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chAPter 1  
IntroductIon

Chapter 1

Introduction

1.1 Solids, liquids and gases

The defining property of fluids, embracing both liquids and gases, lies in the
characteristic which they may be deformed. A piece of solid material has a
definite shape, and that shape changes only when there is a change in the
external conditions. A portion of fluid does not have a preferred shape, and
different elements of a homogeneous fluid may be rearranged freely without
affecting the macroscopic properties of the portion of fluid.

The distinction between solids and fluids is not a sharp one, since there
are many materials which in some situations behave like a solid and in other
situations behave like a fluid. A simple solid may be seen as a material
of which the shape, and the relative positions of the constituents elements,
change by a small amount only when there is a small change in the forces
acting on it. A simple fluid might be defined as a material such that the
relative positions of the elements of the material change by an amount which
is not small when suitably chosen forces are applied to the material.

The distinction between liquids and gases is much less fundamental. For
reasons related to the nature of intermolecular forces, most substances can
exist in either of two stable phases which exhibit the property of fluidity.
The density of a substance in the liquid phase is normally much larger than
that in the gaseous phase, but this is not in fact a relevant difference between
both systems. The most important difference between the mechanical prop-
erties between liquids and gases lies in their bulk elasticity, namely, in their
compressibility. Gases can be compressed much more readily than liquids,

5
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and as a consequence any motion involving appreciable variations in pressure
will be accompanied by much larger changes in specific volume in the case
of a gas than in the case of a liquid.

In any case, the relevant properties of solids, liquids and gases are directly
related to their molecular structure and to the nature of the forces between
their constituents.

1.2 The continuum hypothesis

The molecules of a gas are separated by vacuous regions with linear dimen-
sions much larger than those of the molecules themselves. Even in a liquid,
in which the molecules are nearly closely packed as the strong short-range
repulsive forces will allow, the mass of the material is concentrated in the
nuclei of the atoms composing a molecule and is very far from being smeared
uniformly over the volume occupied by the liquid. However, fluid mechanics
is normally concerned with the behavior of matter in the large, on a macro-
scopic scale large compared with the distance between molecules and usually
the molecular structure of the fluid will be not accounted for explicitly. Thus,
we will assume that the behavior of fluids is the same as if they were per-
fectly continuous in structure; and physical quantities such as the mass and
momentum associated with the matter contained within a given small vol-
ume will be regarded as being spread uniformly over that volume instead of
being concentrated in a small region of it. The validity of this continuum
approach under the conditions of everyday experience is evident. Indeed the
structure and properties of air and water are so obviously continuous and
smoothly-varying that no different assumption would seem natural.

To put this hypothesis in a proper context, let us consider for instance
the density of mass ρ in a given point. To define the density at the point r
we take a very small volume around this point and evaluate the density as
the ratio between the sum of the masses of the particles contained in this
volume and the volume δV :

ρ(δV ) =

∑
i mi

δV
.

In the case that δV is very small, the value of ρ(δV ) will change quickly
when we move from one point to another point, although both points are
quite close each other since its value will depend on the number of particles
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considered in δV . On the other hand, as the value of δV becomes more and
more big, it is possible then that the density ρ reaches a practically constant
value where the addition of more particles into the volume does not affect
the value of the density. Let us denote V0 the value of the volume such that
ρ ≈ const. If V0 is much smaller than the macroscopic size of the system,
then the value of the density in V0 can be considered as local, i.e.,

ρ(r) → ρ(V0).

On the other hand, when V0 is larger (or the same order) than the macro-
scopic size of the system, the continuum hypothesis fails and we should con-
sider a microscopic description such as, the kinetic theory of gases.

1.3 Classical Thermodynamics

In our subsequent discussion of the dynamics of fluids we shall need to make
use of some of the concepts of classical thermodynamics. As you know, clas-
sical thermodynamics analyzes states in which all local mechanical, physical
an thermal quantities are independent of both position and time. Thermo-
dynamic results may be applied directly to fluids at rest when their prop-
erties are uniform. However, little is known of the thermodynamics of non-
equilibrium states. Observation shows that results for equilibrium states
are approximately valid for non-equilibrium non-uniform states common in
practical in fluid dynamics when the departures from equilibrium in a moving
fluid are apparently small in their effect on thermodynamic relationships.

The purpose of this section is to summarize briefly the laws and results
of equilibrium thermodynamics. The state of a given mass of fluid in equi-
librium under the simplest possible conditions is specified uniquely through
two parameters, which for convenience may be chosen as the specific volume
v = 1/ρ and the (hydrostatic) pressure p. 1 All other quantities describing
the state of the fluid are thus functions of these two parameters of state. One
of the most important quantities is the temperature T . The relation between

1The pressure p is defined in the following way. Let us consider an element of fluid of
volume dV . The surrounding fluid exerts a force dF on the surface element dS given by

dF = −pdS,

where p is the pressure at equilibrium.
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the parameters of state and the temperature defines the equation of state:

f(p, v, T ) = 0.

Another important quantity describing the state of the fluid is the internal
energy per unit mass u. Work and heat can be regarded as equivalent forms
of energy and the change in the internal energy of a mass of fluid at rest
gives rise to a change of state. Thus, if the state of a given uniform of mass
of fluid is changed by a gain of heat of amount Q per unit mass and by the
performance of work on the fluid of amount W per unit mass, the increase
in the internal energy per unit mass is

Δu = Q+W.

This is first law of Thermodynamics which is a consequence of the conser-
vation of total energy in the system. The internal energy Δu depends only
on the initial and final states (function of state) but Q and W depend on
the particular way in which the process between the initial and final states
is made. In the case of a reversible process, the differential form of first law
is

δu = δQ− δW = δQ− pδv.

A practical quantity of some importance is the specific heat of the fluid,
that is, the amount of heat given to unit mass of the fluid to rise a given
amount the temperature. It is defined as

c =
δQ

δT
.

For a process at constant pressure, c → cp where

cp =

(
δQ

δT

)

δp=0

=

(
∂u

∂T

)

p

+ p

(
∂v

∂T

)

p

.

For a process at constant volume, c → cv where

cv =

(
δQ

δT

)

δv=0

=

(
∂u

∂T

)

v

.

The second law of Thermodynamics implies the existence of another ex-
tensive property of the fluid in equilibrium: the entropy S. The entropy per
unit mass of a fluid s is defined by the relation

Tδs = δQ.
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For a reversible process,
Tδs = δu+ pδv.

The entropy is also a function of state. Another convenient function of state
is the entalphy. The entalphy per unit mass h is defined as

h = u+ pv,

and has the dimensions of energy per unit mass. Note that

δh = δu+ pδv + vδp = Tδs+ vδp.

1.4 Euler and Lagrange description

The study of dynamics of fluids can be carried out by considering two different
points of view. First, we can pay attention to the different fluid particles2

and analyze their time evolution. This is called the Lagrangian frame of fluid.
Another perspective is to analyze what happens in any point of the system
at different times (Eulerian frame). Let us see the relationship between both
descriptions. Let us consider the fluid particle ξ which is located in r at
instant t. Let P(r, t) be a property of the fluid particle in (r, t). Thus,

P(ξ, t) = P(r(ξ), t). (1.1)

This means that the value of P of fluid particle ξ at t coincides with the value
of the property P at the point r where is located the particle ξ at instant t.

The time derivative of Eq. (1.1) is

DP
Dt

≡ dP
dt

=

(
∂P(r(ξ, t), t)

∂t

)

r

+
∂P(r(ξ), t)

∂r

(
∂r(ξ, t)

∂t

)

ξ

=

(
∂P
∂t

)

r

+ v(r, t) · ∂P
∂r

, (1.2)

where v(r, t) is the velocity of fluid particle ξ at t. In other words, it is the
velocity at the point r which is occupied by particle ξ at t. Here, ∂P/∂t|r
denotes the local variation of P.

2Note that here fluid particles means a very small volume around a given point (con-
tinuum assumption)
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chAPter 2 

IdeAl fluIds

Chapter 2

Ideal Fluids

2.1 Introduction

Fluid dynamics is devoted to the study of the motion of fluids (liquids and
gases). As said in the previous chapter, since the system is seen as macro-
scopic, then the fluid is regarded as a continuous medium. This means that
any small volume element in the fluid is always supposed so large that it
still contains a very great number of molecules. Thus, when we talk on the
displacement of some fluid particle, we mean not the motion of an individual
particle, but that of a volume element containing many molecules, though
still regarded as a point.

From a mathematical point of view, all the hydrodynamic quantities are
in general functions of the point r and of the time t. The state of the fluid is
described by the fluid velocity v(x, y, z, t) and two additional thermodynamic
quantities [ρ(x, y, z, t) and T (x, y, z, t) or p(x, y, z, t)]. All the thermodynamic
quantities are determined by the values of two of them, together the equation
of state. We recall again that v(x, y, z, t) or ρ(x, y, z, t) refers to the values
of these quantities at a given point r of the space and a given time t and
not to specific particles of the fluid. We shall now derive the fundamental
equations of fluid dynamics. For the sake of simplicity, let us consider first
in this Chapter the case of ideal fluids, namely, fluids with zero viscosity and
without thermal conduction.

11
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2.2 The equation of continuity

We want to express the equation of the conservation of matter. Let V0 a
volume in the space. The mass of fluid in this volume V0 is

∫

V0

ρdV

where ρ is the fluid density and the integration is taken over the volume V0.
Let S0 be the surface bounding V0. The mass of fluid flowing in unit time
through an element dS bounding the volume is

ρv · dS
where the direction of dS is along the perpendicular direction to the surface
element. By convention, we take dS along the outward normal, so that
ρv · dS > 0 (ρv · dS < 0) if the fluid is flowing out (flowing into) the volume.
The total mass flowing out the volume per unit time is

∮
ρv · dS (2.1)

where the integration is taken over the whole of the closed surface surrounding
the volume.

Thus, the decrease per unit time in the mass of fluid in V0 is given by

− ∂

∂t

∫
ρdV. (2.2)

Equating (2.1) and (2.2), one gets

∂

∂t

∫
ρdV = −

∮
ρv · dS = −

∫
∇ · (ρv)dV, (2.3)

where in the last equality we have applied Gauss’s theorem. Thus,

∫ [
∂ρ

∂t
+∇ · (ρv)

]
dV = 0.

Since this equation holds for any volume, the integrand must vanish, i.e.,

∂ρ

∂t
+∇ · (ρv) = 0. (2.4)
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This the equation of continuity. This can be also written as

∂ρ

∂t
+ ρ∇ · v + v · ∇ρ = 0,

or equivalently,
dρ

dt
+ ρ∇ · v = 0. (2.5)

The vector j = ρv is called the mass flux density. Its direction is that of the
motion of the fluid. It is important to remark that the continuity equation
(2.5) holds also for non ideal (viscous) fluids.

2.3 Euler’s equation

We consider a given element in the fluid. The total force acting on this
volume is

−
∮

pdS,

where the pressure p is taken over the surface bounding the volume. Note
that here we are neglecting the existence of shearing effects in the fluid since
we are assuming an ideal fluid. Transforming the above surface integral to a
volume integral, we have

−
∮

p dS = −
∫

(∇p) dV.

We see that the fluid surrounding any volume element dV exerts on that
volume a force −dV (∇p).

We can now write the equation of motion of a volume element in the fluid:

ρ
dv

dt
= −∇p. (2.6)

As mentioned in Chapter 1, dv/dt means the rate of change of the fluid
velocity of a given fluid particle which is moving in the space. Since

d

dt
≡ ∂

∂t
+ v · ∇,

then Eq. (2.6) becomes

∂v

∂t
+ v · ∇v = −ρ−1∇p,
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or, equivalently,
∂vi
∂t

+ vj∇jvi = −ρ−1∇ip, (2.7)

where ∂t ≡ ∂/∂t and ∇i ≡ ∂/∂ri. The equation of motion (2.7) was first
obtained by L. Euler in 1755. It is called Euler’s equation and is one of the
fundamental equations in fluid dynamics. In deriving this equation we have
not accounted for processes of energy dissipation (internal friction due to
viscosity and heat exchange between different parts of the system).

If the fluid is in a gravitational field, an additional force ρg acts on any
unit of volume. Here, g is the acceleration due to gravity. This force must
be added to the right hand side of the above equation, and so one finally gets

∂v

∂t
+ v · ∇v = −ρ−1∇p+ g. (2.8)

Since the motion does not involve any heat exchange, then the motion is
adiabatic and consequently, the entropy remains constant. Denoting s the
entropy per unit mass, then ds/dt = 0, or,

∂ts+ v · ∇s = 0. (2.9)

Using Eq. (2.4), then

∂t(ρs) = s∂tρ+ ρ∂ts = ρ∂ts− s∇ · (ρv) = −∇ · (ρsv).

Therefore, Eq. (2.9) can be rewritten as

∂t(ρs) +∇ · (ρsv) = 0. (2.10)

This is an “equation of continuity” for the entropy. Here, ρsv is the entropy
flux density.

Since the motion is isentropic (s ≡ constant), then

dh = dq + vdp = dq +
dp

ρ
= Tds+

dp

ρ
=

dp

ρ
,

where we have taken into account that ds = 0. Thus, in this case, ∇h =
ρ−1∇p and the Euler equation (2.8) (in the absence of gravity) becomes

∂v

∂t
+ v · ∇v = −∇h. (2.11)
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The Euler equation can be also written in a different form that only involves
the velocity field. In order to do it, let us consider the relation

1

2
∇v2 = v × (∇× v) + (v · ∇)v.

Thus, Eq. (2.11) can be written as

∂v

∂t
+

1

2
∇v2 − 2v × ω = −∇h, (2.12)

where ω = 1
2
∇× v is the vorticity. Taking the vector product (∇×) in both

sides of Eq. (2.12), one finally gets

∂t(rotv) = rot(v × rotv), (2.13)

where

rotA ≡ ∇×A.

2.4 Hydrostatics

For a fluid at rest in a uniform gravitational field, Euler’s equation takes the
form

∇p = ρg. (2.14)

If there are no external forces, then p ≡ constant (mechanical equilibrium of
fluid). In the case that ρ ≈ constant and g = −gk̂, then Eq. (2.14) becomes

∂xp = ∂yp = 0, ∂zp = −ρg, (2.15)

and hence,

p(z) = −ρgz + constant. (2.16)

If p = p0 at z = h0 (free surface which an external pressure p0), then

p(z) = p0 + ρg(h0 − z). (2.17)

This equation does not hold for a gas since ρ depends on p.
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2.5 The condition that convection is absent

A fluid can be in mechanical equilibrium (i.e., exhibit no macroscopic mo-
tion) without being in thermal equilibrium. Equation (2.14) can be satisfied
even if the temperature is not constant throughout the fluid. However, a
good question is to analyze the stability of this equilibrium state. As we will
show later, it is found that the equilibrium is stable only when a certain con-
ditions are satisfied. Otherwise, the equilibrium is unstable and this yields
the presence of currents which tend to mix the fluid to equalize the tempera-
ture. This motion is called convection. Thus, the condition for a mechanical
equilibrium to be stable is the condition that convection be absent.

Let us consider an element of fluid at height z with a specific volume
v(p, s), where p and s are the pressure and entropy at z. We assume that
this element of volume undergoes an adiabatic upward displacement along a
small interval ξ. In this case, its specific volume becomes v(p′, s), where p′

is the pressure at height z + ξ. The equilibrium is stable if (though not in
general sufficient) the resulting force acting on this element tends to return
it to its original position. This means that the element must be heavier than
the fluid which it “displaces” to its new position. The specific volume of the
latter is v(p′, s′) where s′ is the entropy at z + ξ. The stability condition is

v(p′, s′) > v(p′, s)

Since s′ = s+ ξds/dz, then

v(p′, s′) � v(p′, s) +
(
∂v

∂s

)

p

(s′ − s) = v(p′, s) +
(
∂v

∂s

)

p

ξ
ds

dz
.

