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Abstract : We solve the functional equation

E(α) : f(x1x2 + αy1y2, x1y2 + x2y1) + f(x1x2 − αy1y2, x2y1 − x1y2) = 2f(x1, y1)f(x2, y2),

where (x1, y1), (x2, y2) ∈ R2, f : R2 → C and α is a real parameter, on the monoid R2. Also
we investigate the stability of this equation in the following setting:

|f(x1x2 + αy1y2, x1y2 + x2y1) + f(x1x2 − αy1y2, x2y1 − x1y2)− 2f(x1, y1)f(x2, y2)|
≤ min{φ(x1), ψ(y1), ϕ(x2), ζ(y2)}.

From this result, we obtain the superstability of this equation.

Key words: D’Alembert functional equation, monoid R2, multiplicative function, stability,
superstability.
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1. Introduction

For any α ∈ R, Berrone and Dieulefait [5] equipped R2 with the multipli-
cation rule ·α, defined by

(x1, y1) ·α (x2, y2) = (x1x2 + αy1y2, x1y2 + x2y1), (x1, y1), (x2, y2) ∈ R2.

For α = −1, the multiplication is the usual product of complex numbers in
C = R2. The rule makes R2 into a commutative monoid with neutral element
(1, 0) and σ(x, y) = (x,−y) (complex conjugation) as an involution.

Berrone and Dieulefait [5, Theorem 1] studied the homomorphisms
m : (R2, ·α) −→ (R, .), i.e., the multiplicative, real-valued functions on the
monoid (R2, ·α).We extend their investigations by finding the bigger set of all
multiplicative, complex-valued functions M : (R2, ·α) −→ (C, .). Combining
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this information with Davison’s work [9] about D’Alembert’s functional equa-
tion on monoids, we obtain an explicit description of the solutions f : R2 −→ C
of D’Alembert’s functional equation

E(α) : f(a ·α b) + f(a ·α σ(b)) = 2f(a)f(b), a, b ∈ R2,

on the monoid (R2, ·α). The description falls into three different cases, accord-
ing to whether α > 0 or α < 0. The equation E(α) is a common generalization
of many functional equations of type D’Alembert

f(ab) + f(aσ(b)) = 2f(a)f(b), a, b ∈ R2 (1.1)

on the monoid R2, like, e.g.,

1) If α = 0,

E(0) : f(x1x2, x1y2 + x2y1) + f(x1x2, x2y1 − x1y2) = 2f(x1, y1)f(x2, y2),

for all (x1, y1), (x2, y2) ∈ R2. Setting x1 = x2 = 1 and F (y) = f(1, y) for any
y ∈ R respectively y1 = y2 = 0 and m(x) = f(x, 0) for any x ∈ R in E(0), we
get the classical D’Alembert functional equation

F (y1 + y2) + F (y1 − y2) = 2F (y1)F (y2), y1, y2 ∈ R (1.2)

on R (see [1], [4], [15] and [23]) respectively the classical Cauchy equation

m(x1x2) = m(x1)m(x2), x1, x2 ∈ R (1.3)

on R. We call m a multiplicative function on R (see[1]).

2) If α = −1,

E(−1) : f(x1x2 − y1y2, x1y2 + x2y1) + f(x1x2 + y1y2, x2y1 − x1y2)

= 2f(x1, y1)f(x2, y2),

(x1, y1), (x2, y2) ∈ R2. The equation E(−1) is in connection with the identity

(x1x2 − y1y2)
2 + (x1y2 + x2y1)

2 + (x1x2 + y1y2)
2 + (x2y1 − x1y2)

2

= 2(x21 + y21)(x
2
2 + y22)

(1.4)

for any x1, x2, y1, y2 ∈ R.
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3) If α ̸= 1 is a square free integer and Q(
√
α) =

{
x+ y

√
α : x, y ∈ Q

}
is the

quadratic monoid equipped with the multiplicative rule

(x1 + y1
√
α)(x2 + y2

√
α) = (x1x2 + αy1y2) + (x1y2 + x1y1)

√
α, (1.5)

then E(α) reduces to D’Alembert functional equation (1.1) on the monoid
Q(

√
α). In [9] Davison solved the D’Alembert functional equation with in-

volution on a monoid A: any solution f : A −→ C has the general form
f = M+M◦σ

2 , where M : A −→−→ C is a multiplicative function.

In 1940, Ulam [22] gave a talk before the Mathematics Club of the Uni-
versity of Wisconsin in which he discussed a number of unsolved problems.
Among these was the following question concerning the stability of homomor-
phisms.

