brought to you by T CORE

EXTRACTA MATHEMATICAE Vol. 28, Núm. 1, 127–139 (2013)

Weyl Type Theorems for Restrictions of Bounded Linear Operators

C. CARPINTERO, O. GARCÍA, D. MUÑOZ, E. ROSAS, J. SANABRIA

Departamento de Matemáticas, Escuela de Ciencias, Universidad UDO, Cumaná, Venezuela

 $carpintero.carlos@gmail.com\,, \ ogarciam554@gmail.com\,, \ damupi2001@yahoo.com\,, \\ ennisrafael@gmail.com\,, \ jesanabri@gmail.com$

Presented by Manuel González

Received February 25, 2012

Abstract: In this paper we give sufficient conditions for which Weyl's theorems for a bounded linear operator T, acting on a Banach space X, can be reduced to the study of Weyl's theorems for some restriction of T.

 $Key\ words\colon$ Weyl's theorem, $a\mbox{-Weyl's}$ theorem, semi-Fredholm operator, pole of the resolvent.

AMS Subject Class. (2010): 47A10, 47A11, 47A53, 47A55.

1. INTRODUCTION

Throughout this paper L(X) denotes the algebra of all bounded linear operators acting on an infinite-dimensional complex Banach space X. For $T \in L(X)$, we denote by N(T) the null space of T and by R(T) = T(X) the range of T. We denote by $\alpha(T) := \dim N(T)$ the nullity of T and by $\beta(T) :=$ $\operatorname{codim} R(T) = \operatorname{dim} X/R(T)$ the defect of T. Other two classical quantities in operator theory are the ascent p = p(T) of an operator T, defined as the smallest non-negative integer p such that $N(T^p) = N(T^{p+1})$ (if such an integer does not exist, we put $p(T) = \infty$), and the descent q = q(T), defined as the smallest non-negative integer q such that $R(T^q) = R(T^{q+1})$ (if such an integer does not exist, we put $q(T) = \infty$). It is well known that if p(T) and q(T) are both finite then p(T) = q(T). Furthermore, $0 < p(\lambda I - T) = q(\lambda I - T) < \infty$ if and only if λ is a pole of the resolvent, see [12, Proposition 50.2]. An operator $T \in L(X)$ is said to be Fredholm (respectively, upper semi-Fredholm, lower semi-Fredholm), if $\alpha(T)$, $\beta(T)$ are both finite (respectively, R(T) closed and $\alpha(T) < \infty$, $\beta(T) < \infty$). $T \in L(X)$ is said to be semi-Fredholm if T is either an upper semi-Fredholm or a lower semi-Fredholm operator. If T is semi-Fredholm the index of T defined by $\operatorname{ind} T := \alpha(T) - \beta(T)$. Other two

127

important classes of operators in Fredholm theory are the classes of semi-Browder operators. These classes are defined as follows, $T \in L(X)$ is said to be Browder (resp. upper semi-Browder, lower semi-Browder) if T is a Fredholm (respectively, upper semi-Fredholm, lower semi-Fredholm) and both p(T), q(T) are finite (respectively, $p(T) < \infty, q(T) < \infty$). A bounded operator $T \in L(X)$ is said to be upper semi-Weyl (respectively, lower semi-Weyl) if T is upper Fredholm operator (respectively, lower semi-Fredholm) and index ind $T \leq 0$ (respectively, ind $T \geq 0$). $T \in L(X)$ is said to be Weyl if T is both upper and lower semi-Weyl, i.e. T is a Fredholm operator having index 0. The Browder spectrum and the Weyl spectrum are defined, respectively, by

$$\sigma_{\mathbf{b}}(T) := \left\{ \lambda \in \mathbb{C} : \lambda I - T \text{ is not Browder} \right\},\$$

and

$$\sigma_{\mathrm{w}}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not Weyl}\}.$$

Since every Browder operator is Weyl then $\sigma_{w}(T) \subseteq \sigma_{b}(T)$. Analogously, The upper semi-Browder spectrum and the upper semi-Weyl spectrum are defined by

$$\sigma_{\rm ub}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not upper semi-Browder}\},\$$

and

$$\sigma_{\rm uw}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \text{ is not upper semi-Weyl} \}.$$

In the sequel we need the following basic result:

LEMMA 1.1. If $T \in L(X)$ and $p = p(T) < \infty$, then the following statements are equivalent:

- (i) There exists $n \ge p+1$ such that $T^n(X)$ is closed;
- (ii) $T^n(X)$ is closed for all $n \ge p$.