Therefore, the above stability condition yields the result(
∂v

∂s

)

p

ds

dz
> 0. (2.18)

Now, we use the thermodynamic relation(
∂v

∂s

)

p

=
T

cp

(
∂v

∂T

)

p

,

where cp is the specific heat at constant pressure. Since cp > 0 and T > 0,
then Eq. (2.18) can be written as

(
∂v

∂T

)

p

ds

dz
> 0. (2.19)
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In most of the substances, (∂v/∂T )p > 0 so that Eq. (2.19) simply becomes

ds

dz
> 0. (2.20)

The entropy must increase with the height to be absent the convection. We
want to determine the condition for the temperature gradient. To do it, let
us express the derivative ds/dT in terms of dT/dt as

ds

dz
=

(
∂s

∂T

)

p

dT

dz
+

(
∂s

∂p

)

T

dp

dz
.

Taking into the thermodynamic relations

(
∂s

∂T

)

p

=
cp
T
,

(
∂s

∂p

)

T

= −
(
∂v

∂T

)

p

,

the condition (2.20) becomes

dT

dz
> − gT

cpv

(
∂v

∂T

)

p

≡ −gβT

cp
. (2.21)

Upon deriving (2.21) use has been made of the relation dp/dz = −g/v. In
summary, convection occurs if these conditions are not satisfied, i.e., if the
temperature decreases upwards with a gradient which magnitude exceeds the
value gβT/cp.

2.6 Bernoulli’s equation

Let us consider a steady flow (∂t → 0). In this case, Euler’s equation (2.12)
becomes

1

2
∇v2 − 2v × ω = −∇h. (2.22)

The streamlines are defined as

dx

vx
=

dy

vy
=

dz

vz
.

In steady states, the streamlines do not change with time. Let � the unit
vector tangent to the streamline in each point. Let us take the scalar product
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of Eq. (2.22) with �. Since, v× rotv ⊥ v, then the projection of (2.22) on �
is

∂

∂�

(
1

2
v2 + h

)
= 0. (2.23)

Thus, the combination 1
2
v2 + h is constant along a streamline, i.e,

1

2
v2 + h ≡ const. (2.24)

Equation (2.24) is called Bernoulli’s equation. If there is some gravitational
field, then g = −∇(gz) and Bernoulli’s equation becomes

1

2
v2 + h+ gz ≡ const. (2.25)

2.7 The energy flux

Let us consider some volume element fixed in space and find the variation
with time of the energy of the fluid contained in this element. The energy of
unit volume of fluid is 1

2
ρv2 + ρu where the first term is the kinetic energy

and the second is the internal energy; u is the internal energy per unit mass.
We want to calculate the time evolution of this quantity. The first term is

∂t(
1

2
ρv2) =

1

2
v2∂tρ+ ρv · ∂tv

Using the continuity equation (2.4) and Euler’s equation (2.6), one gets

∂t(
1

2
ρv2) = −1

2
v2∇i(ρvi)− vi∇ip− ρvivj∇jvi.

This relation can be written in a more compact form when one takes into
account the results

∇iv
2 = 2vj∇ivj , ∇ip = ρ∇ih− ρT∇is.

Thus,

∂t(
1

2
ρv2) = −1

2
v2∇i(ρvi)− ρvi∇ih+ ρTvi∇is− 1

2
ρvi∇iv

2

= −1

2
v2∇i(ρvi)− ρvi∇i

(
1

2
v2 + h

)
+ ρTvi∇is.

(2.26)
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The other derivative is ∂t(ρu). The first Thermodynamics Law gives

du = Tds− pd(ρ−1) = Tds+
p

ρ2
dρ,

and so,

d(ρu) = udρ+ ρTds+
p

ρ
dρ = hdρ+ ρTds.

Taking into account these results, one gets

∂t(ρu) = h∂tρ+ ρT∂ts = −h∇ · (ρv)− ρTv · ∇s. (2.27)

Combining Eqs. (2.26) and (2.27), after some algebra one achieves

∂t

(
1

2
ρv2 + ρu

)
= −1

2
v2∇i(ρvi)− ρvi∇i

(
1

2
v2 + h

)
+ ρTvi∇is

−h∇i(ρvi)− ρTvi∇is

= −
(
1

2
v2 + h

)
∇ · (ρv)− ρv · ∇

(
1

2
v2 + h

)

= −∇ ·
[
ρv

(
1

2
v2 + h

)]
. (2.28)

In order to see the physical meaning of Eq. (2.28), let us integrate it over
some volume:

∂

∂t

∫ (
1

2
ρv2 + ρu

)
dV = −

∫
∇ ·

[
ρv

(
1

2
v2 + h

)]
dV

= −
∮

ρv

(
1

2
v2 + h

)
· dS, (2.29)

where use has been made of Gauss’s theorem in the last step. The left hand
side of Eq. (2.29) is the rate of change of energy of the fluid in some given
volume while the right hand side is the amount of energy flowing out in unit
time through S. Therefore, the quantity ρv

(
1
2
v2 + h

)
may be called the

energy flux density vector. Its magnitude is the amount of energy crossing
in unit time through unit area perpendicular to the direction of the velocity.
Thus, any unit mass of fluid carries with it during its motion an amount of
energy 1

2
v2 + h.
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The fact that the enthalpy h appears in Eq. (2.29) instead of u has a
simply physical significance. Putting h = u + p/ρ, we can write the flux of
energy through a closed surface in the form

−
∮

ρv ·
(
1

2
v2 + h

)
dS = −

∮
ρv ·

(
1

2
v2 + u

)
dS−

∮
pv · dS. (2.30)

The first term is the energy (kinetic and internal) transported through the
surface in unit time by the mass of fluid. The second term is the work done
by pressure forces on the fluid within the surface.

2.8 The momentum flux

We shall now give a similar series of arguments for the momentum of the
fluid. The momentum of unit volume is ρv. Let us determine its rate of
change ∂t(ρv). We shall use tensor notation. We have

∂t(ρvi) = ρ∂tvi + vi∂tρ.

As before, using the equation of continuity

∂tρ = −∇i(ρvi),

and Euler’s equation

∂tvi = −vj∇jvi − ρ−1∇ip,

we obtain

∂t(ρvi) = −ρvj∇jvi −∇ip− vi∇j(ρvj) = −∇ip−∇j(ρvivj).

We write the first term on the right hand side in the form

∇ip = δij∇jp,

and finally obtain
∂

∂t
(ρvi) = −∂Πij

∂rj
, (2.31)

where the tensor Πij is defined as

Πij = pδij + ρvivj . (2.32)
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This tensor is symmetric, i.e., Πij = Πji.
In order to see the physical meaning of the tensor Πij, we integrate Eq.

(2.31) over some volume:

∂t

∫
ρvidV = −

∫
(∇jΠij) dV.

The integral on the right hand side is transformed into a surface integral:

∂t

∫
ρvidV = −

∮
ΠijdSj. (2.33)

The left hand side of Eq. (2.33) is the rate of change of the ith component
of the momentum contained in the volume considered. The surface integral
on the right is therefore the amount of momentum flowing out through the
bounding surface in unit time. Consequently, ΠijdSj is the ith component of
the momentum flowing through the surface element dS. If we write dSj =
njdS (where n̂ is a unit vector along the outward normal), then Πijnj is the
flux of the ith component of momentum through unit surface area. Note
that Πijnj = pni + ρvivjnj . Thus, Πij is the ith component of the amount
of momentum flowing in unit time through unit area perpendicular to the
j axis. The tensor Πij is called the momentum flux density tensor. The
momentum flux is determined by a tensor of rank two since the momentum
itself is a vector.

In vector form, the quantity Πijnj can be written as

pn̂+ ρv(v · n̂).
This expression gives the momentum flux in the direction of n̂. If we takes
n̂||v, we find that only the longitudinal component of momentum is trans-
ported in this direction and its flux density is p+ ρv2. In a direction perpen-
dicular to v, only the transverse component to v of momentum is transported,
its flux density is simply p.

2.9 Incompressible fluids

In many of the usual situations in the flow of liquids (and also for gases),
their density may be supposed constant throughout the volume of the fluid
and throughout its motion (no significant compression or expansion of the
fluids in such cases). We speak of incompressible flow.
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In this case (ρ ≈ const.), the equation of continuity takes the simple form

∇ · v = 0, (2.34)

and Euler’s equation reduces to

∂v

∂t
+ v · ∇v = −∇

(
p

ρ

)
+ g. (2.35)

Thus, the fundamental system of equations in fluid dynamics for an incom-
pressible fluid only involves the velocity field since ρ is no longer unknown.

Bernoulli’s equation can be also written in a more simple form since
∇(p/ρ) = ∇h, and so it reduces to

1

2
v2 +

p

ρ
+ gz ≡ const. (2.36)
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VIscous fluIds

Chapter 3

Viscous fluids

3.1 The equations of motion of a viscous fluid

We want to analyze in this Chapter the effect of energy dissipation (by in-
ternal viscous friction) occurring during the motion of a fluid particle. This
process is the result of the thermodynamic irreversibility of the motion. This
irreversibility occurs essentially due to internal friction (viscosity) and ther-
mal conduction. Here, we will pay attention to the former process.

In order to include these effects on the motion of a viscous fluid, we have
to include some additional terms in the equation of motion of an ideal fluid.
The equation of continuity holds for any fluid, whether viscous or not. On the
other hand, Euler’s equation (2.7) requires modification. To extend Euler’s
equation to viscous fluids, let us write first it in the form

∂

∂t
(ρvi) = −∂Πik

∂rk
, (3.1)

where Πik is the momentum flux density tensor. It is given by

Πik = pδik + ρvivk. (3.2)

The expression (3.2) for Πij represents a completely reversible transfer of
momentum, due simply to the mechanical transport of the different particles
of fluid from one place to other place and to the pressure forces acting in the
fluid. The viscosity (internal friction) causes another irreversible transfer of
momentum from points where the velocity is large to those where it is small.

The equation of motion of a viscous fluid may therefore be obtained by
adding to the “ideal” momentum flux (3.2) a term −σ′

ik which accounts for

23
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the irreversible viscous transfer of momentum in the fluid. Thus, we write
the momentum flux density tensor in a viscous fluid in the form

Πik = pδik + ρvivk − σ′
ik ≡ −σik + ρvivk. (3.3)

The tensor
σik = −pδik + σ′

ik (3.4)

is called the stress tensor. This tensor gives the part of the momentum flux
that is not due to the direct transfer of momentum with the mass of moving
fluid.

We should establish the general form of σ′
ik. It is quite evident that

processes of internal friction occur in a fluid only when different fluid particles
move with different velocities, so that there is a relative motion between
various parts of the fluid. Hence, σ′

ik must depend on the space derivatives
of the velocity. If the velocity gradient is small, we can assume that σ′

ik is
proportional to the first spatial derivatives of the velocity. There can be no
terms in σ′

ik independent of ∂vi/∂rk since σ
′
ik must vanish when v ≡ constant.

Next, we notice that σ′
ik must also vanish when the whole fluid is in uniform

rotation since it is clear that in such motion no internal friction occurs in the
fluid. In uniform rotation with angular velocity Ω, the velocity v is equal to
the vector product Ω× r. The sums

∂vi
∂rk

+
∂vk
∂ri

are linear combinations of the spatial derivatives ∂vi/∂rk and vanish when
v = Ω× r. Hence, σ′

ik must contain just these symmetrical combinations of
the derivatives ∂vi/∂rk.

The most general tensor of rank two satisfying the above two conditions
is

σ′
ik = a

(
∂vi
∂rk

+
∂vk
∂ri

)
+ bδik

∂v�
∂r�

,

where a and b are independents of v. It is more convenient to write this
equation in the form

σ′
ik = η

(
∂vi
∂rk

+
∂vk
∂ri

− 2

3
δik

∂v�
∂r�

)
+ ζδik

∂v�
∂r�

, (3.5)

where η and ζ are independents of v. Since the fluid is isotropic, its properties
must be described by scalar quantities only (in this case η and ζ). Note that
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the tensor

Δik ≡ ∂vi
∂rk

+
∂vk
∂ri

− 2

3
δik

∂v�
∂r�

is traceless (Δkk ≡ TrΔ = Δxx +Δyy +Δzz = 0). The constants η and ζ are
called coefficients of viscosity ; η is usually called shear viscosity and ζ is the
bulk viscosity. As we shall show later, both coefficients are positive.

The equations of motion of a viscous fluid can now be obtained by simply
adding the term ∂σ�

ik/∂rk to the right hand side of Euler’s equation (3.1).
Therefore, after taking into account the equation of continuity, one gets

ρ

(
∂vi
∂t

+ vk
∂vi
∂rk

)
= − ∂p

∂ri
+

∂σ�
ik

∂rk

= − ∂p

∂ri
+

∂

∂rk

[
η

(
∂vi
∂rk

+
∂vk
∂ri

− 2

3
δik

∂v�
∂r�

)]

+
∂

∂ri

(
ζ
∂v�
∂r�

)
. (3.6)

This is the most general form of the equations of motion of a viscous fluid.
The quantities η and ζ are functions of the pressure and temperature. In
general, p and T (and so, η and ζ) are not constants throughout the fluid, so
that η and ζ cannot be taken outside the gradient operator.

In most cases, however, the viscosity coefficients do not change signifi-
cantly in the fluid and they may be considered as constants. In this case,
and in vector form, Eq. (3.6) becomes

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p + η∇2v + (ζ +

1

3
η)∇(∇ · v), (3.7)

where use has been made of the partial result

∇kσ
�
ik = η∇2vi + (ζ +

1

3
η)∇i∇kvk.

Equation (3.7) is called the Navier-Stokes equation. It has been deduced in
the absence of a gravity field. The Navier-Stokes equation becomes simpler
if the fluid is incompressible (∇ · v = 0). In this case, the last term on the
right hand side of Eq. of (3.7) vanishes and one gets

∂v

∂t
+ (v · ∇)v = −ρ−1∇p+ ν∇2v, (3.8)
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where
ν =

η

ρ
(3.9)

is the kinematic viscosity. The stress tensor in an incompressible fluid takes
the simpler form

σik = −pδik + η

(
∂vi
∂rk

+
∂vk
∂ri

)
. (3.10)

The pressure can be eliminated in Eq. (3.8) by taking the rotational in both
sides of this equation. The result is

∂

∂t
(rotv) = rot(v× rotv) + ν∇2(rotv). (3.11)

In the presence of the gravity field, the Navier-Stokes equation (3.7) be-
comes

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p + ρg + η∇2v + (ζ +

1

3
η)∇(∇ · v). (3.12)

3.2 Energy dissipation in an incompressible

fluid

The presence of viscosity gives rise to the dissipation of energy, which is finally
transformed in heat. The evaluation of the energy dissipation is relatively
simple for an incompressible fluid.

