), it follows immediately from the equality

$$
N\left(\left(\lambda I-T_{n}\right)^{m}\right)=N\left((\lambda I-T)^{m}\right) \quad \text { for all } m \in \mathbb{N}
$$

(v) Observe that $R\left(\lambda I-T_{n}\right)$ is a subspace of $R\left(T^{n}\right)$. Let M be a subspace of $R\left(T^{n}\right)$ such that $R\left(T^{n}\right)=R\left(\lambda I-T_{n}\right) \oplus M$. Since $R\left(\lambda I-T_{n}\right)=R(\lambda I-$ $T) \cap R\left(T^{n}\right)$, we have

$$
\begin{aligned}
R(\lambda I-T) \cap M & =R(\lambda I-T) \cap R\left(T^{n}\right) \cap M \\
& =R\left(\lambda I-T_{n}\right) \cap M=0 .
\end{aligned}
$$

Thus $R(\lambda I-T) \cap M=\{0\}$. Now, we show that $X=R(\lambda I-T)+M$.
Let $\mu \in \mathbb{C}$ such that $\mu I-T$ is invertible in $L(X)$, then $(\mu I-T)^{j}$ is invertible in $L(X)$, for all $j \in \mathbb{N}$. In particular $(\mu I-T)^{m}$ is invertible in $L(X)$, for all $m \geq n$. Thus, if $y \in X$ there exists $x \in X$ such that $y=(\mu I-T)^{m} x$. Thus,

$$
\begin{aligned}
y & =(\mu I-T)^{m} x=\sum_{j=0}^{m} \frac{m!}{j!(m-j)!}(-1)^{j} \mu^{m-j} T^{j} x \\
& =\sum_{j=0}^{n-1} \frac{m!}{j!(m-j)!}(-1)^{j} \mu^{m-j} T^{j} x+\sum_{j=n}^{m} \frac{m!}{j!(m-j)!}(-1)^{j} \mu^{m-j} T^{j} x .
\end{aligned}
$$

Since $R\left(T^{j}\right) \subseteq R\left(T^{n}\right)$, for $n \leq j \leq m$, then we can write $y=u+v$, where:

$$
\begin{aligned}
& u=\sum_{j=0}^{n-1} \frac{m!}{j!(m-j)!}(-1)^{j} \mu^{m-j} T^{j} x \in X, \\
& v=\sum_{j=n}^{m} \frac{m!}{j!(m-j)!}(-1)^{j} \mu^{m-j} T^{j} x \in R\left(T^{n}\right) .
\end{aligned}
$$

Now, from the above decomposition and for any $\lambda \neq 0$, we obtain a sequence $\left(y_{k}\right)_{k=0}^{\infty}$, where $y_{k}=\lambda^{-k-1}(\lambda I-T) T^{k} u$, for $k=0,1, \ldots$, such that

$$
u=y_{0}+y_{1}+\cdots+y_{n-1}+\lambda^{-n} T^{n} u \in R(\lambda I-T)+R\left(T^{n}\right)
$$

because $y_{k}=\lambda^{-k-1}(\lambda I-T) T^{k} u \in R(\lambda I-T)$ and $\lambda^{-n} T^{n} u \in R\left(T^{n}\right)$.
On the other hand,

$$
v+\lambda^{-n} T^{n} u \in R\left(T^{n}\right)+R\left(T^{n}\right)=R\left(T^{n}\right)=R\left(\lambda I-T_{n}\right)+M
$$

Thus $v+\lambda^{-n} T^{n} u=z+m$, where $z \in R\left(\lambda I-T_{n}\right)$ and $m \in M$. From this, and since $R\left(\lambda I-T_{n}\right) \subseteq R(\lambda I-T)$, we obtain that

$$
\begin{aligned}
y & =u+v=y_{0}+y_{1}+\cdots+y_{n-1}+\lambda^{-n} T^{n} u+v \\
& =y_{0}+y_{1}+\cdots+y_{n-1}+z+m \\
& =\left(y_{0}+y_{1}+\cdots+y_{n-1}+z\right)+m \in R(\lambda I-T)+M
\end{aligned}
$$

