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ABSTRACT 

 

A single leak in a duct can be detected, located and sized by measuring the input 

impedance of the duct and then analytically solving an inverse problem. However, 

previously applied analytical methods break down when it comes to predicting smaller 

hole sizes. Results are presented which show that, by treating smaller holes as capillaries 

and applying appropriate theoretical approximations, accurate predictions of smaller hole 

sizes are possible. 

 

Extending the analytical methods to a duct containing multiple leaks is non-trivial as the 

resulting mathematical expressions are highly complex. In this thesis, an alternative 

approach which uses optimisation methodology to detect, locate and size multiple leaks in 

a duct is described. The optimisation algorithms are applied to a measurement of the duct’s 

input impedance but they are able to cope with the presence of multiple leaks. Results are 

presented which illustrate the success of the optimisation approach in detecting, locating 

and sizing multiple leaks in a duct. 

 

An objective function incorporating the theoretical input impedance of a model duct and 

experimental input impedance of the cylindrical pipe under investigation is designed. By 

studying the behaviour of the objective function and the application of different numerical 

optimisation methods, it is possible to determine those methods most suitable for 

investigating leaks.  Results are presented showing that the Rosenbrock optimisation 

algorithm provides predictions of hole sizes and locations which are in good agreement 

with their actual values. The success of the Rosenbrock optimisation algorithm is attributed 

to function minimisation techniques incorporating non derivative based search directions 

and optimisation steps. 
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Chapter 1 

 

Introduction 

 
This report investigates the detection, locating and sizing of multiple leaks in ducts using 

acoustical means. The work develops and assesses a novel and efficient method for 

investigating leaks in tubular systems. The method involves acquiring response data using 

an acoustic pulse reflectometer and applying appropriate analytical or numerical 

optimisation algorithms. This work builds on research by Sharp [1] who used an acoustic 

pulse reflectometer to investigate single leaks present in the walls of musical wind 

instruments. 

 

Acoustic pulse reflectometry involves measuring the time sequence of reflections produced 

when a sound pulse is injected into a duct of varying cross-sectional area. A leak, or hole, 

in the duct wall presents a significant change in impedance to the probing sound pulse. 

Information about the leak can be gained by applying theoretical equations to the change in 

impedance measured by the acoustic pulse reflectometer.  

 

Originally, acoustic pulse reflectometry was developed as a seismological technique for the 

observation of stratifications in the earth’s crust. It was first used to investigate ducts in the 

medical field in 1970 when it was applied to the measurements of airway dimensions [2-4].  

A decade later, Benade and Smith [5] described an early attempt to measure the input 

impulse response of a musical wind instrument using acoustic pulse reflectometry. This 

research was continued by Smith [6], Watson and Bowsher [7, 8] and Watson [9]. They 

presented bore reconstructions of various brass instruments calculated from their input 

impulse responses. Sharp et al [10] extended the method of pulse reflectometry to enable 

single leaks in ducts to be monitored.  The research described in this thesis develops 

Sharp’s work to allow the inspection of ducts containing more than one leak. Another 
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aspect considered in this research is the inspection of leaks of capillary size, which thus far 

has not been developed.  

 

Acoustic pulse reflectometry has the potential of offering a good alternative to the leak 

detection methods currently used in industry. This is particularly true in cases where the 

radius of the tubular system under investigation is less than the wavelength of the sound 

passing through the tube (i.e. for tubes of, say, less than 10 mm in radius) such that plane 

wave propagation can be assumed. The potential of the method is enhanced by the ability 

to predict the size of the leaks present; the more common methods in use only go as far as 

detecting and locating leaks.  Furthermore, unlike the more common techniques, the 

method presented in this work has been extended to locating and predicting the number 

and sizes of multiple leaks which may be present in a tubular system. The method is also 

able to cope with the detection of very small leaks which is a rare feature in the current 

industrial methods of leak detection. 

 

The other advantages of the method presented in this work are inherent in the fact that it is 

an acoustical method. Acoustical methods in general use digital signal processing and 

computing capabilities to process the data. As a result, they are easily standardised and less 

susceptible to human error than conventional methods. They tend to be non-intrusive as 

they are based on using a recording device to capture information from reflected sound 

signals instead of having to make physical measurements on the tube.  

 

For the purpose of research, the acoustic pulse reflectometer has an advantage in that it can 

be fully constructed in the laboratory at a relatively low cost. The microphones which form 

part of the reflectometer can be connected to a conventional personal computer to enable 

sound signals to be recorded for subsequent analysis. The sound signal produced by the 

reflectometer loudspeaker is also generated by the same computer.  