Proof. Define $c'_i(T) := \dim(N(T^i)/N(T^{i+1}))$. Clearly, $p = p(T) < \infty$ entails that $c'_i(T) = 0$ for all $i \ge p$, so $k_i(T) := c'_i(T) - c'_{i+1}(T) = 0$ for all $i \ge p$. The equivalence easily follows from [13, Lemma 12]. ■

Now, we introduce an important property in local spectral theory. The localized version of this property has been introduced by Finch [11], and in the framework of Fredholm theory this property has been characterized in several ways, see [1, Chapter 3]. A bounded operator $T \in L(X)$ is said to have the single valued extension property at $\lambda_0 \in \mathbb{C}$ (abbreviated, SVEP at λ_0), if for every open disc $\mathbb{D}_{\lambda_0} \subseteq \mathbb{C}$ centered at λ_0 the only analytic function $f: \mathbb{D}_{\lambda_0} \to X$ which satisfies the equation

$$(\lambda I - T)f(\lambda) = 0$$
 for all $\lambda \in \mathbb{D}_{\lambda_0}$,

is the function $f \equiv 0$ on \mathbb{D}_{λ_0} . The operator T is said to have SVEP if T has the SVEP at every point $\lambda \in \mathbb{C}$. Evidently, $T \in L(X)$ has SVEP at every point of the resolvent $\rho(T) := \mathbb{C} \setminus \sigma(T)$. Moreover, from the identity theorem for analytic functions it is easily seen that T has SVEP at every point of the boundary $\partial \sigma(T)$ of the spectrum. In particular, T has SVEP at every isolated point of the spectrum. Note that (see [1, Theorem 3.8])

$$p(\lambda I - T) < \infty \qquad \Rightarrow \qquad T \text{ has SVEP at } \lambda,$$
 (1.1)

and dually

$$q(\lambda I - T) < \infty \qquad \Rightarrow \qquad T^* \text{ has SVEP at } \lambda.$$
 (1.2)

Recall that $T \in L(X)$ is said to be bounded below if T is injective and has closed range. Denote by $\sigma_{ap}(T)$ the classical approximate point spectrum defined by

$$\sigma_{\rm ap}(T) := \left\{ \lambda \in \mathbb{C} : \lambda I - T \text{ is not bounded below} \right\}.$$

Note that if $\sigma_{\rm s}(T)$ denotes the surjectivity spectrum

$$\sigma_{\rm s}(T) := \left\{ \lambda \in \mathbb{C} : \lambda I - T \text{ is not onto} \right\},\,$$

then $\sigma_{\rm ap}(T) = \sigma_{\rm s}(T^*)$ and $\sigma_{\rm s}(T) = \sigma_{\rm ap}(T^*)$.

It is easily seen from definition of localized SVEP that

$$\lambda \notin \operatorname{acc} \sigma_{\operatorname{ap}}(T) \quad \Rightarrow \quad T \text{ has SVEP at } \lambda,$$
 (1.3)

where acc K means the set of all accumulation points of $K \subseteq \mathbb{C}$, and if T^* denotes the dual of T, then

$$\lambda \notin \operatorname{acc} \sigma_{\mathrm{s}}(T) \quad \Rightarrow \quad T \text{ has SVEP at } \lambda.$$
 (1.4)

Remark 1.2. The implications (1.1), (1.2), (1.3) and (1.4) are actually equivalences whenever $T \in L(X)$ is semi-Fredholm (see [1, Chapter 3]).

Denote by iso K the set of all isolated points of $K \subseteq \mathbb{C}$. Let $T \in L(X)$, define

$$\pi_{00}(T) = \left\{ \lambda \in \operatorname{iso} \sigma(T) : 0 < \alpha(\lambda I - T) < \infty \right\},\$$

$$\pi_{00}^{a}(T) = \left\{ \lambda \in \operatorname{iso} \sigma_{\mathrm{ap}}(T) : 0 < \alpha(\lambda I - T) < \infty \right\}.$$

Clearly, for every $T \in L(X)$ we have $\pi_{00}(T) \subseteq \pi_{00}^{a}(T)$.

Let $T \in L(X)$ be a bounded operator. Following Coburn [8], T is said to satisfy Weyl's theorem, in symbol (W), if $\sigma(T) \setminus \sigma_{w}(T) = \pi_{00}(T)$. According to Rakočević [15], T is said to satisfy *a*-Weyl's theorem, in symbol (aW), if $\sigma_{ap}(T) \setminus \sigma_{uw}(T) = \pi_{00}^{a}(T)$.

Note that

a-Weyl's theorem
$$\Rightarrow$$
 Weyl's theorem.

see for instance [1, Chapter 3]. The converse of these implication in general does not hold.

Weyl type theorems have been recently studied by several authors ([2], [3], [5], [6], [8], [9], [10], [15] and [16]). In these papers several results are obtained, by considering an operator $T \in L(X)$ in the whole space X. In this paper we give sufficient conditions for which Weyl type theorems holds for T, if and only if there exists $n \in \mathbb{N}$ such that the range $R(T^n)$ of T^n is closed and Weyl type theorems holds for T_n , where T_n denote the restriction of T on the subspace $R(T^n) \subseteq X$.