For an incompressible fluid, the total kinetic energy is

Ekin =
1

2
ρ

∫
v2 dV

We take the time derivative of the kinetic energy 1
2
ρv2 by using the Navier-

Stokes equation:

∂t(
1

2
ρv2) = ρvi∂tvi

= −ρvivk∇kvi − vi∇ip+ vi∇kσ
′
ik

= −ρvk∇k

(
1

2
v2 +

p

ρ

)
+∇k(viσ

′
ik)− σ′

ik∇kvi

= −∇k

[
ρvk

(
1

2
v2 +

p

ρ

)
− viσ

′
ik

]
− σ′

ik∇kvi, (3.13)



mA
nu

Al
es

 ue
x

31

An IntroductIon to PhysIcs of fluIds
3.2. ENERGY DISSIPATION IN AN INCOMPRESSIBLE FLUID 27

where in the last step use has been made of the result ∇ · v = 0. In vector
form,

∂

∂t
(
1

2
ρv2) = −∇ ·

[
ρv

(
1

2
v2 +

p

ρ

)
− v · σ′

]
− σ′ : ∇v. (3.14)

Here, we have introduced the notation A : B = AijBji. In Eq. (3.14), the
expression in brackets is just the energy flux density in the fluid: the term
ρv(1

2
v2 + p/ρ) is the energy flux due to the actual transfer of fluid mass and

is the same as the energy flux in an ideal fluid. The second term v ·σ′ is the
energy flux due to processes of internal friction. The presence of viscosity
gives rise to a momentum flux σ′

ik. A transfer of momentum always involves
a transfer of energy and the energy flux is clearly equal to the scalar product
of the momentum flux and the velocity.

Let us integrate Eq. (3.14) over some volume V . The result is

∂

∂t

∫
1

2
ρv2dV = −

∮ [
ρv

(
1

2
v2 +

p

ρ

)
− v · σ′

]
·dS−

∫
σ′
ik∇kvidV. (3.15)

The first term on the right hand side gives the rate of change of the kinetic
energy of the fluid in V due to the energy flux through the surface bounding
V . The integral in the second term gives the decrease of the kinetic energy per
unit time due to viscous dissipation. We extend the integration in Eq. (3.15)
to the whole volume of the fluid. In this case, since the velocity vanishes at
infinity (or for a fluid enclosed in a finite volume, the surface integral vanishes
because the velocity at surface vanishes), then the surface integral vanishes
and so, the energy dissipated per unit time in the whole fluid is

dEkin

dt
= −

∫
σ′
ik∇kvidV = −1

2

∫
σ′
ik (∇kvi +∇ivk) dV,

since σ′
ik = σ′

ki. For an incompressible fluid,

σ′
ij = η (∇ivk +∇kvi) ,

and so,
σ′
ik (∇kvi +∇ivk) = η(∇ivk +∇kvi)

2.

Therefore, one gets the important final result

dEkin

dt
= −1

2
η

∫
dV

(
∂vi
∂rk

+
∂vk
∂ri

)2

. (3.16)
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Since the dissipation yields a decrease in the mechanical energy, then

dEkin

dt
< 0.

Consequently, the shear viscosity coefficient η is always positive.

3.3 Flow in a pipe

We shall now consider some simple problems of motion of an incompressible
viscous fluid.

Let the fluid be enclosed between two parallel plates moving with a con-
stant relative velocity U. We also neglect the influence of gravity. We assume
that the y-axis is orthogonal to the plates while the flow is in the x-direction.
Under these conditions, vx(y) �= 0 and vy = vz = 0. The boundary conditions
are vx(h) = U and vx(0) = 0. It is clear that all the quantities depend on
space only through the y coordinate. For steady flow, the equation of conti-
nuity is satisfied identically while the Navier-Stokes equation (3.8) reads

(
vy

∂

∂y

)
vj = −ρ−1∇jp + ν∇2vj.

For j = x, ∂2
yvx = 0 while for j = y, ∂yp = 0. Then, p ≡ const. and

vx(y) = ay + b. Boundary conditions imply b = 0 and a = U/h. Thus,
vx(y) = (U/h)y.

Let us consider now a steady flow between two parallel plates at rest in
the presence of a pressure gradient. We choose the coordinates as before;
the x-axis is in the direction of motion of fluid. Since the velocity clearly
depends only on the coordinate y, the Navier-Stokes equations give

∂2
yvx = η−1∂xp, ∂yp = 0, (3.17)

where we have also assumed the absence of gravity. The last identity in Eq.
(3.17) implies that p does not depend on y. Consequently, the combination
η−1∂xp is only a function of x. Since vx(y) depends only on y, then both
terms are constant:

∂xp ≡ const., ∂2
yvx ≡ const.
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The x- component of the velocity field is

vx(y) =
1

2η

dp

dx
y2 + ay + b.

Boundary conditions: vx(0) = vx(h) = 0. Thus, b = 0 and

a = − h

2η

dp

dx
.

The final result is

vx(y) =
1

2η

dp

dx
y2 − 1

2η

dp

dx
hy = − 1

2η

dp

dx

[
1

4
h2 −

(
y − 1

2
h

)2
]
. (3.18)

Equation (3.18) clearly shows a parabolic spatial variation of the velocity
field. Its maximum value vx,max is located at the middle of the pipe, i.e., at
y = h/2:

vx,max = − 1

8η

dp

dx
h2.

3.4 The law of similarity

In the study of motion of viscous fluids, one can obtain a number of important
results from simple dimensional arguments of various physical quantities. Let
us consider for instance, the motion of a body of some definite shape through
a fluid. If the body is not spherical, we have also to specify its direction of
motion, e.g., the motion of an ellipsoid in the direction of its greatest or
least axis. Thus, we can say that bodies of the same shape are geometrically
similar.

We are going to consider steady flows. We discuss for instance flow past a
solid body where the velocity of the main stream must therefore be constant.
We shall suppose the fluid incompressible. Regarding parameters of the fluid,
only the kinematic viscosity ν = η/ρ appears in the Navier-Stokes equations.
The unknown functions which have to determine by solving the Navier-Stokes
equations are the velocity v and the ratio between the pressure and the mass
density p/ρ (since ρ is assumed to be constant). Moreover, the flow depends
(through the boundary conditions) on the shape and the dimensions of the
body moving through the fluid and on its velocity. Since the shape of the
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body is supposed given, its geometrical properties are determined by one
linear dimension, which we denote by �. Let the velocity of the main stream
be u. Then, any flow is specified by three parameters: {ν, �, u}. These
quantities have the following dimensions:

[ν] = L2T−1, [�] = L, [u] = LT−1.

The only dimensionless quantity built from the above three quantities is
u�/ν. This combination is called the Reynolds number Re:

Re ≡ ρu�

η
=

u�

ν
. (3.19)

Any other dimensionless parameter can be written as a function of Re.
Therefore, we will measure lengths in terms of � and velocities in terms

of u. In other words, we introduce the dimensionless quantities r/� and v/u.
Since the only dimensionless parameter is the Reynolds number, it is evident
that the velocity field obtained after solving the equations of incompressible
flow is given by a function having the form

v = uf(r/�,Re), (3.20)

where f is an unknown function. It is seen from Eq. (3.20) that, in two
different flows of the same type (for example, flow past spheres with different
radii by fluids with different viscosities), the velocities v/u are the same
functions of the ratio r/� if the Reynolds number is the same in each flow.
Flows which can be obtained from one another by simply changing the unit
of measurement of coordinates and velocities are said to be similar. Thus,
flows of the same type with the same Reynolds number are similar. This is
called the law of similarity (O. Reynolds 1883).

Let us see the dynamical similarity law in a more explicit way for steady
incompressible flows. In this case, the motion of the fluid when ρ ≡ const. is
governed by the equations

∇ · v = 0, (3.21)

vj
∂vi
∂rj

= −ρ−1 ∂p

∂ri
+ ν

∂2vi
∂rj∂rj

. (3.22)

We propose now to assess the effect on the flow of changes in the (uniform)
values of ρ and ν. To this end it is useful to write Eqs. (3.21) and (3.22) in
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dimensionless form. Since no parameters with the dimensions of length and
velocity appear in the above equations, we have to look for in the boundary
conditions to find quantities to define dimensionless variables.

Let us suppose that the specification of the boundary conditions for a
particular flow involves some representative length L and some representative
velocity U . In this case, we define the following dimensionless space and
velocity variables:

r′ ≡ r

�
, v′ ≡ v

u
. (3.23)

In addition, the pressure p can be scaled with a given reference pressure
p0 = ρu2, such that

p′ =
p

p0

is also a dimensionless quantity. It is straightforward to see that

∂n

∂rni
=

(
1

�

)n
∂n

∂r
′n
i

so that, in terms of the dimensionless variables r′ and v′, Eqs. (3.21) and
(3.22) become

∂v′i
∂r′i

= 0, (3.24)

v′j
∂v′i
∂r′j

= −∂p′

∂r′i
+

1

Re

∂2v′i
∂r′j∂r

′
j

. (3.25)

These equations contain only explicitly the (dimensionless) Reynolds number
Re. The solution for the dependent variables v′ and p′ that satisfies the
boundary conditions can depend only on r′ and the parameter Re. Thus, once
a solution for a particular flow field is known and is expressed in dimensionless
form, a family of solutions can be obtained from it by choosing the values
of ρ, �, u and η in such a way that the value of the Reynolds number Re
remains unchanged. All those flows satisfying the same boundary and initial
conditions and for which the values of ρ, �, u, and η differ but share the same
value of the (dimensionless) combination ρ�u/ν are described by the same
non-dimensional solution. As we mentioned before, all these flows are said
to be dynamically similar.

This principle of similarity is used widely as a means to get information
about an unknown flow field from “model tests”, namely, from experiments



mA
nu

Al
es

 ue
x

36

Vicente Garzó
32 CHAPTER 3. VISCOUS FLUIDS

carried out under physical conditions more convenient than those of the un-
known flow field. This is one of most practical applications of the above
principle.

3.5 Reynolds equations for turbulent flows

For any problem of viscous flow under certain conditions there must in princi-
ple exist an exact solution to the equations of fluid dynamics. These solutions
exist for all Reynolds numbers. However, even if one finds an exact solution
to the equations of motion, it is possible that this solution does not occur in
Nature. This means that not only such a solution must obey the equations
of motion of fluid dynamics, but also this solution must be stable. Any small
perturbation which arise must decrease in time. Otherwise, the small per-
turbations which inevitably happen in the flow tend to increase in time so
that, the flow is unstable and cannot exist.

From an experimental point of view, the phenomenon of turbulence was
discovered many years ago and it has been widely observed in many realistic
situations. When one analyzes with detail the motion of a fluid particle, one
see that, under certain conditions, the hydrodynamic variables have small
and quick fluctuations around a mean value. Fluctuations means small, fast
and disordered variations of the hydrodynamic fields. These fluctuations
are produced by the presence of external inputs that eventually change the
evolution of flow. In fact, they can slightly modify the fluid conditions of the
flow.

Under some conditions, the fluctuations vanish quickly and the system
goes back to the initial situation. In this case, we can say that fluctuations do
not play a significant role in the fluid motion and they are a consequence of
our limitations to monitor the external conditions of the flow. On the other
hand, under certain conditions, it is also possible that those fluctuations do
not disappear and the flow has random properties. In this latter case, the
source of fluctuations is not external and they must be accounted for in the
dynamics of the system.

According to this picture, we can say that there are essentially two dif-
ferent regimes of flows. In the former case (no significant fluctuations), the
flow is in laminar regime while in the latter case (significant fluctuations)
the flow is turbulent. There is no a very well delimited separation between
both regimes, although it is admitted that if the fluctuations are below 2%
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of its mean value, then the regime is laminar; otherwise the regime becomes
turbulent. To be a bit more precise, let us consider a hydrodynamic variable
or field A(t) at a given point. The behavior of the mean value A(t) is dif-
ferent in both regimes since for instance the velocity and energy fluctuations
modify significantly the transport of momentum and energy in the fluid. In
other words, the spatial and time variations of A(t) are quite different in
both regimes. Thus, for instance, the flow in a cylindrical pipe is parabolic
in laminar conditions while it is logarithmic in turbulent conditions.

Using empirical arguments, Reynolds was able in 1883 to classify the lam-
inar and turbulent regimes in terms of the Reynolds number Re. Specifically,
when 0 < Re < 103, the flow is laminar; when 103 < Re < 104, there is not
well defined, while when Re > 104 the flow is turbulent.

3.5.1 Reynolds equations

As said before, the motion of fluid in turbulent conditions is characterized by
small fluctuations around a mean value. These fluctuations tend to increase
in time. Since the solution to the Navier-Stokes equations has a stochastic
component, the problem is in general quite intricate due to the mathematical
difficulties involved in it. Thus, our goal is to get the average values of the
hydrodynamic quantities. To be more precise, let us consider the quantity
a(r, t). Its value at a given time t is

a(r, t) = a(r, t) + a′(r, t),

where

a(r, t) ≡ �a(r, t)� = 1

τ

∫ t+τ

t

a(r, t′)dt′,

where τ is longer than the fluctuation time but is much more shorter than
the characteristic evolution time of a(r, t). The magnitude of the fluctuation
is defined as

a′2 =
1

τ

∫ t+τ

t

a
′2(r, t′)dt′.

The correlation function a′b′ between two fluctuations a′ and b′ is defined as

a′b′ =
1

τ

∫ t+τ

t

a
′
(r, t′)b

′
(r, t′)dt′.

Note that a′ = 0 by definition. Moreover, in the case that a′ and b′ are
statistically independent, then a′b′ = a′ b′ = 0.
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For the sake of simplicity, let us assume that ρ and η are constants and
there are no thermal effects in the fluid. In this case, the equations of con-
tinuity and momentum are sufficient to determine v and p. They are given
by

∇ivi = 0,

and

ρ
dvi
dt

= −∇ip+ ρgi + η∇2vi.

Reynolds assumes that the hydrodynamic fields can be written as

vi = vi + v′i, p = p+ p′.

Now we substitute these forms into the above equations and take time aver-
ages at a given point. The continuity equation becomes

�∇ivi� = �∇i(vi + v′i)� = ∇ivi +∇i�v′i� = ∇ivi = 0. (3.26)

Equation (3.26) is identical to the one derived in the laminar case.
Now we consider the Navier-Stokes equation. Let’s denote the three com-

ponents of the velocity v as (u, v, w). For the x-component, one has

ρ
du

dt
= −∂p

∂x
+ ρgx + η∇2u.

The total derivative is

du

dt
= ∂tu+ v · ∇u = ∂tu+ ∂tu

′ + u∂xu+ u∂xu
′ + u′∂xu+ u′∂xu′

+ v∂yu+ v∂yu
′ + v′∂yu+ v′∂yu′

+ w∂yu+ w∂yu
′ + w′∂yu+ w′∂yu′. (3.27)

In Eq. (3.27), note that

u′∂xu′ + v′∂yu′ + w′∂zu′ = ∂xu
′2 + ∂y(u

′v′) + ∂z(w
′u′)

−u′(∂xu′ + ∂yv
′ + ∂zw

′)

= ∂xu
′2 + ∂y(u

′v′) + ∂z(w
′u′), (3.28)

where use has been made of the continuity equation in the last step. Now,
we take the time average of Eq. (3.27):

�du
dt

� = ∂tu+ ∂x�u′2�+ ∂y�u′v′�+ ∂z�u′w′�
+u∂xu+ v∂yu+ w∂zu

=
du

dt
+ ∂x�u′2�+ ∂y�u′v′�+ ∂z�u′w′�. (3.29)
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Here, we have accounted for that �u∂xu′� = �u′∂xu� = . . . = 0. Moreover,

d

dt
≡ ∂t ++u∂x + v∂y + w∂z .