Question 1.1. Let (G1, ∗) be a group and let (G1, ⋄, d) be a metric group
with the metric d. Given ε > 0, does there exist δ(ε) > 0 such that if a
mapping h : G1 −→ G2 satisfies the inequality d(h(x ∗ y), h(x) ⋄ h(y)) <
δ for all x, y ∈ G1, then there is a homomorphism H : G1 −→ G2 with
d(h(x),H(x)) < δ(ε) for all x ∈ G1?

In 1941, Hyers [12] answered this question for the case where G1 and G2

are Banach spaces. In 1978, Rassias [20] provided a generalization of Hyer’s
theorem which allows the Cauchy difference to be unbounded. The interested
reader may refer to the book by Hyers, Isac, Rassias [13] for an in depth
account on the subject of stability of functional equations. In 1982, Rassias
[19] solved the Ulam problem by involving a product of powers of norms.
Since then, the stability problems of various functional equations ha been
investigated by many authors (see [10], [11] and [14]). In [3] and [7] Baker et
al. and Bourgin respectively, introduced the notion that by now is frequently
referred to as superstability or Baker’s stability: if a function f satisfies the
stability inequality |E1(f)−E2(f)| ≤ ε, then either f is bounded or E1(f) =
E2(f). The superstability of D’Alembert’s functional equation f(x + y) +
f(x− y) = 2f(x)f(y) was investigated by Baker [4] and Cholewa [8]. Badora
and Ger [2], and Kim ([16], [17] and [18]) proved its superstability under the
condition |f(x+y)+f(x−y)−2f(x)f(y)| ≤ φ(x) or φ(y). In a previuos work,
Bouikhalene et al. [6] investigated the superstability of the cosine functional
equation on the Heisenberg group. Following this investigation we study the
superstability of the functional equation E(α) on the monoid (R2, ·α). Also
we say that a function f : R2 −→ C is of approximate a cosine type function,
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if there is δ > 0 such that

|f(a ·α b) + f(a ·α i(b))− 2f(a)f(b)| < δ, a, b ∈ R2. (1.6)

In the case where δ = 0, f satisfies the functional equation E(α). We call f
a cosine type function on R2. The paper is organized as follows: In the first
section after this introduction we solve the functional equation E(α). In the
second section we study the superstability equation E(α).

2. Solution of equation E(α)

According to [9] we drive the following lemma.

Lemma 2.1. The solution f : R2 −→ C of E(α) is of the form

f =
M +M ◦ σ

2
,

where M : (R2, ·α) −→ (C, ·) is a multiplicative function.

By extending Berrone-Dieulefait’s result [5] to complex-valued multiplica-
tive functions, we get the following lemmas.

Lemma 2.2. The multiplicative functions M : (R2, ·1) −→ (C, ·) are the
functions

M(x, y) = m1(x+ y)m2(x− y), x, y ∈ R,

where m1,m2 : R −→ C are multiplicative functions.

Lemma 2.3. The multiplicative functions M : (R2, ·0) −→ (C, ·) are the
trivial function M = 1 and M(0, y) = 0 for any y ∈ R and M(x, y) =
m(x)γ( yx) for any (x, y) ∈ R2, with x ̸= 0, where m : R −→ C is a multi-
plicative function and γ : (R,+) −→ C is an arbitrary character.

Lemma 2.4. The multiplicative functions M : (C, ·−1) −→ (C, ·) are the
trivial functions M = 0 and M = 1 and

M(z) =

{
m̃(|z|)Γ(exp(iθ)), for z = |z| exp(iθ) ̸= 0

0, for z = 0.

where m̃ : (R+, ·) −→ C∗ and Γ : {exp(iθ), θ ∈ R} −→ C∗ are arbitrary
characters.
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Proof. When α = −1, the multiplicative rule ·−1 becomes the usual prod-
uct numbers in C. By using the polar decomposition z = |z| exp(iθ) for any
z ∈ C∗ where θ = arg(z), we get

M(|z1||z2|) =M(|z1|)M(|z2|), z1, z2 ∈ C∗ (2.1)

and

M(exp(i(θ1 + θ2))) =M(exp(iθ1))M(exp(iθ2)), θ1, θ2 ∈ R. (2.2)

By letting m̃(|z|) =M(|z|), for any z ∈ C∗, and Γ(exp(iθ)) =M(exp(iθ)) for
any θ ∈ R it follows that m̃ : (R+, ·) −→ C∗ and Γ : {exp(iθ), θ ∈ R} −→ C∗

are characters. If z = 0, we set M(z) = 0.

In the next corollary we give the set of all multiplicative complex-valued
functions M : (R2, ·α) −→ C.

Corollary 2.5. The multiplicative functions M : (R2, ·α) −→ (C, ·) are
given by the following list:

I) If α > 0, then

M(x, y) = m1(x+ y
√
α)m2(x− y

√
α), (x, y) ∈ R2.

