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There shone the image of the master-mind:
There earth, there heaven, there ocean he design’d

The unwearied sun, the moon completely round
The starry lights that heaven’s high convex crown’d

This paper is based on a talk delivered by the first author in the Geom-
etry of Banach spaces conference in honor of S. Troyanski. We have focused
in aspects of his recent work on isomorphically polyhedral spaces. The in-
troductory texts belong to Chapter XVIII of the Iliad, in the translation of
Alexander Pope.

1. Isomorphically polyhedral Banach spaces

Two cities radiant on the shield appear,
The image one of peace, and one of war.

Here sacred pomp and genial feast delight,
And solemn dance, and hymeneal rite;

A Banach space is said to be polyhedral if the unit ball of every finite
dimensional subspace is the closed convex hull of a finite number of points.
Polyhedrality is a geometrical notion: c0 is polyhedral while c is not. The
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isomorphic notion associated with polyhedrality is: A Banach space is said to
be isomorphically polyhedral if it admits a polyhedral renorming.

Probably the simplest examples of isomorphically polyhedral spaces are
provided by the spaces of continuous functions on some compact ordinal space
C(α); and its subspaces, such as Schreier space [45] or further variations of it,
like spaces generated by a compact family of subsets of {0, 1}N (see [2, 9]).

Fonf [22, 23, 24, 25] obtained most basic results on polyhedral spaces,
among them, that isomorphically polyhedral spaces are c0-saturated (a result
about which Diestel says [20] “its proof is too clever, by half”. The result is
important, on one side because c0-saturated are difficult objects in Banach
space theory; but also because after Fonf’s result what people wanting to
construct exotic c0-saturated spaces actually do is to construct polyhedral
spaces.

2. Boundaries

Another part (a prospect differing far)
Glow’d with refulgent arms, and horrid war.

Two mighty hosts a leaguer’ d town embrace,
And one would pillage, one would burn the place

A boundary for a Banach space X is a set B of the unit sphere of X∗ with
the property that, for every x ∈ X, there is f ∈ B such that |f(x)| = ∥x∥.

A basic corner in the theory is that polyhedral spaces have small bound-
aries [24, 26], although a while can be discussed about the meaning of “small”.
A beautiful closing result in the theory is the one that fixes “small” as “of the
same cardinal as the density character of the space”. Precisely

Theorem. A polyhedral Banach space admits a boundary with the same
cardinality as the density character of the space.

In particular, separable isomorphically polyhedral spaces admit a count-
able boundary. Actually, any Banach space admitting a countable boundary
(fn) must be (separable and) isomorphically polyhedral since the renorming

r(x) = lim(1 + εn)|fn(x)|

with lim εn = 0 is polyhedral. There are further possibilities in this “small”
regard: In [5] Arias de Reyna introduces the notion of small set in a metric
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space as follows: a set A is small if there exists a sequence of balls B(xn, rn)
with limn→∞ rn = 0 such that for each m ∈ N , one has:

A ⊂
∪

n≥m

B(xn, rn).

It can be proved [14]:

Lemma 2.1. A separable Banach space is isomorphically polyhedral if and
only if it can be renormed so that it has a small boundary.

Of course, polyhedral spaces may admit renormings with other boundaries:
An example of Fonf and Veselý [30] shows a renorming of c0 admitting an un-
countable small set of extreme points. An example of Livny [41] provides a
renorming of c0 admitting a non-small set of extreme points. Also axiomatic
counts: Arias de Reyna and A. Durán show in [5] that under Martin’s axiom
a set of cardinal ℵ1 is small. Therefore, assuming MA, if a separable Banach
space has a boundary of cardinal ℵ1 it is isomorphically polyhedral.

Gleit and McGuigan introduce in [33] the so-called property (∗): A bound-
ary B is said to have property (*) if every weak*-accumulation point f verifies
|f(x)| < 1 for every point ∥x∥ = 1. One has:

Proposition 1. A Banach space admitting a boundary with property (∗)
is polyhedral.