Taking into account all the above results, the evolution equation for u can
be written as

ρ
du

dt
= − ∂

∂x
p+ ρgx +

∂

∂x

(
η
∂u

∂x
− ρu′2

)

+
∂

∂y

(
η
∂u

∂y
− ρu′v′

)
+

∂

∂z

(
η
∂u

∂z
− ρu′w′

)
. (3.30)

Similar equations to Eq. (3.27) can be written for the components v and w.
In a compact form, they are given by

ρ
dvi
dt

= ρgi − ∂p

∂ri
+

∂

∂rj

(
η
∂vj
∂rj

− ρv′iv
′
j

)
. (3.31)

Equation (3.31) is the Reynolds equation for the momentum. It is formally
identical to the Navier-Stokes equation for the average values, except for the
presence of the contributions ρv′iv

′
j to the viscous force. The term ρv′iv

′
j is

called turbulent stress. The impact of these stresses on the fluid motion
depends on the problem. For instance, we can say that in turbulent regime
the turbulent stresses are much larger than the laminar stresses (i.e., those
related to η∂vi/∂rj).
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Chapter 4

Thermal conduction in fluids

4.1 The general equation of heat transfer

It is evident that a complete system of equations of fluid dynamics requires to
know the evolution equation for the internal energy or temperature. In other
words, the complete system of equations must contain five equations. For
fluids with internal friction and thermal conduction, one of these equations is
the equation of continuity and the other is the Navier-Stokes equation. The
fifth equation for an ideal gas is the equation of conservation of entropy

∂ts+ v · ∇s = 0.

In a viscous fluid this equation does not hold, of course, due to irreversible
processes of energy dissipation.

In the case of an ideal fluid, the law of conservation of energy is given by

∂

∂t

(
1

2
ρv2 + ρu

)
= −∇ ·

[
ρv

(
1

2
v2 + h

)]
. (4.1)

The left hand side gives the rate of change of energy in unit volume of the
fluid, while on the right is the divergence of the energy flux density. In
a viscous fluid the law of conservation of energy still holds, of course: the
change per unit time in the total energy of the fluid in any volume must
still be equal to the total flux of energy through the surface bounding that
volume. The energy flux density, however, now has a different form. Apart
from the flux ρv(1

2
v2+h) due to the simple transfer of mass by the motion of

fluid, there is also a flux due to processes of internal friction. This latter flux

37
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is given by the vector v ·σ′ with components vjσji [see Eq. (3.14)]. Moreover,
there is also another term that must be included in the energy flux. If the
temperature of the fluid is not constant throughout its volume, there will be
also a transfer of heat or energy called thermal conduction. Thus, there is a
transfer of energy from points where the temperature is high to those where
it is low. It does not involve macroscopic motion, and occurs even in a fluid
at rest.

Let us denote by q the heat flux density due to thermal conduction.
The heat flux is related to the variation of the temperature throughout the
system. If the magnitude of the thermal gradient is small, we assume that
q is proportional to ∇T (of course, q = 0 if ∇T = 0) and we obtain the
so-called Fourier law for the heat flux

q = −κ∇T, (4.2)

where κ is called the thermal conductivity coefficient. It is always positive,
since the energy flux moves from points at high temperature to those at low
temperature, i.e., q and ∇T must be in opposite directions. The coefficient
κ is in general a function of temperature and pressure.

Thus, the total energy flux in a fluid when there is viscosity and thermal
conduction is

ρv

(
1

2
v2 + h

)
− v · σ′ − κ∇T.

Accordingly, the general law of conservation of energy is given by the equation

∂

∂t

(
1

2
ρv2 + ρu

)
= −∇ ·

[
ρv

(
1

2
v2 + h

)
− v · σ′ − κ∇T

]
. (4.3)

This equation completes the system of fluid-mechanical equations of a viscous
fluid. It is more convenient, however, to write it in another form. To do so,
let us evaluate the time derivative of the energy in unit volume of fluid,
starting from the equations of motion. We have

∂

∂t

(
1

2
ρv2 + ρu

)
=

1

2
v2

∂ρ

∂t
+ ρv · ∂v

∂t
+ ρ

∂u

∂t
+ u

∂ρ

∂t
.

Now, we take into account the equation of continuity and the Navier-Stokes
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equation (in the absence of gravity field, for the sake of simplicity):

∂

∂t

(
1

2
ρv2 + ρu

)
= −1

2
v2∇ · (ρv)− ρv · ∇(

1

2
v2)− v · ∇p

+vi
∂σ′

ij

∂rj
+ ρ

∂u

∂t
− u∇ · (ρv). (4.4)

Using the thermodynamic relation du = Tds+ (p/ρ2)dρ, we find

∂u

∂t
= T

∂s

∂t
+

p

ρ2
∂ρ

∂t
= T

∂s

∂t
− p

ρ2
∇ · (ρv).

Substituting this into Eq. (4.4) and introducing the enthalpy h = u + p/ρ,
one gets

∂

∂t

(
1

2
ρv2 + ρu

)
= −

(
1

2
v2 + h

)
∇ · (ρv)− ρv · ∇(

1

2
v2)− v · ∇p

+ ρT
∂s

∂t
+ vi

∂σ′
ij

∂rj
. (4.5)

Next, the thermodynamic relation dh = Tds+ dp/ρ leads to

∇p = ρ∇h− ρT∇s.

In addition, the last term on the right hand side of Eq. (4.5) can be written
as

vi
∂σ′

ij

∂rj
=

∂

∂rj
(viσ

′
ij)− σ′

ij

∂vi
∂rj

.

Substitution of the above equations into Eq. (4.5) and adding and subtracting
the term ∇(κ∇T ), we finally get

∂

∂t

(
1

2
ρv2 + ρu

)
= −∇ ·

[
ρv

(
1

2
v2 + h

)
− v · σ′ − κ∇T

]

+ ρT

(
∂s

∂t
+ v · ∇s

)
− σ′

ij

∂vi
∂rj

−∇ · (κ∇T ).

(4.6)

Comparing Eqs. (4.3) and (4.6), we determine the rate of change of the
specific entropy of a viscous fluid with thermal conduction:

ρT

(
∂s

∂t
+ v · ∇s

)
= σ′

ij

∂vi
∂rj

+∇ · (κ∇T ). (4.7)
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This equation is called the general equation of heat transfer. If there is no
viscosity or thermal conduction, the right hand side is zero and one recovers
the equation of conservation of entropy (2.9) for an ideal fluid.

For practical purposes, it is more convenient sometimes to use the total
energy density per unit mass

e = u+
1

2
v2

instead of using the specific entropy s. The derivation of this energy equation
follows similar steps as those made before. Let us start from Eq. (4.3):

∂t(ρe) = −∇ ·
[
ρv

(
1

2
v2 + h

)]
+∇ · (v · σ′) +∇ · (κ∇T ).

Using the continuity equation and the thermodynamic relation h = u+ p/ρ,
one achieves

ρ
de

dt
= −∇ · (pv) +∇ · (v · σ′) +∇ · (κ∇T ). (4.8)

It is easy to show that Eq. (4.8) still holds in the presence of a gravity field
(g = −gk̂). In this case,

ρe = ρu+
1

2
ρv2 + ρgz.

On the other hand, using the Navier-Stokes equation to eliminate the
term ∇ · σ′ in Eq. (4.8), one can derive a conservation equation for the
internal energy per unit mass u. It is given by

ρ
du

dt
= −p∇ · v +∇ · (κ∇T ) + Φ, (4.9)

where

Φ ≡ σ′
ij

∂vi
∂rj

(4.10)

is called the viscosity dissipation function. If the fluid is perfect, then u = cvT
and so, Eq. (4.9) reduces to

ρcv
dT

dt
= −p∇ · v +∇ · (κ∇T ) + Φ. (4.11)
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4.2 Rate of increase of entropy

We want here to give an interpretation of Eq. (4.7). The quantity ds/dt gives
the rate of change of the entropy of a unit mass of fluid and ρTds/dt is the
amount of heat gained by unit of volume. We see from Eq. (4.7) that the
amount of heat gained by unit volume of the fluid is therefore

σ′
ij∇jvi +∇ · (κ∇T ).

The first term here is the energy dissipated into heat by viscosity while the
second is the heat conducted into the volume concerned. We expand the
term σ′

ij∇jvi in (4.7) by substituting the expression (3.2) for σ′
ij . Thus, one

obtains

σ′
ij

∂vi
∂rj

= η
∂vi
∂rj

(
∂vi
∂rj

+
∂vj
∂ri

− 2

3
δij∇ · v

)
+ ζ

∂vi
∂rj

δij(∇ · v).

The first term can be written as

1

2
η

(
∂vi
∂rj

+
∂vj
∂ri

− 2

3
δij∇ · v

)2

,

where use has been made of the result

∂vi
∂rj

∂vi
∂rj

+
∂vi
∂rj

∂vj
∂ri

− 2

3
(∇ · v)2 = 1

2

(
∂vi
∂rj

+
∂vj
∂ri

− 2

3
δij∇ · v

)2

.

The second term is simply

ζ
∂vi
∂rj

δij∇ · v = ζ(∇ · v)2.

Thus, Eq. (4.7) becomes

ρT

(
∂s

∂t
+ v · ∇s

)
= ∇ · (κ∇T )+

1

2
η

(
∂vi
∂rj

+
∂vj
∂ri

− 2

3
δij∇ · v

)2

+ ζ(∇·v)2.
(4.12)

The entropy of the fluid increases as a result of the irreversible processes
of thermal conduction and internal friction. Here, we are not talking about
the entropy of each volume element, but the total entropy of the whole fluid.
It is given by ∫

ρs dV.
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The change of entropy per unit time is

d

dt

∫
ρs dV =

∫
∂

∂t
(ρs)dV.

Using the equation of continuity and Eq. (4.12), one gets

∂

∂t
(ρs) = ρ

∂s

∂t
+ s

∂ρ

∂t
= −s∇ · (ρv)− ρv · ∇s+

1

T
∇ · (κ∇T )

+
η

2T

(
∂vi
∂rj

+
∂vj
∂ri

− 2

3
δij∇ · v

)2

+
ζ

T
(∇ · v)2. (4.13)

The first two terms on the right give −∇·(ρsv). Now, we integrate both sides
of Eq. (4.13) into the whole volume of the system. In this case, the volume
integral of the entropy flux ρsv is transformed into a surface integral. If
we consider an unbounded volume of fluid at rest at infinity, the bounding
surface can be removed to infinity and the integrand in the surface integral
is zero. The integral of the third term on the right hand side of Eq. (4.13) is
transformed as follows:

∫
1

T
∇ · (κ∇T )dV =

∫
∇ ·

(
κ∇T

T

)
dV +

∫
κ(∇T )2

T 2
dV.

Assuming that the fluid temperature quickly tends to a constant value at
infinity, then we can transform the first integral into one over an infinitely
remote surface integral, on which ∇T = 0 and the integral therefore vanishes.
The result for the change of entropy per unit time is

d

dt

∫
ρs dV =

∫
κ(∇T )2

T 2
dV +

∫
η

2T

(
∂vi
∂rj

+
∂vj
∂ri

− 2

3
δij∇ · v

)2

+

∫
ζ

T
(∇ · v)2. (4.14)

The left hand side of Eq. (4.14) gives the time variation of entropy ds/dt.
According to Thermodynamic’s second law

ds

dt
≥ 0.

The first term on the right hand side of Eq. (4.14) is the rate of increase of
entropy due to thermal conduction while the other two terms give the rate
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of increase due to internal friction. Since the entropy can only increase then
each term separately must always be positive. Consequently,

κ > 0, η > 0, ζ > 0.

It is important to note that in the form (4.2) for the heat flux we have
implicitly assumed that q does not depend on the pressure gradient ∇p. This
assumption, which is not evident a priori, can be justified now as follows. If
q contained a term proportional to ∇p, the expression (4.14) for the rate of
change of entropy would include another term having the product ∇p ·∇T in
the integrand. Since the latter could be negative or positive (since its signa-
ture is not well defined), then the time derivative ds/dt would not necessarily
be positive, which is inconsistent with the second law of Thermodynamics
(minimum entropy production).

4.3 Thermal conduction in an incompressible

fluid

If the fluid velocity is small compared with the velocity of sound, the pressure
and density variations across the system may be neglected. However, a non-
uniformly heated fluid is still not completely incompressible in the sense
used previously. The reason is that the density varies with the temperature;
this variation cannot in general be neglected, and therefore, even at small
velocities, the density of a non-uniformly heated fluid cannot be supposed
constant. In this case, p ≈ const. but ∇ρ �= 0. Thus, we have

∂s

∂t
=

(
∂s

∂T

)

p

∂T

∂t
, ∇s =

(
∂s

∂T

)

p

∇T,

and, since T (∂s/∂T )p is the specific heat at constant pressure, cp, we obtain

T
∂s

∂t
= cp

∂T

∂t
, T∇s = cp∇T.

Therefore, Eq. (4.7) reads

ρcp

(
∂T

∂t
+ v · ∇T

)
= ∇ · (κ∇T ) + σ′

ij

∂vi
∂rj

. (4.15)
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Equation (4.15) is equivalent to Eq. (4.11) when ∇ · v = 0 and cp ≈ cv. The
last identity holds for liquids. If the density is to be supposed constant in
the equation of motion for a non-uniformly heated fluid, it is necessary that
the fluid velocity is small compared with that of sound, and also that the
temperature differences in the fluid are small. In this case, the fluid may be
assumed to be incompressible in the usual sense; in particular the equation
of continuity is simply ∇ · v = 0. Supposing the temperature differences
small, we neglect also the temperature variation of the transport coefficients
and so, they are considered as constants. Writing the term

σ′
ij

∂vi
∂rj

=
η

2

(
∂vi
∂rj

+
∂vj
∂ri

)2

,

one finally obtains the heat transfer equation for an incompressible fluid:

∂T

∂t
+ v · ∇T = χ∇2T +

ν

2cp

(
∂vi
∂rj

+
∂vj
∂ri

)2

, (4.16)

where

χ ≡ κ

ρcp

is the thermometric conductivity.

If the incompressible fluid is at rest, the transfer of energy takes place
entirely by thermal conduction:

∂T

∂t
= χ∇2T. (4.17)

This equation is called Fourier’s equation. It can be derived in a more simple
way without using the general equation of heat transfer in a moving fluid.
According to the law of conservation of energy, the amount of heat absorbed
in some volume in unit time must equal the total heat flux into this volume
through the surface surrounding. This is an equation of continuity for the
amount of heat. This equation is obtained by equating the amount of heat
absorbed in unit volume in unit time to minus the divergence of the heat flux
density. The former is ρcp∂tT and the latter is −∇ · q and hence, one gets
Eq. (4.17).
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4.4 Reynolds equation for the temperature

As said in Chapter 3, for sufficiently high Reynolds numbers, the flow be-
comes turbulent and one has to modify the equations of fluid motion. Here,
we will display the equation for the temperature in turbulent flows in the
simple case of incompressible fluids (∇ · v = 0). It is given by

ρcp
dT

dt
=

∂

∂rj

(
κ
∂T

∂rj
− ρcpv�jT �

)
+ Φ(v) + Φ(v�), (4.18)

where T = T + T � and Φ is defined by Eq. (4.10). We see that there are two
new terms with respect to the laminar case, Eq. (4.11): (i) a term due to the
turbulent viscous dissipation Φ(v�); and (ii) a term due to the correlation
between the velocity and temperature fluctuations (heat flux turbulent).

Reynolds equations for the momentum and heat fluxes are in general
generalizations of the Navier-Stokes equations. In the laminar regime, one
can neglect the fluctuations and the average values of the hydrodynamic
fields coincide with their instantaneous ones. Thus, the turbulent viscous
dissipation vanishes and the stress and turbulent fluxes can also be neglected.
In this situation the only contributions to the viscous force and the heat flux
come from the ones obtained in the laminar regime.

