Analysis of Multiple Criteria Decision Making Method for Selection the Superior Cattle

Analisis Metode Multiple Criteria Decision Making untuk Pemilihan Bibit Sapi Unggul

Received: 13 November 2019 Revised: 30 November 2019 Accepted: 8 December 2019

CORE

^{1*}Lilik Sumaryanti, ²Nurcholis ¹Teknik Informatika, Universitas Musamus ²Peternakan, Universitas Musamus ^{1,2}Merauke, Indonesia E-mail: ¹lilik@unmus.ac.id, ²nurcholis@unmus.ac.id *Corresponding Author

Abstract— The results of decision making play an important role in achieving a goal in solving certain problems. In the decision making process requires data or supporting evidence that can be used as a guide for the selection of solutions based on available alternatives, so as to produce choices that can increase productivity. MCDM method for the analysis of research data namely AHP, TOPSIS and SMART, the three methods are tested, because each MCDM method has a different way of working or algorithm, so it is necessary to experiment with certain cases. This study aims to determine the performance of the AHP, TOPSIS, and SMART methods with a case study of selecting superior female cattle breeds. The application of three MCDM methods for alternative analysts of prospective superior beef cattle based on testing to determine the accuracy of comparing the results/output of the system with expert recommendation solutions using a sample of 15 female cows that produce priority/ranking for superior beef cattle, shows that the performance of the three methods produces priority selection results the same, with 80% priority accuracy.

Keywords— MCDM, AHP, SMART, TOPSIS

Abstrak— Hasil pengambilan keputusan berperan penting untuk mencapai suatu tujuan dalam penyelesaian masalah tertentu. Dalam proses pengambilan keputusan membutuhkan data atau bukti pendukung yang dapat digunakan sebagai pedoman untuk pemilihan solusi berdasarkan alternatif yang tersedia, sehingga menghasilkan pilihan yang dapat meningkatkan produktivitas. Metode MCDM untuk analisis data penelitian yaitu AHP, TOPSIS dan SMART, pengujian tiga metode tersebut dilakukan, karena setiap metode MCDM memiliki cara kerja atau algoritma yang berbeda-beda, sehingga perlu dilakuka percobaan dengan kasus tertentu. Penelitian ini bertujuan untuk mengetahui kinerja metode AHP, TOPSIS, dan SMART dengan studi kasus pemilihan bibit sapi unggul betina. Penerapan tiga metode MCDM untuk analis alternatif calon bibit sapi unggul berdasarkan pengujian untuk mengetahui akurasi membandingkan hasil/ouput sistem dengan solusi rekomendasi pakar menggunakan sampel 15 sapi betina yang menghasilkan prioritas/ranking untuk bibit sapi unggul, menunjukkan bahwa kinerja ketiga metode tersebut menghasilkan prioritas hasil pemilihan yang sama, dengan akurasi penentuan prioritas 80%.

Kata Kunci-MCDM, AHP, SMART, TOPSIS

I. INTRODUCTION

Decision making is an activity that has an essential role in achieving a specific goal, based on the selection of several available alternatives, in producing a final choice that uses a particular analysis approach or method. Decision making is a recursive process that involves several decision criteria, a Decision Support System (DSS) appears to help decision-makers in the decision making the process [1]. The decision support system is an application that is used as a tool for evidence-based decision making in agriculture [2] [3]. Decision support tools function to provide the best alternative information related to a particular case problem to act more appropriately to increase productivity [4]. To support the evaluation and selection process, formal decision-making methods can be used using the Multiple Criteria Decision Making (MCDM) method [5]. The application of decision support systems is used for the selection of electricity experts based on competency tests which are implemented by comparing several Multi-attribute Decision Making (MADM) methods [6]. Decision making by MCDM method aims to find the best alternative of all alternatives [4].

The use of the MCDM method is used for data analysis so that it can produce the best alternative recommendations based on the criteria used for the selection or selection process. Each MCDM method has a different way of working or algorithm, so it is necessary to experiment in some instances to find out the method that can recommend the best alternative by comparing the results of recommendations with alternative solutions from experts. The research aims to determine the performance of several MCDM methods including Analytic Hierarchy Process (AHP), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), and Simple Multi-Attribute Rating Technique (SMART). The system for prioritising the selection of improved government asset management by applying the AHP and TOPSIS methods, testing with an accuracy rate of 83% [7]. The results of decision making using the AHP method compared to the TOPSIS Method, show that there are inconsistencies in the sample data, i.e. some matrices in the data have a consistency ratio of more than 0.1, resulting in different alternative ranks [8].