2. Preliminaries

In this section we establish several lemmas that will be used throughout the paper. We begin examining some algebraic relations between T and T_n , T_n viewed as a operator from the space $R(T^n)$ in to itself.

LEMMA 2.1. Let $T \in L(X)$ and T_n , $n \in \mathbb{N}$, be the restriction of the operator T on the subspace $R(T^n) = T^n(X)$. Then, for all $\lambda \neq 0$, we have:

- (i) $N((\lambda I T_n)^m) = N((\lambda I T)^m)$, for any m;
- (ii) $R((\lambda I T_n)^m) = R((\lambda I T)^m) \cap R(T^n)$, for any m;
- (iii) $\alpha(\lambda I T_n) = \alpha(\lambda I T);$
- (iv) $p(\lambda I T_n) = p(\lambda I T);$
- (v) $\beta(\lambda I T_n) = \beta(\lambda I T).$

130

Proof. (i) For m = 0,

$$N((\lambda I - T_n)^m) = N((\lambda I - T)^m)$$

holds trivially. Let $x \in N((\lambda I - T)^m), m \ge 1$, then

$$0 = (\lambda I - T)^m x = \sum_{k=0}^m \frac{m!}{k!(m-k)!} (-1)^k \lambda^{m-k} T^k x$$
$$= \lambda^m x + \sum_{k=1}^m \frac{m!}{k!(m-k)!} (-1)^k \lambda^{m-k} T^k x \,.$$

Thus $0 = \lambda^m x + h(T)x$, where

$$h(T) = \sum_{k=1}^{m} \frac{m!}{k!(m-k)!} (-1)^k \lambda^{m-k} T^k.$$

Hence $-\lambda^m x = h(T)x$, and since $\lambda \neq 0$, then $x = -\lambda^{-m}h(T)x$. From this equality, it follows that

$$(-\lambda^{-m}h(T))^2 x = -\lambda^{-m}h(T)(-\lambda^{-m}h(T)x)$$
$$= -\lambda^{-m}h(T)x = x.$$

Consequently $x = (-\lambda^{-m}h(T))^2 x$. By repeating successively the same argument, we obtain that $x = (-\lambda^{-m}h(T))^j x$, for all $j \in \mathbb{N}$. But since $-\lambda^{-m}h(T)x \in R(T)$, then $(-\lambda^{-m}h(T))^j x \in R(T^j)$, for all $j \in \mathbb{N}$. Therefore $x = (-\lambda^{-m}h(T))^n x \in R(T^n)$, and since $R(T^n)$ is T-invariant subspace, we conclude that

$$0 = (\lambda I - T)^m x = \sum_{k=0}^m \frac{m!}{k!(m-k)!} (-1)^k \lambda^{m-k} T^k x$$
$$= \sum_{k=0}^m \frac{m!}{k!(m-k)!} (-1)^k \lambda^{m-k} (T_n)^k x = (\lambda I - T_n)^m x.$$

So $x \in N((\lambda I - T_n)^m)$, and we get the inclusion

$$N((\lambda I - T)^m) \subseteq N((\lambda I - T_n)^m).$$

On the other hand, since T_n is the restriction of T on $R(T^n)$, and $R(T^n)$ is invariant under T, it then follows the inclusion

$$N((\lambda I - T_n)^m) \subseteq N((\lambda I - T)^m).$$

From which, we obtain that $N((\lambda I - T_n)^m) = N((\lambda I - T)^m)$.

(ii) Since T_n is the restriction of T on $R(T^n)$, and $R(T^n)$ is invariant under T, then

$$R((\lambda I - T_n)^m) \subseteq R((\lambda I - T)^m) \cap R(T^n).$$

Now, we show the inclusion $R((\lambda I - T)^m) \cap R(T^n) \subseteq R((\lambda I - T_n)^m)$. For this, it will suffice to show that for $m \in \mathbb{N}$, the implication

$$(\lambda I - T)^m x \in R(T^n) \qquad \Rightarrow \qquad x \in R(T^n),$$

holds. For m = 1. Let $y \in R(\lambda I - T) \cap R(T^n)$, then there exists $x \in X$ such that $\lambda x - Tx = (\lambda I - T)x = y \in R(T^n)$, so $\lambda^2 x - \lambda Tx = \lambda y \in R(T^n)$. But since $\lambda Tx - T^2x = Ty \in R(T^n)$, because $\lambda x - Tx = y$ and $R(T^n)$ is invariant under T, we have that $\lambda^2 x - \lambda Tx$, $\lambda Tx - T^2x \in R(T^n)$. Then

$$\lambda^2 x - T^2 x = \lambda^2 x - \lambda T x + \lambda T x - T^2 x \in R(T^n)$$