Proof. Let B a boundary with property (∗) for a Banach space X, and let
F be a finite-dimensional subspace of X. Pick (xn) a dense subset of the unit
sphere of F and for each n some element fn ∈ B so that fn(xn) = 1. If the
set (fn) is infinite, it must admit a weak*-accumulation point f . Therefore
some subsequence (fm) is norm convergent on F to f . And some subsequence
(xk) of (xm) is norm convergent to a certain x ∈ F . So f(x) = 1 against what
property (∗) says. Thus, the set (fn) is finite. Since it is a boundary for F by
compactness, X is polyhedral.

On the other hand, although this is not easy to prove, separable polyhedral
spaces always admit a boundary with property (*): the one formed by the set
of w*-strongly extreme points, namely, those norm one f for which there
exists x0 ∈ X so that f(x0) = 1 and whenever (fn) is a sequence for which
lim fn(x0) = 1 then lim ∥fn − f∥ = 0. Moreover, Fonf [25] and Veselý [48]
show it is a minimal boundary. What happens for nonseparable spaces is a
different matter. Actually, in [27, p.452] it is explicitly posed the problem:
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Problem 1. Does every polyhedral Banach space admit a boundary with
property (∗)?

Let ω1 be the first uncountable ordinal and let ℵ1 be its cardinal. Let E
be a Banach space with density character ℵ1. The space E can be written as
E =

∪
α<ω1 Eα in which each Eα is separable and for α < β one has Eα ⊂ Eβ.

A renorming process for the subspaces Eα will be called continuous if for each
x ∈ E, whenever α = limαn then one has rα(x) = lim rαn(x) when this makes
sense. One has the following partial result:

Proposition 2. Let E be a Banach space with density character ℵ1. If
the decomposition E = ∪α<ω1Eα admits a continuous polyhedral renorming
process then E admits a polyhedral renorming the set of whose weak*-strongly
extreme points has property (∗).

Proof. Let rα be a polyhedral C-renorming of Eα having a countable
boundary with property (∗). Let U be a free ultrafilter refining the order
filter and set the C-renorming of E given by

r(x) = lim
U
rα(x).

The continuity hypothesis and the fact that every continuous function
ω1 → R is eventually constant means that for each x one eventually has
r(x) = rα(x) for large α. Therefore, the same happens by compactness on
any finite dimensional subspace. It is therefore obvious that r is a polyhedral
renorming of E.

Let now §E be the set of all weak*-strongly exposed points of [E, r]. To
each f ∈ §E we can associate a norm one point p(f) ∈ E with the property
described in the definition.

Lemma 2.2. Let E be a Banach space and let X be a subspace. Let
f ∈ §E and assume that p(f) ∈ X. Then f|X ∈ §X .

Proof. Let f be a weak*-strongly extreme point of E. If p(f) ∈ X is such
that ∥p(f)∥ = 1 and f(p(f)) = 1 then ∥f|X∥ = 1 and f|X(p(f)) = 1. Let
fn ∈ X∗ be a sequence of functionals such that lim fn(p(f)) = 1. Take Fn

some Hahn-Banach extension of fn to E; one has limFn(p(f)) = 1, hence

0 ≤ lim ∥fn − f|F ∥ ≤ lim ∥Fn − f∥ = 0.
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All points in §X are restrictions of elements of §E : indeed, the restrictions
of elements of §E form a boundary for X, so it contains §E . And each f ∈ §E

such that p(f) ∈ X is such that f|X cannot be the restriction of any other
g ∈ E∗: Otherwise, since g(p(f)) = 1 it follows that ∥g − f∥ = 0.

Since E admits a boundary with cardinality ℵ1, by [25, 48], the boundary
§E also has cardinality ℵ1, as well as the set P = {p(f) : f ∈ §E}. Write P as
the union of a chain of countable subsets Pα –indexed by the first uncountable
ordinal ω1– so that P = ∪α<ω1Pα. And thus there is no loss of generality
assuming that p(fα) ∈ Eα.

Let now f be a weak*-accumulation point of a family F ⊂ §E and let x ∈ E
be so that r(x) = 1. Again, no loss of generality assuming that rα(x) = 1 for
all α. Pick a sequence f1,n ⊂ F such that |f1,n(x)−f(x)| < 2−n and then Eα1

such that p(f1,n) ∈ Eα1 for all n. Pick a countable subset f2,n of F so that
f|Eα1

is a weak*-accumulation point of f1,n|Eα1
. Find Eα2 containing all points

p(f2,n) and iterate the construction. Set β = supαn so that Eβ = ∪nEαn . If,
after relabelling, we set (fn) = ∪n,kfk,n then fn|Eβ

is a weak*-accumulation
point of fnEβ

and since p(fn) ∈ Eβ , fnEβ
∈ §Eβ

and thus, by property (∗),
f(x) < 1.