This research uses a case study on the selection of superior female cattle breeds, with the criteria used for data analysis using national standards for selecting good beef cattle breeds [9]. Provision of beef production to meet needs must support the availability of good quality beef cattle. Cows are cattle that have superior physical and kinetic properties that can be inherited, as well as meeting the requirements for breeding with excellent reproductive performance. The selection process for the quality of beef cattle sees from various aspects, including body size/morphology and physical condition.

II. RESEARCH METHOD

The research phase carries out to conduct a comparative analysis of the results of the performance of several MCDM methods including AHP, SMART and TOPSIS with a case study of selecting superior breeds of female cows to be bred. Stages of the implementation of research activities are in the research flow chart Figure 1.

Figure 1. RESEARCH STAGE DIAGRAM BLOCK

The stages of the research activities in Figure 1 explain as follows:

Data Collection is the process of finding information needed to support the implementation of research objectives. The information required is related to the research, namely: prospective beef cattle breeders data, namely using Ongole breeding cows (PO), criteria for the selection of beef cattle breeds, methods or procedures carried out by experts in determining beef cattle

breeds, national standards for selecting cow breeds and guidelines for choosing good cattle breeds, the method used to collect research data through literature studies, interviews, field observations.

The determination of the weight of importance for each criterion is based on three MCDM methods, namely AHP, SMART and TOPSIS methods. This stage is to determine the priority interests of the requirements for the selection of superior cattle breeds that will be used for the next phase of research.

Data analysis of prospective superior cattle breeds is an activity of measuring the sample of research data by applying the AHP, SMART and TOPSIS method algorithms. At this stage, it will produce a ranking for all alternative solutions for superior beef cattle seeds recommended, so that it can be known classification (priority) of each alternative solution that is as information in the decision-making process.

System Implementation is a process of testing the system that has developed to find out whether the results/outputs of the system have met the information needs of the system user. System Testing to measure/find out the truth of alternative solutions recommended by the system, to find out the accuracy of comparing the results/output of the system with expert recommendation solutions.

The application of the three MCDM method algorithms namely AHP, SMART and TOPSIS, begins with a list of criteria that used for the selection of superior beef cattle by the guidelines for selecting good beef cattle for the Indonesian National Standard (SNI).

HP method applied is to solve problems by structuring a hierarchy of criteria, alternative outcomes to be the goal, by determining the weight or priority interests of each standard for each alternative [10]. The initial stage of the AHP method begins with structuring the problem into a hierarchy and then evaluating the components with a paired comparison matrix. The objectives are placed in the authority at the top level, while the criteria and sub-criteria are at the middle level; alternatives are at the lowest level [11] — comparison of paired matrices with a scale value of one to nine used for all criteria and options. Then we determine the weights for each standard, and all local weights for each criterion calculate to obtain the global weights for all other options [12]. Check the index consistency value (CI) using equation 1.

$$CI = \frac{\gamma_{\max} - n}{n - 1} \tag{3}$$

The process of calculating the consistency ratio value (CR) is done as the final stage of analysis by the AHP method, if the ratio consistency value ≤ 0.1 , so that it can proceed to the next stage. If on the contrary, the determination of the importance of the criteria and the calculation process. The analysis using the AHP method must be repeated. Calculation of ratio consistency using equation 2

$$CR = \frac{GI}{IR}$$

(2)

Information:

CR = *Consistency Rasio*

CI = Consistency Index

IR = *Index Random Consistency*

The SMART method is one of the methods used in data analysis that supports multi-criteria decision making, meaning that each alternative has a criterion value with a certain weight. Analysis using the SMART way is based on a linear additive model. It shows that the total amount of the specified alternatives will be used to calculate the overall performance score of each criterion with a predetermined weight, which will be multiplied by the standards weight. The steps for implementing the SMART method are explained as follows [13]. Determination of utility begins by converting the criterion value of each alternative using equation following equation 3

$$u_i(a_i) = \frac{c_{out} - c_{min}}{c_{max} - c_{min}} \tag{3}$$

Utilities for each alternative are obtained using equation 4

$$u(a_i) = \sum_{j=1}^m w_j u_i(a_i) \tag{4}$$

Utility value shows the result of the analysis process using the SMART method. The final step is the selection of superior breed cattle by alternative ordering process with the largest to the smallest utility [14].