Let us write the complete set of Reynolds equations for steady incom-
pressible flows. If the transport coefficients can be considered as constants,
then the above equations can be written as

∇ · v = 0, (4.19)

ρ
dv

dt
= ρg −∇p+∇ · σ�, (4.20)

ρcp
dT

dt
= −∇ · q + Φ∗, (4.21)

where

σ�
ij = η

(
∂vi
∂rj

+
∂vj
∂ri

)
− ρv�iv

�
j , (4.22)

qi = −κ
∂T

∂ri
+ ρcpv�iT �, Φ∗ = Φ(v) + Φ(v�). (4.23)

Equations (4.19)–(4.23) apply for both laminar and turbulent flows. Note
that in the above equations, the terms without prime denote the average
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values of the hydrodynamic fields. It must remarked that while the Navier-
Stokes equations are closed equations for ρ, v, and T , the transport equations
for turbulent flows are not closed unless one finds constitutive equations for
the turbulent transport terms. It is still an open problem and some theories
and statistical models have been developed in the past years to close the
corresponding hydrodynamic equations.

4.5 The similarity law for heat transfer

The processes of heat transfer in a fluid are more complex than those in
solids, because the fluid may be in motion. A heated body immersed in
a moving fluid cools considerably more rapidly than one in a fluid at rest,
where the heat transfer is accomplished only by conduction. As we know,
the motion of a non-uniformly heated fluid is called convection.

Let us assume that the temperature differences in the fluid are so small
that its physical properties may be supposed independent of temperature,
but are at the same time so large that the temperature changes coming from
the energy dissipation by internal friction are much smaller than those due to
the thermal conduction. Thus, Φ � κ∇T and the equation of heat transfer
(4.16) for an incompressible fluid reduces to

∂T

∂t
+ v · ∇T = χ∇2T, (4.24)

where χ ≡ κ/ρcp. Equation (4.24) along with the equation of continuity
and the Navier-Stokes equation completely determines the convection in the
conditions considered.

In what follows, we shall be interested only in steady incompressible flows
(in this case is necessary that the solid bodies adjoining the fluid should
contain some sources of heat to maintain them at constant temperature).
Then, all the time derivatives are zero, and we have the following fundamental
equations:

v · ∇T = χ∇2T, (4.25)

(v · ∇)v = −∇(p/ρ) + ν∇2v, ∇ · v = 0. (4.26)

The unknowns of these equations are v, T and p/ρ while the set contains
only two constant parameters, ν and χ. Moreover, the solution of the set of
equations depends also, through the boundary conditions, on some charac-
teristic length �, velocity u, and temperature difference T1−T0. The first two
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of these are given as usual by the dimension of the solid bodies which appear
in the problem and the velocity of the main stream. The third quantity is
given by the temperature difference between the fluid and these bodies.

The question arises of the dimensions given for the temperature, which is
determined by Eq. (4.25). This is a homogeneous linear differential equation
in T . Hence, the temperature can be multiplied by any constant and still sat-
isfies the equation. In other words, the unit of temperature can be arbitrarily
chosen. Thus, the flow is characterized by five parameters, whose dimensions
are [ν] = [χ] = L2T−1, [u] = LT−1, [�] = L, and [T1 − T0] = deg. From these
quantities one can form two independent dimensionless combinations. The
first is the well-known Reynolds number, Re= u�/ν. The second is a new
number called the Prandtl number, defined as

Pr =
ν

χ
= cp

η

κ
. (4.27)

Any other dimensionless combination can be expressed in terms of Re and
Pr.

Let us see the above similarity law for the energy equation (4.25) by
considering more quantitative arguments. As in Sec. 3.4, we introduce first
the (dimensionless) quantities r� ≡ r/� and v� ≡ v/u, � and u being a
reference length and velocity, respectively. In terms of the above scaled
variables, Eq. (4.25) can be written as

v�i
∂T

∂r�i
=

χ

u�

∂2T

∂r�i∂r
�
i

=
1

PrRe

∂2T

∂r�i∂r
�
i

. (4.28)

Thus, the solution to Eq. (4.28) can be written as v� = f(r�,Pr,Re) and
hence, flows sharing the same values of the Reynolds and Prandtl numbers
are dynamically similar.

In contrast to the Reynolds number, the Prandtl number is just a constant
of the material and does not depend on the properties of the flow. For gases
it is always of the order of unity. The value of Pr for liquids varies more
widely. For very viscous liquids, it may be very large.

The dimensionless function which gives the temperature distribution de-
pends on both Re and Pr as parameters. However, the velocity distribution
depends only on Re, since it is determined by Eqs. (4.26), which do not in-
volve the thermal conductivity coefficient κ. Two convective flows are similar
if their Reynolds and Prandtl numbers are the same.





mA
nu

Al
es

 ue
x

53

chAPter 5 

multIcomPonent fluId systems

Chapter 5

Multicomponent fluid systems

5.1 The equations of fluid dynamics for a mix-

ture of fluids

So far, we have derived the equations of fluid dynamics for a simple or mono-
component fluid. Now we want to extend these equations to the case of a
mixture of fluids whose composition is different at different points. As we
will see the corresponding equations are considerably modified.

We shall discuss here only mixtures constituted by two components. The
generalization to an arbitrary number of components can be easily made by
following similar steps as those carried out in the present chapter. The com-
position of the mixture is described by the concentration c = ρ1/ρ. It is
defined as the ratio of the mass of one component (say for instance, com-
ponent 1) to the total mass of the fluid in a given volume element. The
distribution of the concentration through the fluid will in general change.
This change occurs in two ways. Firstly, when there is a macroscopic motion
of the fluid, any given small portion of it moves as a whole and its compo-
sition remains unchanged. This is due to the pure mechanical mixing of the
fluid. In other words, although the composition of each moving portion of
it is unchanged, the concentration of the fluid at any point varies with time.
If we ignore any process of thermal conduction and internal friction (which
may be also taking place) this change in concentration is a thermodynami-
cally reversible process, and does not give rise to any dissipation of energy.
Secondly, a change in composition can occur by the molecular transfer of
the components from one part of the fluid to another. The tendency of the

49
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system to equilibrate the concentration of each component is called diffu-
sion. Diffusion is an irreversible process and is, like thermal conduction and
viscosity, one of the sources of energy dissipation in a fluid mixture.

We denote by ρ the total mass density of the fluid. As before, its equation
of continuity is

∂ρ

∂t
+∇ · (ρv) = 0. (5.1)

This means that the total mass of fluid in any volume can change only by the
movement of fluid into or out that volume. Strictly speaking, we must em-
phasize that the concept of velocity must be redefined for a mixture of fluids.
Here, ρv is the total momentum per unit volume of fluid. The Navier-Stokes
equation (3.7) is also unchanged. We shall derive the remaining equations of
fluid dynamics for a fluid mixture.

In the absence of diffusion, the composition of any given element of fluid
would remain unchanged during its motion. This means that the total deriva-
tive dc/dt would be zero, namely,

dc

dt
=

∂c

∂t
+ v · ∇c = 0.

Using Eq. (5.1), the above equation can be written as

∂

∂t
(ρc) +∇ · (ρcv) = 0. (5.2)

This is an equation of continuity for each component of the mixture (ρc being
the mass of that component in unit volume). In the integral form, it is given
by

∂

∂t

∫
ρcdV = −

∮
ρcv · dS.

It shows that the rate of change of the amount of this component in any
volume is equal to the amount of the component transported through the
surface of that volume by the motion of fluid.

When diffusion occurs, apart from the flux ρcv of the component in ques-
tion, there is another flux which results in the transfer of the components
even when the fluid as a whole is at rest. Let ji be the density of this diffusion
flux, i.e., the amount of the component transported by diffusion through unit
area in unit time. Since the sum of the flux densities of the two components
must be ρv, the flux density for one component is ρcv+ ji while for the other
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is ρ(1 − c)v − ji. Thus, the rate of change of the amount of the component
in any volume is

∂

∂t

∫
ρcdV = −

∮
ρcv · dS−

∮
ji · dS,

or in differential form

∂

∂t
(ρc) = −∇ · (ρcv)−∇ · ji.

Using Eq. (5.1), we can rewrite this equation of continuity for one component
in the form

ρ

(
∂c

∂t
+ v · ∇c

)
= −∇ · ji. (5.3)

Let us derive the equation for the energy. We note that for a binary
mixture the thermodynamic quantities of the fluid are also functions of the
concentration. We want to evaluate the derivative ∂t(

1
2
ρv2 + ρu). To do it,

we use the thermodynamic relations

du = Tds+
p

ρ2
dρ+ μdc, dh = Tds+

1

ρ
dp+ μdc,

where μ is the chemical potential of the mixture. It is given by

μ =
μ1

m1
− μ2

m2
,

where μi is the chemical potential of the species or component i and mi is the
mass of a fluid particle of species i. Note that for species 1, c = n1m1 = ρ1/ρ
where ni is the number of particles i contained in 1 gr of the mixture fluid.
In this case, an additional term ρμ∂c/∂t appears in the derivative ρ∂u/∂t.
Writing the second thermodynamic relation in the form

dp = ρdh− ρTds− ρμdc,

we see that the term −v · ∇p in Eq. (4.5) will contain the additional term
ρμv · ∇c.

Thus, if we go to the derivation of Eq. (4.6), then to the above expression
we must add the term

ρμ

(
∂c

∂t
+ v · ∇c

)
= −μ∇ · ji.



mA
nu

Al
es

 ue
x

56

Vicente Garzó
52 CHAPTER 5. MULTICOMPONENT FLUID SYSTEMS

Consequently, the final result is

∂

∂t

(
1

2
ρv2 + ρu

)
= −∇ ·

[
ρv

(
1

2
v2 + h

)
− v · σ′ + q

]

+ ρT

(
∂s

∂t
+ v · ∇s

)
− σ′

k�

∂vk
∂r�

+∇ · q− μ∇ · ji.
(5.4)

We have replaced the term −κ∇T by a heat flux q since the latter can also
depend on the concentration gradient (apart from its dependence on ∇T ).
The last two terms in Eq. (5.4) on the right hand side can be written as

∇ · q− μ∇ · ji = ∇ · (q− μji) + ji · ∇μ.

The expression

ρv

(
1

2
v2 + h

)
− v · σ′ + q

appearing in the divergence operator in Eq. (5.4) can be identified as the
total energy flux in the fluid. The first term is the reversible energy flux (due
simply to the movement of the fluid as a whole) while the sum −v · σ′ + q
is the irreversible part of the energy flux. When there is no macroscopic
motion, the viscosity flux v · σ′ is zero and the energy flux is simply q.

The equation of conservation of energy is

∂

∂t

(
1

2
ρv2 + ρu

)
= −∇ ·

[
ρv

(
1

2
v2 + h

)
− v · σ′ + q

]
. (5.5)

Comparison between Eqs. (5.4) and (5.5) yields the required equation for the
specific entropy:

ρT

(
∂s

∂t
+ v · ∇s

)
= σ′

k�

∂vk
∂r�

−∇ · (q− μji)− ji · ∇μ. (5.6)

This equation generalizes (4.7) to fluid mixtures.
We have thus obtained a complete system of equations of fluid dynamics

for a two-component fluid mixture. The number of equations in this system
is one more than for a single fluid, since there is one more unknown function,
namely the concentration. The equations are the equation of continuity
(5.1), the Navier-Stokes equations (which are the same as those obtained
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for a single gas), the equation of continuity (5.3) for one component, and
Eq. (5.6) for the change of entropy. They are not closed equations for the
unknowns unless one gives the corresponding constitutive equations for ji
and q in terms of the gradients of concentration and temperature. These
equations will be displayed in the next section.

5.2 Constitutive equations for the diffusion

and heat fluxes

The diffusion flux ji and the heat flux q are due to the presence of concentra-
tion and temperature gradients in the fluid. In the case of a two-component
fluid system, both fluxes depend on both gradients. If the concentration and
temperature gradients are small, one can assume that ji and q are linear
functions of ∇μ and ∇T . The fluxes are independent of the pressure gra-
dient for the same reason as that given with the case of the heat flux for a
single fluid. Accordingly, we write these fluxes as

ji = −α∇μ− β∇T, q− μji = −δ∇μ− γ∇T.

However, there is a simple relation between the transport coefficients β and
δ, which is a consequence of a symmetry principle of the kinetic coefficients
(Onsager’s reciprocity relations). If we rewrite the above equations as

ji = −αT

(∇μ

T

)
− βT 2

(∇T

T 2

)
,

q− μji = −δT

(∇μ

T

)
− γT 2

(∇T

T 2

)
,

then, Onsager’s relations yields βT 2 = δT or δ = βT . We can therefore
rewrite the heat flux as

q = μji − βT∇μ− γ∇T =

(
μ+

βT

α

)
ji − βT

α
ji − βT∇μ− γ∇T

=

(
μ+

βT

α

)
ji + βT∇μ+

β2T

α
∇T − βT∇μ− γ∇T

=

(
μ+

βT

α

)
ji − κ∇T, (5.7)
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where
β2T

(5.8)

(5.9)

0 or
the
h

flux

ially
ore

ts

∂c T,p

where

κ ≡ γ − β2

α

T
. (5.8)

Thus, the mass and heat fluxes can be finally written as

ji = −α∇μ− β∇T, q = μ+
βT

α

( )
ji − κ∇T. (5.9)

In the case that the diffusion flux is zero, we have pure thermal conduc-
tion. In this case, T and μ must satisfy the condition α∇μ + β∇T = 0 or
αdμ + βdT = 0. The integration of this equation gives a relation of the
form f(c, T ) = 0. This relation determines the dependence of c on T which
must hold if there is no diffusion flux. Moreover, when ji = 0 the heat flux
becomes

q = −κ∇T,

and so κ is just the thermal conductivity coefficient.
Let us now change to the usual variables p, T , and c. This is essentially

motivated because the spatial gradients of the above quantities are more
accessible in the experimental conditions. Thus, we have

∇μ =

(
∂μ

∂c

)

p,T

∇c+

(
∂μ

∂T

)

c,p

∇T +

(
∂μ

∂p

)

c,T

∇p.

In the last term we use the thermodynamic relation

∂p c,T

=

(
∂v

∂c

(
∂μ

) )

p,T

,

where v = ρ−1 is the specific volume. Moreover, we introduce the coefficients

D ≡ α

ρ ∂c

(
∂μ

)

T,p

,

ρD

T
κT ≡ α

(
∂μ

∂T

)

c,p

+ β,

κp ≡ p

(
∂v
∂c

)
( T,p

∂μ
∂c

)
T,p

.



mA
nu

Al
es

 ue
x

59

An IntroductIon to PhysIcs of fluIds
5.2. CONSTITUTIVE EQUATIONS FOR THE DIFFUSIONANDHEAT FLUXES55

Substitution of these relations into the first relation of Eq. (5.9) yields the
expression

ji = −α

(
∂μ

∂c

)

T,p

∇c− α

(
∂μ

∂T

)

c,p

∇T − α

(
∂μ

∂p

)

c,T

∇p− β∇T

= −ρD∇c−
(
ρD

T
κT − β

)
∇T − α

(
∂v

∂c

)

p,T

∇p− β∇T

= −ρD∇c− ρD

p
κp∇p− ρD

T
κT∇T. (5.10)

The heat flux can be also rewritten in a more convenient form when one takes
into account the identity

βT

α
= κT

(
∂μ

∂c

)

T,p

− T

(
∂μ

∂T

)

c,p

.