Which polyhedral spaces have a boundary with property (∗)? In [27] two
new classes have been identified. Let X be a Banach space and let M be a
nonempty set; an operator T : X → c0(SX∗ × M) is said to be a Talagrand
operator if, for any x ∈ X there is a pair (f,m) ∈ SX∗ ×M with f(x) = ∥x∥
and T (x)(f,m) ̸= 0.

Theorem 1. [27, Prop. 7] If a Banach space admits a Talagrand operator
then it also admits, for every ε > 0, a (1 + ε)-equivalent polyhedral renorming
with property (∗).

Proof. Let X be a Banach space admitting a Talagrand operator T : X →
c0(SX∗ ×M). For every f ∈ X∗ put Af = {T ∗δ(f,m) : m ∈ M} and then form
the set A =

∪
∥f∥=1Af . The only weak*-limit point of A is 0. Set

B =
∪

∥f∥=1
f ±Af

and introduce in X the renorming |x| = supg∈B g(x). This is a (1 + ε)-
renorming of X since (1 + ε)−1|x| ≤ ∥x∥ < |x|. The norm | · | has a B as
a boundary with property (∗): let g be a weak*-limit point of B; since the
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only weak*-limit point of A is 0, then ∥g∥∗ ≤ 1. Thus, if |x| ≤ 1 one has
g(x) ≤ ∥x∥ < |x| = 1.

The 1+ε could be important in the nonseparable setting, until the nonsep-
arable analogue for the following beautiful result of Deville, Fonf and Hajek
[18] be obtained: Every norm in a separable isomorphically polyhedral space
admits a (1 + ε)-equivalent polyhedral norm. Another interesting new poly-
hedral renorming appears in [27, Thm. 10]:

Theorem 2. If K is a countable height compact space then C(K) is iso-
morphically polyhedral.

Proof. Write K =
∪

n(Kn \ Kn+1) where Kn is the nth-derived set of K,
and fix ε > 0. Set It = {n ∈ N : t ∈ Kn \Kn+1} then the function

ψ(t) = 1 + ε
∑
n∈It

2−n

and finally a norm on C(K):

∥x∥ = sup
t∈K

{ψ(t)|f(t)|}.

One has ∥ · ∥∞ ≤ ∥ · ∥ ≤ (1 + ε)∥ · ∥∞ and the set B = {±ψ(t)δt : t ∈ K}
is a boundary for ∥ · ∥. Let us show it has property (∗): If f is a weak*-
accumulation point of B then f = αδt for some t ∈ K and α ∈ R. Let us show
that |α| < ψ(t), which is what one needs to get ∥f∥ < 1.

Pick n ∈ N such that t ∈ Kn \ Kn+1. Since this set is discrete, one can
find an open set V so that Kn \Kn+1 ∩ V = {t}. Now, if s ∈ V and s ̸= t
then n ∈ It \ Is. We set J = It ∪ {i ∈ N : i > n+ 1} and consider the open set

U = K \
∪ {

Kn \Kn+1 : i ∈ N \ J
}
.

By the definition of J , it is clear that t ∈ U and Is ⊂ J whenever s ∈ U .
Moreover, the way we choose V gives that n ∈ (U ∩ V ) \ {t} and we have:

Is \ It ⊂ J \ It ⊂ {i ∈ N : i > n+ 1}.

Thus, for such an s we obtain the following inequality

ψ(t) − ψ(s) = ε
∑

i∈It\Is

2−i − ε
∑

i∈Is\It

2−i ≥ 2−n − ε
∑

i>n+1
2−i = ε2−(n+1) > 0.

