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1 Escuela de Matemática, Fac. Ciencias, Universidad Central de Venezuela

Apartado Postal 47686, Caracas 1041-A, Venezuela

ramonbruzual.ucv@gmail.com , ramon.bruzual@ciens.ucv.ve
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1. Introduction

The notion of uni-parametric local semigroups of operators appears in
several problems of mathematical analysis. In particular local semigroups
of isometric operators appear in some problems on Fourier representation of
positive definite functions of a real variable, where the unitary extensions of
the semigroup provide solutions of the problem. To such problems belongs
the classical theorem of M.G. Krĕın [13], which asserts that every continuous
positive definite function defined on an interval I ⊂ R can be extended to a
continuous positive definite function on R.

∗ First and second authors were supported in part by the CDCH of the Universidad
Central de Venezuela. Grant PI-03-8623-2013/2
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The study of uni-parametric local semigroups of isometries in Pontrjagyn
spaces was started by Grossman and Langer in [11], who proved the existence
of unitary extensions of such semigroups and derived from this result a gener-
alization of Krĕın’s theorem for κ-indefinite functions. In the case of Hilbert
spaces such study was developed independently by the first author in [4], for
the more general case of local semigroups of contractions, giving several appli-
cations to generalized Toeplitz kernels as well as a simple proof of the Krĕın
extension theorem.

It is known that the Krĕın theorem may fail in the two-dimensional case,
i.e., not every continuous positive definite function defined on a rectangle
extends to a positive definite function in the whole plane (see the paper of W.
Rudin [18]). However A. Devinatz [8] proved that such an extension exists if
the positive definite function satisfies some additional conditions, which were
later relaxed by G.I. Èskin [10], for more information see the book of Iu.
Berezanski [3].

The notion of n-parametric local semigroups of isometries can be defined
in a natural way and a n-tuple of infinitesimal generators can be attached to
it. F. Peláez [16] gave a necessary and sufficient condition for a bi-parametric
local semigroup in a Hilbert space to extend to a two parameter unitary group
and, with this result and some results of Devinatz, obtained a new proof of the
above mentioned theorem of Devinatz. The bi-parametric case was studied
later in [5], where an extension result for bi-parametric local semigroups of
isometric operators was obtained, as an application of this result a new proof
of the case n = 2 of the Èskin extension result was given. A result about
commutative self-adjoint extensions of a pair of symmetric operators given by
A. Koranyi in [12] was an important tool in that paper. The main results of
[5] were generalized to the κ-indefinite case in [6], by the first and the second
author.

In the present paper we discuss the problem of unitary extensions for n-
parametric local semigroups of isometric operators on Hilbert spaces, with
a different approach to that used in [5]. The paper is organized as follows:
In Section 2 we give some preliminary results and definitions, in Section 3 we
obtain some results about commutative unitary extensions which are necessary
tools in this paper, in Section 4 we prove our extension result for n-parametric
local semigroups of isometric operators (see Theorem 15) and finally, in Section
5 we give a new proof of the Èskin result (see Theorem 23).
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2. Preliminaries

As usual if
(
H, ⟨ , ⟩H

)
is a Hilbert space, ∥ ∥H will denote the norm on H

and L(H) will denote the space of the bounded linear transforms on H. If T
is a linear operator D(T ) and R(T ) will denote the domain and the rank of
T respectively and, if T is closable, the closure of T will be denoted by T .
Also by N, Z, R and C we will denote the sets of natural, integers, real and
complex numbers.

2.1. Symmetric and self-adjoint operators

Let H be a Hilbert space and let A : D(A) → H be a densely defined linear
operator. The operator A is said to be symmetric if

⟨Af, g⟩H = ⟨f,Ag⟩H for all f, g ∈ D(A) .

Symmetric operator satisfies A ⊂ A∗. If A = A∗ the operator is called self-
adjoint.

Following the usual terminology about unbounded self-adjoint operators
we give the following definition, for more details see [17, page 271].

Definition 1. Two self-adjoint operators are said to commute if their
spectral measures commute.

Remark 2. Given a pair of symmetric operators A and B, the problem
of finding conditions for the existence of a pair of commuting self-adjoint
operators Ã and B̃ extending A and B respectively is not easy. It is important
to recall the surprising counterexample given by E. Nelson, which shows how
difficult is to deal with unbounded operators [15]: There exist two symmetric
operators A and B on a Hilbert space H having a common invariant domain D
such that for all real a and b, aA+ bB is essentially self-adjoint and such that
for all x ∈ D ABx = BAx, but such that the spectral measures of A and B
do not commute. See [17, Chapter VIII, Section 5] for additional comments.

An operator A is called skew-symmetric if iA is symmetric and it is called
skew-adjoint if iA is self-adjoint. Symmetric and skew-symmetric operators
are closable. A symmetric operator is called essentially self-adjoint if its
closure is self-adjoint.
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2.2. Cayley transform

Let H be a Hilbert space and let A : D(A) → H be a symmetric operator,
then it holds that

∥Af + if∥2H = ∥Af∥2H + ∥f∥2H = ∥Af − if∥2H for all f ∈ D(A) .

Therefore the operator TA : R(A+ iI) → R(A− iI) defined by

TA(Af + if) = Af − if for f ∈ D(A)

is isometric. The operator TA is called the Cayley transform of A.
The deficiency indexes of the operator A are defined by

d+(A) = dimker(A∗ + iI) = dim
(
R(A− iI)

)⊥
and

d−(A) = dimker(A∗ − iI) = dim
(
R(A+ iI))⊥.

The following properties of the Cayley transform will be used in this paper
(for details see [9, 19]).

1. Let A be a symmetric operator, then:

(a) TA is a partial isometric operator, with domain R(A+ iI) and rank
R(A− iI);

(b) TA is closed if and only if A is closed;

(c) R(I − TA) = D(A), I − TA is one to one (that is, 1 is not an
eigenvalue of TA), and A can be reconstructed from TA by the
formula

A = i(I + TA)(I − TA)
−1;

(d) TA is unitary if and only if A is self-adjoint;

(e) A is essentially self-adjoint if and only if d+(A) = d−(A) = 0.

2. If T is a partial isometric operator such that 1 is not an eigenvalue of
T , then T is the Cayley transform of a symmetric operator on H.