Thus $\lambda^2 x - T^2 x \in R(T^n)$. Hence $\lambda^3 x - \lambda T^2 x = \lambda(\lambda^2 x - T^2 x) \in R(T^n)$, and since $\lambda T^2 x - T^3 x = T^2 y \in R(T^n)$, we have that $\lambda^3 x - \lambda T^2 x$, $\lambda T^2 x - T^3 x \in R(T^n)$. From which,

$$\lambda^3 x - T^3 x = \lambda^3 x - \lambda T^2 x + \lambda T^2 x - T^3 x \in R(T^n).$$

That is, $\lambda^3 x - T^3 x \in R(T^n)$. Now, suppose that $\lambda^j x - T^j x \in R(T^n)$, for some $j \in \mathbb{N}$. From this, $\lambda^{j+1}x - \lambda T^j x = \lambda(\lambda^j x - T^j x) \in R(T^n)$, and $\lambda T^j x - T^{j+1} x = T^j y \in R(T^n)$, thus $\lambda^{j+1}x - \lambda T^j x$, $\lambda T^j x - T^{j+1}x \in R(T^n)$. From which,

$$\lambda^{j+1}x - T^{j+1}x = \lambda^{j+1}x - \lambda T^jx + \lambda T^jx - T^{j+1}x \in R(T^n).$$

Consequently, by mathematical induction, we obtain that $\lambda^j x - T^j x \in R(T^n)$ for all $j \in \mathbb{N}$. In particular, $\lambda^n x - T^n x \in R(T^n)$, and since $\lambda \neq 0$, then

$$x = \lambda^{-n}((\lambda^n x - T^n x) + T^n x) \in R(T^n).$$

By the above reasoning, we conclude that, for m = 1, the implication

$$(\lambda I - T)x \in R(T^n) \Rightarrow x \in R(T^n)$$

holds.

Now, suppose that for $m \ge 1$,

$$(\lambda I - T)^m x \in R(T^n) \qquad \Rightarrow \qquad x \in R(T^n).$$

If $(\lambda I - T)^{m+1}x \in R(T^n)$, then $(\lambda I - T)((\lambda I - T)^m x) \in R(T^n)$. From the proof of case m = 1, we conclude that $(\lambda I - T)^m x \in R(T^n)$. Therefore by inductive hypothesis, $x \in R(T^n)$. Then, by mathematical induction, we conclude that for all $m \in \mathbb{N}$

$$(\lambda I - T)^m x \in R(T^n) \implies x \in R(T^n)$$

holds.

Finally, if $y \in R((\lambda I - T)^m) \cap R(T^n)$ there exists $x \in X$ such that $(\lambda I - T)^m x = y \in R(T^n)$, then $(\lambda I - T)^m x \in R(T^n)$. As the above proof, we conclude that $x \in R(T^n)$. Thus

$$y = (\lambda I - T)^m x = \sum_{k=0}^m \frac{m!}{k!(m-k)!} \lambda^{m-k} T^k x$$
$$= \sum_{k=0}^m \frac{m!}{k!(m-k)!} \lambda^{m-k} (T_n)^k x = (\lambda I - T_n)^m x$$

then $y \in R((\lambda I - T_n)^m)$. This shows that,

$$R((\lambda I - T)^m) \cap R(T^n) \subseteq R((\lambda I - T_n)^m)$$

Consequently, $R((\lambda I - T_n)^m) = R((\lambda I - T)^m) \cap R(T^n).$

(iii) and (iv), it follows immediately from the equality

$$N((\lambda I - T_n)^m) = N((\lambda I - T)^m)$$
 for all $m \in \mathbb{N}$.

(v) Observe that $R(\lambda I - T_n)$ is a subspace of $R(T^n)$. Let M be a subspace of $R(T^n)$ such that $R(T^n) = R(\lambda I - T_n) \oplus M$. Since $R(\lambda I - T_n) = R(\lambda I - T) \cap R(T^n)$, we have

$$R(\lambda I - T) \cap M = R(\lambda I - T) \cap R(T^n) \cap M$$
$$= R(\lambda I - T_n) \cap M = 0.$$

Thus $R(\lambda I - T) \cap M = \{0\}$. Now, we show that $X = R(\lambda I - T) + M$.

