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In this note, we prove that all2 × 2 monotone grid classes are finitely based, i.e., defined by a finite collection of
minimal forbidden permutations. This follows from a slightly more general result about certain2 × 2 (generalised)
grid classes that have two monotone cells in the same row.
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1 Introduction
In recent years, the emerging theory of grid classes has led to some of the major structural and enumerative
developments in the study of permutation patterns. Particular highlights include the characterisation of all
possible “small” growth rates (Huczynska and Vatter, 2006; Kaiser and Klazar, 2003; Vatter, 2011) and
the subsequent result that all classes with these growth rates have rational generating functions (Albert
et al., 2015).

To support results such as these, the study of grid classes themselves has gained importance. Restrict-
ing one’s attention tomonotonegrid classes, it is known that the structure of the matrix defining a grid
class determines both its growth rate (Bevan, 2015), and whether it is well-partially-ordered (Murphy and
Vatter, 2003).

One remaining open question about monotone grid classes concerns theirbases, that is, the sets of
minimal forbidden permutations of the classes. Backed up bysome computational evidence, it is widely
believed that all monotone grid classes are finitely based, but this is only known to be true for certain
families, most notably those whose row-column graphs(i) are forests(Albert et al., 2013). To date, the
only other instances of monotone grid classes that are knownto have a finite basis are two2 × 2 grid
classes. The first concerns the class ofskew-mergedpermutations,Av(2143, 3412), in (Stankova, 1994),
while the second is in Waton’s PhD thesis (Waton, 2007). Inspired by Waton’s approach, we show that a
certain family of (non-monotone)2 × 2 grid classes are all finitely based, from which we can conclude
the following result.

Theorem 1.1. Every2× 2 monotone grid class is finitely based.

(i) The row-column graph of a{0,±1}-matrixM is the bipartite graph whose biadjacency matrix hasij-th entry equal to|Mij |.
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The rest of this section covers a number of prerequisite definitions. In Section2 we introduce a more
general construction than grid classes, based on juxtapositions, that are known to be finitely based, and
use these to characterise the grid classes they contain. In Section3 we consider three separate cases that
will enable us to prove our more general result (Theorem1.2), and thence Theorem1.1.

Writing permutations in one-line notation, we say that the permutationσ is containedin a permutation
π, denotedσ ≤ π, if there is a subsequence of the entries ofπ that have the same relative ordering as the
entries ofσ. A specific instance of a set of entries ofπ witnessing this containment is called acopyof σ
in π. Containment forms a partial order on the set of all permutations, and sets of permutations which are
closed downwards in this order are calledpermutation classes. Specifically, ifC is a permutation class,
π ∈ C andσ ≤ π, then we must haveσ ∈ C. For convenience later, we regard the empty permutation as
belonging to every permutation class.

While permutation classes can be defined in a number of ways (for example, the set of all permutations
that can be sorted by a stack forms a permutation class), a convenient characterisation can be given in
terms of the unique set of minimal forbidden permutations that donot lie in the class. We call the setB
thebasisof a classC if

C = {π : β 6≤ π for all β ∈ B},

andB is minimal with this property, and we writeC = Av(B). By its minimality, the setB must form an
antichain under≤, but since infinite antichains are know to exist in the containment partial order,B need
not be finite. When the basis ofC is finite, we say thatC is finitely based.

We frequently make use of a graphical perspective, in which we represent a permutationπ by plotting
the points(i, π(i)) (i = 1, . . . , |π|) in the plane. Indeed, we do not distinguish between the permutation
π written in one-line notation, and the graphical representation of π.

Form,n ≥ 1, letM be anm× n matrix whose entries are permutation classes (including possibly the
empty class). Thegrid classof the matrixM, denotedGrid(M), is the permutation class consisting of
all permutationsπ for which (in the graphical perspective) there existm− 1 horizontal andn− 1 vertical
lines which divide the entries ofπ into mn rectangles, so that the (possibly zero) entries ofπ in each
rectangle form a copy of a permutation from the class in the corresponding entry ofM. When the entries
of M are all eitherAv(12), Av(21) or ∅, thenGrid(M) is amonotonegrid class.