Therefore, the constitutive equations of the mass and heat fluxes can be
expressed in terms of the spatial gradients of concentration, pressure and
temperature as

ji = −ρD

[
∇c+

κT

T
∇T +

κp

p
∇p

]
, (5.11)

q =

[
κT

(
∂μ

∂c

)

T,p

− T

(
∂μ

∂T

)

c,p

+ μ

]
ji − κ∇T. (5.12)

Here, D is called the diffusion coefficient or mass transfer coefficient (it gives
the diffusion flux when only a concentration gradient is present), κTD is the
thermal diffusion coefficient (it gives the diffusion flux due to the temperature
gradient) and the dimensionless coefficient κT is called the thermal diffusion
ratio. The last term of the right hand side of Eq. (5.11) takes into account the
effect of a pressure gradient on the diffusion flux; the coefficient κpD is called
the barodiffusion coefficient. In a single fluid, where there is no diffusion flux,
then κT = κp = 0.

The condition that the entropy must increase in time gives some restric-
tions for the transport coefficients appearing in the forms of ji and q. Omit-
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ting for brevity the viscous terms, the time derivative of the entropy is

∂

∂t

∫
ρsdV = −

∮
ρsv · dS−

∫ ∇ · (q− μji)

T
dV −

∫
ji · ∇μ

T
dV + · · ·

= −
∮

ρsv · dS−
∫

∇ ·
(
q− μji

T

)
dV

−
∫

(q− μji) · ∇T

T 2
dV −

∫
ji · ∇μ

T
dV + · · ·

= −
∮

ρsv · dS−
∮

1

T
(q− μji) · dS−

∫
κ(∇T )2

T 2
dV

+

∫
α

T
(∇μ)2dV + · · ·

= −
∫

κ(∇T )2

T 2
dV +

∫
α

T
(∇μ)2dV + · · · . (5.13)

Note that all the terms involving surface integrals vanish when one takes
convenient boundary conditions for an infinite system. It is apparent that,
besides the condition κ > 0 which we already know, we must have also α > 0.
Bearing in mind that the derivative (∂μ/∂c)p,T is always positive according
to one of the thermodynamic quantities, we therefore find that the diffusion
coefficient must be positive: D > 0. The quantities κT and κp, however, may
be either positive or negative.

We consider now the more simple case where ∇p = 0 and the magnitude
of the concentration and temperature gradients is quite small so that the
transport coefficients can be considered as constants. In addition, we also
assume that there is no macroscopic motion in the fluid (v = 0), except that
is produced by ∇c and ∇T . We also neglect terms which are of second order
in spatial gradients. Under these conditions, the balance equations reduce to

ρ
∂c

∂t
+∇ · ji = 0, (5.14)

ρT
∂s

∂t
+∇ · (q− μji) = 0, (5.15)

where ji and q are given by Eqs. (5.11) and (5.12), respectively, with ∇p = 0.
The derivative ∂s/∂t can be transformed as follows:

∂s

∂t
=

(
∂s

∂T

)

c,p

∂T

∂t
+

(
∂s

∂c

)

T,p

∂c

∂t
=

cp
T

∂T

∂t
−
(
∂μ

∂T

)

c,p

∂c

∂t
.
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Taking into account this result and the identity

q− μji =
βT

α
ji − κ∇T,

Eq. (5.15) can be expressed as

∂T

∂t
−

[
T

cp

(
∂μ

∂T

)

c,p

+
βT

αcp

]
∂c

∂t
= χ∇2T. (5.16)

Equation (5.16) can be simplified when one takes into account the relation

(
∂μ

∂T

)

c,p

=
ρD

Tα
κT − β

α
=

(
∂μ

∂c

)

T,p

κT

T
− β

α
.

Thus, Eqs. (5.14) and (5.15) can be finally written as

∂c

∂t
= D

(
∇2c +

κT

T
∇2T

)
, (5.17)

∂T

∂t
− κT

cp

(
∂μ

∂c

)

T,p

∂c

∂t
= χ∇2T. (5.18)

There is a particularly important situation when the concentration c is
quite small. In this limit (c → 0), the diffusion coefficient tends to a finite
constant, but the thermal diffusion coefficient (κT/T )D tends to zero. Thus,
Eq. (5.17) becomes

∂c

∂t
= D∇2c. (5.19)

This diffusion equation is similar to that of thermal conduction by replacing
c ↔ T . The solution to Eq. (5.19) can be written as

c(r, t) =
M

8ρ(πDt)3/2
e−r2/4Dt, (5.20)

where M is the total amount of the solute. Equation (5.20) gives the distri-
bution of the solute at any time, if at time t = 0 it is all concentrated at the
origin.
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5.3 Diffusion of particles suspended in a fluid

Under the influence of the molecular motion in a fluid, particles suspended in
the fluid move randomly (called the Brownian motion). Let us assume that
such particle is located at the origin at the initial instant. Its subsequent
motion may be regarded as a diffusion, in which the concentration can be
interpreted as the probability of finding the particle in any particular volume
element. To determine this probability we can use the solution (5.20) to the
diffusion equation. We can employ this solution since c � 1 so that the
particles of the solute do not affect practically each other and the motion of
each solute particle can be considered independently.

Let w(r, t)dr be the probability of finding the particle at a distance be-
tween r and r+ dr from the origin at time t. Putting in Eq. (5.20) M/ρ ≈ 1
(since the probability of finding the particle at the origin at t = 0 is equal to
one), the corresponding probability reads

w(r, t)dr =

∫ π

0

dθ sin θ

∫ 2π

0

dϕ r2c(r, t) dr. (5.21)

Since c(r, t) does not depend on the angles θ and ϕ, then one simply gets

w(r, t)dr =
e−r2/4Dt

2
√
πD3t3

r2dr. (5.22)

Let us determine the mean square displacement from the origin at time t.
We have

r2 =

∫ ∞

0

r2w(r, t)dr.

Using Eq. (5.22), the result is

r2 = 6Dt. (5.23)

Thus, the mean distance traveled by the particle during any time is propor-
tional to the square root of the time, i.e.,

√
r2 ≈ r ∼ √

t.

The diffusion coefficient for particles suspended in a fluid can be calcu-
lated from what is called the mobility. Let us suppose that some constant
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external force f (the force of gravity, for example) acts on the particles. In a
steady state, the force acting on each particle must be balanced by the drag
force exerted by the fluid on a moving particle. When the velocity v is small,
the drag force is proportional to v/b where b is a constant. Equating this to
the external force f , we have

v = bf ,

i.e., the velocity acquired by the particle under the action of an external
force is proportional to that force. The constant b is called the mobility.
This coefficient can be calculated from the equations of fluid dynamics. For
example, for spherical particles with radius R, the drag force is 6πηRv and
therefore, the mobility is

b = (6πηR)−1.

The mobility b is related to the diffusion coefficient D. To derive this relation,
we write the diffusion flux, which contains the term −ρD∇c due to the
concentration gradient (we assume that the temperature is constant) plus
a term containing the velocity acquired by the particle due to the external
force. This latter term is ρcv = ρcbf . Thus,

ji = −ρD∇c + ρcbf .

This equation can be rewritten as

ji = −ρDc

kBT
∇μ+ ρcbf ,

where we have taken into account the relation

(∇μ)T =
kBT

c
∇c,

kB being the Boltzmann constant [it will be defined in Chapter 7, see Eq.
(7.30)].

In thermodynamic equilibrium, there is no diffusion, and ji must be zero.
On the other hand, when an external field is present, the condition of equilib-
rium requires μ+U = const., where U is the potential energy of a suspended
particle in that field. Then, ∇μ = −∇U = f , and the equation ji = 0 gives

D = kBTb. (5.24)
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This is Einstein’s relation between the diffusion coefficient and the mobility.
In the case of spherical particles, one has

D =
kBT

6πηR
.
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Chapter 6

Stability of the hydrodynamic
equations

6.1 Hydrodynamic equations

The goal of this Chapter is to solve the hydrodynamic equations for the
densities of mass, momentum and energy in a very limiting case: when the
system is close to equilibrium. Let us first write the hydrodynamic equations.
They can be written as

∂ρ

∂t
+ ρ∇ · v + v · ∇ρ = 0, (6.1)

ρ

(
∂vi
∂t

+ vj
∂vi
∂rj

)
= − ∂p

∂ri
+

∂

∂rj

[
η

(
∂vi
∂rj

+
∂vj
∂ri

− 2

3
δij

∂v�
∂r�

)]
+

∂

∂ri

(
ζ
∂v�
∂r�

)
,

(6.2)

ρcv

(
∂T

∂t
+ v · ∇T

)
= −T

(
∂p

∂T

)

ρ

∇ · v +∇ · (κ∇T ) + σ′
ij

∂vi
∂rj

. (6.3)

Note that Eq. (6.3) differs from Eq. (4.11) by the term ∂Tp appearing on the
right hand side of (6.3). For an ideal fluid, ∂T p = p/T and Eq. (6.3) reduces
to Eq. (4.11). Thus, Eq. (6.3) applies beyond an ideal fluid.

The system of Eqs. (6.1)–(6.3) is very complicated to solve due essentially
to its nonlinear character. This set of equations has an extremely rich variety
of solutions since for instance it describes different problems such as the
turbulence of liquids and the onset of instabilities in stars. On the other

61
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hand, this system admits a very simple solution: the absolute equilibrium
state described by

v = 0, ρ(r, t) ≡ const., T (r, t) ≡ const.

An interesting problem is to analyze the stability of the equilibrium solu-
tion. In other words, we want to see if small deviations from the equilibrium
solution decay or not in time. To analyze this problem, we then write the
hydrodynamic fields as

ρ(r, t) = ρ+ δρ(r, t), (6.4)

v(r, t) = δv(r, t), (6.5)

T (r, t) = T + δT (r, t), (6.6)

where henceforth we will use the convention that when the arguments (r, t)
of a hydrodynamic variable are not explicitly displayed, it means that this
quantity is defined in the (homogeneous) equilibrium state.

The next step is to substitute Eqs. (6.4)–(6.6) into the hydrodynamic
equations (6.1)–(6.3), neglect nonlinear terms in the perturbations and as-
sume that the transport coefficients are constant since they are defined in
terms of the equilibrium state. Let us work out each hydrodynamic equation
separately.

The equation of continuity (6.1) reads

∂tδρ+∇ · [(ρ+ δρ)δv] = 0.

To first order in δρ, one gets

∂tδρ(r, t) + ρ∇ · δv(r, t) = 0. (6.7)

We consider now the equation for the velocity field (6.2). First, the
pressure p can be written as

p(r, t) = p+ δp(r, t) = p+

(
∂p

∂ρ

)

T

δρ(r, t) +

(
∂p

∂T

)

ρ

δT (r, t),

while the term on the right hand side of Eq. (6.2) becomes

∂

∂rj

[
η

(
∂vi
∂rj

+
∂vj
∂ri

− 2

3
δij

∂v�
∂r�

)]
+

∂

∂ri

(
ζ
∂v�
∂r�

)
→ η∇2δvi+

(η
3
+ ζ

)
∇i∇·δv.
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With these results, the corresponding linearized version of the hydrodynamic
equation (6.2) is

∂tδvi+ρ−1

(
∂p

∂T

)

ρ

∇iδT+ρ−1

(
∂p

∂ρ

)

T

∇iδρ =
η

ρ
∇2δvi+ρ−1

(η
3
+ ζ

)
∇i∇·δv,

(6.8)
where the explicit dependence on (r, t) has been omitted for the sake of
brevity. The linearized hydrodynamic equation for the temperature can be
derived by using similar mathematical steps as before. It is given by

∂δT (r, t) +
T

ρcv

(
∂p

∂T

)

ρ

∇ · δv(r, t) = κ

ρcv
∇2δT (r, t). (6.9)

6.2 Linear stability analysis

The next step is to look for a solution to the set of linearized hydrodynamic
equations (6.7), (6.8) and (6.9) for a system of infinite volume, assuming
that the deviations of the macroscopic variables from equilibrium vanish at
large distances. We introduce now the Fourier transform of the above set of
equations. For instance, in the case of the mass density we have

ρq =

∫
dr e−iq·r δρ(r, t), (6.10)

and similar formulas for the velocity field vq and temperature Tq. Moreover,
without loss of generality, let us take a reference frame where q is oriented
along the x-axis, namely,

q = qî. (6.11)

We take now the Fourier transform of Eqs. (6.7), (6.8) and (6.9). Using
the well-known correspondence ∂/∂r =⇒ iq for Fourier transforms, one has
for instance

∫
dre−iqx∇ · δv =

∫
dre−iqx∂δvx

∂x

=
∂

∂rj

∫
dre−iq·rδvj + iqδjx

∫
dre−iq·rδvj

= iqvq,� = iq · vq, (6.12)
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where vq,� denotes the component of the velocity field parallel to the pertur-
bation. Moreover, ∫

dre−iq·r∇2δv = −q2vq, (6.13)

∫
dre−iq·r∇∇ · δv = −q(q · vq). (6.14)

With these results, the Fourier transform of Eqs. (6.7), (6.8) and (6.9) yields

∂tρq(t) = −iρq · vq, (6.15)

∂tvq(t) = −iα1qρq − iβ1qTq − νq2vq − δ1q(q · vq), (6.16)

∂tTq(t) = −iμ1q · vq − ξ1q
2Tq, (6.17)

where we have introduced the abbreviations

α1 ≡ ρ−1

(
∂p

∂ρ

)

T

, β1 ≡ ρ−1

(
∂p

∂T

)

ρ

, ν ≡ η

ρ
, (6.18)

δ1 ≡ ρ−1
(η
3
+ ζ

)
, μ1 ≡ T

ρcv

(
∂p

∂T

)

ρ

, ξ1 ≡ κ

ρcv
. (6.19)

The set of equations (6.15)–(6.17) clearly show that the transversal com-
ponent of the velocity field

vq,⊥ = vq − q(q · vq)

q2
(6.20)

is decoupled from the remaining fields. Its evolution equation can be obtained
from Eq. (6.16):

∂tvq,⊥(t) = −νq2vq,⊥(t). (6.21)

The solution to Eq. (6.21) is

vq,⊥(t) = vq,⊥(0)e−νq2t, (6.22)

where vq,⊥(0) denotes the initial value of vq,⊥. Since the shear viscosity is
positive, then ν > 0 and vq,⊥(t) goes to zero for long times. Consequently,
the transversal shear mode is linearly stable.

The remaining longitudinal fields (ρq, vq,�, Tq) obey a coupled system of
ordinary differential equations. For the sake of completeness, let us write in
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matrix form the complete system of equations for the five hydrodynamic fields
(including the transversal components). The set of differential equations can
be written as

∂tΨq(t) = Mq ·Ψq(t), (6.23)

where

Ψq(t) =

⎛
⎜⎜⎜⎜⎝

ρq(t)
vq,x(t)
vq,y(t)
vq,z(t)
Tq(t)

⎞
⎟⎟⎟⎟⎠

, (6.24)

Mq =

⎛
⎜⎜⎜⎜⎝

0 −iρq 0 0 0
−iα1q −(ν + δ1)q

2 0 0 −iβ1q
0 0 −νq2 0 0
0 0 0 −νq2 0
0 −iμ1q 0 0 −ξ1q

2

⎞
⎟⎟⎟⎟⎠

. (6.25)

Although Mq is non-Hermitian, explicit calculations show that it can be
diagonalized, or equivalently, that the eigenvalue problem

Mq · Φq
α = λq

αΦ
q
α (6.26)

has five linearly independent solutions. In this case, the eigenvalues λq
α pro-

vide the time evolution of Ψq(t):

Ψq(t) =

5�
α=1

cqα(t)Φ
q
α =

5�
α=1

cqα(0)e
λq
αtΦq

α. (6.27)

Hence the solution of the linearized hydrodynamic equations is the superpo-
sition of five hydrodynamic modes, each describing a coherent motion of the
five hydrodynamic variables, with a simple time behavior.