Therefore, we have that $X \subseteq R(\lambda I-T)+M$, consequently $X=R(\lambda I-T)+M$. But since $R(\lambda I-T) \cap M=\{0\}$, and hence it follows that $X=R(\lambda I-T) \oplus M$, which implies that

$$
\beta(\lambda I-T)=\operatorname{dim} M=\beta\left(\lambda I-T_{n}\right)
$$

This shows that $\beta(\lambda I-T)=\beta\left(\lambda I-T_{n}\right)$.
The following result concerning the ranges of the powers of $\lambda I-T$, where $\lambda \in \mathbb{C}$ and $T \in L(X)$, plays an important role in this paper. In the proof of this corollary we use the notion of paraclosed (or paracomplete) subspace and the Neubauer Lemma (see [14]).

Lemma 2.2. If $R\left(T^{n}\right)$ is closed in X and $R\left(\left(\lambda I-T_{n}\right)^{m}\right)$ is closed in $R\left(T^{n}\right)$, then there exists $k \in \mathbb{N}$ such that $R\left((\lambda I-T)^{k}\right)$ is closed in X.

Proof. Observe that for $\lambda=0$,

$$
R\left(\left(0 I-T_{n}\right)^{m}\right)=R\left(\left(T_{n}\right)^{m}\right)=R\left(T^{m+n}\right) .
$$

Then $R\left(T^{m+n}\right)$ is a closed subspace of $R\left(T^{n}\right)$. Since $R\left(T^{n}\right)$ is closed, we have that $R\left((0 I-T)^{m+n}\right)=R\left(T^{m+n}\right)$ is closed. On the other hand, if $\lambda \neq 0$ and $R\left(\left(\lambda I-T_{n}\right)^{m}\right)$ is a closed subspace of $R\left(T^{n}\right)$, since $R\left(T^{n}\right)$ is closed in X, we have that $R\left(\left(\lambda I-T_{n}\right)^{m}\right)$ is closed in X. But, from the incise (ii) in Lemma 2.1,

$$
R\left(\left(\lambda I-T_{n}\right)^{m}\right)=R\left((\lambda I-T)^{m}\right) \cap R\left(T^{n}\right) .
$$

Thus $R\left((\lambda I-T)^{m}\right) \cap R\left(T^{n}\right)$ is closed in X. Also, if $\lambda \neq 0$ the polynomials $(\lambda-z)^{m}$ and z^{n} have no common divisors, so there exist two polynomials u and v such that $1=(\lambda-z)^{m} u(z)+z^{n} v(z)$, for all $z \in \mathbb{C}$. Hence $I=$ $(\lambda I-T)^{m} u(T)+T^{n} v(T)$ and so $R\left((\lambda I-T)^{m}\right)+R\left(T^{n}\right)=X$. Since both $R\left((\lambda I-T)^{m}\right)$ and $R\left(T^{n}\right)$ are paraclosed subspaces, and $R\left((\lambda I-T)^{m}\right) \cap R\left(T^{n}\right)$ and $R\left((\lambda I-T)^{m}\right)+R\left(T^{n}\right)$ are closed, using Neubauer Lemma [14, Proposition 2.1.2], we have that $R\left((\lambda I-T)^{m}\right)$ is closed.

Recall that for an operator $T \in L(X), 0<p(\lambda I-T)=q(\lambda I-T)<\infty$ precisely when λ is a pole of the resolvent of T (see [12, Proposition 50.2]).

Lemma 2.3. If 0 is not a pole of the resolvent of $T \in L(X)$ and $R\left(T^{n}\right)$ is closed, then $\pi_{00}(T) \subseteq \pi_{00}\left(T_{n}\right)$.