We are mostly concerned with2 × 2 matrices in this paper, and in this case it will prove convenient

to refer to these grid classes more succinctly. IfM =

(

A B
C D

)

is a matrix consisting of permutation

classes, then we write

A B

C D

to meanGrid(M). Additionally, when (say)A = Av(21), then we may refer to the cellA using ,

reflecting the fact that all points in this cell are increasing. Similarly, we may write whenA = Av(12).
Finally, where the entries of the2 × 2 matrixM are either arbitrary or clear from the context, we may
also simply refer toGrid(M) as .

We are ready to state our general theorem, from which Theorem1.1will follow.

Theorem 1.2. LetC andD be finitely based permutation classes. Then the three grid classes
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C D C D C D

are all finitely based.

Our approach makes use of an existing result, which althoughnot originally presented in this way, can
be cast in terms of grid classes. For permutation classesC andD, the(horizontal) juxtapositionof C and

D is the1 × 2 grid class C D . Similarly, thevertical juxtapositionof C andD is the2 × 1 grid class

C

D
.

Lemma 1.3 (Atkinson, 1999). WheneverC andD are finitely based, so are the horizontal and vertical
juxtapositions ofC andD.

For clarity, we occasionally write
[

C D
]

for the horizontal juxtapositionC D (we do not need
the corresponding vertical juxtaposition notation).

2 Juxtapositions and relative bases
In this section, we give a characterisation of2× 2 grid classes of the form

E =
A B

C D

whereA, B, C andD are four fixed (but arbitrary) permutation classes.
We begin by considering the following related class, formedby the horizontal juxtaposition of two

vertical juxtapositions:

F =

[

A

C

B

D

]

.

Note that ifA,B, C andD are finitely based, then by repeated application of Lemma1.3so too isF .
Clearly,E ⊆ F . We are interested in the basis ofE , which we can separate into two parts: those basis

elements ofE that lie withinF , and those basis elements ofE that are not inF . By minimality and since
E ⊆ F , this latter set must also be basis elements ofF . The set of basis elements ofE that are contained
in F we call therelative basisof E in F , and we have the following observation.

Observation 2.1. Let C andD be two permutation classes such thatD finitely based, andC ⊆ D. Then
C is finitely based if and only if the relative basis ofC in D is finite.

Consider any permutationπ in the setF \ E . Sinceπ lies in the juxtaposition classF , we can write
π = π1π2 with

π1 ∈
A

C
andπ2 ∈

B

D
.

We refer to the division linev that separatesπ1 from π2 as av-line. Additionally, any horizontal division
line in π1 that demonstratesπ1 as a member of the vertical juxtaposition is called aleft h-lineof π, and
similarly any valid horizontal division line inπ2 is called aright h-line. Thus, we can recogniseπ ∈ F
by means of adivision triple, (v, r, ℓ), wherev is the v-line,r the right h-line, andℓ the left h-line.
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r
r′

ℓ

ℓ′

vv′

Fig. 1: The relationship between the division(v, r, ℓ) and(v′, r′, ℓ′) in the proof of Lemma2.2. The small arrows
indicate that the corresponding division lines have been chosen to be extremal in the direction specified by the arrows.

The condition thatπ ∈ F \ E can now be described as follows: for every division triple(v, r, ℓ) that
recognisesπ ∈ F , the right h-liner and the left h-lineℓ cannot be at the same height. We use the symbol

to denote the set of permutations inF which have a division triple(v, r, ℓ) whereℓ is no higher than
r, and to denote those permutations which have a division whereℓ is no lower thanr. Note that
and are both in fact permutation classes, and also thatF = ∪ .