The TOPSIS algorithm guides the process of calculating the selected alternative is the best of all available options, which has the shortest distance from the positive ideal solution, and the choice also has the most extended range from the perfect negative solution [15]. The positive ideal solution is a calculation of all the best values achieved by each criterion, while the ideal negative solution is the opposite of the worst possible value. The TOPSIS method uses both as an alternative measurement to choose to calculate the distance to the positive ideal solution and the distance to the negative ideal solution by selecting the proximity relative to the positive ideal solution [16].

Determination of the distance and criterion value of each alternative to the positive ideal solution, and the negative ideal solution based on equation 5.

$$A^{+} = (y_{1}^{+}, y_{2}^{+}, y_{3}^{+}, \dots, y_{n}^{+})$$

$$A^{-} = (y_{1}^{-}, y_{2}^{-}, y_{3}^{-}, \dots, y_{n}^{-})$$

$$D_{i}^{+} = \sqrt{\sum_{j=1}^{n} (y_{i}^{+} - y_{ij})^{2}}; \quad i = 1, 2, \dots, m.$$

$$D_i^{-} = \sqrt{\sum_{j=1}^n (y_{ij} - y_i^{-})^2}; \quad i = 1, 2, ..., m$$
(5)

The practical steps of the three MCDM methods for the analysis of research data are shown in Figure 2.

Figure 2. AHP WORKING STEPS, TOPSIS DAN SMART

III. RESULT AND DISCUSSION

Multi-criteria analysis for decision support systems including AHP, SMART and TOPSIS methods through the Multiple-Criteria Decision-Making (MCDM) approach has been developed, including the decision making to review papers that have been distributed based on specific publishing periods on Thomson's Web Core Science Collection [17]. The use of particular methods for data analysis to support decision making is one of the steps undertaken to produce relevant and evidence-based information for decision-makers, thus enabling its users to accept the suggestions generated by the system [18].

The hierarchy in Figure 3, shows the relationship between objectives, criteria and alternatives in AHP. The next stage after the compilation of the hierarchy is, determine alternative values and standards, check the consistency of pairwise comparison matrix ratios to assess alternatives and measures, determine priority criteria

Figure 3. HIERARCHY OF SELECTION OF SUPERIOR BREEDS OF CATTLE

A list of standards used for selecting superior breeds of female cows is shown in Table 1.

Table 1. CRITERIA SELECTION OF SUPERIOR BREEDS OF F

No	Criteria
1	Healthy and free from all animal diseases
2	Livestock do not have physical defects and reproductive organs
2	Female ongol crossbreed cattle have udders and healthy
3	reproductive organs
4	Age of Cow (month)
5	Tern Height (cm)
6	Body Length Size (cm)
7	Livestock Chest Size (cm)

Measurement of the accuracy of the performance of each MCDM method depends on the results of the analysis of the application of three methods compared with the results of alternative

solution recommendations from experts. The results of the performance of the AHP, SMART and TOPSIS methods are shown in Table 2.

Alternative Rank	AHP	SMART	TOPSIS	PAKAR
1	Sapi H	Sapi H	Sapi H	Sapi H
2	Sapi B	Sapi B	Sapi B	Sapi D*
3	Sapi D	Sapi D	Sapi D	Sapi E*
4	Sapi E	Sapi E	Sapi E	Sapi B*
5	Sapi C	Sapi C	Sapi C	Sapi C
6	Sapi O	Sapi O	Sapi O	Sapi O
7	Sapi K	Sapi K	Sapi K	Sapi K
8	Sapi A	Sapi A	Sapi A	Sapi A
9	Sapi L	Sapi L	Sapi L	Sapi L
10	Sapi N	Sapi N	Sapi N	Sapi N
11	Sapi M	Sapi M	Sapi M	Sapi M
12	Sapi F	Sapi F	Sapi F	Sapi F
13	Sapi I	Sapi I	Sapi I	Sapi I
14	Sapi G	Sapi G	Sapi G	Sapi G
15	Sapi J	Sapi J	Sapi J	Sapi J