3. If A and B are symmetric operators on H, then A ⊂ B if and only if
TA ⊂ TB.

4. If A is a symmetric operator and V ∈ L(H) then the following conditions
are equivalent
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(a) VD(A) ⊂ D(A) and V A = AV |D(A);

(b) VR(A+ iI) ⊂ R(A+ iI) and V TA = TAV |R(A+iI).

In other words: V commutes with A if and only if V commutes with TA.

5. If A is a skew-symmetric operator then the Cayley transform of iA is
given by

TiA(Af + f) = Af − f for f ∈ D(A) .

2.3. Multi-parametric unitary groups

The following n-parametric version of the Stone theorem will be used (see,
for example, [17, Theorem VIII.13]).

Suppose that A1, · · · , An are self-adjoint operators on the Hilbert space
H. Then the following conditions are equivalent:

(a) the operators A1, · · · , An commute;

(b) the Cayley transforms operators TA1 , · · · , TAn commute;

(c) the n-tuple (A1, · · · , An) generates a strongly continuous group of uni-
tary operators on L(H). This group is given by

U(x1, . . . , xn) = eiA1x1 · · · eiAnxn

for (x1, . . . , xn) ∈ Rn.

2.4. Uni-parametric local semigroups of isometric operators

According to the definition given in [4], if a is a positive real number and
H is a Hilbert space, a uni-parametric local semigroup of isometric operators
is a family (S(x),H(x))x∈[0,a) such that:

(i) for each x ∈ [0, a) we have that H(x) is a closed subspace of H and
H(0) = H;

(ii) for each x ∈ [0, a), S(x) : H(x) → H is a linear isometry and S(0) = IH;

(iii) H(z) ⊂ H(x) if x, z ∈ [0, a) and x ≤ z;

(iv) if x, z ∈ [0, a) and x+ z ∈ [0, a) then

S(z)H(x+ z) ⊂ H(x)

and
S(x+ z)h = S(x)S(z)h

for all h ∈ H(x+ z);
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(v)
∪
z>x

z∈[0,a)

H(z) is dense in H(x) for every x ∈ [0, a).

The local semigroup is said to be strongly continuous if for all r ∈ [0, a)
and f ∈ H(r) the function x 7→ S(x)f , from [0, r] to H, is continuous.

The infinitesimal generator of the semigroup if defined by

Ah = lim
t→0+

S(t)h− h

t
for h ∈ D(A)

where

D(A) =

h ∈
∪

r∈(0,a)

H(r) : lim
t→0+

S(t)h− h

t
exists

 .

Remark 3. For the strongly continuous case, it can be proved (see [4] for
details) that D(A) is dense in H, A : D(A) → H is a skew-symmetric operator
and if Ã is a skew-adjoint extension of A to a larger Hilbert space then

S(r) = erÃ|H(r) for all r ∈ [0, a) .

It also holds that the local semigroup (S(r),H(r))r∈[0,a) has a unique unitary
extension to the same Hilbert space H if and only if A is essentially skew-
adjoint.

3. Some results about commutative unitary extensions

In this section we prove some results about commutative unitary extensions
of a group of unitary operators and a partial isometric operator, which are
necessary for our main result. The following two propositions will be useful.

Proposition 4. Let H be a Hilbert space.

(a) If C ∈ L(H) is a contraction such that 1 is not an eigenvalue of C, then
1 is not an eigenvalue of the minimal unitary dilation of C.

(b) If D is a closed subspace of H and T : D → H is a partial isometric
operator such that 1 is not an eigenvalue of T , then 1 is not an eigenvalue
of the contraction operator TPH

D .
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Proof. (a) Let G =

+∞⊕
−∞

H, according to the construction given in [20,

Chapter 1, Section 5] the minimal unitary dilation of C is the restriction to a
suitable subspace of G of the unitary operator U : G → G defined by

(Ug)−1 = DCh0 − C∗h1 ,

(Ug)0 = Ch0 +DC∗h1 ,

(Ug)j = hj+1 (j ̸= 0,−1) ,

for g = (hn)
+∞
n=−∞ ∈ G, where

DC = (I − C∗C)1/2 , DC∗ = (I − CC∗)1/2.

If g = (hn)
+∞
n=−∞ ∈ G and Ug = g it must hold that

h−1 = DCh0 − C∗h1 ,

h0 = Ch0 +DC∗h1 ,

hj = hj+1 (j ̸= 0,−1) .

From hj = hj+1 if j ̸= 0,−1 we obtain that hj = 0 if j ≥ 1 or j ≤ −2, so we
have that h0 = Ch0. Since 1 is not an eigenvalue of C we have that h0 = 0
and finally

h−1 = DCh0 − C∗h1 = 0 .

Therefore g = 0, so 1 is not an eigenvalue of U .
(b) Suppose that h ∈ H and that TPH

D h = h, then

∥PH
D h∥2H + ∥PH

D⊥h∥2H = ∥h∥2H = ∥TPH
D h∥2H ≤ ∥PH

D h∥2H ,

so we have that PH
D⊥h = 0, thus h ∈ D and Th = h. Therefore h = 0.

Proposition 5. Let H be a Hilbert space and let Γ be an abelian group.
Suppose that:

(a) D(T ) is a closed subspace of H and T : D(T ) → H is a partial isometric
operator;

(b) (V (γ))γ∈Γ ⊂ L(H) is a unitary representation of Γ on L(H);

(c) V (γ)D(T ) ⊂ D(T ) for all γ ∈ Γ;
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(d) for all γ ∈ Γ and h ∈ D(T ),

V (γ)Th = TV (γ)h .

If T̃ ∈ L(F) is the minimal unitary dilation of TPH
D , then⟨

T̃ jV (γ)h, T̃mV (γ)h
⟩
F
=

⟨
T̃ jh, T̃mh

⟩
F

for all j,m ∈ Z , γ ∈ Γ .

Proof. Since (V (γ))γ∈Γ is a unitary group we have that V (γ)D(T ) = D(T )
for all γ ∈ Γ, so the operators V (γ) and PH

D(T ) commute.
For h ∈ H and γ ∈ Γ we have that

V (γ)
(
TPH

D(T )

)
h = TV (γ)PH

D(T )h =
(
TPH

D(T )

)
V (γ)h .

