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1. INTRODUCTION

The nature of a Riemannian manifold mostly depends on the curvature
tensor R of the manifold. It is well known that the sectional curvatures of a
manifold determine curvature tensor completely. A Riemannian manifold with
constant sectional curvature c is known as real space-form and its curvature
tensor is given by

R(X,Y)Z = c{g(Y, Z)X — g(X, Z)Y }.

A Sasakian manifold with constant ¢-sectional curvature is a Sasakian-
space-form and it has a specific form of its curvature tensor. Similar notion
also holds for Kenmotsu and cosymplectic space-forms. In order to generalize
such space-forms in a common frame P. Alegre, D.E. Blair and A. Carri-
azo introduced the notion of generalized Sasakian-space-forms in 2004 [1].
In this connection it should be mentioned that in 1989 Z. Olszak [13] stud-
ied generalized complex-space-forms and proved its existence. A generalized
Sasakian-space-forms are defined as follows:

Given an almost contact metric manifold M (¢, &, n,g), we say that M is a
generalized Sasakian-space-form if there exist three fuctions fi, fo, f3 on M
such that the curvature tensor R is given by
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R(X,Y)Z = fi{g(Y,2)X — g(X, Z)Y}
+ f2{9(X,02)pY — g(Y,0Z)pX + 29(X,¢Y)pZ }
+ B{n(Xn(2)Y —n(Y)n(Z)X
+9(X, Z)n(Y)E = g(Y, Z)n(X)E}.

(1.1)

for any vector fields X, Y, Z on M. In such a case we denote the mani-
fold as M (f1, f2, f3). In [1] the authors cited several examples of generalized
Sasakian-space-forms. If f; = #, fo= % and f3 = %, then a generalized
Sasakian-space-form with Sasakian structure becomes Sasakian-space-form.
In [12], U.K. Kim studied conformally flat generalized Sasakian-space-forms
and locally symmetric generalized Sasakian-space-forms. He proved that some
geometric properties of generalized Sasakian-space-form depend on the nature
of the fuctions fi, fo and f3. Generalized Sasakian-space-forms have also been
studied in the papers [2], [3], [4], [5], [9], [10], [12] and [13].

Let M be an almost contact metric manifold equipped with an almost
contact metric structure (¢,&,7n,g). At each point p € M, decompose the
tangent space T, M into direct sum T,M = ¢(T,M) & {&,}, where {&,} is the
1-dimensional linear subspace of T, M generated by &,. Thus the conformal
curvature tensor C' is a map

C:T,M xT,M xT,M — ¢(T,M) ®{&}, peM.
It may be natural to consider the following particular cases:

(1) C:Tp(M) x Tp,(M) x T,(M) — {&}, i.e, the projection of the image
of C'in ¢(T,(M)) is zero.

(2) C:T(M) x T,(M) x Ty(M) — ¢(T,(M)), i.e, the projection of the
image of C' in {&,} is zero. This condition is equivalent to

C(X,Y)E = 0. (1.2)

(3) A(Tp(M)) x (Tp(M)) x $(Tp(M)) — {&p}, i.e, when C is restricted
qb((Tp((M;) X ¢(Tp(M)) x ¢(Tp(M)), the projection of the image of C

C:
to
in ¢(T,(M)) is zero. This condition is equivalent to

¢*C(¢X, Y )pZ = 0. (1.3)
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A generalized Sasakian-space-form satisfying (1.2) and (1.3) is called ¢&-
conformally flat and ¢-conformally flat respectively. A K-contact manifold
satisfying the cases (1), (2) and (3) is considered in [14], [15] and [16] respec-
tively.

DEFINITION 1.1. A (2n+ 1)-dimensional generalized Sasakian-space-form
is said to be &-conformally flat if

C(X,Y)E =0, (1.4)
where X,Y € T'(M).