Table 2. COMPARISON OF SYSTEM RESULTS AND EXPERT RECOMMENDATIONS

The experiment conducted using a sample data of fifteen cows which are prospective superior breeders for the process of selecting the best alternative superior breeders. The results of the selection by applying the AHP, SMART and TOPSIS methods in the form of priority values (alternative ranking) are shown in Table 2. The test is carried out by a scenario comparing the results of ranking superior seeds for five female cows with the determination of ranking results from experts, which shows differences for alternative ranks 2, 3 and 4. Measurement accuracy based on test scenarios for the three methods is explained as follows:

Akurasi AHP =
$$\frac{12}{15}$$
 X 100% = 80 %

Akurasi SMART
$$=\frac{12}{15} \times 100\% = 80\%$$

Akurasi TOPSIS =
$$\frac{12}{15}$$
 X 100% = 80 %

The results of testing the three methods have the same performance in the analysis for the selection of superior cattle breeds. The accuracy of the effects of comparison with expert predictions is 80%. Figure 4 shows an example of the results of application development for the analysis of research data using AHP.

120006		iaritas Kriteria	Mergguna	NAN OHP											-	0	
Vial Ka	pentingan ky A	er la Sebelur	s Normalis	ati					Hostha	ormalisasi Kriter	ria dan Pen	skalaan (0	1)				
	CL	CE	C3	64	C5	05	C7	10		D	62	63	C4	Ċ5	06	G7	
Ċ1	1	3	3	+	5	6	6		C1	0.3961000	0.5575208	0.330390	0.285714	2 0.2702702	0.335799	0.7925	82
C21	0.330000	C1.	3	+	3	5	3		62	0.1274335	0.1050732	0.330396	0.205714	2 0.2N2N2	0.263157	0.2439	u,
÷	0.330000	C 0.33900000	t	3	4	2	2		C3	0.1274131	0.0613383	0.110132	1 0.254285	0.2162163	0.105263	1 0.09758	6C
04	0.25	0.25	11.3300000	t 1	2	2 :	2		GE	0.0965250	0.0464684	0.036343	0.071428	5 O.1081081	0.105263	10.0975	6C
05	0.300000	C 0.2000000	0.25	0.5	1	2	2		0	0.0772200	0.0371747	0.027539	0.035714	0.0540540	11 105263	0.0975	80
0	8.170000	0.2000000	0.0	0.5	0,5	1	7.		05	0.0656370	0.0371747	0.055066	0.035714	a 0.0270070	0.0526003	0.0975	50
Ċł.	0.170800	C 0.2800000	0.5	0.5	8.5	0.5	1		Ċ2	0.0656370	0.0371747	0.055066	0.035714	2 0.0270270	0.026375	0.0457	ić,
0.000								2	4.								5
Matrix	Penjumlahar	Parbana							Parhitu	ngan Hasio Kon	ostansi						
	4	9	0	C4	19	C6	C†	- î		Aundah Pa	Prantas	Hall					1
ci :	C1 0.3429	C2 0.72154	C3 47 0.38218	C4 05 0.3243	125 3272 0.329	CB 223C 0.343	.C7 8361.0.28	7005	cı	Jumlah Pe 2.9924957	Prantian 0.3428653	Hatil 3.335360					1
са (2	C1 0.34298 0.1131-	C2 60 0.72154 197. 0.24051-	(1) (7 0.38216 (5 0.38219	C4 05 0.324) 01 0.324)	139 8272 0.329 8272 0.329	C8 223C 0.343 923C 0.296	C7 0261 0.28 1051 0.29	7005 9165	C1 C2	Auniah Na 2.9524057 2.1008855	Prior Kan 0.3428655 0.2405145	Hall 3.335360 2.341400	6				
a a a	C1 0.3429 0.1131- 0.1131-	C2 60 0.72154 155 0.24051- 155 0.079369	C3 47 0.38218 45 0.38239 45 0.32739	C4 05 0.3240 75 0.3240 57 0.243	125 3272 0.329 3272 0.329 3272 0.329 3454 0.280	C8 029C 0.343 029C 0.296 0294 0.134	- C7 3261 0.28 1051 0.29 4421 0.09	7005 9165 9067	0 0 0	Lonian Na 2.9004957 2.1008855 1.3098302	Praz Kan 0. 3429653 0. 2405145 0. 1273993	Hall 3.395361/ 2.341400 1.237306	6				
