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In this note, we prove that all x 2 monotone grid classes are finitely based, i.e., defined byita finllection of
minimal forbidden permutations. This follows from a sliyhtnore general result about certain< 2 (generalised)
grid classes that have two monotone cells in the same row.
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1 Introduction

Inrecent years, the emerging theory of grid classes has eahhe of the major structural and enumerative
developments in the study of permutation patterns. Paatitughlights include the characterisation of all
possible “small” growth rate§{uczynska and VattepP00& Kaiser and Klazhip003 Vattef, P017) and
the subsequent result that all classes with these growdk ratve rational generating functiomdi{ert
etal, R0IH.

To support results such as these, the study of grid classasstives has gained importance. Restrict-
ing one’s attention tanonotonegrid classes, it is known that the structure of the matrixrdedj a grid
class determines both its growth ragegah P01, and whether it is well-partially-orderetiurphy and
Vatter, 003J.

One remaining open question about monotone grid classeenmtheirbases that is, the sets of
minimal forbidden permutations of the classes. Backed ugdoye computational evidence, it is widely
believed that all monotone grid classes are finitely basetthis is only known to be true for certain
families, most notably those whose row-column gréiplase forests(lbert et al, P013. To date, the
only other instances of monotone grid classes that are kriovnave a finite basis are twibx 2 grid
classes. The first concerns the classkaw-mergegermutationsAv(2143, 3412), in (StankovhfL993),
while the second is in Waton's PhD thedigdtor} R007). Inspired by Waton’s approach, we show that a
certain family of (non-monotone) x 2 grid classes are all finitely based, from which we can corelud
the following result.

Theorem 1.1. Every2 x 2 monotone grid class is finitely based.

) The row-column graph of &0, 41}-matrix M is the bipartite graph whose biadjacency matrix hjath entry equal td M.
ISSN 1365-8050 © 2016 by the author(s) Distributed undereative Commons Attribution 4.0 International License


http://arxiv.org/abs/1511.00473v2
http://dmtcs.episciences.org/
http://dmtcs.episciences.org/1325

2 Michael Albert, Robert Brignall

The rest of this section covers a number of prerequisite itiefis. In Sectiorﬁ we introduce a more
general construction than grid classes, based on juxtipusi that are known to be finitely based, and
use these to characterise the grid classes they contaimctioﬁﬁ we consider three separate cases that
will enable us to prove our more general result (Theo@l and thence Theore@_

Writing permutations in one-line notation, we say that teenputatiors is containedn a permutation
m, denotedr < , if there is a subsequence of the entrieg dhat have the same relative ordering as the
entries ofo. A specific instance of a set of entriesofvitnessing this containment is calleccapyof o
in 7. Containment forms a partial order on the set of all pernmnat and sets of permutations which are
closed downwards in this order are callgeimutation classesSpecifically, ifC is a permutation class,
7w € C ando < 7, then we must have € C. For convenience later, we regard the empty permutation as
belonging to every permutation class.

While permutation classes can be defined in a number of wayexample, the set of all permutations
that can be sorted by a stack forms a permutation class), \s&eo@mmt characterisation can be given in
terms of the unique set of minimal forbidden permutatiorag ttonotlie in the class. We call the sét
thebasisof a clas< if

C={r:p Lnforall g € B},

andB is minimal with this property, and we write = Av(B). By its minimality, the seB must form an
antichain undex, but since infinite antichains are know to exist in the camtaént partial order3 need
not be finite. When the basis 6fis finite, we say thaf is finitely based

We frequently make use of a graphical perspective, in whiehepresent a permutatianby plotting
the points(i, 7(i)) (: = 1,...,|n|) in the plane. Indeed, we do not distinguish between the petion
7 written in one-line notation, and the graphical represtoraof 7.

Form,n > 1, let M be anm x n matrix whose entries are permutation classes (includisgipty the
empty class). Therid classof the matrixM, denotedGrid(M), is the permutation class consisting of
all permutationsr for which (in the graphical perspective) there exist- 1 horizontal andh — 1 vertical
lines which divide the entries af into mn rectangles, so that the (possibly zero) entries @f each
rectangle form a copy of a permutation from the class in theesponding entry aM. When the entries
of M are all eitherAv(12), Av(21) or ), thenGrid(M) is amonotongrid class.