Let $\mu \in \mathbb{C}$ such that $\mu I - T$ is invertible in L(X), then $(\mu I - T)^j$ is invertible in L(X), for all $j \in \mathbb{N}$. In particular $(\mu I - T)^m$ is invertible in L(X), for all $m \geq n$. Thus, if $y \in X$ there exists $x \in X$ such that $y = (\mu I - T)^m x$. Thus,

$$y = (\mu I - T)^m x = \sum_{j=0}^m \frac{m!}{j!(m-j)!} (-1)^j \mu^{m-j} T^j x$$
$$= \sum_{j=0}^{n-1} \frac{m!}{j!(m-j)!} (-1)^j \mu^{m-j} T^j x + \sum_{j=n}^m \frac{m!}{j!(m-j)!} (-1)^j \mu^{m-j} T^j x$$

Since $R(T^j) \subseteq R(T^n)$, for $n \leq j \leq m$, then we can write y = u + v, where:

$$u = \sum_{j=0}^{n-1} \frac{m!}{j!(m-j)!} (-1)^j \mu^{m-j} T^j x \in X,$$
$$v = \sum_{j=n}^m \frac{m!}{j!(m-j)!} (-1)^j \mu^{m-j} T^j x \in R(T^n).$$

Now, from the above decomposition and for any $\lambda \neq 0$, we obtain a sequence $(y_k)_{k=0}^{\infty}$, where $y_k = \lambda^{-k-1} (\lambda I - T) T^k u$, for $k = 0, 1, \ldots$, such that

$$u = y_0 + y_1 + \dots + y_{n-1} + \lambda^{-n} T^n u \in R(\lambda I - T) + R(T^n),$$

because $y_k = \lambda^{-k-1}(\lambda I - T)T^k u \in R(\lambda I - T)$ and $\lambda^{-n}T^n u \in R(T^n)$. On the other hand,

$$v + \lambda^{-n} T^n u \in R(T^n) + R(T^n) = R(T^n) = R(\lambda I - T_n) + M.$$

Thus $v + \lambda^{-n}T^n u = z + m$, where $z \in R(\lambda I - T_n)$ and $m \in M$. From this, and since $R(\lambda I - T_n) \subseteq R(\lambda I - T)$, we obtain that

$$y = u + v = y_0 + y_1 + \dots + y_{n-1} + \lambda^{-n} T^n u + v$$

= $y_0 + y_1 + \dots + y_{n-1} + z + m$
= $(y_0 + y_1 + \dots + y_{n-1} + z) + m \in R(\lambda I - T) + M$

Therefore, we have that $X \subseteq R(\lambda I - T) + M$, consequently $X = R(\lambda I - T) + M$. But since $R(\lambda I - T) \cap M = \{0\}$, and hence it follows that $X = R(\lambda I - T) \oplus M$, which implies that

$$\beta(\lambda I - T) = \dim M = \beta(\lambda I - T_n).$$

This shows that $\beta(\lambda I - T) = \beta(\lambda I - T_n)$.

The following result concerning the ranges of the powers of $\lambda I - T$, where $\lambda \in \mathbb{C}$ and $T \in L(X)$, plays an important role in this paper. In the proof of this corollary we use the notion of paraclosed (or paracomplete) subspace and the Neubauer Lemma (see [14]).

LEMMA 2.2. If $R(T^n)$ is closed in X and $R((\lambda I - T_n)^m)$ is closed in $R(T^n)$, then there exists $k \in \mathbb{N}$ such that $R((\lambda I - T)^k)$ is closed in X. *Proof.* Observe that for $\lambda = 0$,

$$R((0I - T_n)^m) = R((T_n)^m) = R(T^{m+n}).$$

Then $R(T^{m+n})$ is a closed subspace of $R(T^n)$. Since $R(T^n)$ is closed, we have that $R((0I - T)^{m+n}) = R(T^{m+n})$ is closed. On the other hand, if $\lambda \neq 0$ and $R((\lambda I - T_n)^m)$ is a closed subspace of $R(T^n)$, since $R(T^n)$ is closed in X, we have that $R((\lambda I - T_n)^m)$ is closed in X. But, from the incise (ii) in Lemma 2.1,

$$R((\lambda I - T_n)^m) = R((\lambda I - T)^m) \cap R(T^n).$$

Thus $R((\lambda I - T)^m) \cap R(T^n)$ is closed in X. Also, if $\lambda \neq 0$ the polynomials $(\lambda - z)^m$ and z^n have no common divisors, so there exist two polynomials u and v such that $1 = (\lambda - z)^m u(z) + z^n v(z)$, for all $z \in \mathbb{C}$. Hence $I = (\lambda I - T)^m u(T) + T^n v(T)$ and so $R((\lambda I - T)^m) + R(T^n) = X$. Since both $R((\lambda I - T)^m)$ and $R(T^n)$ are paraclosed subspaces, and $R((\lambda I - T)^m) \cap R(T^n)$ and $R((\lambda I - T)^m) + R(T^n)$ are closed, using Neubauer Lemma [14, Proposition 2.1.2], we have that $R((\lambda I - T)^m)$ is closed.

Recall that for an operator $T \in L(X)$, $0 < p(\lambda I - T) = q(\lambda I - T) < \infty$ precisely when λ is a pole of the resolvent of T (see [12, Proposition 50.2]).