Let γ ∈ Γ and j,m ∈ Z such that j ≥ m, then⟨
T̃ jV (γ)h, T̃mV (γ)h

⟩
F
=

⟨
T̃ j−mV (γ)h, V (γ)h

⟩
F

=

⟨(
TPH

D(T )

)j−m
V (γ)h, V (γ)h

⟩
H

=

⟨
V (γ)

(
TPH

D(T )

)j−m
h, V (γ)h

⟩
H

=

⟨(
TPH

D(T )

)j−m
h, h

⟩
H

=
⟨
T̃ j−mh, h

⟩
F

=
⟨
T̃ jh, T̃mh

⟩
F
.

The case j < m is analogous.

Theorem 6. Let H be a Hilbert space and let Γ be an abelian group.
Suppose that:

(a) D(T ) is a closed subspace of H and T : D(T ) → H is a partial isometric
operator such that 1 is not an eigenvalue of T .

(b) (V (γ))γ∈Γ ⊂ L(H) is a unitary representation of Γ on L(H).

(c) V (γ)D(T ) ⊂ D(T ) for all γ ∈ Γ.
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(d) for all γ ∈ Γ and h ∈ D(T ),

V (γ)Th = TV (γ)h .

Then there exist a Hilbert space F containing H as a closed subspace, a
unitary operator T̃ ∈ L(F) and a unitary representation (Ṽ (γ))γ∈Γ ⊂ L(F)
such that:

(i) Ṽ (γ)T̃ = T̃ Ṽ (γ) for all γ ∈ Γ;

(ii) T̃ |D(T ) = T ;

(iii) 1 is not an eigenvalue of T̃ ;

(iv) Ṽ (γ)|H = V (γ) for all γ ∈ Γ.

If Γ is a topological group and (V (γ))γ∈Γ is strongly continuous then

(Ṽ (γ))γ∈Γ can be chosen to be strongly continuous.

Proof. Let T̃ ∈ L(F) be the minimal unitary dilation of the contraction
operator TPH

D . We have that T̃ extends T and, from Proposition 4, it follows

that 1 is not an eigenvalue of T̃ .
The space F is given by

F =
+∞∨

n=−∞
T̃nH .

If f =
∑N

j=−N ajT̃
jhj ∈ F (aj ∈ C, hj ∈ H), from Proposition 5 it follows

that ∥∥∥∥∥∥
N∑

j=−N

ajT̃
jV (γ)hj

∥∥∥∥∥∥
F

=

∥∥∥∥∥∥
N∑

j=−N

ajT̃
jhj

∥∥∥∥∥∥
F

for all γ ∈ Γ .

Since the set of the functions of the form
∑N

j=−N ajT̃
jhj (aj ∈ C, hj ∈ H)

is dense in F , for each γ ∈ Γ we have a unitary operator Ṽ (γ) : G → G which
satisfies

Ṽ (γ)

 N∑
j=−N

aj T̃
jhj

 =
N∑

j=−N

ajT̃
jV (γ)hj .

From the definition of Ṽ (γ) it follows that Ṽ (γ)T̃ = T̃ Ṽ (γ), Ṽ (γ)|H =
V (γ) for all γ ∈ Γ and that (Ṽ (γ))γ∈Γ is a group of unitary operators.

The last part about continuity also follows from the definition of Ṽ (γ).
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Remarks 7. (a) This theorem can also be deduced from [12, Lemma
2], but the part that refers to the eigenvalue is easily obtained following the
construction given here. Another proof can be obtained following the idea of
the proof of part (iii) of [1, Theorem 1, p. 330].

(b) Corollary 9 can be deduced from a result slightly different than The-
orem 6, but in the context of indefinite metric spaces, ([7, Theorem 3.6]). Its
proof uses a modified Cayley transform, mostly considered in indefinite metric
spaces. Also, for the particular case Γ = R see [14, Theorem 2.5].

Corollary 8. Let H be a Hilbert space and let Γ be an abelian group.
Suppose that:

(a) D(A) is a dense linear manifold of H and A : D(A) → H is a symmetric
operator;

(b) (V (γ))γ∈Γ ⊂ L(H) is a unitary representation of Γ on L(H);

(c) V (γ)D(A) ⊂ D(A) for all γ ∈ Γ;

(d) for all γ ∈ Γ and h ∈ D(A),

V (γ)Ah = AV (γ)h .

Then there exist a Hilbert space F containing H as a closed subspace, a
self-adjoint operator Ã defined on a dense linear manifold D(Ã) of F and a
unitary representation (Ṽ (γ))γ∈Γ ⊂ L(F) such that:

(i) Ṽ (γ)D(Ã) ⊂ D(Ã) for all γ ∈ Γ;

(ii) Ṽ (γ)Ãh = ÃṼ (γ)h for all γ ∈ Γ and h ∈ D(Ã);

(iii) Ã|D(A) = A;

(iv) Ṽ (γ)|H = V (γ) for all γ ∈ Γ.

If A is essentially self-adjoint, then the domain of the extensions can be
the same Hilbert space H. That is we can take F = H.

If Γ is a topological group and (V (γ))γ∈Γ is strongly continuous then

(Ṽ (γ))γ∈Γ can be chosen to be strongly continuous.

Proof. From the construction of A if follows that for all γ ∈ Γ, V (γ)D(A) ⊂
D(A) and

V (γ)Ah = AV (γ)h if h ∈ D(A) .
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So we have that the Cayley transform TA, of A, and (Ṽ (γ))γ∈Γ satisfy
the conditions of Theorem 6. Therefore there exist a Hilbert space F con-
taining H as a closed subspace, a unitary operator T̃ ∈ L(F) and a unitary
representation (Ṽ (γ))γ∈Γ ⊂ L(F) such that Ṽ (γ)T̃ = T̃ Ṽ (γ) for all γ ∈ Γ,

T̃ |D(TA) = TA, 1 is not an eigenvalue of T̃ and Ṽ (γ)|H = V (γ) for all γ ∈ Γ.

Taking Ã as the inverse Cayley transform of T̃ we obtain (i), (ii), (iii)
and (iv).

If A is essentially self-adjoint we can take T̃ = TA and Ṽ = V .
The last part about continuity follows from the last part of Theorem 6.