We are mostly concerned withx 2 matrices in this paper, and in this case it will prove coneahi

to refer to these grid classes more succinctlyMf = (A B) is a matrix consisting of permutation

c D
Al B
C|\D

to meanGrid(M). Additionally, when (say)4 = Av(21), then we may refer to the c using,

reflecting the fact that all points in this cell are incregsi8imilarly, we may Writ whenA = Av(12).
Finally, where the entries of th x 2 matrix M are either arbitrary or clear from the context, we may
also simply refer taGrid (M) asi--|.

We are ready to state our general theorem, from which The@mill follow.

classes, then we write

Theorem 1.2. LetC andD be finitely based permutation classes. Then the three gagbek
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c|p c|p c|p
/N N/

are all finitely based.

Our approach makes use of an existing result, which althoaogbriginally presented in this way, can
be cast in terms of grid classes. For permutation claGseslD, the (horizontal) juxtapositiorof C and
Dis thel x 2 grid clas. Similarly, thevertical juxtapositiorof C andD is the2 x 1 grid class
Lemma 1.3 1999. Whenever andD are finitely based, so are the horizontal and vertical
juxtapositions o€ andD.

For clarity, we occasionally writ@ Cc D ] for the horizontal juxtapositio (we do not need
the corresponding vertical juxtaposition notation).

2 Juxtapositions and relative bases

In this section, we give a characterisatior2of 2 grid classes of the form

whereA, B, C andD are four fixed (but arbitrary) permutation classes.
We begin by considering the following related class, forrbgdhe horizontal juxtaposition of two

vertical juxtapositions:
(2 8]
¢l D

Note that if A, B, C andD are finitely based, then by repeated application of Le@ao too isF.
Clearly,& C F. We are interested in the basis&fwhich we can separate into two parts: those basis

elements of that lie within 7, and those basis elements&that are not inF. By minimality and since

& C F, this latter set must also be basis element® of he set of basis elements &that are contained

in F we call therelative basif £ in F, and we have the following observation.

Observation 2.1. LetC andD be two permutation classes such tiafinitely based, and C D. Then
C is finitely based if and only if the relative basis®in D is finite.

Consider any permutation in the set” \ £. Sincer lies in the juxtaposition clas&, we can write

T = myme With
m E andm, € .

We refer to the division line that separates; from 75 as av-line. Additionally, any horizontal division
line in m; that demonstrates; as a member of the vertical juxtaposition is calleléfa h-line of 7, and
similarly any valid horizontal division line imr, is called aright h-line. Thus, we can recognise € F
by means of aivision triple, (v, r, £), wherev is the v-line,r the right h-line, and the left h-line.
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Vi Ll oo .

Fig. 1: The relationship between the divisi¢n, r, ¢) and (v', 7', £') in the proof of Lemm@. The small arrows
indicate that the corresponding division lines have beaseh to be extremal in the direction specified by the arrows.

The condition thatr € F \ £ can now be described as follows: for every division trifer, ¢) that
recognises € F, the right h-liner and the left h-ling cannot be at the same height. We use the symbol
- to denote the set of permutationsfwhich have a division tripl¢v, r, ) where is no higher than
r, and [-/-| to denote those permutations which have a division wkéseno lower thanr. Note that| |-
and - are both in fact permutation classes, and alsothat | -{U[-|.

Our main result of this section now follows. It shows in pautar thatr € F\ £ cannot simultaneously
liein [[{and -], and hence the relative basis&in F can be divided into two disjoint parts: those that
liein - and those that lie in-| .

Lemma 2.2. Any2 x 2 grid class& = [ is equal to the intersection of the corresponding classes
and-||. Thatis,
£ =t =HnH-

Proof: First, itis clear that|-| C [ /N, so suppose that we have a permutatian |- N |

Considerr first as a member of |-{. There exists at least one division trigle , /) which recognises
this, and we choose any valid v-limgtogether with the lowest right h-lineand the highest left h-liné
Note in particular that for any right h-line that is lower thg there must exist a basis element in the top
right cell. If £ andr coincide, then we have € |-}/ and we are done, so we may assume thastrictly
lower thanr.