LEMMA 2.3. If 0 is not a pole of the resolvent of $T \in L(X)$ and $R(T^n)$ is closed, then $\pi_{00}(T) \subseteq \pi_{00}(T_n)$.

Proof. By Lemma 2.1, $\sigma(T_n) \setminus \{0\} = \sigma(T) \setminus \{0\}$. Also, $0 \notin \sigma(T)$ implies T bijective, thus $T = T_n$. Hence $\sigma(T_n) \subseteq \sigma(T)$. Moreover, iso $\sigma(T) \subseteq \text{iso } \sigma(T_n)$. Since, if $\lambda \in \text{iso } \sigma(T)$, then $\sigma(T) \cap \mathbb{D}_{\lambda} = \{\lambda\}$ for some open disc $\mathbb{D}_{\lambda} \subseteq \mathbb{C}$ centered at λ . Thus,

$$\sigma(T_n) \cap \mathbb{D}_{\lambda} \subseteq \sigma(T) \cap \mathbb{D}_{\lambda} = \{\lambda\}.$$

Consequently $\sigma(T_n) \cap \mathbb{D}_{\lambda} = \{\lambda\}$ or $\sigma(T_n) \cap \mathbb{D}_{\lambda} = \emptyset$. If $\sigma(T_n) \cap \mathbb{D}_{\lambda} = \emptyset$, then $\lambda \notin \sigma(T_n)$, so that $p(\lambda I - T_n) = \beta(\lambda I - T_n) = 0$. For the case $\lambda \neq 0$, from Lemma 2.1, $p(\lambda I - T) = 0$ and $\beta(\lambda I - T) = 0$, then $\lambda \notin \sigma(T)$ a contradiction. In the case where $\lambda = 0$, $p(T_n) = q(T_n) = 0$ implies, by [7, Lemma 2 and Lemma 3] and [12, Proposition 38.6], that $0 < p(T) = q(T) < \infty$, which is impossible, because 0 is not a pole of the resolvent of T. Consequently, $\sigma(T_n) \cap \mathbb{D}_{\lambda} = \{\lambda\}$, so we have that $\lambda \in iso \sigma(T_n)$.

Now, the following argument shows that $\pi_{00}(T) \subseteq \pi_{00}(T_n)$. If $\lambda \in \pi_{00}(T)$, we have that $\lambda \in \text{iso } \sigma(T_n)$, because $\lambda \in \text{iso } \sigma(T)$. On the other hand, for

 $\lambda \neq 0$, Lemma 2.1 implies that $\alpha(\lambda I - T) = \alpha(\lambda I - T_n)$, so $0 < \alpha(\lambda I - T_n) < \infty$. For $\lambda = 0$, we claim that $\alpha(T_n) > 0$. If $\alpha(T_n) = 0$, we have that $p(T_n) = 0$. By [7, Lemma 2], $p(T) < \infty$. Moreover [7, Remark 1],

 $p(T) = \inf\{k \in \mathbb{N} : T_k \text{ is injective}\} \le n.$

Thus, by Lemma 1.1, T_n is bounded below, because T_n is injective and $R(T_n) = R(T^{n+1})$ is closed, so T_n is semi-Fredholm. Also $(T_n)^*$ has SVEP at 0, because $0 \in iso \sigma(T_n)$, then $q(T_n) < \infty$ ([1, Chapter 3]), which implies that $q(T) < \infty$ ([7, Lemma 3]). Hence $0 < p(T) = q(T) < \infty$, a contradiction, since 0 is not a pole of the resolvent of T. Thus $0 < \alpha(T_n) = \alpha(0I - T_n)$. Finally, since $N(T_n) \subseteq N(T)$ and $\alpha(T) < \infty$ it then follows the equality $\alpha(T_n) = \alpha(0I - T_n) < \infty$. Thus, $0 \in iso \sigma(T_n)$ and $0 < \alpha(0I - T_n) < \infty$. Consequently $\lambda \in \pi_{00}(T_n)$, for each $\lambda \in \pi_{00}(T)$, so we have the inclusion $\pi_{00}(T) \subseteq \pi_{00}(T_n)$.

The result of Lemma 2.3 may be extended as follows.

LEMMA 2.4. If 0 is not a pole of the resolvent of $T \in L(X)$ and $R(T^n)$ is closed, then $\pi^a_{00}(T) \subseteq \pi^a_{00}(T_n)$.