Thus, one can find a net {sλ} ⊂ (U ∩ V ) \ {t} such that lim sλ = t and
limψ(sλ) = |α|. From this, it follows that ψ(t) − |α| ≥ ε2−(n+1) > 0.
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There is a connection between both results, although it is difficult to prove
[27, Thm. 10]: If K is a tree then C(K) is isomorphically polyhedral if and
only if it admits a Talagrand operator. A comment in [27, p. 455] remarks
that Theorems 1 and 2 have different targets:

• All C[0, α] spaces admit Talagrand operators T : C[0, α] → c0(α) given
by Tf(γ) = f(γ) − f(γ + 1) when γ < α and Tf(α) = 0. For α large
enough they have not countable height.

• The Ciesielski-Pol space is the space of continuous functions on a com-
pact space CP having height three and with the remarkable property
that no injective operator C(CP) → c0(Γ) exists. Since Talagrand oper-
ators are injective (remark in [27, p.455]), the space C(CP ) admits no
Talagrand operator.

3. Twisting isomorphically polyhedral spaces

A field deep furrow’d next the god design’d,
The third time labour’d by the sweating hind;

The shining shares full many ploughmen guide,
And turn their crooked yokes on every side.

The currently known theory suggests that there are two general settings
that help to twist a space: One of them is “unconditionality properties”,
and the other is “the belonging to an interpolation scale”. Actually, let us
represent the first setting in the x-axis and the second in the y-axis with the
agreement that 0 means that the property expressed is at its best and 1 at
its worst. For instance, ℓ2 will be placed at (0, 0): it has unconditional basis
(unconditionality at its top) and is in the middle of all reasonable scales —
Köthe-spaces, ℓ∞-moduli, L∞-moduli, B(H)-moduli...— i.e., “belonging to a
scale” at its top. We would get a picture such as:

Argyros-Haydon H.I.

polyhedral spaces.

c0(Γ)

Ferenczi’s H.I.

Hilbert
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Hilbert spaces, and in general Banach spaces with an unconditional basis,
can be twisted, except in the case of c0 because of Sobczyk’s theorem, using the
Kalton-Peck method, which means using the correspondence between twisted
sums and quasi-linear maps and then a quasi-linear map of the type

Kϕ(x) = xϕ

(
log |x|

∥x∥

)
where ϕ is a certain Lipschitz map. It is no strange that Kalton-Peck maps can
be shown to produce nontrivial a twisting only when the space does not contain
c0. On the other hand, Kalton-Peck maps on ℓp-spaces can also be produced
via complex interpolation. And it is in this way that complex interpolation
can do the twist even when no unconditional structure is present.

In the picture above, polyhedral spaces will have coordinates (1, y) (un-
conditionality still can work but they will not be at the center of interpolation
scales). In other words, they are difficult to twist and no general method
works. It makes sense to pose the problem:

Problem 2. Let X be a polyhedral space. Does exist a nontrivial exact
sequence

0 −−−−→ X −−−−→ ♠ −−−−→ X −−−−→ 0?

Recall that a property P is said to be a 3-space property if whenever Y
and X/Y have P then also X has P.

The Ciesielski-Pol space C(CP) mentioned at the end of the previous sec-
tion can be represented as a twisted sum of two c0(Γ) spaces. Therefore:

Proposition 3. Admitting a Talagrand operator is not a 3-space prop-
erty.

Which, of course, suggests the 3-space problem for isomorphic polyhedral-
ity:

Problem 3. Is “to be isomorphically polyhedral” a 3-space property?

The first author believes the answer is negative. Since no current method
is known to twist polyhedral spaces, let us briefly review the known examples
and constructions of twisted sums of (isomorphically) polyhedral spaces and
exact sequences involving isomorphically polyhedral spaces.



hepheastus account on trojanski’s polyhedral war 43

3.1. Johnson-Lindenstrauss sequences. Let M = {Mα : α ∈ Γ} be
an uncountable almost-disjoint family –which means that Mα ∩ Mβ is finite
for different α, β– by infinite subsets of N. Form the subspace XM ⊂ ℓ∞
formed by the closure of the linear span in ℓ∞ of the characteristic functions
{1n : n ∈ N} and {1Mα : α ∈ Γ}. Since the images of {1Mα}α∈Γ in ℓ∞/c0
generate a copy of c0(c), one gets the nontrivial exact sequence

0 −−−−→ c0 −−−−→ XM −−−−→ c0(|M|) −−−−→ 0. (1)