Proof. By Lemma 2.1, $\sigma\left(T_{n}\right) \backslash\{0\}=\sigma(T) \backslash\{0\}$. Also, $0 \notin \sigma(T)$ implies T bijective, thus $T=T_{n}$. Hence $\sigma\left(T_{n}\right) \subseteq \sigma(T)$. Moreover, iso $\sigma(T) \subseteq$ iso $\sigma\left(T_{n}\right)$. Since, if $\lambda \in$ iso $\sigma(T)$, then $\sigma(T) \cap \mathbb{D}_{\lambda}=\{\lambda\}$ for some open disc $\mathbb{D}_{\lambda} \subseteq \mathbb{C}$ centered at λ. Thus,

$$
\sigma\left(T_{n}\right) \cap \mathbb{D}_{\lambda} \subseteq \sigma(T) \cap \mathbb{D}_{\lambda}=\{\lambda\}
$$

Consequently $\sigma\left(T_{n}\right) \cap \mathbb{D}_{\lambda}=\{\lambda\}$ or $\sigma\left(T_{n}\right) \cap \mathbb{D}_{\lambda}=\emptyset$. If $\sigma\left(T_{n}\right) \cap \mathbb{D}_{\lambda}=\emptyset$, then $\lambda \notin \sigma\left(T_{n}\right)$, so that $p\left(\lambda I-T_{n}\right)=\beta\left(\lambda I-T_{n}\right)=0$. For the case $\lambda \neq 0$, from Lemma 2.1, $p(\lambda I-T)=0$ and $\beta(\lambda I-T)=0$, then $\lambda \notin \sigma(T)$ a contradiction. In the case where $\lambda=0, p\left(T_{n}\right)=q\left(T_{n}\right)=0$ implies, by [7, Lemma 2 and Lemma 3] and [12, Proposition 38.6], that $0<p(T)=q(T)<\infty$, which is impossible, because 0 is not a pole of the resolvent of T. Consequently, $\sigma\left(T_{n}\right) \cap \mathbb{D}_{\lambda}=\{\lambda\}$, so we have that $\lambda \in$ iso $\sigma\left(T_{n}\right)$.

Now, the following argument shows that $\pi_{00}(T) \subseteq \pi_{00}\left(T_{n}\right)$. If $\lambda \in \pi_{00}(T)$, we have that $\lambda \in$ iso $\sigma\left(T_{n}\right)$, because $\lambda \in$ iso $\sigma(T)$. On the other hand, for
$\lambda \neq 0$, Lemma 2.1 implies that $\alpha(\lambda I-T)=\alpha\left(\lambda I-T_{n}\right)$, so $0<\alpha\left(\lambda I-T_{n}\right)<\infty$. For $\lambda=0$, we claim that $\alpha\left(T_{n}\right)>0$. If $\alpha\left(T_{n}\right)=0$, we have that $p\left(T_{n}\right)=0$. By [7, Lemma 2], $p(T)<\infty$. Moreover [7, Remark 1],

$$
p(T)=\inf \left\{k \in \mathbb{N}: T_{k} \text { is injective }\right\} \leq n
$$

Thus, by Lemma 1.1, T_{n} is bounded below, because T_{n} is injective and $R\left(T_{n}\right)=R\left(T^{n+1}\right)$ is closed, so T_{n} is semi-Fredholm. Also $\left(T_{n}\right)^{*}$ has SVEP at 0 , because $0 \in$ iso $\sigma\left(T_{n}\right)$, then $q\left(T_{n}\right)<\infty([1$, Chapter 3$])$, which implies that $q(T)<\infty([7$, Lemma 3]). Hence $0<p(T)=q(T)<\infty$, a contradiction, since 0 is not a pole of the resolvent of T. Thus $0<\alpha\left(T_{n}\right)=\alpha\left(0 I-T_{n}\right)$. Finally, since $N\left(T_{n}\right) \subseteq N(T)$ and $\alpha(T)<\infty$ it then follows the equality $\alpha\left(T_{n}\right)=\alpha\left(0 I-T_{n}\right)<\infty$. Thus, $0 \in$ iso $\sigma\left(T_{n}\right)$ and $0<\alpha\left(0 I-T_{n}\right)<\infty$. Consequently $\lambda \in \pi_{00}\left(T_{n}\right)$, for each $\lambda \in \pi_{00}(T)$, so we have the inclusion $\pi_{00}(T) \subseteq \pi_{00}\left(T_{n}\right)$.