Proof. If $\lambda \notin \sigma_{\rm ap}(T)$, then $\lambda I - T$ is injective and $R(\lambda I - T)$ is closed. Now, here we consider the two different cases $\lambda \neq 0$ and $\lambda = 0$. If $\lambda \neq 0$, by Lemma 2.1, $N(\lambda I - T_n) = N(\lambda I - T)$ and $R(\lambda I - T_n) = R(\lambda I - T) \cap R(T^n)$ is closed. Hence $\lambda I - T_n$ is bounded below, and so $\lambda \notin \sigma_{\rm ap}(T_n)$. In the other case, -T bounded below implies that $0 = p(T) = p(T_n)$ and R(T) is closed. Thus T_n is inyective and, by Lemma 1.1, $R(T_n) = R(T^{n+1})$ is closed. From this we obtain that T_n is bounded below. Consequently, $\sigma_{\rm ap}(T_n) \subseteq \sigma_{\rm ap}(T)$. Similarly, as in the proof of Lemma 2.3 and taking into account Lemma 2.2, we can prove that iso $\sigma_{\rm ap}(T) \subseteq iso \sigma_{\rm ap}(T_n)$.

Finally, to show $\pi_{00}^a(T) \subseteq \pi_{00}^a(T_n)$. Observe that, if $\lambda \in \pi_{00}^a(T)$ then $\lambda \in \operatorname{iso} \sigma_{\operatorname{ap}}(T)$ and $0 < \alpha(\lambda I - T) < \infty$. Thus $\lambda \in \operatorname{iso} \sigma(T_n)$. For $\lambda \neq 0$, by Lemma 2.1, $\alpha(\lambda I - T) = \alpha(\lambda I - T_n)$, and so $0 < \alpha(\lambda I - T_n) < \infty$. In the case $\lambda = 0, \ p(T_n) = 0$ and $R(T^n)$ is closed. Similarly to the case $p(T_n) = 0$ and $R(T^n)$ closed in the proof of Lemma 2.3, one shows that $0 < \alpha(0I - T_n) < \infty$. Consequently $\pi_{00}^a(T) \subseteq \pi_{00}^a(T_n)$.

3. Weyl's theorems and restrictions

In this section we give conditions for which Weyl's theorem (resp. a-Weyl's theorem) for an operator $T \in L(X)$ is equivalent to Weyl's theorem (resp. a-

Weyl's theorem) for certain restriction T_n of T.

It is well known that if λ is a pole of the resolvent of T, then λ is an isolated point of the spectrum $\sigma(T)$. Thus, the following result is an immediate consequence of Lemma 2.1 and Lemma 2.3.

THEOREM 3.1. Suppose that 0 is not an isolated point of $\sigma(T)$. Then T satisfies (W) if and only if there exists $n \in \mathbb{N}$ such that $R(T^n)$ is closed and T_n satisfies (W).

Proof. (Necessity) Assume that there exists $n \in \mathbb{N}$ such that $R(T^n)$ is closed and T_n satisfies (W). Let $\lambda \in \pi_{00}(T)$, i.e. $\lambda \in \operatorname{iso} \sigma(T)$ and $0 < \alpha(\lambda I - T) < \infty$. By hypothesis and Lemma 2.3, $0 \neq \lambda \in \pi_{00}(T_n) = \sigma(T_n) \setminus \sigma_w(T_n)$. Then $\alpha(\lambda I - T_n) = \beta(\lambda I - T_n) < \infty$ since $\lambda I - T_n$ is a Weyl operator, and so by Lemma 2.1

$$\alpha(\lambda I - T) = \alpha(\lambda I - T_n) = \beta(\lambda I - T_n) = \beta(\lambda I - T) < \infty.$$

Furthermore, $\lambda \in \sigma(T)$ because $\lambda \in \sigma(T_n) \subseteq \sigma(T)$. Thus $\lambda I - T$ is Weyl, and hence $\lambda \in \sigma(T) \setminus \sigma_w(T)$. But since $\sigma(T) \setminus \sigma_w(T) \subseteq \pi_{00}(T)$, it then follows that $\pi_{00}(T) = \sigma(T) \setminus \sigma_w(T)$, which implies that T satisfies (W).

(Sufficiency) Suppose that T satisfies (W). Then for n = 0, $R(T^0) = X$ is closed and $T_0 = T$ satisfies (W).

In the same way as in Theorem 3.1, we have the following characterization of a-Weyl theorem for an operator throughout a-Weyl theorem for some restriction of the operator.

THEOREM 3.2. Suppose that 0 is not an isolated point of $\sigma(T)$. Then T satisfies (aW) if and only if there exists $n \in \mathbb{N}$ such that $R(T^n)$ is closed and T_n satisfies (aW).