Corollary 9. Let H be a Hilbert space and let Γ be an abelian group.
Suppose that:

(a)
(
W (t),H(t)

)
t∈[0,a) is a strongly continuous uni-parametric local semi-

group of isometric operators on H;

(b) (V (γ))γ∈Γ ⊂ L(H) is a unitary representation of Γ on L(H);

(c) V (γ)H(t) ⊂ H(t) for all γ ∈ Γ and t ∈ [0, a);

(d) for all γ ∈ Γ, t ∈ [0, a) and h ∈ H(t),

V (γ)W (t)h =W (t)V (γ)h .

Then there exist a Hilbert space F containing H as a closed subspace, a
strongly continuous group of unitary operators (W̃ (t))t∈R ⊂ L(F) and a uni-
tary representation (Ṽ (γ))γ∈Γ ⊂ L(F) such that:

(i) Ṽ (γ)W̃ (t)f = W̃ (t)Ṽ (γ)f for all γ ∈ Γ, t ∈ R and h ∈ F ;

(ii) W̃ (t)|H(t) =W (t) for all t ∈ [0, a);

(iii) Ṽ (γ)|H = V (γ) for all γ ∈ Γ.

If the local semigroup (W (t),H(t))t∈[0,a) has a unique unitary extension
on the Hilbert space H, then the domain of the unitary extensions can be the
same Hilbert space H. That is we can take F = H.

If Γ is a topological group and (V (γ))γ∈Γ is strongly continuous then

(Ṽ (γ))γ∈Γ can be chosen to be strongly continuous.

Proof. Let A be the infinitesimal generator of the local semigroup
(W (t),H(t))t∈[0,a), then A is a skew-symmetric operator with domain

D(A) =

h ∈
∪

r∈(0,a)

H(r) : lim
t→0+

W (t)h− h

t
exists

 .
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For γ ∈ Γ , r ∈ (0, a) and h ∈ Hr we have that

V (γ)

(
W (t)h− h

t

)
=
W (t)V (γ)h− V (γ)h

t
for t ∈ (0, r) ,

so V (γ)D(A) ⊂ D(A) and V (γ)Ah = AV (γ)h for all γ ∈ Γ and h ∈ D(A).

Therefore, from Corollary 8, we have that there exist a Hilbert space F
containing H as a closed subspace, a skew-adjoint operator Ã defined on a
dense linear manifold D(Ã) of F and a unitary representation (Ṽ (γ))γ∈Γ ⊂
L(F) such that Ṽ (γ)D(Ã) ⊂ D(Ã) for all γ ∈ Γ, Ṽ (γ)Ãh = ÃṼ (γ)h for all
γ ∈ Γ and h ∈ D(Ã), Ã|D(A) = A and Ṽ (γ)|H = V (γ) for all γ ∈ Γ. Taking

W̃ (t) = eAt we obtain (i), (ii) and (iii).

The last part follows from the last part of Corollary 8.

4. Multi-parametric local semigroups of isometric operators

Let n be a positive integer and let −→x = (x1, . . . , xn) and
−→z = (z1, . . . , zn)

be points of Rn. We will say that −→x < −→z if xj < zj for j = 1, . . . , n.

Suppose that −→a = (a1, . . . , an) ∈ Rn and aj > 0, for j = 1, . . . , n. Let
Q = [0, a1)× · · · × [0, an).

By −→ej we will denote the vector (0, . . . , 0, 1, 0, . . . , 0) where the number 1
is in the place corresponding to j.

Definition 10. Let H be a Hilbert space. A n-parametric local semi-
group of isometric operators is a family

(
S(−→x ),H(−→x )

)
−→x ∈Q such that:

(i) for each −→x ∈ Q we have that H(−→x ) is a closed subspace of H and

H(
−→
0 ) = H;

(ii) for each −→x ∈ Q, S(−→x ) : H(−→x ) → H is a linear isometry and S(
−→
0 ) = IH;

(iii) H(−→z ) ⊂ H(−→x ) if −→x ,−→z ∈ Q and −→x ≤ −→z ;

(iv) if −→x ,−→z ∈ Q and −→x +−→z ∈ Q then

S(−→z )H(−→x +−→z ) ⊂ H(−→x )

and

S(−→x +−→z )h = S(−→x )S(−→z )h

for all h ∈ H(−→x +−→z );
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(v)
∪

−→z >−→x−→z ∈Q

H(−→z ) is dense in H(−→x ) for every −→x ∈ Q.

The local semigroup is said to be strongly continuous if for all −→r =
(r1, . . . , rn) ∈ Q and f ∈ H(−→r ) the function −→x 7→ S(−→x )f , from [0, r1] ×
· · · × [0, rn] to H, is continuous.

Remark 11. Note that if
(
S(−→x ),H(−→x )

)
−→x ∈Q is a strongly continuous n-

parametric local semigroup of isometric operators, then for each j ∈ {1, . . . , n}
the family

(
S(t−→ej ),H(t−→ej )

)
t∈[0,aj)

is a strongly continuous uni-parametric local

semigroup of isometric operators. So, if we denote by A(j) the infinitesimal
generator of this semigroup, we have that the n-parametric local semigroup
can be extended to a strongly continuous unitary group, with parameter in
Rn, on a larger Hilbert space if and only if the operators iA(1), . . . , iA(n) have
commuting self-adjoint extensions to a larger Hilbert space.

We also have that for j,m ∈ {1, . . . , n}, j ̸= m and xm ∈ [0, am) the family(
S(t−→ej )|H(t−→ej+xm

−→em),H(t−→ej + xm
−→em)

)
t∈[0,aj)

is a uni-parametric local semigroup of isometric operators on H(xm
−→em). For

simplicity, when we refer to this local semigroup, we will use S(t−→ej ) instead
of S(t−→ej )|H(t−→ej+xm

−→em).

4.1. The bi-parametric case

Suppose that
(
S(x, y),H(x, y)

)
(x,y)∈[0,a)×[0,b)

is a strongly continuous bi-

parametric local semigroup of isometric operators on the Hilbert space H.
For x ∈ [0, a), Bx will denote the infinitesimal generator of the uni-

parametric local semigroup of isometric operators
(
S(0, y),H(x, y)

)
y∈[0,b) ⊂

L(H(x, 0)), and for y ∈ [0, b), Ay will denote the infinitesimal generator of the
uni-parametric local semigroup of isometric operators

(
S(x, 0),H(x, y)

)
x∈[0,a)

⊂ L(H(0, y)).