II) If α = 0, then

a) M(x, y) = 1, for any (x, y) ∈ R2.

b) M(0, y) = 0, for any y ∈ R.
c) M(x, y) = m(x)γ( yx), for any (x, y) ∈ R2 with x ̸= 0.

III) If α < 0, then

a) M(x, y) = 0, for any (x, y) ∈ R2.

b) M(x, y) = 1, for any (x, y) ∈ R2.

c) M(x, y) =

{
m̃
(√

x2 − αy2
)
Γ(arg(x+ iy)), for (x, y) ̸= (0, 0)

0, for (x, y) = (0, 0).

where m1,m2,m : R −→ C are multiplicative functions, and m̃ :
(R+, ·) −→ C∗, Γ : {exp(iθ), θ ∈ R} −→ C∗ and γ : (R,+) −→ C
are arbitrary characters.
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The next theorem is the main result of this section.

Theorem 2.6. The set of solutions of the functional equation E(α) con-
sists of the following three cases:

A) If α > 0, then

f(x, y) =
m1(x)m2(y)

2

{
m1(y

√
α)m2(−y

√
α) +m1(−y

√
α)m2(y

√
α)

}
,

for any (x, y) ∈ R2.

B) If α = 0, then

a) f(x, y) = 1, for any (x, y) ∈ R2.

b) f(0, y) = 0, for any y ∈ R.
c) f(x, y) = m(x)

2

{
γ( yx) + γ(−y

x ), (x, y) ∈ R2, x ̸= 0.
}

C) If α < 0, then f(0, 0) = 0 and

f(x, y) =
m̃
(√

x2 − αy2
)

2

{
Γ(arg(x+ iy)), (x, y) ∈ R2\(0, 0)

}
,

where m1,m2,m : R −→ C are multiplicative functions, and m̃ : (R+, ·)
−→ C∗, Γ : {exp(iθ), θ ∈ R} −→ C∗ and γ : R −→ C are arbitrary
characters.

Proof. According to Lemma 2.1 and Corollary 2.5 we get the proof of
theorem.

3. Superstability of equation E(α)

In the next theorem we establish the stability of E(α).

Theorem 3.1. Let φ, ψ, ϕ, ζ : R −→ [0,+∞[ be functions and let
f : R2 −→ C be a function such that∣∣f(x1x2+αy1y2, x1y2 + x2y1) + f(x1x2 − αy1y2, x2y1 − x1y2)

− 2f(x1, y1)f(x2, y2)
∣∣ ≤ min{φ(x1), ψ(y1), ϕ(x2), ζ(y2)}

(3.1)
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for all (x1, y1), (x2, y2) ∈ R2 and α is a real parameter. Then either f is
bounded or f satisfies the functional equation

E(α) : f(x1x2 + αy1y2, x1y2 + x2y1) + f(x1x2 − αy1y2, x2y1 − x1y2)

= 2f(x1, y1)f(x2, y2)

for all (x1, y1), (x2, y2) ∈ R2.

Proof. For all (x1, y1), (x2, y2) ∈ R2 and α a real parameter we get from
the inequality (3.1) that∣∣f(x1x2 + αy1y2, x1y2 + x2y1) + f(x1x2 − αy1y2, x2y1 − x1y2)

− 2f(x1, y1)f(x2, y2)
∣∣

≤ φ(x1) or ψ(y1).

(3.2)

Since f is unbounded then we can choose a sequence (xn, yn)n≥3 in R2 such
that f(xn, yn) ̸= 0 and limn→+∞ |f(xn, yn)| = +∞. Taking (x2, y2) = (xn, yn)
in (3.2) we obtain∣∣f(x1xn + αy1yn, x1yn + xny1) + f(x1xn − αy1yn, xny1 − x1yn)

− 2f(x1, y1)f(xn, yn)
∣∣

≤ φ(x1) or ψ(y1)

and∣∣∣∣f(x1xn + αy1yn, x1yn + xny1) + f(x1xn − αy1yn, xny1 − x1yn)

2f(xn, yn)
− f(x1, y1)

∣∣∣∣
≤ φ(x1)

2|f(xn, yn)|
or

ψ(y1)

2|f(xn, yn)|
.

That is we get

f(x1, y1)

= lim
n→+∞

f(x1xn + αy1yn, x1yn + xny1) + f(x1xn − αy1yn, xny1 − x1yn)

2f(xn, yn)
.