2 2 2 2	C1 0.3429 0.1131 0.1131 0.0057	C2 0.72154 05.0.24051- 05.0.079366 163.0.060121	C3 47 0.38218 45 0.38218 45 0.32739 17 0.04204	C4 75 0.324 71 0.324 57 0.243 66 0.001	125 3272 0.329 3272 0.329 3272 0.329 3454 0.200 3016 0.130	C8 223C 0.343 923C 0.296 7394 0.134 954G 0.134	- C7 3261 0.28 1051 0.29 4425 0.09 4425 0.09	7005 9365 9067 9567	C1 02 05	2,0024057 2,0024057 2,000855 1,008655 0,0052538	Prantia 0.3428653 0.2405145 0.1273997 0.0010010	Hall 3.335360 2.341400 1.237306 0.756303	6				
0 0 0 0	C1 0.34294 0.1131- 0.1131- 0.00571 0.06851	C2 0.72154 55.0.24051- 55.0.079365 65.0.090128 55.0.090128	C3 47 0.38218 45 0.38238 46 0.38238 46 0.32739 10 0.04204 01 0.04204 02 0.03184	C4 05 0.3240 05 0.3240 67 0.243 06 0.0000 66 0.0000 66 0.0400	125 3272 0.329 3272 0.325 954 0.3267 3016 0.130 5405 0.065	C8 223C 0.343 823C 0.296 7384 0.134 364G 0.134 2846 0.134	C7 0261 0.28 0051 0.29 4420 0.09 4420 0.09 4420 0.09	7005 9165 9067 9667 9667	0 0 0 0 0	2.9694957 2.9694957 2.1009855 1.3098305 0.6052531 0.5403656	Prior Kan 0.3428653 0.2405145 0.1273987 0.0810830 0.0651846	Hall 3.395360 2.341400 1.337309 0.756009 0.405350					
0 0 0 0 0 0 0 0	C1 0.3429 0.1131- 0.0137- 0.0057 0.05855 0.05855	C2 0.721544 05.0.24051- 05.0.075045 05.0.060120 05.0.048102 071.0.048102	C3 47 0.38219 45 0.38219 45 0.38239 45 0.38239 45 0.38239 45 0.38349 25 0.36369	C4 05 0.324 05 0.324 57 0.243 06 0.000 06 0.040 06 0.040	125 3272 0.329 3272 0.329 3454 0.329 3454 0.320 3454 0.300 5405 0.055 5405 0.032	C8 323C 0.343 923C 0.296 7364 0.134 9846 0.134 9846 0.134 9825 0.057	C7 9261 0.28 1051 0.29 4421 0.08 4421 0.08 4421 0.08 2211 0.09	7005 9165 9667 9667 9667	5 0 0 5 0 8	Amlah Ne 2.9024097 2.1009855 1.3099302 0.6052518 0.5403656 0.4719355	Prior Kan 0. 3428653 0. 2405145 0. 1273957 0. 0010030 0. 0051845 0. 0572230	Hall 2.395360 2.341400 1.337306 0.756003 0.605350 0.529136					
2882282	C1 0.3429 0.1131- 0.01571 0.06851 0.05825 0.05825	C2 0.72154 152 0.24051- 152 0.046102 152 0.046102 151 0.046102 151 0.046102	C3 47 0.38218 45 0.38258 45 0.32739 17 0.04204 25 0.06369 25 0.06369	C4 (75 0.324) (75 0.324) (75 0.324) (75 0.340) (75 0.040) (75 0.040)	129 3272 0.329 3272 0.329 3454 0.356 3454 0.356 3405 0.032 3405 0.032 3405 0.032	C8 223C 0.343 823C 0.296 7384 0.134 3846 0.134 3846 0.134 3825 0.037 5925 0.038	C7 0261 0.28 1051 0.29 4427 0.08 4427 0.08 4422 0.09 2210 0.09 2210 0.09	* 7005 9165 9067 9667 9567 7835 +	2882085	Lenian Pa 2.0004067 2.1008855 1.3098302 0.6652518 0.540566 0.4715352 0.3854706	Prior Kan 0. 3428653 0. 2405145 0. 1273987 0. 0010000 0. 0051846 0. 00572250 0. 0476338	Hall 2.395360 2.395400 1.337306 0.756000 0.605360 0.529136 0.443304					* 100
2 2 8 8 2 0 8 2	C1 0.3×29 0.1131- 0.0157: 0.0685 0.0585 0.0583	C2 50 0.72154 50 0.24051- 50 0.75695 50 0.60610 571 0.048102 571 0.048102 571 0.048102 571 0.048102	C3 47 0.38218 45 0.38218 45 0.38259 45 0.04234 25 0.04234 25 0.06369 25 0.06369	04 05 0.3240 07 0.3240 57 0.2433 06 0.0403 06 0.0403 07 0.0403 07 0.0403	125 3277 0.329 3272 0.329 3454 0.326 3454 0.366 3405 0.065 3405 0.032 3405 0.032	C8 123C 0.343 123C 0.296 7384 0.134 1846 0.134 1846 0.134 1846 0.134 1846 0.057 5925 0.029	C7 3261 0.28 1051 0.29 4420 0.09 4420 0.09 4420 0.09 2210 0.09 500 0.04	* 7005 9165 9067 9567 9567 7832 + *	1 3 8 8 5 0 8 5 5	Lunian Pa 2 9004957 2.1009895 1.3098305 0.6652518 0.5405656 0.4719355 0.3854706 0.3854706	Prior Kan 0. 3428653 0. 2405145 0. 1273957 0. 0010010 0. 0051846 0. 0051846 0. 0572230 0. 0476338 0. 0476338	Hanil 5.335360 2.341400 1.337308 0.465350 0.465350 0.443304 0.443304					