Our main result of this section now follows. It shows in particular thatπ ∈ F \E cannot simultaneously
lie in and , and hence the relative basis ofE in F can be divided into two disjoint parts: those that
lie in and those that lie in .

Lemma 2.2. Any2 × 2 grid classE = is equal to the intersection of the corresponding classes
and . That is,

E = = ∩ .

Proof: First, it is clear that ⊆ ∩ , so suppose that we have a permutationπ in ∩ .
Considerπ first as a member of . There exists at least one division triple(v, r, ℓ) which recognises

this, and we choose any valid v-linev, together with the lowest right h-liner and the highest left h-lineℓ.
Note in particular that for any right h-line that is lower than r, there must exist a basis element in the top
right cell. If ℓ andr coincide, then we haveπ ∈ and we are done, so we may assume thatℓ is strictly
lower thanr.

Next, considerπ as an element of . We pick a division(v′, r′, ℓ′) by first choosing any v-linev′

which either coincides withv or lies further to the left (the case wherev′ is to the right ofv will follow
upon rotating the picture by180◦). Next choose any validr′, noting thatr′ must be at least as high as
r to avoid introducing a basis element into the top right cell.Finally, chooseℓ′ to be as low as possible,
subject to the division triple(v′, r′, ℓ′) remaining a valid division for membership of (see Figure1).
We claim thatℓ′ is at the same height asr′.

Suppose, for a contradiction, thatℓ′ lies strictly abover′, and letℓ′′ be the left h-line that has the same
height asr′. Since the division triple(v′, r′, ℓ′′) does not witnessπ ∈ (but(v′, r′, ℓ′) does), there must
exist some basis element in the top left region defined by(v′, r′, ℓ′′). However, this region is contained in
the top left region defined by(v, r, ℓ), so this is impossible.
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Thusℓ′ has the same height asr′, and(v′, r′, ℓ′) is a division triple that recognisesπ ∈ , and hence
π ∈ .

3 Main results
We are ready to start proving our three main results.

Lemma 3.1. For finitely based classesC andD, the class

E =
C D

is finitely based.

Proof: First, letB denote the relative basis ofE inside the juxtaposition

F =

[

C D
]

.

SinceF is finitely based, by Observation2.1 it suffices to show thatB is finite. By Lemma2.2 and the
comments preceding it, anyπ ∈ B lies in exactly one of or . Consider first the case whereπ ∈ .
We will identify a bounded number of points inπ that demonstrateπ 6∈ E .

We begin by identifying two division triples,(vL, rL, ℓL) and(vR, rR, ℓR): vL is the leftmost v-line
recognisingπ ∈ , andvR is the rightmost such v-line. Subject to these choices, we pick ℓL andℓR to
be as high as possible, andrL andrR as low as possible.

We now prove the following claim: if(v, r, ℓ) is any other division triple recognisingπ ∈ where the
left h-line ℓ is chosen as high as possible, thenℓ is at the same height as eitherℓL or ℓR.

If ℓL andℓR are at the same height, the claim follows immediately, so we can assume thatℓL is strictly
higher thanℓR. The situation is as depicted in Figure2: we identify four points,a, b, c andd, which are
distinct (except possiblyb = c) and which form the copies of 21 that defineℓL andℓR. Note thata and
c lie immediately aboveℓL andℓR, and, except that the relative positions ofa andc can be interchanged
providingb 6= c, the points must be arranged in the way shown in Figure2 in order thatπ ∈ . For the
same reason, all other points ofπ that lie in the marked rectangular regions 1, 2, 3 and 4 (defined by the
bounding dotted and dashed lines) in Figure2 must lie on the diagonal segments indicated.

Consider any division triple(v, r, ℓ) recognisingπ ∈ whereℓ is chosen as high as possible. Ifv lies
further left than all points in the region labelled 4 in Figure2, then we can chooseℓ at the same height as
ℓL. On the other hand, if any point from region 4 lies to the left of v, thenc must lie aboveℓ, and thusℓ is
at the same height asℓR. This completes the claim.