(3.3)

Setting Xn = x2xn + αy2yn, Yn = x2yn + xny2, X̃n = x2xn − αy2yn, Ỹn =
x2yn − xny2. For any (x1, y1), (x2, y2) ∈ R2 it follows that



164 b. bouikhalene, e. elqorachi, a. charifi

∣∣f((x1x2 + αy1y2)xn + α(x1y2 + x2y1)yn,

(x1x2 + αy1y2)yn + xn(x1y2 + x2y1)
)

+ f
(
(x1x2 + αy1y2)xn − α(x1y2 + x2y1)yn,

xn(x1y2 + x2y1)− (x1x2 + αy1y2)yn
)

− 2f(x1, y1)f(x2xn + αy2yn, x2yn + xny2)

+ f
(
(x1x2 − αy1y2)xn + α(x2y1 − x1y2)yn,

(x1x2 − αy1y2)yn + xn(x2y1 − x1y2
)

+ f
(
(x1x2 − αy1y2)xn − α(x2y1 − x1y2)yn,

xn(x2y1 − x1y2)− (x1x2 − αy1y2)yn
)

− 2f(x1, y1)f(x2xn − αy2yn, x2yn − xny2)
∣∣

≤
∣∣f((x1x2 + αy1y2)xn + α(x1y2 + x2y1)yn,

(x1x2 + αy1y2)yn + xn(x1y2 + x2y1)
)

+ f
(
(x1x2 − αy1y2)xn − α(x2y1 − x1y2)yn,

xn(x2y1 − x1y2)− (x1x2 − αy1y2)yn
)

− 2f(x1, y1)f(x2xn + αy2yn, x2yn + xny2)
∣∣

+
∣∣f((x1x2 − αy1y2)xn + α(x2y1 − x1y2)yn,

(x1x2 − αy1y2)yn + xn(x2y1 − x1y2)
)

+ f
(
(x1x2 + αy1y2)xn − α(x1y2 + x2y1)yn,

xn(x1y2 + x2y1)− (x1x2 + αy1y2)yn
)

− 2f(x1, y1)f(x2xn − αy2yn, x2yn − xny2)
∣∣

=
∣∣f(x1Xn + αy1Yn, x1Yn +Xny1) + f(x1Xn − αy1Yn, Xny1 − x1Yn)

− 2f(x1, y1)f(Xn, Yn)
∣∣

+
∣∣f(x1X̃n + αy1Ỹn, x1Ỹn + X̃ny1) + f(x1X̃n − αy1Ỹn, X̃ny1 − x1Ỹn)

− 2f(x1, y1)f(X̃n, Ỹn)
∣∣

≤ 2φ(x1) or 2ψ(y1).
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So that∣∣∣∣∣∣∣∣
f
(
(x1x2 + αy1y2)xn + α(x1y2 + x2y1)yn,

(x1x2 + αy1y2)yn + xn(x1y2 + x2y1)
)

f(xn, yn)

+

f
(
(x1x2 + αy1y2)xn − α(x1y2 + x2y1)yn,

xn(x1y2 + x2y1)− (x1x2 + αy1y2)yn
)

f(xn, yn)

+

f
(
(x1x2 − αy1y2)xn + α(x2y1 − x1y2)yn,

xn(x2y1 − x1y2) + (x1x2 − αy1y2)yn
)

f(xn, yn)

+

f
(
(x1x2 − αy1y2)xn − α(x2y1 − x1y2)yn,

xn(x2y1 − x1y2)− (x1x2 − αy1y2)yn
)

f(xn, yn)

− 2f(x1, y1)


f(x2xn + αy2yn, x2yn + xny2)

+f(x2xn − αy2yn, x2yn − xny2)

f(xn, yn)


∣∣∣∣∣∣∣∣

≤ 2
φ(x1)

|f(xn, yn)|
or 2

ψ(y1)

|f(xn, yn)|
.

for any (x1, y1), (x2, y2) ∈ R2. Since |f(xn, yn)| −→ +∞ as n −→ +∞ we get
that f satisfies E(α).

By letting min{φ(x1), ψ(y1), ϕ(x2), ζ(y2)} = δ we get the Baker’s stability
([3], [4]) for the functional equation E(α).

Corollary 3.2. Let δ > 0 and let f : R2 −→ C be a function such that

|f(x1x2 + αy1y2, x1y2 + x2y1) + f(x1x2 − αy1y2, x2y1 − x1y2)

− 2f(x1, y1)f(x2, y2)| ≤ δ

for all (x1, y1), (x2, y2) ∈ R2 and α is a real parameter. Then either f is

bounded and |f(x, y)| ≤ 1+
√
1+2δ
2 for all (x, y) ∈ R2 or f satisfies the functional

equation E(α).
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[21] L. Székelyhidi, On a theorem of Baker, Lawrence and Zorzitto, Proc. Amer.
Math. Soc. 84 (1) (1982), 95 – 96.

[22] S.M. Ulam, “A Collection of Mathematical Problems”, Interscience Tracts in
Pure and Applied Mathematics 8, Interscience Publishers, New York-London,
1960.

[23] W.H. Wilson, On certain related functional equations, Bull. Amer. Math.
Soc. 26 (7) (1920), 300 – 312.