2 2 2 3 5 5 5 7 − Heta	C1 0.3+29 0.1131- 0.0131- 0.05835 0.05835 0.05835 0.05835	C2 52 0.72154 52 0.24051- 52 0.075364 53 0.040102 571 0.00000 571 0.00000 571 0.00000 571 0.00000 571 0.00000 571 0.00000 571 0.00000 571 0.000000 571 0.0000000 571 0.00000000000000000000000000000000000	C) 47 0.38218 46 0.38218 46 0.38218 46 0.38218 46 0.38218 46 0.38218 47	C4 75 0.324 75 0.324 57 0.243 68 0.040 66 0.040 76 0.040 76 0.040	125 1272 0.329 1272 0.329 1454 0.3260 1416 0.320 1405 0.065 1405 0.032	C8 123C 0.343 923C 0.296 7384 0.134 9845 0.134 9845 0.134 9825 0.039	C7 3361 0.28 1051 0.29 4427 0.09 4427 0.09 4422 0.09 5211 0.09 5212 0.09	* 7005 9165 9067 9667 9667 9667 7835 +	0 0 0 0 0 0 0 0 0 0	Lunian Pa 2 9004050 2 1000855 1 3098102 0 46912518 0 5401656 0 4715152 0 3854706 0 3751853	Prantia 0.34286/53 0.2405145 0.1273957 0.0010000 0.0951845 3.0572230 0.0476338 0.0476638	Havil 5.355560 2.341400 1.237006 0.405350 0.405350 0.443304 0.341247					
1 1 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	C1 0.34294 0.31314 0.31314 0.31314 0.04651 0.05635 0.05635 0.05635	C2 60 0.72154 150 0.24051- 150 0.07696 150 0.046102 171 0.046102 1	C3 47 0.38219 45 0.38219 45 0.32739 45 0.02739 45 0.04349 55 0.06369 4677	C4 75 0.324 75 0.324 77 0.348 87 0.243 96 0.040 96 0.040 76 0.040	128 1277 0.329 1277 0.329 1277 0.329 1277 0.329 1277 0.329 1277 0.329 1277 0.329 1277 0.329 1277 0.329 1276 0.032 1276 0.032	C8 123C 0.343 123C 0.296 7394 0.134 184G 0.134 184G 0.134 184G 0.134 184G 0.134 184G 0.134	C7 3261 0.28 1051 0.29 4427 0.09 4427 0.09 4422 0.09 5211 0.09 5107 0.04 (1.009400	* 700: 9161 9067 9067 9067 9067 9067 9067 *	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Lunian Pa 2.0004050 2.000855 1.008855 0.0052518 0.5405656 0.4715152 0.0854706 0.0754706 0.0754705	Prantian 0.34298/53 0.2405145 0.1273957 0.0010000 0.0551845 0.0572290 0.0470035 0.0470035	Havil 2.395360 2.391400 1.237009 0.405350 0.405350 0.443304 0.391365 0.443304 0.391365	2 2 5 5				
CI C	C1 0.34284 0.31314 0.31314 0.06577 0.06685 0.05685 0.05685 0.05685 0.05685	C2 0.72154 95 0.24051- 95 0.24051- 95 0.240510 95 0.04810 971 0.24810 971 0.24810 971 0.24810	C3 47 0.38218 45 0.38218 45 0.32739 10 0.04214 25 0.05369 25 0.06369 15 0.06369	C4 075 0.3240 071 0.3240 67 0.2438 06 0.0409 076 0.0409 076 0.0409	123 3272 0.329 3272 0.329 3494 0.280 3101 0.130 5405 0.032 3405 0.032 3405 0.032	C8 123C 0.343 923C 0.296 7394 0.134 9845 0.134 9845 0.134 9825 0.039 9825 0.039	C7 3261 0.28 1051 0.29 4427 0.09 4427 0.09 4427 0.09 2211 0.09 557 0.04 (1.209400	700: 9165 9067 9067 9667 9667 7832 + +	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Lunian Pa 2.0004050 2.000855 1.0098000 0.0052510 0.5405650 0.4715152 0.3954700 n.17774452 Raeso, Korwolf	Praz Kan 0.34296/52 0.2405145 0.1273957 0.0651845 0.0651845 0.0572292 0.0476038 0.0476038	Havil 3.335360 2.341400 1.237306 0.345306 0.529136 0.443304 0.341364 0.341364 0.341364	2 5 5 94046217				