Proposition 12. With the same notation as before it holds that

S(0, y)D(Ay) ⊂ D(A0)

and

S(0, y)Ayf = S(0, y)A0f = A0S(0, y)f for all f ∈ D(Ay) .
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Proof. Let f ∈ D(Ay), then f ∈
∪

x∈[0,a)H(x, y) and

lim
t→0+

S(t, 0)f − f

t

exists. So we have that S(0, y)f ∈
∪

x∈[0,a)H(x, 0) and

S(0, y)

(
S(t, 0)f − f

t

)
=
S(t, y)f − S(0, y)f

t

=
S(t, 0)S(0, y)f − S(0, y)f

t
,

for t positive and small enough. Taking limit as t → 0+ we obtain the
result.

Theorem 13. Let
(
S(x, y),H(x, y)

)
(x,y)∈[0,a)×[0,b)

be a strongly continu-

ous bi-parametric local semigroup of isometric operators on the Hilbert space
H. Suppose that for every y ∈ [0, b), the uni-parametric local semigroup of iso-
metric operators

(
S(x, 0),H(x, y)

)
x∈[0,a), has a unique extension to a strongly

continuous group of unitary operators on the Hilbert space H(0, y). Then:

(i) For each y ∈ [0, b) it holds that TiA0
H(0, y) ⊂ H(0, y) and

TiA0
S(0, y) = S(0, y)TiA0

|H(0,y) .

(ii) The local semigroup
(
S(x, y),H(x, y)

)
(x,y)∈[0,a)×[0,b)

can be extended to

a strongly continuous group of unitary operators (U(x, y))(x,y)∈R2 on a
larger Hilbert space.

(iii) If we also suppose that for every x ∈ [0, a), the uni-parametric local
semigroup of isometric operators

(
S(0, y),H(x, y)

)
y∈[0,b), has a unique

extension to a strongly continuous group of unitary operators on the
Hilbert space H(x, 0), then

(1) the local semigroup
(
S(x, y),H(x, y)

)
(x,y)∈[0,a)×[0,b)

has a unique

extension to a strongly continuous group of unitary operators
(U(x, y))(x,y)∈R2 on L(H):

(2) the unitary operators TiA0
and TiB0

commute, that is

TiA0
TiB0

= TiB0
TiA0

.
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Proof. (i) It holds that the operator A0 extends Ay and from the hypoth-
esis it follows that iA0 and iAy are essentially self-adjoint operators on the
Hilbert spaces H and H(0, y) respectively. So we have that TiA0

is a unitary
operator on H, which extends the unitary operator TiAy

on H(0, y). Therefore

TiA0
H(0, y) ⊂ H(0, y).

Since R(I +Ay) is dense in H(0, y) we only need to show that

TiA0
S(0, y)f = S(0, y)TiA0

f

for f ∈ R(I +Ay).
Let f ∈ R(I +Ay), then there exists g ∈ D(Ay) such that f = (I +Ay)g.
From Proposition 12 it follows that S(0, y)(I + Ay)g = (I + A0)S(0, y)g,

so we have

TiA0
S(0, y)f =

(
A0 − I

)(
I +A0

)−1
S(0, y)

(
I +Ay

)
g

=
(
A0 − I

)
S(0, y)g

= S(0, y)
(
A0 − I

)
g

= S(0, y)TiA0
f .

(ii) For x ∈ R let V (x) the unitary operator defined by V (x) = eA0x, then
(V (x))x∈R is a strongly continuous group of unitary operators. From (i) it
follows that, V (x)H(0, y) ⊂ H(0, y) and

V (x)S(0, y) = S(0, y)V (x)|H(0,y)

for all x ∈ R and y ∈ [0, b).
So, from Corollary 9 it follows that there exist a Hilbert space F containing

H as a closed subspace, a strongly continuous group of unitary operators
(W̃ (y))y∈R ⊂ L(F) and a unitary representation (Ṽ (x))x∈R ⊂ L(F) such that

Ṽ (x)W̃ (y)f = W̃ (y)Ṽ (x)f for all x, y ∈ R and f ∈ F ,

W̃ (y)|H(0,y) = S(0, y) for all y ∈ [0, b) ,

Ṽ (x)|H = V (x) for all x ∈ R .

Taking
U(x, y) = Ṽ (x)W̃ (y)

we obtain the desired result.
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(iii) From (i) and Corollary 9 it follows that we can take F = H in the
last construction, so (1) follows. To prove the uniqueness note that if we have
that U(x, y) = eAxeBy, where iA and iB are self-adjoint operators on H, then
these operators must be self-adjoint extensions of iA0 and iB0 respectively.
Since iA0 and iB0 are essentially self-adjoint operators the uniqueness result
follows.

Finally, since U(x, y) = eA0xeB0y is a unitary group, we have that TA0
and

TB0
commute.

Remark 14. Another proof of (ii) was given in [5].

4.2. The multi-parametric case

Theorem 15. Let a1, . . . , an, b be positive real numbers, Q = [0, a1)×· · ·×
[0, an) and let

(
S(−→x , y),H(−→x , y)

)
(−→x ,y)∈Q×[0,b)

be a (n+1)-parametric strongly

continuous local semigroup of isometric operators on the Hilbert space H.

Suppose that:

(a) For each pair j,m ∈ {1, . . . , n} such that j ̸= m and xm ∈ [0, am) each
of the uni-parametric local semigroup of isometric operators(

S(t−→ej , 0),H(t−→ej + xm
−→em, 0)

)
t∈[0,aj)

has a unique unitary extension to a strongly continuous group of unitary
operators on the Hilbert space H(xm

−→em, 0).

(b) For each y ∈ [0, b) and j ∈ {1, . . . , n}, each of the uni-parametric local
semigroup of isometric operators(

S(t−→ej , 0),H(t−→ej , y)
)
t∈[0,aj)

has a unique extension to a strongly continuous group of unitary oper-
ators on the Hilbert space H(

−→
0 , y).