Proof. (Necessity) Suppose that there exists $n \in \mathbb{N}$ such that $R(T^n)$ is closed and T_n satisfies (aW). Let $\lambda \in \pi_{00}^a(T)$, by hypothesis and Lemma 2.4, $\lambda \in \pi_{00}^a(T_n) = \sigma_{ap}(T_n) \setminus \sigma_{uw}(T_n)$. Thus $\lambda I - T_n$ is a upper semi-Fredholm operator, because $\lambda I - T_n$ is a upper semi-Weyl operator. Since $\lambda I - T_n$ is upper semi-Fredholm, it follows that $R((\lambda I - T_n)^m)$ is closed in $R(T^n)$ for all $m \in \mathbb{N}$, and so by Lemma 2.2, there exists $k \in \mathbb{N}$ such that $R((\lambda I - T)^k)$ is closed. But since $\alpha(\lambda I - T) < \infty$, then $\alpha((\lambda I - T)^k) < \infty$. That is, $(\lambda I - T)^k$ is a upper semi-Fredholm operator, which implies that $\lambda I - T$ is upper semi-Fredholm. Furthermore, T has SVEP at λ because $\lambda \in \text{iso } \sigma_{ap}(T)$. Consequently, if $\lambda \in \pi_{00}^a(T)$ then $\lambda I - T$ is upper semi-Fredholm and $p(\lambda I - T) < \infty$. Hence $\lambda I - T$ is upper semi-Weyl and $\lambda \in \sigma_{ap}(T)$, thus $\lambda \in \sigma_{ap}(T) \setminus \sigma_{uw}(T)$, and we obtain the inclusion $\pi_{00}^a(T) \subseteq \sigma_{ap}(T) \setminus \sigma_{uw}(T)$. But since $\sigma_{ap}(T) \setminus \sigma_{uw}(T) \subseteq \pi_{00}^a(T)$, it then follows that $\pi_{00}^a(T) = \sigma_{ap}(T) \setminus \sigma_{uw}(T)$, which implies that T satisfies (aW).

(Sufficiency) If T satisfies (aW). Then for n = 0, trivially $R(T^0) = X$ is closed and $T_0 = T$ satisfies (aW).

Clearly, T has SVEP at every isolated point of $\sigma(T)$. Thus, by Theorem 3.1 and Theorem 3.2, we have the following corollary.

COROLLARY 3.3. If T does not have SVEP at 0, then:

- (i) there exists $n \in \mathbb{N}$ such that $R(T^n)$ is closed and T_n satisfies (W) if and only if T satisfies (W).
- (ii) there exists $n \in \mathbb{N}$ such that $R(T^n)$ is closed and T_n satisfies (aW) if and only if T satisfies (aW).

Remark 3.4. There are more alternative ways to express Corollary 3.3. We may replace the assumption T does not have SVEP at 0 by: $0 \notin \partial \sigma(T)$, $p(T) = \infty$ or $q(T) = \infty$.

References

- P. AIENA, "Fredholm and Local Spectral Theory, with Application to Multipliers", Kluwer Academic Publishers, Dordrecht, 2004.
- [2] P. AIENA, Classes of operators satisfying a-Weyl's theorem Studia Math. 169 (2005), 105-122.
- [3] P. AIENA, E. APONTE, E. BALZAN, Weyl type theorems for left and right polaroid operators, *Integral Equations Operator Theory* 66 (2010), 1–20.
- [4] P. AIENA, M.T. BIONDI, C. CARPINTERO, On Drazin invertibility, Proc. Amer. Math. Soc. 136 (2008), 2839–2848.
- [5] P. AIENA, P. PEÑA, Variation on Weyl's theorem, J. Math. Anal. Appl. 324 (2006), 566-579.
- [6] M. AMOUCH, Weyl type theorems for operators satisfying the single-valued extension property, J. Math. Anal. Appl. 326 (2007), 1476-1484.
- [7] C. CARPINTERO, O. GARCÍA, E. ROSAS, J. SANABRIA, B-Browder spectra and ocalized SVEP, *Rend. Circ. Mat. Palermo* (2) 57 (2008), 241–255.
- [8] L.A. COBURN, Weyl's Theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285–288.

- [9] R. CURTO, Y.M. HAN, Generalized Browder's and Weyl's theorems for Banach space operators, J. Math. Anal. Appl. 336 (2007), 1424-1442.
- [10] B.P. DUGGAL, Polaroid operators satisfying Weyl's theorem, *Linear Algebra Appl.* 414 (2006), 271–277.
- [11] J.K. FINCH, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61-69.
- [12] H. HEUSER, "Functional Analysis", John Wiley & Sons, Chichester, 1982.
- [13] M. MBEKHTA, V. MÜLLER, On the axiomatic theory of the spectrum II, Studia Math. 119 (1996), 129–147.
- [14] J.P. LABROUSSE, Les opérateurs quasi Fredholm: une généralization des opérateurs semi Fredholm, *Rend. Circ. Mat. Palermo (2)* **29** (1980), 161– 258.
- [15] V. RAKOČEVIĆ, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), 915–919.
- [16] H. ZGUITTI, A note on generalized Weyl's theorem, J. Math. Anal. Appl. 316 (2006), 373-381.