Next, considerr as an element of |-/ . We pick a division(v’,r’, ¢') by first choosing any v-line’
which either coincides with or lies further to the left (the case wherkis to the right ofv will follow
upon rotating the picture by80°). Next choose any valid’, noting thatr’ must be at least as high as
r to avoid introducing a basis element into the top right cleihally, choose’ to be as low as possible,
subject to the division tripl¢v’, r, ¢') remaining a valid division for membership of | (see Figurd).
We claim that’ is at the same height a&

Suppose, for a contradiction, thties strictly above”’, and let?”” be the left h-line that has the same
height ag”’. Since the division triplgv’, 7/, /") does not witness € [-{ (but(v’, 7, ¢’) does), there must
exist some basis element in the top left region define@uby’, ¢/). However, this region is contained in
the top left region defined b, r, £), so this is impossible.
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Thus?’ has the same height a5 and(v’,+’,¢') is a division triple that recognises< ||, and hence

WEHE. O

3 Main results

We are ready to start proving our three main results.
Lemma 3.1. For finitely based classe&sandD, the class

Proof: First, let B denote the relative basis &finside the juxtaposition

~10 7]

SinceF is finitely based, by Observati@ it suffices to show thai is finite. By Lemma@ and the
comments preceding it, anyc B lies in exactly one of |-or [ . Consider first the case wherec | |-,
We will identify a bounded number of points inthat demonstrate ¢ £.

We begin by identifying two division triplewr, 71, ¢) and(vg, 7R, ¢r): v is the leftmost v-line
recognisingr € |-}, andug, is the rightmost such v-line. Subject to these choices, wie fii and/x to
be as high as possible, ang andrg as low as possible.

We now prove the following claim: ifv, r, £) is any other division triple recognisinge | |-{ where the
left h-line £ is chosen as high as possible, thfas at the same height as eithgror /.

If £;, and/g are at the same height, the claim follows immediately, soaeassume thdt, is strictly
higher thar/g. The situation is as depicted in FigLEewe identify four pointsg, b, ¢ andd, which are
distinct (except possibly = ¢) and which form the copies of 21 that defihig and/. Note thata and
c lie immediately abové;, and/r, and, except that the relative positionszodindc can be interchanged
providingb # ¢, the points must be arranged in the way shown in Fiﬂ.jreorder thatr € |-, For the
same reason, all other pointsothat lie in the marked rectangular regions 1, 2, 3 and 4 (defoyethe
bounding dotted and dashed lines) in FigBmaust lie on the diagonal segments indicated.

Consider any division triplév, r, £) recognisingr € |---|where( is chosen as high as possiblew llies
further left than all points in the region labelled 4 in Fig@ then we can choogeat the same height as
£1,. On the other hand, if any point from region 4 lies to the léft othenc must lie abové, and thud is
at the same height &s;. This completes the claim.

is finitely based.

We can now identify the following bounded collection of piginf 7: (i) a basis element which

definesug, (ii) a basis element to definevy,, and (iii) at most 4 points, b, ¢ andd defining the two

left h-linesfr and/,.
It remains to identify a bounded number of points to ensuaedhy division triple(v, r, £) recognising
m € |- hast strictly lower thanr. For this, it suffices to consider only tieztremattriples (v, r, ¢) where
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/ ® @
Fig. 2. The relationships between the division triples., 7., 1) and(vr, rr, £r), the points definind; and/r,
and the restrictions on the placement of points in the foctarggular regions 1—4.

¢ is as high as possible, amds as low as possible. We identify the extremal tripg, rx, £x ) where

the v-linevy is chosen to lie immediately to the left of all points in regié of Figureﬁ. By the earlier
claim, Zx has the same height &s. The lowest right h-line'x must lie strictly abové x, and is defined
by a basis element @ to the right ofvx, with one point lying immediately belowy . Observe that for
any extremal tripldv, r, ) wherev lies to the left ofvx, we have that is at the same height s, and

r can be no lower thanx. In particular, sincer as a basis element is minimally notéh if = is higher

thanrx then it is because of points inthat we have already identified.

Similarly, the position of the linep, is fixed by a basis element 8fto the right ofvz. For any extremal
triple (v, r, £) whereuw is further right tharvx, we know that is at the same height &g, andr can be
no lower than - (because of the basis elementl®f. Thus, again by the minimality of, if » is strictly
higher thanry it is because of points that we have already identified.

From this, we conclude that if € | -|is a basis element & relative toF then the number of points
in 7 is bounded, ag comprises the points identified in (i), (ii) and (iii) abownd by at most two basis
elements oD.

The argument for a basis elementhat lies in |-{-| is similar, and we omit some of the details. The
process begins by identifying the leftmost and rightmolt@sv;, andvg, and the corresponding highest
right h-linesry, andrg. The left hand picture in Figurﬁillustrates that;, andrg cannot have different
heights (elser € ). In the right hand picture of Figu@ the points forming a basis element®that
defines the lin€;, ensures that in any extremal trigle, r, £), r is lower than/. Thusz consists of (i) a

basis element cm

rr, and (iv) a basis element 6fto definel;.. O

which definesg, (ii) a basis element to definevy, (iii) a copy of21 to define

A similar approach, of bounding the number of possible lefl @ght h-lines, can be applied for the
other two cases, so we only sketch the proofs.