Then there exist a Hilbert space F containing H as a closed subspace and
a strongly continuous group of unitary operators (U(−→x , y))(−→x ,y)∈Rn+1 on L(F)
such that

U(−→x , y)|H(−→x ,y) = S(−→x , y) .
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Proof. For j ∈ {1, . . . , n} let A
(j)
0 denote the infinitesimal generator of the

uni-parametric local semigroup
(
S(t−→ej , 0),H(t−→ej , 0)

)
t∈[0,aj)

, then the opera-

tors iA
(j)
0 are essentially self-adjoint.

From (iii) of Theorem 13, considering the bi-parametric local semigroup
of isometric operators(

S(t−→ej + r−→em, 0),H(t−→ej + r−→em, 0)
)
(t,r)∈[0,aj)×[0,am)

,

we obtain that, for j,m ∈ {1, . . . , n}, the unitary operators T
iA

(j)
0

and T
iA

(m)
0

commute. So (iA1, · · · , iAn) generates a strongly continuous group of unitary
operators on L(H).

Also from (i) of Theorem 13, considering the bi-parametric local semigroup
of isometric operators

(
S(t−→ej , y),H(t−→ej , y)

)
(t,y)∈[0,aj)×[0,b)

, we obtain that, for

j ∈ {1, . . . , n} and y ∈ [0, b),

T
iA

(j)
0

H(0, y) ⊂ H(0, y)

and
T
iA

(j)
0

S(0, y) = S(0, y)T
iA

(j)
0

|H(0,y) .

Therefore if we consider the strongly unitary group of operators on L(H),
with parameter on Rn defined by

V (−→x ) = eA
(1)
0 x1 · · · eA

(n)
0 xn ,

we obtain that, for −→x ∈ Rn and y ∈ [0, b), V (−→x )H(0, y) ⊂ H(0, y) and

V (−→x )S(0, y) = S(0, y)V (−→x ) |H(0,y) ,

so the result follows from Corollary 9.

5. Extension of positive definite functions on a
multi-dimensional box

In this section some results and definitions given in [4, 5], for the one
and the two parameters case, are extended to the multi-parametric case, see
also [8].

Let a1, . . . , an ∈ R such that aj > 0, for j = 1, . . . , n. Let Q = [0, a1) ×
· · · × [0, an) and let R = (−a1, a1) × · · · × (−an, an), so R − R = 2R =
(−2a1, 2a1)× · · · × (−2an, 2an).
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Definition 16. A function k : R−R → C is positive definite if for each
N ∈ N , −→x1, . . . ,−→xN ∈ R and c1, . . . , cN ∈ C it holds that

N∑
p,q=1

cp cq k (
−→xp −−→xq) ≥ 0 .

Throughout this section Q and R will be as before and k : R−R→ C will
be a continuous positive definite function.

5.1. The reproducing kernel Hilbert space associated to a
positive definite function

Let K : R×R→ C be the kernel defined by

K (−→x ,−→z ) = k(−→x −−→z ) .

Then K is a continuous positive definite kernel. The reproducing kernel
Hilbert space associated to K (see [2]) is constructed as follows.

For −→z ∈ R let K−→z : R→ C be the function defined by

K−→z (
−→x ) = K(−→x ,−→z )

and let E be the linear space defined by

E =

u : R→ C : u =

N∑
p=1

αpK−→zp , N ∈ N , αp ∈ C , −→zp ∈ R

 .

The elements of E are continuous functions. If

u =

N∑
p=1

αpK−→zp and v =

M∑
q=1

βqK−→xq

are elements of E , we define

⟨u, v⟩E =

N∑
p=1

M∑
q=1

αp βqK(−→xq,−→zp) .

Then ⟨ , ⟩E is a positive semi-definite sesquilinear form on E and

u (−→x ) =
⟨
u,K−→x

⟩
E for u ∈ E and −→x ∈ R ,
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so we have

|u(−→x )| ≤ ∥u∥E ∥K−→x ∥E = ∥u∥E
(
K
(−→
0 ,

−→
0
))1/2

for all u ∈ E and −→x ∈ R. Let H be the completion of E . Then the elements
of H are continuous functions, convergence in H implies uniform convergence
and it also holds that

φ(−→x ) =
⟨
φ,K−→x

⟩
H for φ ∈ H and −→x ∈ R .

5.2. The n-parametric local semigroup associated to a positive
definite function

For −→x ∈ Q, let E(−→x ) be the linear space defined by

E(−→x ) =

u : R→ C : u =
N∑
p=1

αpK−→zp , N ∈ N , αp ∈ C , −→zp ,−→zp +−→x ∈ R

 .

If −→x ∈ Q and u =
∑N

p=1 αpK−→zp ∈ E(−→x ), we define S(−→x ) : E(−→x ) → E by

S(−→x )u =

N∑
p=1

αpK−→zp+−→x .

Note that S(−→x )φ(−→ω ) = φ(−→ω −−→x ).
We have that S(−→x ) is a linear operator and, for u, v ∈ E(−→x ) it holds that⟨

S(−→x )u, S(−→x )v
⟩
E = ⟨u, v⟩E .

If H(−→x ) is the closure of E(−→x ) in H, then S(−→x ) can be extended to a
linear isometric operator from H(−→x ) into H. If this extension is denoted
by S(−→x ) too, it is easy to verify that

(
S(−→x ),H(−→x )

)
−→x ∈Q is an n-parametric

local semigroup of isometric operators on the Hilbert space H. Also, from the
continuity of k follows the strong continuity of the local semigroup.

Proposition 17. The function k can be extended to a continuous positive
definite function on Rn if and only if the local semigroup,

(
S(−→x ),H(−→x )

)
−→x ∈Q,

can be extended to a strongly continuous group of unitary operators, on a
larger Hilbert space.
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Proof. (⇒) If the function k can be extended to a continuous positive
definite function k̃ on Rn, following the previous construction with k̃ instead
of k, we will obtain a strongly continuous group of unitary operators which
extends

(
S(−→x ),H(−→x )

)
−→x ∈Q.

(⇐) Suppose that
(
S(−→x ),H(−→x )

)
−→x ∈Q can be extended to a strongly

continuous group of unitary operators (U(−→x ))−→x ∈Rn on a larger Hilbert
space F .

Suppose that −→x ∈ R.

If −→x ∈ Q and −→ω ∈ R is such that −→ω +−→x ∈ R, then

U(−→x )K−→ω = S(−→x )K−→ω = K−→ω+−→x .