The AHP method works to solve complex problem domains, making it ideal for dealing with problems by comparing performance among alternatives. But if it is implemented on an issue, with other options always increasing, it's best to avoid using this method. The advantages of AHP, easy to use, the hierarchical structure can easily adjust according to the size of the number of problems. The weakness of this method is that there is interdependence between criteria and alternatives, and can lead to inconsistencies between the evaluation of criteria and ranking. The application of AHP generally used for the problem of determining the type of performance, the selection and management of human resources, the determination of public policies, political strategies, the decision of company policies and strategy and planning. One application of the AHP method for site selection, to provide information related to the development plan for the location of health infrastructure [18]. The results of the analysis using the SMART method has the advantage of being easy to use, allowing for the use of all types of weight determination techniques, e.g. relative, absolute, easy to obtain information access to decision-makers. The implementation of SMART finds in applications related to environmental, construction,

transportation, logistics, military, manufacturing and assembly issues. Whereas the TOPSIS method has the advantage of a simple, easy to use and programmed algorithm implementation process, the number of steps remains the same regardless of the number of attributes, the weakness of this method is: the use of euclidean distance does not consider attribute correlations, making it difficult to maintain consistency of judgment. Typical applications for supply chain and logistics management issues, manufacturing systems, business and marketing, environment, human resources, and water resource management.

IV. CONCLUSSION

The application of three MCDM methods for the case of selecting superior breeds of female cows shows that the performance of the three methods produced the same alternative recommendations in the experiments that have been carried out, despite having different algorithms and ways of working, with an accuracy level of 80%.

AKNOWLEGMENT

The researcher would like to thank the Management and staff at the Ministry of Research Technology and Higher Education who have funded this research.