 19



1.1 History of Leak Investigation Methods 

 

Parker [11] presented an excellent historical overview of the development of leak detection 

methods in gas-filled pipes. He noted that early attempts to develop leak detection methods 

for gas-filled pipes first appeared in the 1930s and were presented in publications by 

Smith, [12]; Gilmore [13] ; Richardson [14] ; Larson  [15]. Further work was published by 

McElwee  [16]. The basis of all these publications was that, if one couples a sensor such as 

a microphone to the gas inside the pipe, leak generated noise is clearly audible, because the 

magnitude of the ambient noise is rendered negligible by high transmission loss through 

the external soil and the pipe wall. All these efforts were confined to a listening or passive 

approach. 

 

The first systematic attempt to develop an improved means of leak detection in gas-filled 

pipes using acoustical methods was initiated in 1950 and continued until 1965. A record of 

progress in developing an operational system is contained in the publications by Reid and 

Hogan [17]. The work done by Hogan was significant as it presented a summary of the 

results of extensive field-testing involving six major gas utilities. He noted that the transfer 

of the technology to the pipeline operator was a major difficulty due to the complexity of 

the system and its operation. This same point was raised by Larson  [15] in efforts to use a 

geophone for leak detection. He stated: “Thus far the best results have been obtained from 

operators who have had some college training along engineering lines.” Although some 

success in leak location was achieved in these studies, analysis of the data from the 

extensive field measurements indicated that the main problem was the unpredictable 

performance of the system, coupled with the inability to predict quantitatively the chance 

of success or failure in a given situation. 
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Kovecevich et al [18] discussed pressurized piping and boilers in utility and industrial 

power plants where acoustic leak detection systems have been in use since the early 1970s. 

These methods detect the continuous sound waves emanating from the turbulence created 

by the escaping gas. 

 

Jolly  [19] reviewed several different acoustic-based leak detection methods for gas-filled 

pipes and found the most promising method to be the low frequency impulse detection 

method. The impulse method uses sensors mounted at the ends of the pipeline. This 

method could capture the transient acoustic event associated with a rapid rupture. But the 

method could not detect small leaks, which grow over several hours. He found that when 

sensors are mounted on the outside of the pipe to detect the noise of a leak, the frequency 

range is typically 5 kHz to 300 kHz.  

 

For the case of water-filled pipes, historically, much acoustical leak detection was carried 

using a crow bar or screw driver held firmly against a pipe to transmit sounds to the 

operator’s ear [20]. There are still practitioners of this method now but today’s pipe 

materials and operating conditions make these older methods much more difficult. Also, 

noise from vehicles or other machinery can be serious distractions to leak detection 

listening. Before 1980, the only methods used for leak detection in the water industry were 

conventional sounding techniques [20].   

 

However, the great cost of losing treated water through leaks, and of repairing pipes due to 

unmonitored cracks, created a need for improved methods of leak detection. An       

example of the concern about leaks in the 1980s is the published results of the survey 

carried out in 70 European Cities [21] by the Standing Committee on Water Distribution of 

the International Water Supply Association (IWSA). The study established an average loss 

in the water supply networks of 15 %. These leaks in pipes caused unnecessary waste of 
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scarce resources and often endangered the environment.  There was a clear understanding 

that improved methods of leak detection were required to reduce leaks. For example the 

American Water Works Association (AWWA) stated that an improvement of leak 

detection was “indispensable” [22], though at that time some successful techniques in use 

today were overlooked. They said of the acoustical correlation analysis that the method 

was found to be accurate within one to two metres, but proved expensive and time 

consuming for commercial application; thus its use is limited to difficult and unusual 

situations [23]. A more positive conclusion from these early records is the decision by the 

Fraunhofer-Institut fur Bauphysik (IBP), at the suggestion of Technische Werke der Stadt 

Stuttgart (TWS), to undertake an improvement of the then known acoustical inspection 

methods [24] with modern sensors and signal processing so that the leak detection can be 

made more effective.  