If −−→x ∈ Q then U(−−→x )K−→x = S(−−→x )K−→x = K−→
0
, so

U(−→x )K−→
0
= K−→x .

In the general case −→x = −→x1 +−→x2, where −→x1,−−→x2 ∈ Q, so we have that

U(−→x )K−→
0
= U(−→x1)U(−→x2)K−→

0

= U(−→x1)K−→x2
= K−→x1+

−→x2
= K−→x .

If −→x ,−→z ∈ R then

k
(−→z −−→x

)
=

⟨
K−→z ,K−→x

⟩
H

=
⟨
U(−→z )K−→

0
, U(−→x )K−→

0

⟩
F

=
⟨
U(−→z −−→x )K−→

0
,K−→

0

⟩
F
,

therefore k(−→ω ) =
⟨
U(−→ω )K−→

0
,K−→

0

⟩
F for −→ω ∈ R−R. Taking

k̃(−→ω ) =
⟨
U(−→ω )K−→

0
,K−→

0

⟩
F

for −→ω ∈ Rn, we obtain a strongly continuous positive definite extension
of k.

It will be necessary to give a characterization of the infinitesimal generators
of the uni-parametric local semigroups associated to

(
S(−→x ),H(−→x )

)
−→x ∈Q.
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For j,m ∈ {1, . . . , n}, j ̸= m, and ζm ∈ [0, am), let A
(j)
ζm

be the infinitesimal
generator of the uni-parametric local semigroup(

S(t−→ej ),H(t−→ej + ζm
−→em)

)
t∈[0,aj)

⊂ L(H(ζm
−→em)) ,

and let D
(j)
ζm

be the linear operator with domain

D
(
D

(j)
ζm

)
=

{
φ ∈ H(ζm

−→em) :

∂φ
∂xj

exists, and ∂φ
∂xj

= ψ

for some ψ ∈ H(ζm
−→em)

}

defined by

D
(j)
ζm
φ =

∂φ

∂xj
.

Since convergence in H implies uniform convergence, we have that D
(j)
ζm

is a
closed operator.

Proposition 18. Let −→x ∈ R such that xm < am − ζm and let ro > 0
such that −→x + r−→ej ∈ R for |r| < ro. For r ∈ (−ro, ro) consider the element

φ
(j)

r,−→x ∈ H(ζm
−→em) defined by the Riemann integral

φ
(j)

r,−→x =
1

r

∫ r

0
Kλ−→ej+−→x dλ .

Then φ
(j)

r,−→x ∈ D
(
A

(j)
ζm

)
and

A
(j)
ζm
φ
(j)

r,−→x =
1

r

(
Kr−→ej+−→x −K−→x

)
.

Proof. For t ∈ (0,+∞) small we have

S(t−→ej )φ(j)

r,−→x − φ
(j)

r,−→x
t

=
1

tr

(∫ r

0
Kλ−→ej+−→x+t−→ej dλ−

∫ r

0
Kλ−→ej+−→x dλ

)
=

1

tr

(∫ r+t

t
Kλ−→ej+−→x dλ−

∫ r

0
Kλ−→ej+−→x dλ

)
=

1

tr

(∫ r+t

r
Kλ−→ej+−→x dλ−

∫ t

0
Kλ−→ej+−→x dλ

)
.

Taking limit as t→ 0+ we obtain the result.
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Proposition 19. Let ro ∈ (0, aj), for φ ∈ H(ro
−→ej +ζm−→em) and r ∈ (0, ro)

let

M (j)
r φ =

1

r

∫ r

0
S(λ−→ej )φ dλ .

Then M
(j)
r φ ∈ D

(
D

(j)
ζm

)∗
and

(
D

(j)
ζm

)∗
M (j)

r φ =
1

r

(
S(r−→ej )φ− φ

)
for 0 < r < ro .

Proof. Let ψ ∈ D(D
(j)
ζm

) and let −→z ∈ Q such that zj ∈ [0, aj − ro) and
zm ∈ [0, am − ζm). Then⟨

D
(j)
ζm
ψ,M (j)

r K−→z

⟩
H(ζm

−→em)
=

1

r

∫ r

0

⟨
D

(j)
ζm
ψ,K−→z +λ−→ej

⟩
H(ζm

−→em)
dλ

=
1

r

∫ r

0

∂ψ

∂xj

(−→z + λ−→ej
)
dλ

=
1

r

(
ψ(−→z + r−→ej )− ψ(−→z )

)
.

Thus M
(j)
r K−→z ∈ D

(
D

(j)
ζm

)∗
and

(
D

(j)
ζm

)∗
M (j)

r K−→z =
1

r

(
K−→z +r−→ej −K−→z

)
=

1

r

(
S(r−→ej )K−→z −K−→z

)
.

From this last equality it follows that(
D

(j)
ζm

)∗
M (j)

r u =
1

r

(
S(r−→ej )u− u

)
for 0 < r < ro and u ∈ E(ro−→ej + ζm

−→em).

Since
(
D

(j)
ζm

)∗
is a closed operator and the function u 7→M

(j)
r u is continu-

ous we obtain that for φ ∈ H(ro
−→ej+ζm−→em) and r ∈ (0, ro),M

(j)
r φ ∈ D

(
D

(j)
ζm

)∗

and (
D

(j)
ζm

)∗
M (j)

r φ =
1

r

(
S(r−→ej )φ− φ

)
for 0 < r < ro .

Lemma 20. It holds that (
A

(j)
ζm

)∗
= D

(j)
ζm
.
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Proof. The proof will be done in three steps.

Step 1:
(
A

(j)
ζm

)∗
⊂ D

(j)
ζm

.

Suppose that φ ∈ D
((
A

(j)
ζm

)∗)
. Let −→x ∈ R such that xm < am − ζm and

let φ
(j)

r,−→x as in Proposition 18, then⟨(
A

(j)
ζm

)∗
φ,φr,−→x

⟩
H
=

⟨
φ,A

(j)
ζm
φr,−→x

⟩
H

=
⟨
φ, 1r

(
Kr−→ej+−→x −K−→x

)⟩
H

= 1
r

(
φ(r−→ej +−→x )− φ(−→x )

)
.

Since limr→0 φr,−→x = K−→x , we obtain that ∂φ
∂xj

(−→x ) exists and

∂φ

∂xj
(−→x ) =

((
A

(j)
ζm

)∗
φ
)
(−→x ) .