The result of Lemma 2.3 may be extended as follows.
Lemma 2.4. If 0 is not a pole of the resolvent of $T \in L(X)$ and $R\left(T^{n}\right)$ is closed, then $\pi_{00}^{a}(T) \subseteq \pi_{00}^{a}\left(T_{n}\right)$.

Proof. If $\lambda \notin \sigma_{\text {ap }}(T)$, then $\lambda I-T$ is injective and $R(\lambda I-T)$ is closed. Now, here we consider the two different cases $\lambda \neq 0$ and $\lambda=0$. If $\lambda \neq 0$, by Lemma 2.1, $N\left(\lambda I-T_{n}\right)=N(\lambda I-T)$ and $R\left(\lambda I-T_{n}\right)=R(\lambda I-T) \cap R\left(T^{n}\right)$ is closed. Hence $\lambda I-T_{n}$ is bounded below, and so $\lambda \notin \sigma_{\text {ap }}\left(T_{n}\right)$. In the other case, $-T$ bounded below implies that $0=p(T)=p\left(T_{n}\right)$ and $R(T)$ is closed. Thus T_{n} is inyective and, by Lemma 1.1, $R\left(T_{n}\right)=R\left(T^{n+1}\right)$ is closed. From this we obtain that T_{n} is bounded below. Consequently, $\sigma_{\text {ap }}\left(T_{n}\right) \subseteq \sigma_{\text {ap }}(T)$. Similarly, as in the proof of Lemma 2.3 and taking into account Lemma 2.2, we can prove that iso $\sigma_{\text {ap }}(T) \subseteq$ iso $\sigma_{\text {ap }}\left(T_{n}\right)$.

Finally, to show $\pi_{00}^{a}(T) \subseteq \pi_{00}^{a}\left(T_{n}\right)$. Observe that, if $\lambda \in \pi_{00}^{a}(T)$ then $\lambda \in \operatorname{iso} \sigma_{\text {ap }}(T)$ and $0<\alpha(\lambda I-T)<\infty$. Thus $\lambda \in$ iso $\sigma\left(T_{n}\right)$. For $\lambda \neq 0$, by Lemma 2.1, $\alpha(\lambda I-T)=\alpha\left(\lambda I-T_{n}\right)$, and so $0<\alpha\left(\lambda I-T_{n}\right)<\infty$. In the case $\lambda=0, p\left(T_{n}\right)=0$ and $R\left(T^{n}\right)$ is closed. Similarly to the case $p\left(T_{n}\right)=0$ and $R\left(T^{n}\right)$ closed in the proof of Lemma 2.3, one shows that $0<\alpha\left(0 I-T_{n}\right)<\infty$. Consequently $\pi_{00}^{a}(T) \subseteq \pi_{00}^{a}\left(T_{n}\right)$.

3. Weyl's theorems and Restrictions

In this section we give conditions for which Weyl's theorem (resp. a-Weyl's theorem) for an operator $T \in L(X)$ is equivalent to Weyl's theorem (resp. a-

Weyl's theorem) for certain restriction T_{n} of T.
It is well known that if λ is a pole of the resolvent of T, then λ is an isolated point of the spectrum $\sigma(T)$. Thus, the following result is an immediate consequence of Lemma 2.1 and Lemma 2.3.