Lemma 3.2. For finitely based classesandD, the class
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Fig. 3: The relationships between the division triples,, ., {.) and(vr, rr, {r) Whenr € B} On the left, ifry,
andrp are at different heights, thef, is at the same height as,. On the right, ifr;, andrr are at the same height,
then the points defining;, guaranteer ¢ & for every triple(v, r, £) recognisingr € B}
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e —
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Fig. 4. The left h-linelr is defined by the points andb which form a copy of 21. Botla andb must lie to the left
of vz, so this also define&; .

is finitely based.

Proof (sketch): We need only consider relative basis elements§ dfat lie in ||, as the argument for
is symmetric. Thus, consider a basis elemest| || of £.

Define the division triple$vg, rr, r) and(vy,rr, £1,) recognisingr € Bﬂ by choosingvr to be the
rightmost v-line, and;, the leftmost, and then selectimg andrz as low as possible, amd and/y as
high as possible.

We claim that’ g and/;, have the same height. In FigLEethe pointc which defines the lineg, forces
the region below r and betweem;, andvg to be empty. Consequently, the pair of poiatandb (which
forms a copy of 21 and hence defines the heighiizgfmust lie to the left ofvr. This means that andb
also define the highest position®feryleft h-line ¢ in a division triple(v, r, ¢) recognisingr € ||

The proof concludes by noting that we can demonstratgé £ by the following points: (i) a basis
element 0 which definesg, (i) a basis element n@ to definevy, (iii) a copy of21 to definelx,

/
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and (iv) a basis element @& to definerp. O

Lemma 3.3. For finitely based classe&sandD, the class
C|D

5 =
Eg

Proof (sketch): As before, by symmetry it suffices to consider a relative batmentr € [ of £.
Define the division triple$vr, rr, ¢r) and(vy,rr, £1) as in earlier proofs.

We claim that in any division triplév, r, £) recognisingr € |-|{ where/ is as high as possiblé,has
the same height as eithér or /. The situation is illustrated in FiguE} if v lies to the right of the point
a then/ can be no higher thafi. On the other hand, if lies to the left ofa, then the only available copy
of 12 hash as the ‘2, sof has the same height 4s.

is finitely based.

vL VR
L o .
be |
EL ***** ? =1 /
1
.. R
a./

Fig. 5. The left h-linelr is defined by the points andb which form a copy of 12. Since lies to the left ofvy,, the
left h-line £;, can be no higher thafk.

With these two left h-lines defined, we need only identify wapies of basis elements Bfto define
corresponding lowest right h-lines in each case. Thug, £ is identified by the following points: (i) a

basis element to definesg, (ii) a basis element to definevy,, (iii) at most two copies 021 to

definelr and?y, and (iv) at most two basis elementsto definerg andry. O

Proof of Theorem Ez First, the only2 x 2 monotone grid classes whose row-column graphs are not
forests (and hence finitely based[dpert et al. (2013) are those where all four cells are non-empty.

Any such2 x 2 monotone grid class can be described as a grid class in ohe ttree forms covered
by Lemmas3.3, B-2 andB.3, upon taking the classedand D to be Av(12) or Av(21), and possibly
appealing to symmetry. O
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4 Concluding remarks

Non-monotone2 x 2 grids One obvious question arising from this work is how far onelige able

to extend Theore@within the context o x 2 grids: in particular, can one replace the two monotone
classes in the lower row by something more general? Any @gprto this question would need to bear

in mind that there do exig x 2 grid classes which aneot finitely based, even though each entry of the

matrix is finitely based. The primary example of this, giverttbin Murphy’s PhD thesig\iurphy},

and in [Atkinson and Stitp0032), is
a|C
C @

whereC = Av(321654). (Note this example is more normally written aslieect sumC @ C.) This
example can likely be adapted to produce other instancesavthe grid class is not finitely based, even
though its individual entries are.

Larger grids There are a number of difficulties encountered when onetwiestend our results here to
larger grids. Even in the “next” case ®fx 3 grids, there seems to be no obvious analogue to Le@a
to enable us to consider relative bases inside some lar@ss.cThe primary issue is that our proof relied
on the fact that the heights of all possible left-h-lines émalogously, right-h-lines) form a contiguous set
of values, but this need no longer be the case.

Acknowledgements We are grateful to Mike Atkinson for several fruitful dissiens about this prob-
lem, from which most of the ideas for this note emerged.
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