REFERENCE

- C. S. Wang, H. L. Yang, and S. L. Lin, "To Make Good Decision: A Group DSS for Multiple Criteria Alternative Rank and Selection," *Math. Probl. Eng.*, vol. 2015, pp. 1– 15, 2015.
- [2] E. Kerselaers, E. Rogge, L. Lauwers, and G. Van Huylenbroeck, "Decision support for prioritising of land to be preserved for agriculture: Can participatory tool development help?," *Comput. Electron. Agric.*, vol. 110, pp. 208–220, 2015.
- [3] I. Kaya and C. Kahraman, "A comparison of fuzzy multicriteria decision-making methods for intelligent building assessment," *J. Civ. Eng. Manag.*, vol. 20, no. 1, pp. 59–69, 2014.
- [4] L. Sumaryanti, L. Lamalewa, and T. Istanto, "Implementation Of Multiple Fuzzy Criteria Decision Making For Recommendation Paddy Fertilizer," *Int. J. Mech. Eng. Technol.*, vol. 10, no. 3, pp. 236–243, 2019.
- [5] E. K. Zavadskas, J. Antucheviciene, Z. Turkish, and H. Adeli, "Hybrid multiple-criteria decision-making methods: A review of applications in engineering," *Sci. Iran.*, vol. 23, no. 1, pp. 1–20, 2016.
- [6] A. Papadopoulos, D. Kalivas, and T. Hatzichristos, "Decision support system for nitrogen fertilisation using fuzzy theory," *Comput. Electron. Agric.*, vol. 78, pp. 130–139, 2011.
- [7] J. Febriansyah, R. Gernowo, and A. Kusumawardhani, "Implementation of AHP and TOPSIS Method to Determine the Priority of Improving the Management of Government's Assets," *Int. J. Innov. Res. Adv. Eng.*, vol. 4, no. 3, pp. 46–53, 2017.
- [8] S. Supraja and P. Kousalya, "A comparative study by AHP and TOPSIS for the selection of all-round excellence award," *Int. Conf. Electr. Electron. Optim. Tech.*, pp. 314–319, 2016.
- [9] S. Nasional, I. Ics, and B. S. Nasional, Bibit sapi Potong Bagian 5: Peranakan Ongole.

Jakarta, 2015.

- [10] L. Sumaryanti, T. K. Rahayu, A. Prayitno, and Salju, "Comparison study of SMART and AHP method for paddy fertiliser recommendation in decision support system Comparison study of SMART and AHP method for paddy fertiliser recommendation in the decision support system," *IOP Conf. Ser. Earth and Environ. Sci.*, pp. 1–5, 2019.
- [11] M. M. D. Widianta, T. Rizaldi, D. P. S. Setyohadi, and H. Y. Riskiawan, "Comparison of Multi-Criteria Decision Support Methods (AHP, TOPSIS, SAW & PROMENTHEE) for Employee Placement," J. Phys. Conf. Ser., pp. 1–5, 2017.
- [12] J. Thor, S. Ding, and S. Kamaruddin, "Comparison of Multi-Criteria Decision Making Methods From The Maintenance Alternative Selection Perspective," *Int. J. Eng. Sci.*, vol. 2, no. 6, pp. 27–34, 2013.
- [13] M. B. Barfod and S. Leleur, *Multi-criteria decision analysis for use in transport decision making*. 2014.
- [14] D. Siregar, D. Arisandi, A. Usman, D. Irwan, and R. Rahim, "Research of Simple Multi-Attribute Rating Technique for Decision Support," J. Phys. Conf. Ser., pp. 1–6, 2017.
- [15] S. Gurung and R. Phipon, "Multi-criteria decision making for supplier selection using AHP and TOPSIS method," *Int. J. Eng. Invent.*, vol. 6, no. 2, pp. 13–17, 2016.
- [16] M. Bartolozzi, P. Bellini, P. Nesi, G. Pantaleo, and L. Santi, "A smart decision support system for smart city," *Proc. - 2015*, pp. 117–122, 2015.
- [17] V. Patil, S. Payer, T. Teli, and S. Jaychandran, "Decision Support System for Agriculture Management," *Int. J. Emerg. Trends Sci. Technol.*, vol. 3, no. 2, pp. 3505–3508, 2016.
- [18] M. Velasquez and P. T. Hester, "An Analysis of Multi-Criteria Decision Making Methods," Int. J. Oper. Res., vol. 10, no. 2, pp. 56–66, 2013.