The space XM is easily shown to be isomorphic to a C(∆M) space, where
∆M denotes the compact having as isolated points the nodes of the dyadic
tree, which accumulate at the branches, which accumulate at some infinity
point. Hence ∆M is a finite height compact with its third derived set is
empty. Thus, the sequence 3 has in fact the form

0 −−−−→ c0 −−−−→ C(∆M) −−−−→ c0(|M|) −−−−→ 0. (2)

There exist almost disjoint families of N of cardinal the continuum: for
instance, enumerate the nodes of the dyadic tree, let Γ be the set of branches
and for each α ∈ Γ let Mα be the set of numbers assigned to the nodes in
the branch α. The existence of such families was first observed by Sierpinski
[47]. An elegant proof due to Whitley [49] of the fact that (the canonical copy
of) c0 is uncomplemented in ℓ∞ relies on the following fact: Whitley observes
that the kernel of every functional of c⊥

0 contains all but perhaps a countable
quantity of members of the family. Thus, if ℓ∞ = c0 ⊕ Z and P : ℓ∞ → ℓ∞ is
a projection onto Z then P comes defined by a sequence (fn) of functionals
of c⊥

0 . But the kernel of an operator (fn) : ℓ∞ → ℓ∞ cannot be c0 since it
is ∩n∈N ker fn, and thus it must contain uncountably many members of the
family, which necessarily makes it nonseparable. In an entirely analogous
form, c0 is equally uncomplemented in the subspace XM of ℓ∞.

Koszmider [36, Question 5] raises the question of whether all the C(∆M)-
spaces generated by an almost disjoint family M must be isomorphic. Mar-
ciszewski and Pol answer in [44] the question by showing that there exist 2c
almost disjoint families M generating non-isomorphic C(∆M)-spaces. Since
the compact ∆M are of finite height, one has

Proposition 4. The spaces C(∆M) are isomorphically polyhedral.

Similar constructions to the previous ones can be carried over for other
cardinals. One needs a generalized version of Sierpinski’s almost-disjoint un-
countable family, due to Sierpinski and Tarski [37]: given an infinite set I
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there exists a family M of infinite subsets of I with |M| > |I| and M ∩ N
finite for every M ̸= N in M. In this way one would obtain nontrivial exact
sequences

0 −−−−→ c0(Γ) −−−−→ X −−−−→ c0(Γ) −−−−→ 0.

3.2. The Ciesielski-Pol space. It is an exact sequence

0 −−−−→ c0(c) −−−−→ C(CP) −−−−→ c0(c) −−−−→ 0

in which the twisted sum space C(CP) not only is not WCG: it does not
admit any injective operator into c0(I). Since the Ciesielski-Pol compact CP

has finite height, one has

Proposition 5. The space C(CP) is isomorphically polyhedral.

3.3. Weakly compactly generated twistings of c0(Γ). The
Johnson-Lindenstrauss spaces C(∆M) that provide nontrivial exact sequences

0 −−−−→ c0 −−−−→ C(∆M) −−−−→ c0(|M|) −−−−→ 0, (3)

are not weakly compactly generated (WCG) since c0 is complemented inside
every WCG space. In [3] it is obtained a nontrivial exact sequence

0 −−−−→ c0(ℵ) −−−−→ C(ACGJM) −−−−→ c0(ℵ) −−−−→ 0

in which ACGJM is an Eberlein compact, and thus C(ACGJM) is WCG. Under
GCH one can choose ℵ = ℵω (and this is the smallest cardinal allowing a WCG
nontrivial twisted sum of c0(ℵ). In this same line, Marciszewski shows in [43]
that the space C(BM) obtained by Bell and Marciszewski in [7] (here BM
is an Eberlein compact of weight c and height 3 that cannot be embedded
into any space formed by all the characteristic functions of subsets of X of
cardinality lesser than or equal to n) is actually a nontrivial twisted sum of
two c0(Γ). The Bell-Marciszewski compact BM has finite height, and thus:

Proposition 6. The space C(BM) is isomorphically polyhedral.