6.3 Hydrodynamic modes

The eigenvalues λα
q of the eigenvalue problem (6.26) are the solutions of the

secular determinant

�Mq − λq
α1� = 0, (6.28)
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where 1 denotes the matrix identity. Equation (6.28) is a fifth-degree equa-
tion that decouples into a third-degree equation and a second degree-equation.
It is given by

(
νq2 + λq

α

)2 {
λq3
α + (ν + δ1 + ξ1)q

2λq2
α +

[
(β1μ1 + α1ρ)q

2

+ξ1(ν + δ1)q
4
]
λq
α + α1ξ1ρq

4
}
= 0. (6.29)

As expected, the modes corresponding to the transversal components of the
velocity field are decoupled. They are given by

λq
3 = λq

4 = −νq2 (6.30)

The other three modes are given in terms of the solution of a cubic equation.
Although they have an explicit form, we note that hydrodynamics only ap-
plies for phenomena varying slowly in space. In the Fourier language, this
means that the only relevant coefficients in Eq. (6.29) correspond to small q.
Thus, we look for solutions in the limit q → 0. In this limit, we write

λq
α = aαq + bαq

2 +O(q3). (6.31)

Thus, one has
λq3
α = (aαq + bαq

2)3 → a3αq
3 + 3a2αbαq

4,

λq2
α = (aαq + bαq

2)2 → a2αq
2 + b2αq

4 + 2aαbαq
3.

Substituting these expansions into the cubic equation

λq3
α + (ν + δ1 + ξ1)q

2λq2
α +

[
(β1μ1 + α1ρ)q

2 + ξ1(ν + δ1)q
4
]
λq
α + α1ξ1ρq

4 = 0,
(6.32)

and setting the different terms of the same power in q equal to zero, one gets
several relations for the coefficients. In the order q3, one gets

aα
(
a2α + β1μ1 + ρα1

)
= 0, (6.33)

while the relation in the order q4 is

3a2αbα + a2α(ν + δ1 + ξ1) + bα(β1μ1 + ρα1) + ρα1ξ1 = 0. (6.34)

Equation (6.34) allows us to express bα in terms of aα as

bα = −a2α(ν + δ1 + ξ1) + ρα1ξ1
3a2α + β1μ1 + ρα1

. (6.35)
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The solutions to Eq. (6.34) are a5 = 0 and

a1 = −a2 = i
√

β1μ1 + ρα1. (6.36)

The corresponding forms for bα are

b5 = − ρα1ξ1
β1μ1 + ρα1

, (6.37)

b1 = b2 =
ρα1ξ1 − (ν + δ1 + ξ1)(β1μ1 + ρα1)

2(β1μ1 + ρα1)

= −1

2

(
ν + δ1 + ξ1 − ρα1ξ1

β1μ1 + ρα1

)
. (6.38)

Using the thermodynamic relation

cp − cv =
T
(
∂p
∂T

)2
ρ

ρ2
(

∂p
∂ρ

)
T

,

and the explicit forms (6.18) and (6.19), one gets the expressions

ρα1ξ1 =
κ

ρcv

(
∂p

∂ρ

)

T

, (6.39)

β1μ1+ρα1 =
T

ρ2cv

(
∂p

∂T

)2

ρ

+

(
∂p

∂ρ

)

T

=

(
cp − cv

cv
+ 1

)(
∂p

∂ρ

)

T

=
cp
cv

(
∂p

∂ρ

)

T

.

(6.40)
Thus, the coefficients b5 and b1 can be explicitly obtained when one uses Eqs.
(6.39) and (6.40) in the definitions (6.37) and (6.38):

b5 = − κ

ρcp
, (6.41)

b1 = − 1

2ρ

[
4

3
η + ζ + κ

(
1

cv
− 1

cp

)]
. (6.42)

The eigenvalues associated to the longitudinal modes can be easily deter-
mined when one takes into account Eqs. (6.41) and (6.42). The results are

λq
1,2 = ∓icsq − Γsq

2, (6.43)
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λq
5 = − κ

ρcp
q2, (6.44)

where

cs =

√
cp
cv

(
∂p

∂ρ

)

T

(6.45)

is the sound velocity and

Γs =
1

2ρ

[
4

3
η + ζ + κ

(
1

cv
− 1

cp

)]
(6.46)

is the sound-absorption coefficient.
The meaning of the hydrodynamic modes is clear. The modes λq

1,2 de-
scribe damped sound wave propagations; the modes λq

3,4 correspond diffusion
of the transverse velocity and λq

5 describes heat diffusion. Given that the real
part of all the modes is negative, then the state of absolute equilibrium is
(linearly) stable.
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chAPter 7 

mIcroscoPIc descrIPtIon: 
bAlAnce equAtIons

Chapter 7

Microscopic description:
Balance equations

7.1 Introduction

In the previous Chapters we have derived the balance equations of mass,
momentum and energy by considering a continuum description of the fluid.
In this Chapter, we will obtain the above balance equations by considering the
macroscopic fluid system constituted by particles. These particles interact
each other so that the collisions among them gives rise to the transfer of
momentum and energy across the system.

The hydrodynamic description of nonequilibrium fluids is based on three
major stages. In the first stage, one introduces local densities of mass, mo-
mentum, and energy, which are conserved quantities. The rate of change
of these quantities can be expressed in terms of the divergence of the cor-
responding mass, momentum, and energy fluxes. These balance equations
are not exact since they do not constitute a closed set of equations. In the
second stage, the irreversible parts of the momentum and energy fluxes are
assumed to be linear functions of the flow velocity and temperature gra-
dients, respectively. These linear relationships between fluxes and gradients
define the Navier-Stokes constitutive equations : Newton’s friction law for the
stress tensor and Fourier’s law for heat conduction. The associated coeffi-
cients are the transport coefficients of the fluid, namely, the shear η and bulk
ζ viscosities and the thermal conductivity κ, respectively. When these phe-
nomenological laws for the fluxes are inserted into the balance equations, the

69
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resulting set of equations is still not closed because one needs to determine
the hydrostatic pressure p and the internal energy density u in terms of the
local mass density ρ and the local temperature T . This is the done in the
third stage, where the equilibrium equation of state relating p and u to ρ
and T are extended to the nonequilibrium local quantities (local equilibrium
hypothesis). The three-stage process yields the closed set of Navier-Stokes
hydrodynamic equations. This scheme is essentially the same for fluid mix-
tures, except that the number of transport coefficients is larger than in the
case of a simple fluid.

The prototype system that embodies the most relevant physical proper-
ties of ordinary fluids consists of a low-density gas (dilute gas) of particles
interacting via a pair-wise, central short-ranged potential. Under these con-
ditions, the system admits a kinetic theory description rather than a com-
plete non-equilibrium statistical-mechanical treatment. If the gas is rarefied
(namely, it is sufficiently dilute), a simple picture grasped by the fathers of
kinetic theory arises: every particle moves most of the time freely (or un-
der the action of an external force, if it exists), except when eventually its
trajectory approaches to that of another particle and, as a result of their
mutual interactions, both particles abruptly change their respective veloci-
ties. Thus, in a dilute gas the interactions among the particles reduce to a
sequence of uncorrelated binary collisions. The collisions can be considered
as events well localized in space and time because the typical distance trav-
eled between two successive collisions is much larger than the range of the
interaction, and analogously, the typical time elapsed between two collisions
is much larger than the duration of a collision.

The simplifications inherent to the low-density limit allow for a huge re-
duction of the microscopic description of the system: from a general statistical-
mechanical description to a contracted kinetic theory description, from the
N -body phase space probability density to the one-body velocity distribution
function, from the reversible Liouville equation to the irreversible Boltzmann
equation. The Boltzmann equation is the master equation for a low-density
gas and describes the rate of change of the velocity distribution function as
produced by two uncoupled mechanisms: free motion and localized, instan-
taneous binary collisions.
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7.2 Velocity distribution function

We consider a dilute monatomic gas of N identical particles of mass m inter-
acting through a pair-wise central interaction potential of finite range. We
also assume that quantum-mechanical effects are not relevant or significant
and hence, we use classical mechanics. At a kinetic level all the relevant
information on the state of the system is contained in the one-body velocity
distribution function (vdf) f(r,v, t). It is defined so that f(r,v, t)drdv is
the most probable (or average) number of particles which at time t lie in
the volume element dr centered at the point r and moving with velocities in
the range dv about v. Accordingly, the distribution function f(r,v, t) must
satisfy the condition 1

N =

∫
dr

∫
dvf(r,v, t), (7.1)

or equivalently,

n(r, t) =

∫
dvf(r,v, t). (7.2)

Here, n(r, t) is the average number of particles per unit volume, namely, it
is the local number density. The mass density per unit volume ρ(r, t) =
mn(r, t).

The average velocity of those particles located around the point r at time
t defines the local flow velocity U(r, t) as

U(r, t) =
1

n(r, t)

∫
dv v f(r,v, t). (7.3)

In general, if χ(v) is a given function of the velocity v of a particle, we can
define its average value as

χ(r, t) ≡ �χ(r, t)� = 1

n(r, t)

∫
dv χ(v) f(r,v, t). (7.4)

In particular, the mean value of χ(v) = 1
2
mv2 defines the average kinetic

energy of each particle. Note that the definition (7.4) for the average values
only involves properties associated with only one particle.

1Note that here v denotes the random velocity of a particle while in the previous
Chapters v means the velocity of a fluid particle (which is equivalent to the flow mean
velocity U).



mA
nu

Al
es

 ue
x

76

Vicente Garzó
72CHAPTER 7. MICROSCOPIC DESCRIPTION: BALANCE EQUATIONS

7.3 Microscopic fluxes

Once we have introduced the concept of the velocity distribution function,
as an application it is interesting to determine the flux of the dynamical
quantity χ. This flux will be denoted as F(r, t). We want to evaluate the
net flow of χ(r,v) per unit area and time due to the net flow of molecules

across the surface element dS. If dS � k̂, then Fz(r, t) gives the net flow
of χ which is transferred at the time t and the point r per unit time and
unit area perpendicular to the z-axis. As usual in fluid dynamics, we are
only interested in the irreversible transfer processes accounting for a given
quantity from one side to another side of the system. If the gas is not at rest
(U �= 0), there is a reversible convective flow due to the motion of the fluid.
Our goal here is to determine the internal flow, even when the fluid is at rest.
To do it, we assume that the surface element is moving with the flow velocity
U at this point. This is equivalent to refer the velocities of the particles to
a frame moving at the velocity U(r, t) and introduce the peculiar velocity

V(r, t) = v−U(r, t). (7.5)

Let us consider a given surface element dA perpendicular to the z-axis.
In this case, the number of particles crossing this surface from the negative
to the positive side with velocities between v and v+dv in the time interval
between t and t+ dt is

dA|Vzdt|f(r,v, t)dv. (7.6)

In this relation, Vz > 0. Thus, the net flow of χ(v) across dA in ascendent
direction is

F (+)
z (r, t) =

∫

Vz>0

dv |Vz| χ(v) f(r,v, t). (7.7)

Analogously,

F (−)
z (r, t) =

∫

Vz<0

dv |Vz| χ(v) f(r,v, t)

= −
∫

Vz<0

dv Vz χ(v) f(r,v, t). (7.8)
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The net flow is then

Fz = F (+)
z − F (−)

z

=

∫

Vz>0

dv Vz χ(v) f(r,v, t) +

∫

Vz<0

dv Vz χ(v) f(r,v, t)

=

∫
dv Vz χ(v) f(r,v, t). (7.9)

In general, we define the flux vector F(r, t) as

F(r, t) =

∫
dv V χ(v) f(r,v, t) = n(r, t)�Vχ(v)�. (7.10)

7.4 Momentum and heat fluxes

We consider here some examples of irreversible fluxes.

7.4.1 Flux of kinetic energy

This flux is usually measured in the Lagrangian frame moving with the flow
velocity U of the gas. In this case,

χ(r,v, t) =
1

2
m(v −U(r, t))2 =

1

2
mV (r, t)2.

The corresponding flux is the heat flux q:

q(r, t) =

∫
dv

1

2
mV 2 V f(v). (7.11)

7.4.2 Flux of momentum

In this case χ is a vector and so, its corresponding flux will be a tensor of
second rank. It is given by

Pij(r, t) =

∫
dv Vimvj f(v) =

∫
dv Vim(Vj + Uj) f(v)

=

∫
dv mViVj f(v) = Pji(r, t),

(7.12)
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where use has been made of the property

�Vi� = �vi� − Ui = Ui − Ui = 0.

The tensor Pij is called the pressure tensor. It is symmetric. At equilibrium,
the one-particle distribution function f(v) is isotropic in velocity and so, it
depends on v only through its magnitude. Thus,

U = �v� = 0, q =
1

2
mn�v2v� = 0, (7.13)

Pij = mn�vivj� = mn�v2x�δij =
1

3
mn�v2�δij. (7.14)

Note that the diagonal elements of the pressure tensor represent normal forces
per unit area. Out of equilibrium, in general Pxx �= Pyy �= Pzz. However, one
defines still the hydrostatic pressure as

p =
1

3
Tr P =

1

3
(Pxx + Pyy + · · · ) = 1

3
mn�V 2�. (7.15)

7.5 Evolution equation for the velocity dis-

tribution function

Our aim now is to get the equation for the rate of change of f with time. We
will restrict ourselves to the case of a low-density monatomic gas, although
we will assume that the gas is not isolated and is subjected to the action of
an external conservative force. In general, there are two sources of temporal
change of f : the streaming and interactions, namely,

∂f

∂t
=

(
∂f

∂t

)

str

+

(
∂f

∂t

)

int

. (7.16)

The first term on the right hand side represents the change of f due to the
free motion of the particles under the action, in general, of an external force
F. The second term refers to the change due to the mutual interactions
among the particles. In the case of a dilute gas, we can assume that both
mechanisms are decoupled.

To get the free streaming contribution, let us assume for the moment
that the interactions are absent. Such a system is usually called a Knudsen
gas. In that case, the change during a time interval dt of the average number
of particles which are located at the point r with velocity v is due to two
reasons:
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• Since the particles are moving, then the particles located in the point
r at instant t will move to the point r + vδt at t + δt, where δt is an
infinitesimal time interval. Analogously, the particles which are located
in positions r� close to the point r will move at the position r after a
time interval δt.

• Due to the action of the external force F(r, t) on each particle, the
particles with a velocity v at t will have a different velocity v+m−1Fδt
at t + δt. Analogously, the particles with velocities v� near v will be
accelerated to have the velocity v after a time interval δt.