We can now identify the following bounded collection of points ofπ: (i) a basis element ofC which

definesvR, (ii) a basis element ofD to definevL, and (iii) at most 4 pointsa, b, c andd defining the two

left h-linesℓR andℓL.
It remains to identify a bounded number of points to ensure that any division triple(v, r, ℓ) recognising

π ∈ hasℓ strictly lower thanr. For this, it suffices to consider only theextremaltriples(v, r, ℓ) where
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a

b

c

d

rL

rR

ℓL

ℓR

vL vR

1

2

3 4

Fig. 2: The relationships between the division triples(vL, rL, ℓL) and(vR, rR, ℓR), the points definingℓL andℓR,
and the restrictions on the placement of points in the four rectangular regions 1—4.

ℓ is as high as possible, andr is as low as possible. We identify the extremal triple(vX , rX , ℓX) where
the v-linevX is chosen to lie immediately to the left of all points in region 4 of Figure2. By the earlier
claim,ℓX has the same height asℓL. The lowest right h-linerX must lie strictly aboveℓX , and is defined
by a basis element ofD to the right ofvX , with one point lying immediately belowrX . Observe that for
any extremal triple(v, r, ℓ) wherev lies to the left ofvX , we have thatℓ is at the same height asℓX , and
r can be no lower thanrX . In particular, sinceπ as a basis element is minimally not inE , if r is higher
thanrX then it is because of points inπ that we have already identified.

Similarly, the position of the linerR is fixed by a basis element ofD to the right ofvR. For any extremal
triple (v, r, ℓ) wherev is further right thanvX , we know thatℓ is at the same height asℓR, andr can be
no lower thanrR (because of the basis element ofD). Thus, again by the minimality ofπ, if r is strictly
higher thanrR it is because of points that we have already identified.

From this, we conclude that ifπ ∈ is a basis element ofE relative toF then the number of points
in π is bounded, asπ comprises the points identified in (i), (ii) and (iii) above,and by at most two basis
elements ofD.

The argument for a basis elementπ that lies in is similar, and we omit some of the details. The
process begins by identifying the leftmost and rightmost v-linesvL andvR, and the corresponding highest
right h-linesrL andrR. The left hand picture in Figure3 illustrates thatrL andrR cannot have different
heights (elseπ ∈ ). In the right hand picture of Figure3, the points forming a basis element ofC that
defines the lineℓL ensures that in any extremal triple(v, r, ℓ), r is lower thanℓ. Thusπ consists of (i) a

basis element ofC which definesvR, (ii) a basis element ofD to definevL, (iii) a copy of21 to define

rR, and (iv) a basis element ofC to defineℓL.

A similar approach, of bounding the number of possible left and right h-lines, can be applied for the
other two cases, so we only sketch the proofs.

Lemma 3.2. For finitely based classesC andD, the class

E =
C D
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rL

rR

ℓR

ℓL

vL vR

∅

rL = rR

ℓL

ℓR

vL vR

∅

∅

Fig. 3: The relationships between the division triples(vL, rL, ℓL) and(vR, rR, ℓR) whenπ ∈ . On the left, ifrL
andrR are at different heights, thenℓL is at the same height asrL. On the right, ifrL andrR are at the same height,
then the points definingℓL guaranteeπ 6∈ E for every triple(v, r, ℓ) recognisingπ ∈ .

c

b

a

rL

rR

ℓR = ℓL

vL vR

∅

Fig. 4: The left h-lineℓR is defined by the pointsa andb which form a copy of 21. Botha andb must lie to the left
of vL, so this also definesℓL.

is finitely based.

Proof (sketch): We need only consider relative basis elements ofE that lie in , as the argument for
is symmetric. Thus, consider a basis elementπ ∈ of E .