Returning to the space C(ACGJM), this actually is a c0-sum of spaces
C(Kn) spaces so that each of the compacta Kn has finite height. Since:

Lemma 3.1. [34] If X is isomorphically polyhedral then c0(I,X) is iso-
morphically polyhedral.
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Proof. It is enough to assume that X is polyhedral and show that also
c0(I,X) is polyhedral. The proof mimicries [34, Lemma 1]: let Z be a fi-
nite dimensional subspace of c0(I,X). There is a finite set of indices F =
{i1, . . . , in} such that ∥Pj(z)∥ ≤ 1

2∥z∥ for all z ∈ Z and all j /∈ F . Hence
∥z∥ = max{∥Pik

(z)∥ : 1 ≤ k ≤ n} and since X is polyhedral the unit ball of
Z, namely

∩
1≤k≤n{z ∈ Z : ∥Pik

(z)∥ ≤ 1} is a polytope.

It turns out that

Proposition 7. The space C(ACGJM) is isomorphically polyhedral.

Apart from the general 3-space problem for isomorphic polyhedrality, the
following problem is also open:

Problem 4. Is every twisted sum of two c0(Γ) isomorphically polyhedral?

Observe that if twisted sums of c0(I) admit a continuous polyhedral renorm-
ing process then the answer would be yes. It is also unknown if it does there
exist an exact sequence

0 −−−−→ c0(I) −−−−→ X −−−−→ c0(J) −−−−→ 0

in which X is not isomorphic to a C(K)-space. To be a C(K)-space is not a
3-space property [8, 11, 6] (see also below). Regarding this problem, it was
shown in [15] that every twisted sum of c0(Γ) and a space with property (V )
has property (V ).

3.4. Twisted sums with C(ωω). In [8] it is shown not only that “to
be a C(K) space” is not a 3-space property, but even the existence of exact
sequences

0 −−−−→ C(ωω) −−−−→ Ω q−−−−→ c0 −−−−→ 0

in which the quotient map q is strictly singular. This fact makes Ω fail
Pełczyński’s property (V ). Recall that a Banach space is called a Linden-
strauss space if its dual is isometric to some L1(µ)-space. Lindenstrauss spaces
share with C(K)-spaces Pełczyński’s property (V); so, the space Ω is not iso-
morphic to a Lindenstrauss space. Of course it is an L∞-space since this is a
3-space property.
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3.5. Gasparis sequences. Gasparis shows in [31, 32] the following sur-
prising result:

Proposition 8. For every Banach space Z with a shrinking unconditional
basis satisfying an upper p-estimate for some p > 1 there exists an exact
sequence

0 −−−−→ ker q −−−−→ G(Z) −−−−→ Z −−−−→ 0

in which G(Z) is isomorphically polyhedral and has an unconditional basis.

The result applies, in particular, to spaces Z such as: reflexive Banach
spaces with an unconditional basis and non-trivial type, Tsirelson’s original
space or spaces such as ℓp(c0) for 1 < p < +∞. In the particular case Z = ℓp,
1 < p < +∞, the space (ℓp) is not a subspace of any C(α)-space for α a
countable ordinal, and is not a quotient of any separable L∞-space.

Related previous examples were Leung’s example [42] of a c0-saturated
Banach space with an unconditional basis and a quotient isomorphic to ℓ2
(see also [4, Thm.8.8]) and Alspach’s example [1] of an ℓ1-predual, hence
polyhedral space A, that is a quotient of C(ωω) but not a subspace of any
C(α) with α countable.

4. Isomorphically polyhedral L∞-spaces

Another field rose high with waving grain;
With bended sickles stand the reaper train.

Next, ripe in yellow gold, a vineyard shines,
Bent with the ponderous harvest of its vines

Lazar [38] completes Lindenstrauss results [39] by showing that a Linden-
strauss space X is polyhedral if and only if every compact operator τ : Y → X
admits norm-preserving compact extensions to any superspace. Does a simi-
lar extension result hold for isomorphically Lindenstrauss and isomorphically
polyhedral spaces? In fact, the connection between the properties of being an
L∞-space, isomorphically polyhedral and isomorphically Lindenstrauss have
not yet been clarified. More precisely:

1. There are polyhedral spaces which are not L∞: Schreier space is a sub-
space of C(ωω) not of L∞-type; or else, any subspace of c0 other than
c0 (subspaces of c0(Γ) are L∞-spaces if and only if isomorphic to c0(I))
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2. There are Lindenstrauss spaces not polyhedral: C[0, 1].