Therefore, the particles that at time t are located at the point r and
moving with velocity v will be located at

r� = r+ vδt

having a velocity

v� = v +
F

m
δt

at a later time t� = t + δt. Consequently,

dr� = dr+ dvδt, dv� = dv +
∂F

∂r
· dr
m

δt. (7.17)

Moreover, in the absence of collisions,

f(r,v, t)drdv = f(r�,v�, t�)dr�dv�. (7.18)

The Jacobian of the transformation (r,v) → (r�,v�) is defined as

dr�dv� = |J |drdv,
where

|J | =

∣∣∣∣
∂(r�,v�)
∂(r,v)

∣∣∣∣

=

∣∣∣∣
∂(x�, y�, z�, v�x, v

�
y, v

�
z)

∂(x, y, z, vx, vy, vz)

∣∣∣∣ = 1 +O
(
(δt)2

) � 1. (7.19)

Combination of Eqs. (7.18) and (7.19) yields

f(r�,v�, t�) = f(r,v, t). (7.20)



mA
nu

Al
es

 ue
x

80

Vicente Garzó
76CHAPTER 7. MICROSCOPIC DESCRIPTION: BALANCE EQUATIONS

In addition, retaining only linear terms in δt, the Taylor expansion of f(r�,v�, t�)
is

f(r�,v�, t�) = f(r,v, t) +
∂f

∂r
· (r� − r) +

∂f

∂v
· (v� − v) +

∂f

∂t
(t� − t)

= f(r,v, t) +
∂f

∂r
· vδt+ ∂f

∂v
· F
m
δt+

∂f

∂t
δt. (7.21)

Taking into account Eq. (7.21), Eq. (7.20) leads to
(
∂f

∂t

)

str

= −v · ∂f
∂r

− F

m
· ∂f
∂v

. (7.22)

Inserting Eq. (7.22) into Eq. (7.16), one finally gets

∂f

∂t
+ v · ∇f +

F

m
· ∂f
∂v

=

(
∂f

∂t

)

int

. (7.23)

The interaction term is much more difficult to deal with that the free
streaming term. An explicit form for this term can be derived under some
statistical hypothesis that are justified in the low-density limit. The resulting
closed equation is the well-known Boltzmann kinetic equation. Although its
explicit derivation goes beyond the scope of the present course, let us formally
write this nonlinear equation:

∂f

∂t
+ v · ∇f +

F

m
· ∂f
∂v

= J [v|f, f ], (7.24)

where J [f, f ] is the Boltzmann collision operator. This operator depends in
a bilinear way on the distribution function f . Consequently, the Boltzmann
equation (7.24) is an integro-nonlinear differential equation for f . Due to the
mathematical difficulties embodied in the Boltzmann collision operator, for
the sake of convenience, it is usual to consider simplified versions of J [f, f ].
These approaches are mathematically more simple than the true Boltzmann
equation but retain its most physical relevant properties. One of the most
well-known kinetic models is the BGK equation where J [f, f ] is replaced by
the relaxation term

J [f, f ] → −ν(r, t) (f(r,v, t)− fLE(r,v, t)) , (7.25)

where

fLE = n

(
m

2πkBT

)3/2

e
− m

2kBT
V 2

(7.26)
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is the local-equilibrium distribution. Here, ν is an effective collision frequency
of the gas which is velocity independent. Note that the BGK model is ac-
tually a highly nonlinear equation since fLE is a functional of f through its
dependence on n, U, and T . In fact, f and fLE share the same first few
velocity moments, namely,

∫
dv f =

∫
dv fLE = n, (7.27)

∫
dv v f =

∫
dv v fLE = nU, (7.28)

∫
dv (v −U)2 f =

∫
dv (v −U)2 fLE = 3

nkBT

m
, (7.29)

where
kB = 1, 381× 10−23J/K (7.30)

is the Boltzmann constant. It is related with the universal constant of gases
R as R = NAkB = 8, 314 J/mol, where NA = 6, 022× 1023 is the Avogrado
number. A consequence of Eqs. (7.27)–(7.29) is that the quantities 1, v and
v2 do not change during the collisions (collisional invariants):

∫
dv

{
1, vi, v

2
}(

∂f

∂t

)

int

= {0, 0, 0} . (7.31)

7.6 Solution to the BGK model for states

close to equilibrium

Before considering the derivation of the balance equations, it is quite instruc-
tive to determine the explicit microscopic forms of the shear viscosity η and
the thermal conductivity κ. Let us evaluate each coefficient separately.

7.6.1 Thermal conductivity

We consider a steady state of a dilute gas at rest (U = 0) in the absence of
an external force (F = 0) and with a temperature gradient along the z axis
(∂xT = ∂yT = 0 but ∂zT �= 0). Under these conditions, the BGK kinetic
equation (7.24) reduces to

vz
∂f

∂z
= −ν (f − fLE) . (7.32)
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Equation (7.32) is still a difficult differential equation to solve, especially for
arbitrary thermal gradients. On the other hand, when |∂zT | is very small
then one can assume that the distribution function f is close to the local
equilibrium distribution fLE and so,

f = fLE + ϕ, ϕ � fLE. (7.33)

In this approximation, ∂zf � ∂zfLE and Eq. (7.32) can be rewritten as

ϕ = −vz
ν

∂fLE
∂z

. (7.34)

The goal of this section is to determine the thermal conductivity coeffi-
cient κ. To get it, we need to compute the heat flux qz. According to Eq.
(7.11), qz is defined as

qz =

∫
dv

m

2
v2vzf(v)

= −ν−1 ∂

∂z

∫
dv

m

2
v2v2z fLE(v). (7.35)

Upon deriving Eq. (7.35) use has been made of the symmetry properties of
fLE (it is an even function of v and so, �v2vz�LE = 0). The integral appearing
on the right hand side of (7.35) can be written in dimensionless form as

∫
dv

m

2
v2v2z fLE(v) =

1

3

∫
dv

m

2
v4 fLE(v)

=
1

3
n

(
2kBT

m

)2
m

2
π−3/2

∫
dc c4 e−c2

=
1

3
n

(
2kBT

m

)2
m

2
π−3/2

∫ π

0

dθ sin θ

∫ 2π

0

dφ

∫ ∞

0

dc c6e−c2

=
4

3
√
π
n

(
2kBT

m

)2
m

2

∫ ∞

0

dc c6 e−c2, (7.36)

where ci = vi/v0, v0 =
√

2kBT/m being the thermal velocity. The integral
over the (dimensionless) velocity c can be easily evaluated by taking into
account the general result

I(n) ≡
∫ ∞

0

dx xn e−ax2

=
1

2
Γ

(
n + 1

2

)
a−

n+1
2 , (7.37)
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where a > 0 and Γ(z) is the gamma function with the properties Γ(z) =
(z − 1)Γ(z − 1), Γ

(
1
2

)
=

√
π. In the case that z is a positive integer then

Γ(z) = (z − 1)!. The expression of qz can be easily obtained when one takes
into account the identity (7.37) for n = 6. The result is

qz = −5

2

k2
B

mν

∂

∂z
(nT 2). (7.38)

On the other hand, to keep the system in a steady state, the presence of a
thermal gradient induces a density gradient ∂zn �= 0 so that the hydrostatic
pressure p = nkBT ≡ const. This constraint can be easily seen when one
evaluates the mean flow velocity Uz from the distribution (7.33) since in this
case Uz ∝ ∂z(nT ). Consistency requires that Uz = 0 and hence, ∂z(nT ) = 0.
Therefore,

qz = −5

2

nk2
BT

mν

∂T

∂z
≡ −κ

∂T

∂z
, (7.39)

where the last identity defines the thermal conductivity coefficient κ from
Fourier’s law. Thus, κ can be identified as

κ =
5

2

nk2
BT

mν
. (7.40)

7.6.2 Shear viscosity

The evaluation of the shear viscosity coefficient η follows similar steps as those
made before for the thermal conductivity κ. Now, we consider a steady state
where ∇n = ∇T = 0, Uy = Uz = 0 and ∂yUx �= 0. Thus, as before we assume
that f = fLE + ϕ where the distribution function ϕ is

ϕ = −vy
ν

∂fLE
∂y

. (7.41)

The relevant element of the pressure tensor is Pxy. It is given by

Pxy =

∫
dv mVxVy f(v) =

∫
dv mVxVy ϕ(v)

= −m

ν

∫
dv VxV

2
y

∂fLE
∂y

= −m

ν

∂Ux

∂y

∫
dv V 2

y fLE, (7.42)

where in the last step we have taken into account that Vx = vx − Ux(y) and
so, ∂Vx/∂y = −∂Ux/∂y. The integral appearing in Eq. (7.42) is∫

dv V 2
y fLE =

1

3

∫
dv V 2fLE =

nkBT

m
. (7.43)
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With this result, the element Pxy is given by

Pxy = −nkBT

ν

∂Ux

∂y
≡ −η

∂Ux

∂y
, (7.44)

where the last identity defines the shear viscosity η from Newton’s law. Thus,
η can be identified as

η =
nkBT

ν
. (7.45)

7.7 Balance equations

The objective of this Section is to derive the general balance equations for
the dilute gas from the Boltzmann equation. This derivation is based on
more fundamental arguments (microscopic description) than those consid-
ered before in the context of fluid dynamics. Since we have not written the
explicit form of the Boltzmann collision operator, we will consider its BGK
approximation to obtain the above balance equations. Actually, although the
explicit form of J [f, f ] is not needed in this calculation, only some specific
properties of the above operator are required.

Let us assume that χ(v) is a collisional invariant. In this case,

χ(v) + χ(v1) = χ(v′) + χ(v′
1). (7.46)

Of course, these quantities are directly related to the mass, momentum and
energy. In fact, when χ(v) ≡ {

m,mv, m
2
v2
}
then

∫
dv χ(v) J [v|f, f ] = 0. (7.47)

Equation (7.47) can be easily verified if one considers the BGK collision term
(7.25). The collisions conserve the mass and the average values of momentum
and energy. Thus, if one multiplies both sides of the Boltzmann equation
(7.24) by χ(v) and integrates over velocity, one gets

∫
dv χ(v)

(
∂f

∂t
+ v · ∇f +

F

m
· ∂f
∂v

)
= 0, (7.48)
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where use has been made of Eq. (7.47). Equation (7.48) can be rewritten as

∂

∂t

∫
dv χ f −

∫
dv

∂χ

∂t
f +

∂

∂ri

∫
dv χ vi f −

∫
dv

∂χ

∂ri
vi f

+
1

m

∫
dv

∂

∂vi
(χFif)− 1

m

∫
dv

∂χ

∂vi
Fi f − 1

m

∫
dv χ

∂Fi

∂vi
f = 0.

(7.49)

The fifth term vanishes since f → 0 when |v| → ∞. Moreover, the external
force does not depend on the particle velocity and so, the last term in Eq.
(7.49) also vanishes. Thus, taking into account the definition (7.4) for average
values, Eq. (7.49) becomes

∂

∂t
n�χ� − n�∂χ

∂t
�+ ∂

∂ri
n�viχ� − n�vi ∂χ

∂ri
� − nFi

m
� ∂χ
∂vi

� = 0. (7.50)

This is a general transfer equation for the average value of χ. The next
step is to apply Eq. (7.50) for the particular cases χ = m, χ = mvi, and
χ = 1

2
mv2. This allow us to derive the balance equations for the densities of

mass, momentum and energy with microscopic expressions for the irreversible
fluxes of momentum (stress or pressure tensor) and heat. Let us consider each
balance equation separately.

7.7.1 Mass balance equation

If χ ≡ m, then Eq. (7.50) yields

∂

∂t
(mn) +

∂

∂ri
�mnvi� = 0. (7.51)

This equation can be rewritten as

∂ρ

∂t
+∇ · (ρU) = 0, (7.52)

where ρ(r, t) = mn(r, t) is the mass density. In terms of the operator d/dt,
Eq. (7.52) can be written as

dρ

dt
+U · ∇ρ = 0. (7.53)

Equation (7.53) is the well-known continuity equation (2.5) for the mass
density.
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7.7.2 Momentum balance equation

If χ ≡ mvi, then Eq. (7.50) yields

∂

∂t
�mnvi�+ ∂

∂rj
�mnvivj� = nFj�∂vi

∂vj
�. (7.54)

The latter term is

Fj�∂vi
∂vj

� = Fj�δij� = Fi.

Thus, Eq. (7.54) becomes

∂

∂t
(ρUi) +

∂

∂rj
(ρ�vivj�) = ρ

m
Fi. (7.55)

The second term can be explicitly obtained as

�vivj� = �(Ui + Vi)(Uj + Vj)� = UiUj + �ViVj� = UiUj +
Pij

ρ
, (7.56)

where use has been made of the identity �Vi� = 0 and the definition (7.12)
of the pressure tensor Pij. Substitution of the result (7.56) into Eq. (7.55)
yields

∂

∂t
(ρUi) +

∂

∂rj
(ρUiUj) = − ∂

∂rj
Pij +

ρ

m
Fi. (7.57)

We can simplify a bit more the left hand-side of this equation by using the
continuity equation (7.52). The result is

Ui∂tρ+ ρ∂tUi + Ui∂j(ρUj) + ρUj∂jUi = Ui [∂tρ+ ∂j(ρUj)] + ρ [∂tUi

+Uj∂jUi] = ρ
dUi

dt
. (7.58)

Taking into account this last result, the balance equation for the momentum
density reads

ρ
dUi

dt
= − ∂

∂rj
Pij +

ρ

m
Fi. (7.59)

For small spatial gradients (Navier-Stokes description), the pressure ten-
sor Pij of a dilute gas is given by

Pij = pδij − η

(
∂jUi + ∂iUj − 2

3
δij∇ ·U

)
, (7.60)
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where use has been made of the fact that the bulk viscosity coefficient ζ =
0 for a dilute gas. When the constitutive equation (7.60) is substituted
into Eq. (7.59) one recovers the Navier-Stokes hydrodynamic equation (3.6).
This shows the consistency between both approaches (continuum and discrete
descriptions).

7.7.3 Energy balance equation

For the sake of convenience, let us consider the kinetic energy of the particle
measured in a frame moving at the flow velocity U. In this case, χ ≡ 1

2
mV 2,

where V = v −U is the peculiar velocity. From Eq. (7.50), one gets

1

2

∂

∂t
�ρV 2�+ 1

2

∂

∂ri
�ρviV 2� − 1

2
ρ�vi∂V

2

∂ri
� = 0. (7.61)

We define the local temperature T (r, t) as

kBT ≡ θ =
1

3
m�V 2�. (7.62)

Let us evaluate each one of the terms appearing in Eq. (7.61). First, the
second term on the left hand side of this equation can be rewritten as

1

2
�ρviV 2� = 1

2
�ρ(vi − Ui)V

2�+ 1

2
ρUi�V 2� = qi +

3

2
nθUi, (7.63)

where use has been made of the definition (7.11) of the heat flux. The third
term on the left hand side of (7.61) is

1

2
ρ�vi∂V

2

∂ri
� =

1

2
ρ�vi ∂

∂ri
(vj − Uj)(vj − Uj)� = −ρ�vi(vj − Uj)�∂Uj

∂ri

= −ρ�(vi − Ui)(vj − Uj)�∂Uj

∂ri
= −Pij

∂Uj

∂ri
= −PijDji,

(7.64)

where

Dij =
1

2

(
∂Ui

∂rj
+

∂Uj

∂ri

)
. (7.65)

Upon deriving Eq. (7.64) use has been made of the symmetry property of
the pressure tensor Pij = Pji. Equation (7.61) can be written in a different
form when one takes into account Eqs. (7.63) and (7.64). The result is

3

2

∂

∂t
(nθ) +

3

2

∂

∂ri
(nθUi) +

∂qi
∂ri

+ PijDji = 0. (7.66)
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The first two terms can be simplified after taking into account the equation
of continuity:

3

2

∂

∂t
(nθ) +

3

2

∂

∂ri
(nθUi) =

3

2
θ

[
∂n

∂t
+∇ · (nU)

]
+

3

2
n

(
∂θ

∂t
+U · ∇θ

)

=
3

2
n
dθ

dt
, (7.67)

where use has been made of Eq. (7.52) in the last step. With this result, the
energy balance equation can be finally written as

3

2
nkB

dT

dt
= −∂qi

∂ri
− PijDji, (7.68)

or in a more compact form as

3

2
nkB

dT

dt
= −∇ · q−P : D. (7.69)

In the limit of small spatial gradients, the constitutive equation for the
pressure tensor is given by Eq. (7.60) while the heat flux obeys Fourier’s law

q = −κ∇T. (7.70)

When both constitutive equations are substituted into Eq. (7.68), then the
(continuum) energy balance equation (4.11) is recovered. This sows again
the consistency between kinetic theory and hydrodynamics.
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