Theorem 3.1. Suppose that 0 is not an isolated point of $\sigma(T)$. Then T satisfies (W) if and only if there exists $n \in \mathbb{N}$ such that $R\left(T^{n}\right)$ is closed and T_{n} satisfies (W).

Proof. (Necessity) Assume that there exists $n \in \mathbb{N}$ such that $R\left(T^{n}\right)$ is closed and T_{n} satisfies (W). Let $\lambda \in \pi_{00}(T)$, i.e. $\lambda \in$ iso $\sigma(T)$ and $0<\alpha(\lambda I-$ $T)<\infty$. By hypothesis and Lemma 2.3, $0 \neq \lambda \in \pi_{00}\left(T_{n}\right)=\sigma\left(T_{n}\right) \backslash \sigma_{\mathrm{w}}\left(T_{n}\right)$. Then $\alpha\left(\lambda I-T_{n}\right)=\beta\left(\lambda I-T_{n}\right)<\infty$ since $\lambda I-T_{n}$ is a Weyl operator, and so by Lemma 2.1

$$
\alpha(\lambda I-T)=\alpha\left(\lambda I-T_{n}\right)=\beta\left(\lambda I-T_{n}\right)=\beta(\lambda I-T)<\infty .
$$

Furthermore, $\lambda \in \sigma(T)$ because $\lambda \in \sigma\left(T_{n}\right) \subseteq \sigma(T)$. Thus $\lambda I-T$ is Weyl, and hence $\lambda \in \sigma(T) \backslash \sigma_{\mathrm{w}}(T)$. But since $\sigma(T) \backslash \sigma_{\mathrm{w}}(T) \subseteq \pi_{00}(T)$, it then follows that $\pi_{00}(T)=\sigma(T) \backslash \sigma_{\mathrm{w}}(T)$, which implies that T satisfies (W).
(Sufficiency) Suppose that T satisfies (W). Then for $n=0, R\left(T^{0}\right)=X$ is closed and $T_{0}=T$ satisfies (W).

In the same way as in Theorem 3.1, we have the following characterization of a-Weyl theorem for an operator throughout a-Weyl theorem for some restriction of the operator.

Theorem 3.2. Suppose that 0 is not an isolated point of $\sigma(T)$. Then T satisfies (aW) if and only if there exists $n \in \mathbb{N}$ such that $R\left(T^{n}\right)$ is closed and T_{n} satisfies (aW).

Proof. (Necessity) Suppose that there exists $n \in \mathbb{N}$ such that $R\left(T^{n}\right)$ is closed and T_{n} satisfies (aW). Let $\lambda \in \pi_{00}^{a}(T)$, by hypothesis and Lemma 2.4, $\lambda \in \pi_{00}^{a}\left(T_{n}\right)=\sigma_{\text {ap }}\left(T_{n}\right) \backslash \sigma_{\text {uw }}\left(T_{n}\right)$. Thus $\lambda I-T_{n}$ is a upper semi-Fredholm operator, because $\lambda I-T_{n}$ is a upper semi-Weyl operator. Since $\lambda I-T_{n}$ is upper semi-Fredholm, it follows that $R\left(\left(\lambda I-T_{n}\right)^{m}\right)$ is closed in $R\left(T^{n}\right)$ for all $m \in \mathbb{N}$, and so by Lemma 2.2, there exists $k \in \mathbb{N}$ such that $R\left((\lambda I-T)^{k}\right)$ is closed. But since $\alpha(\lambda I-T)<\infty$, then $\alpha\left((\lambda I-T)^{k}\right)<\infty$. That is, $(\lambda I-T)^{k}$ is a upper semi-Fredholm operator, which implies that $\lambda I-T$ is upper semi-Fredholm. Furthermore, T has SVEP at λ because $\lambda \in$ iso $\sigma_{\text {ap }}(T)$. Consequently, if
$\lambda \in \pi_{00}^{a}(T)$ then $\lambda I-T$ is upper semi-Fredholm and $p(\lambda I-T)<\infty$. Hence $\lambda I-T$ is upper semi-Weyl and $\lambda \in \sigma_{\text {ap }}(T)$, thus $\lambda \in \sigma_{\text {ap }}(T) \backslash \sigma_{\text {uw }}(T)$, and we obtain the inclusion $\pi_{00}^{a}(T) \subseteq \sigma_{\text {ap }}(T) \backslash \sigma_{\text {uw }}(T)$. But since $\sigma_{\text {ap }}(T) \backslash \sigma_{\text {uw }}(T) \subseteq$ $\pi_{00}^{a}(T)$, it then follows that $\pi_{00}^{a}(T)=\sigma_{\text {ap }}(T) \backslash \sigma_{\text {uw }}(T)$, which implies that T satisfies (aW).
(Sufficiency) If T satisfies (aW). Then for $n=0$, trivially $R\left(T^{0}\right)=X$ is closed and $T_{0}=T$ satisfies (aW).