DEFINITION 1.2. A (2n+ 1)-dimensional generalized Sasakian-space-form
is said to be ¢-conformally flat if

9(C(9X,0Y)9Z,oW) = 0. (1.5)

In [15], it is proved that a K-contact manifold is {-conformally flat if
and only if it is an 7-Einstein Sasakian manifold. In [11], De and Biswas
&-conformally flat N (k)-contact metric manifolds. A compact ¢-conformally
flat K-contact manifold with regular contact vector field has been studied in
[16]. Moreover, in [6], Arslan, Murathan and Ozgiir studied ¢-conformally flat
(k, p)-contact metric manifold. Motivated by the above studies, in this paper
we study &-conformally flat and ¢-conformally flat generalized Sasakian-space-
forms.

The present paper is organized as follows:

After preliminaries in Section 3, we study &-conformally flat generalized
Sasakian-space-forms and prove that a generalized Sasakian-space-form is al-
ways &-conformally flat. Section 4 deals with ¢-conformally flat generalized
Sasakian-space-forms and we prove that the space-form is ¢-conformally flat
if and only if fo = 0. As a consequence of the result we obtain some important
corollaries.

2. PRELIMINARIES

In an almost contact metric manifold we have ([7], [8])

¢*(X) = —X +n(X)E, ¢ =0, (2.1)
n€) =1, g(X,§) =n(X), n(¢X)=0, (2.2)
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9(¢X,0Y) = g(X,Y) —n(X)n(Y), (2.3)
9(¢X,Y) = —g(X,0Y), g(¢X,X) =0, (2.4)

Again for a (2n+1)-dimensional generalized Sasakian-space-form we have ([1])

S(X,Y) = (2nf1 +3f2 = f3)g(X,Y) = (3f2+ (2n — 1) fs)n(X)n(Y),
QX = (2nfi1 +3f2 — f3) X — (3f2+ (2n — 1) f3)n(X)E,
R(X,Y)§ = (fi — f3)In(Y)X — n(X)Y],
R, X)Y = (fr — f3)[9(X,Y)§ — n(Y)X)],
S(X,€) = 2n(f1 — f3)n(X),
5(&,€) =2n(f1 — f3),
Q¢ = 2n(f1 — f3)¢,
r =220+ 1)f1 + 6nfs — dnfs,
where R, S and r are the curvature tensor, Ricci tensor and scalar curvature of
the space-form respectively and @ is the Ricci operator defined by g(QX, Y) =

S(X,Y). We know (see [1]) that the ¢-sectional curvature of a generalized
Sasakian-space-form M (f1, fo, f3) is f1 + 3fa.

In a Riemannian manifold of dimension (2n + 1) the Weyl conformal cur-
vature tensor is given by

C(X,Y)Z=R(X,Y)Z — <2nl_1> [S(Y,Z2)X — S(X,2)Y
+9(Y,Z)QX — g(X,2)QY]  (2.14)
+ Ty DX —g(X, 2)Y],

forany X, Y and Z € T(M). A generalized Sasakian-space-form of dimension
greater than three is said to be conformally flat if its Weyl conformal curvature
tensor vanishes. It is known (see [12]) that a (2n + 1)-dimensional (n > 1)
generalized Sasakian-space-form is conformally flat if and only if fo = 0.
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3. f—CONFORMALLY FLAT GENERALIZED SASAKIAN-SPACE-FORMS

In this section we study &-conformally flat generalized Sasakian-space-
form. Let M(f1, f2, f3) be a generalized Sasakian-space-forms. Putting Z = ¢
in (2.15), we obtain

C(X,Y)E = R(X,Y)¢ — [S(Y,€)X — S(X, &)Y
+7(Y)QX —n(X)QY]  (3.1)

n(Y)X —n(X)Y].