Define the division triples(vR, rR, ℓR) and(vL, rL, ℓL) recognisingπ ∈ by choosingvR to be the
rightmost v-line, andvL the leftmost, and then selectingrL andrR as low as possible, andℓL andℓR as
high as possible.

We claim thatℓR andℓL have the same height. In Figure4, the pointc which defines the linerR, forces
the region belowℓR and betweenvL andvR to be empty. Consequently, the pair of pointsa andb (which
forms a copy of 21 and hence defines the height ofℓR) must lie to the left ofvL. This means thata andb
also define the highest position ofeveryleft h-lineℓ in a division triple(v, r, ℓ) recognisingπ ∈ .

The proof concludes by noting that we can demonstrateπ 6∈ E by the following points: (i) a basis

element of C which definesvR, (ii) a basis element ofD to definevL, (iii) a copy of21 to defineℓR,
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and (iv) a basis element ofD to definerR.

Lemma 3.3. For finitely based classesC andD, the class

E =
C D

is finitely based.

Proof (sketch): As before, by symmetry it suffices to consider a relative basis elementπ ∈ of E .
Define the division triples(vR, rR, ℓR) and(vL, rL, ℓL) as in earlier proofs.

We claim that in any division triple(v, r, ℓ) recognisingπ ∈ whereℓ is as high as possible,ℓ has
the same height as eitherℓL or ℓR. The situation is illustrated in Figure5: if v lies to the right of the point
a thenℓ can be no higher thanℓR. On the other hand, ifv lies to the left ofa, then the only available copy
of 12 hasb as the ‘2’, soℓ has the same height asℓL.

c
a

b

rL

rR

ℓL

ℓR

vL vR

Fig. 5: The left h-lineℓR is defined by the pointsa andb which form a copy of 12. Sincea lies to the left ofvL, the
left h-line ℓL can be no higher thanℓR.

With these two left h-lines defined, we need only identify twocopies of basis elements ofD to define
corresponding lowest right h-lines in each case. Thus,π 6∈ E is identified by the following points: (i) a

basis element ofC to definesvR, (ii) a basis element ofD to definevL, (iii) at most two copies of21 to

defineℓR andℓL, and (iv) at most two basis elements ofD to definerR andrL.

Proof of Theorem 1.1: First, the only2 × 2 monotone grid classes whose row-column graphs are not
forests (and hence finitely based byAlbert et al.(2013)) are those where all four cells are non-empty.

Any such2 × 2 monotone grid class can be described as a grid class in one of the three forms covered
by Lemmas3.1, 3.2 and3.3, upon taking the classesC andD to beAv(12) or Av(21), and possibly
appealing to symmetry.
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4 Concluding remarks
Non-monotone 2 × 2 grids One obvious question arising from this work is how far one might be able
to extend Theorem1.2within the context of2× 2 grids: in particular, can one replace the two monotone
classes in the lower row by something more general? Any approach to this question would need to bear
in mind that there do exist2 × 2 grid classes which arenot finitely based, even though each entry of the
matrix is finitely based. The primary example of this, given both in Murphy’s PhD thesis (Murphy, 2002)
and in (Atkinson and Stitt, 2002), is

C

C∅

∅

whereC = Av(321654). (Note this example is more normally written as adirect sum, C ⊕ C.) This
example can likely be adapted to produce other instances where the grid class is not finitely based, even
though its individual entries are.

Larger grids There are a number of difficulties encountered when one triesto extend our results here to
larger grids. Even in the “next” case of2× 3 grids, there seems to be no obvious analogue to Lemma2.2
to enable us to consider relative bases inside some larger class. The primary issue is that our proof relied
on the fact that the heights of all possible left-h-lines (or, analogously, right-h-lines) form a contiguous set
of values, but this need no longer be the case.

Acknowledgements We are grateful to Mike Atkinson for several fruitful discussions about this prob-
lem, from which most of the ideas for this note emerged.
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