Clearly, T has SVEP at every isolated point of $\sigma(T)$. Thus, by Theorem 3.1 and Theorem 3.2, we have the following corollary.

Corollary 3.3. If T does not have SVEP at 0 , then:
(i) there exists $n \in \mathbb{N}$ such that $R\left(T^{n}\right)$ is closed and T_{n} satisfies (W) if and only if T satisfies (W).
(ii) there exists $n \in \mathbb{N}$ such that $R\left(T^{n}\right)$ is closed and T_{n} satisfies (aW) if and only if T satisfies (aW).

Remark 3.4. There are more alternative ways to express Corollary 3.3. We may replace the assumption T does not have SVEP at 0 by: $0 \notin \partial \sigma(T)$, $p(T)=\infty$ or $q(T)=\infty$.

References

[1] P. Aiena, "Fredholm and Local Spectral Theory, with Application to Multipliers", Kluwer Academic Publishers, Dordrecht, 2004.
[2] P. Aiena, Classes of operators satisfying a-Weyl's theorem Studia Math. 169 (2005), 105-122.
[3] P. Aiena, E. Aponte, E. Balzan, Weyl type theorems for left and right polaroid operators, Integral Equations Operator Theory 66 (2010), 1-20.
[4] P. Aiena, M.T. Biondi, C. Carpintero, On Drazin invertibility, Proc. Amer. Math. Soc. 136 (2008), 2839-2848.
[5] P. Aiena, P. Peña, Variation on Weyl's theorem, J. Math. Anal. Appl. 324 (2006), 566-579.
[6] M. Amouch, Weyl type theorems for operators satisfying the single-valued extension property, J. Math. Anal. Appl. 326 (2007), 1476-1484.
[7] C. Carpintero, O. García, E. Rosas, J. Sanabria, B-Browder spectra and ocalized SVEP, Rend. Circ. Mat. Palermo (2) 57 (2008), 241-255.
[8] L.A. Coburn, Weyl's Theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288.
[9] R. Curto, Y.M. Han, Generalized Browder's and Weyl's theorems for Banach space operators, J. Math. Anal. Appl. 336 (2007), 1424-1442.
[10] B.P. Duggal, Polaroid operators satisfying Weyl's theorem, Linear Algebra Appl. 414 (2006), 271-277.
[11] J.K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61-69.
[12] H. Heuser, "Functional Analysis", John Wiley \& Sons, Chichester, 1982.
[13] M. Mbekhta, V. MÜller, On the axiomatic theory ofthe spectrum II, Studia Math. 119 (1996), 129-147.
[14] J.P. Labrousse, Les opérateurs quasi Fredholm: une généralization des opérateurs semi Fredholm, Rend. Circ. Mat. Palermo (2) 29 (1980), 161258.
[15] V. Rakočević, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), 915-919.
[16] H. Zquitti, A note on generalized Weyl's theorem, J. Math. Anal. Appl. 316 (2006), 373-381.