Step 2: A
(j)
ζm

⊂
(
D

(j)
ζm

)∗
.

Let φ ∈ D(A
(j)
ζm

). Then φ ∈ H(ro
−→ej + ζm

−→em) for some ro > 0 and

lim
t→0+

S(t−→ej )φ− φ

t
exists .

Let rn ⊂ (0, ro) such that rn → 0 as n→ ∞.

From Proposition 19 it follows that(
D

(j)
ζm

)∗
Mrnφ =

S(rn
−→ej )φ− φ

rn
→ A

(j)
ζm
φ as n→ ∞ .

Also

Mrnφ→ φ as n→ ∞ .

Since
(
D

(j)
ζm

)∗
is closed, we obtain

A
(j)
ζm
φ =

(
D

(j)
ζm

)∗
φ .

Step 3:
(
A

(j)
ζm

)∗
= D

(j)
ζm

.
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From Step 1 we have that
(
A

(j)
ζm

)∗
⊂ D

(j)
ζm

and form Step 2 we have that

A
(j)
ζm

⊂
(
D

(j)
ζm

)∗
.

Since D
(j)
ζm

is a closed operator we have that D
(j)
ζm

= D
(j)
ζm

=
(
D

(j)
ζm

)∗∗
,

therefore
D

(j)
ζm

=
(
D

(j)
ζm

)∗∗
⊂

(
A

(j)
ζm

)∗
⊂ D

(j)
ζm
.

From this lemma it follows that
(
iA

(j)
ζm

)∗
= −iD(j)

ζm
, so the deficiency

indexes of the operator iA
(j)
ζm

are

d+

(
iA

(j)
ζm

)
= dimker

(
D

(j)
ζm

+ I
)
,

d−

(
iA

(j)
ζm

)
= dimker

(
D

(j)
ζm

− I
)
.

For j = 1, . . . ,m let k(j) : (−2aj , 2aj) → C be the function defined by

k(j)(t) = k(t−→ej ) .

Then k(j) is a positive definite function, also to k(j) corresponds a uni-
parametric local semigroup of isometric operators

(
S(j)(t),H(j)(t)

)
t∈[0,aj)

on

the reproducing kernel Hilbert space H(j) corresponding to k(j).

Remark 21. From Lemma 20 it follows that the adjoint of the infinitesi-
mal generator A(j), of

(
S(j)(t),H(j)(t)

)
t∈[0,aj)

, is the derivative operator. This

result corresponds with a particular case of [4, Theorem 6]. From [4, Propo-
sitions 2 and Propositions 3] the following two result follow:

(i) The deficiency indexes of A(j) are equal, its possible values are 0 and 1.

(ii) If the function k(j) has only one continuous positive definite extension
to the real line, then the functions ξ1 and ξ2 defined by ξ1(t) = et and
ξ2(t) = e−t are not elements of H(j).

Lemma 22. If the function k(j) has only one continuous positive definite
extension to the real line, then for each m ∈ {1, . . . , n} such that j ̸= m and
ζm ∈ [0, am), each of the uni-parametric local semigroup of isometric operators(

S(t−→ej , 0),H(t−→ej + ζm
−→em, 0)

)
t∈[0,aj)

has a unique unitary extension to a strongly continuous group of unitary
operators on the Hilbert space H(ζm

−→em, 0).
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Proof. It is enough to show that the operator iA
(j)
ζm

has deficiency indexes
equal to 0.

Let K(j) : (−aj , aj)× (−aj , aj) → C be the kernel defined by

K(j)(r, t) = k(j)(r − t) .

For a point (xo1, . . . , x
o
j−1, x

o
j+1, . . . , x

o
n) such that xom ∈ (−am, am) consider

the set Ro of the points−→x ∈ R such that x1 = xo1, . . . , xj−1 = xoj−1, xj+1 =

xoj+1, . . . , xn = xon. Then K
(j) is the restriction of K to Ro×Ro. So, according

to the theorem of [2, page 351], the elements of H(j) are the restriction to any
Ro set of the functions of H.

Suppose that d+

(
iA

(j)
ζm

)
= dimker

(
D

(j)
ζm

+ I
)
is not 0, then a non trivial

function of the form

φ(x1, . . . , xn) = γ(x1, . . . , xj−1, xj+1, . . . , xn) e
−xj

must be an element of H(ζm
−→em, 0).

Consider (xo1, . . . , x
o
j−1, x

o
j+1, . . . , x

o
n) such that

co = γ(xo1, . . . , x
o
j−1, x

o
j+1, . . . , x

o
n) ̸= 0 ,

then the restriction of φ to the set Ro is the function ξ(xj) = coe
−xj , so

we must have that the function ξ2(t) = e−t is an element of H(j), which
contradicts affirmation (ii) in Remark 21.

In the same way it is proved that d−

(
iA

(j)
ζm

)
= 0.

5.3. An extension result

As an application of Theorem 15 we give a new proof of the following
extension result due to G.I. Èskin [10].

We will suppose that a1, . . . , an, b are positive real numbers and, for our
next result, we will consider

R = (−a1, a1)× · · · × (−an, an)× (−b, b) .

Theorem 23. Let k : R − R → C be a continuous positive definite
function. Suppose that, for j = 1, . . . , n each one of the functions k(j) :
(−2aj , 2aj) → C defined by k(j)(t) = k(t−→ej ), has a unique continuous positive
definite extension to the real line. Then k can be extended to a continuous
positive definite function on Rn+1.
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Proof. Let Q = [0, a1)× · · · × [0, an)× [0, b) and let(
S(−→x , y),H(−→x , y)

)
(−→x ,y)∈Q×[0,b)

be the (n + 1)-parametric strongly continuous local semigroup of isometric
operators associated to k.

From Lemma 22 it follows that
(
S(−→x , y),H(−→x , y)

)
(−→x ,y)∈Q×[0,b)

satisfies

the conditions of Theorem 15, so the local semigroup can be extended to a
strongly continuous group on a larger Hilbert space, so from Proposition 17
the result follows.
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[11] M. Grossmann, H. Langer, Über indexerhaltende Erweiterungen eines
hermiteschen Operators im Pontrjaginraum, Math. Nachr. 64 (1974),
289 – 317.
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