(2n—1)

T o 1)

Using (2.7), (2.8) and (2.10) in (3.1), yields

CYIE= (1= 1)+ 50—y g
dnfi+ ?g;(f)n FOS) vy -y, o

Putting the value of r from (2.13) in (3.2), we get
C(X,Y)¢ = 0. (3.3)

Therefore we conclude that the generalized Sasakian-space-form is £-conformally
flat. Thus we can state the following;:

THEOREM 3.1. A (2n + 1)-dimensional generalized Sasakian-space-form
M(f1, fa, f3) is always &-conformally flat.

4. ¢$-CONFORMALLY FLAT GENERALIZED SASAKIAN-SPACE-FORMS
In this section we consider ¢-conformally flat generalized Sasakian-space-
forms. Let the generalized Sasakian-space-form M ( f1, f2, f3) be ¢-conformally

flat, i.e.,

g(C(qﬁX, oY) Z, (bW) =0. (4.1)
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Now,
9(C(6X,0Y)9Z,¢W) = g(R(¢X, Y )0 Z, oW )
! C[S(0Y, 02)g(6X, 6W)

2n —
— S(¢X,0Z)g(oY, oW)
(¢Y 0Z)S(¢X, pW)
S(¢Y, ¢W)g(¢ X, ¢Z)]
* o= [ (8Y,0Z)g(¢X, W)

— 9(0Y, oW)g(¢X, 9Z)].
Using (1.1), (2.6) and (2.13) in (4.2), we obtain
9(C(6X,6Y)0Z,6W) = 2| {29(6X, Y )g(Z, W)

+ 90X, 2)g(Y, oW)
— 9(oY, Z)g(X, ¢W)}

{9(6Y.0Z)g(.X, oW

3
(2n—1)

- 9(6X, 62)9(Y, oW)}].

Therefore from (4.1) and (4.3) we obtain either f =0, or
{20(6X,Y)g(Z, W) + g(6 X, Z)g(Y,¢W) — g(Y, Z)g(X, oW }

_ (2713_1){9(925)/’ 02)g(6X,oW) — (X, Z)g(¢Y,¢W)} =

Putting W = ¢W in (4.5) and using (2.1), we obtain
{ —29(6X,Y)g(Z. W) — g(6X, Z)g(Y. W) + g(¢Y, Z)g(X, W) }

- <2ng—1>{ — 9(8Y, 62)9(6X, W) + g(6 X, 6Z)g(6Y, W)} = 0.

Putting Z = £ in (4.5), yields

g(¢X7 Y)W(W) =0,

(4.2)

(4.4)

(4.5)

(4.6)

which implies either n = 0 or g(¢X,Y) = 0. Both the cases do not occur.
Therefore ¢-conformally flat generalized Sasakian-space-form implies fo = 0.
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Conversely, if fo = 0, then from (4.3) we obtain g(C(¢X, ¢Y)pZ), pW) =
0 for all X, Y, Z and W € T(M). Thus fo = 0 implies the generalized
Sasakian-space-form is ¢-conformally flat.

Therefore we can state the following:

THEOREM 4.1. A (2n + 1)-dimensional generalized Sasakian-space-form
M(f1, fa, f3) is ¢-conformally flat if and only if fo = 0.

In [12] U. K. Kim proved that for a (2n+1)-dimensional generalized Sasakian-
space-form the following holds:

(i) If n > 1, then M is conformally flat if and only if fo = 0.

(ii) If M is conformally flat and ¢ is Killing vector field, then M is locally
symmetric and has constant ¢-sectional curvature.

Since conformally flatness implies ¢-conformally flatness, hence in the view
of the first part of the above theorem we have the following:

COROLLARY 4.1. A (2n + 1)-dimensional (n > 1) generalized Sasakian-
space-form M (f1, foa, f3) is ¢-conformally flat if and only if it is conformally
flat.

Again, in the view of the second part of the above theorem we have the
following:

COROLLARY 4.2. For a (2n + 1)-dimensional (n > 1) ¢-conformally flat
generalized Sasakian-space-form M (f1, fo, f3) with £ as a Killing vector field,
the space-form is locally symmetric and has constant ¢-sectional curvature.
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