3. A result of Fonf [22] asserts that preduals of ℓ1 are isomorphically poly-
hedral.

4. The result fails for ℓ1(Γ) (thanks are due to V. Fonf for this information):
Kunen’s compact K provides, under CH, a scattered, non metrizable,
one point compactification of a non-Lindelöf locally compact space K0
having all its finite powers Kn

0 hereditarily separable. The outcome of
this is that the corresponding C(K) space has the extraordinary property
that every uncountable set of elements contains one that belongs to the
closure of the convex hull of the others. And this property was used
by Jiménez and Moreno [35] to show that every equivalent renormig of
C(K) has only a countable number of weak*-strongly exposed points.
Thus, no equivalent renorming can be polyhedral. At the same time
C(K)∗ = ℓ1(Γ) as every scattered compact does. [21].

5. Fonf asked once whether isomorphically polyhedral L∞-spaces are iso-
morphically Lindenstrauss.

6. Is it possible to embed an isomorphically polyhedral space as a subspace
of an isomorphically polyhedral L∞-space?

5. Polyhedrality in pieces

Next this, the eye the art of Hephaestus leads
Deep through fair forests, and a length of meads,

A figured dance succeeds; such once was seen
In lofty Knossos for the Cretan queen

Any finite dimensional space admits, for every ε > 0 a (1 + ε)-equivalent
polyhedral renorming. So one cannot expect to get a polyhedral norm out
from renormings of the finite dimensional pieces. Nevertheless, things change
if one asks some compatibility condition, as we will show now. Let [A, ∥ · ∥]
be a finite dimensional Banach space. We define n[A, ∥ · ∥] as the minimum of
those N , if they exist, so that [A, ∥ · ∥] is isometric to a subspace of ℓN∞. Let
in what follows denote with ϕA an into isometry ϕA : [A, ∥ · ∥] → ℓ

n(A)
∞ .

Proposition 9. A Banach space E is λ-isomorphically polyhedral if and
only if each finite dimensional subspace F admits a λ-equivalent polyhedral
renorming rF so that the following compatibility assumption is satisfied:
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∀A,B ∃C : A+B ⊂ C

{
n([A, rC |A]) = n([A, rA]) ;
n([B, rC |B]) = n([B, rB]) .

Proof. Let FIN(E) denote the space of all finite dimensional subspaces of
X and for each F ∈ FIN(E) let rF be the λ-equivalent polyhedral renorming
satisfying the compatibility assumption. Set the order

A ≤ B ⇐⇒
{
A ⊂ B ;
n([A, rB |A]) = n([A, rA]) .

The compatibility condition is there to guarantee that the ordering is filtering;
i.e., that for all A,B there is some C so that A ≤ C and B ≤ C. After that,
the sets WA = {F : A ≤ F} form a filter base. Let thus U be a free ultrafilter
refining that base. The renorming:

r(x) = lim
U(F )

rF (x)

is polyhedral: Let A be a finite dimensional subspace; since WA ∈ U it makes
sense to define a map ϕ : [A, r] → ℓ

n(A)
∞ as ϕ(a) = limU(F ) ϕF (a). The map ϕ

is obviously linear and

ϕ(a) = lim
U(F )

ϕF (a) = lim
U(F )

rF (a) = r(a)

shows it is an into isometry.

One could ask whether compatibility assumptions could be removed forc-
ing the hypothesis to assume polyhedral renorming of all separable subspaces.
Precisely: Assume that X is a Banach space all whose separable subspace are
λ-isomorphically polyhedral. Must X be isomorphically polyhedral? The an-
swer is no again because of Kunen compact K) (and again we thank Fonf for
addressing us to this space). We already know that no equivalent renorming of
C(K) can be polyhedral. On the other hand, a metrizable scattered compact
is a countable ordinal space, so each separable subspace of C(K) is actually
a subspace of some C(α) space for countable ordinal α, hence isomorphically
polyhedral. Alternatively, C(K) has a countable boundary, and so does every
separable subspace; which, therefore, must be polyhedral.
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Thus the broad shield complete the artist crown’d
With his last hand, and pour’d the ocean round:

In living silver seem’d the waves to roll,
And beat the buckler’s verge, and bound the whole.
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