 

Currently, one of the most practiced acoustical methods for leak detection in water-filled 

pipes is the cross-correlation method [25]. The method typifies the great advances in 

modern leak detection techniques. It is a computer based method (more reliable as it does 

not depend on the judgment of the operator) and provides a non-intrusive means of 

discovering and locating leaks rapidly. With this method, the sensors are attached at two 

points of contact (normally fire hydrants) with the pipe that bracket a suspected leak. The 

signals are transmitted from the sensors to the processing unit wirelessly. The processing 

unit computes the cross-correlation function of the two leak signals to determine the time 

lag between them. It then calculates the location of the leak based on a simple algebraic 

relationship between the time lag, sensor-to-sensor spacing, and sound propagation 

velocity in the pipe. The method consists of leak noise correlators, acoustic sensors such as 

accelerometers and hydrophones, wireless signal transmitters and receivers, and an 

electronic processing unit. 
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 As a result of the earlier efforts discussed above and other initiatives reflected across the 

globe, several methods have been successfully developed and used to investigate leaks in 

tubular systems. The different methods have been developed to suit specific characteristics 

of the system being investigated and the level of information required. The methods can be 

broadly classified into non-acoustical and acoustical methods. The non-acoustical methods 

have developed from the basic leak detection techniques such as immersing a pumped tyre 

in water and observing the presence of bubbles due to the existence of leaks. Some of the 

non-acoustical methods currently in use are the penetrating dye, halogen, helium mass 

spectrometer methods. These methods have found use in detecting leaks in vacuum 

chambers, TV-cathode tubes, pressure vessels, aerosol containers, pumps, refrigeration 

systems, chemical and nuclear plants, beverage cans, electron microscopes etc.  However 

these methods are not applicable in tubular systems where the length of the pipe can be a 

big limitation and acoustical methods tend to be preferred for this very reason. 

  

1.2 Aims and Outline of Thesis 

 

The aim of this research is to acquire acoustical signals from ducts using an acoustic pulse 

reflectometer and to use existing theory to extract information about leaks from the signals. 

The information extracted from the acoustical signals should offer solutions regarding the 

detection of leaks, location of the leaks and prediction of their sizes.  

The specific goals of the research are to: 

• review existing theory relevant to investigating leaks by acoustical means; 

• repeat and evaluate the bore reconstruction methodology proposed by Sharp [1] for 

detecting and locating the position of a single leak in a duct; 

• repeat and evaluate the analytical methods proposed by Sharp [1] for predicting the 

size of a single leak; 
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• extend the analytical methods for predicting the size of a single leak to holes of 

capillary size; 

• use numerical optimisation to locate and size multiple leaks in a duct; 

• use numerical optimisation to predict the number of leaks in a duct. 

 

Chapter 2 deals with the basic duct theory. The chapter gives the definition of acoustic 

impedance and presents various different impedance equations. In particular, equations 

describing the change in impedance at a change in cross-sectional area within an object of 

cylindrical symmetry are considered. The input impedance of both a non-leaking and a 

leaking cylindrical pipe are also presented. 

 

In Chapter 3, the technique of acoustic pulse reflectometry is discussed in detail together 

with the theory describing the acoustic reflections that result when a sound wave 

propagates within a tubular object of varying cross-sectional area. Equations for 

calculating the input impedance from measured acoustic reflections are developed and 

presented.  

 

In Chapter 4, an analytical method for predicting the size of a single leak is discussed. 

Predictions of the sizes of different holes determined from acoustic pulse reflectometry 

measurements of the input impedance of a cylindrical pipe are presented. Finally, it is 

demonstrated that this analytical method cannot be extended to the investigation of 

multiple leaks.  

 

In Chapter 5, the theory and methods of numerical optimisation are presented. The 

methods are discussed under the headings of single variable, two variable and multi 

variable optimisation methods. 
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In Chapter 6, numerical optimisation methods are applied to the problem of investigating a 

single leak in the wall of a cylindrical pipe. Predictions of both the size and position of a 

single leak are presented. A recommendation of which numerical optimisation methods are 

suitable for leak investigation problems is made. 

 

In Chapter 7, the Rosenbrock algorithm, which is a zeroth order numerical optimisation 

method, is described and applied to the case of investigating multiple leaks in a cylindrical 

pipe. The method is first applied used to predict the size of two leaks of known location in 

the wall of the cylindrical pipe. The method is then extended to the prediction of both the 

sizes and the positions of three leaks. Finally, the Rosenbrock algorithm is used to predict 

the number of leaks in the wall of the cylindrical pipe. 

 

The final chapter summarises the findings of this research and presents a series of 

recommendations for further work. 
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Chapter 2 

 

Basic Duct Acoustics 

 

2.1 Introduction 

 

Sound can be defined as a disturbance in pressure that propagates through a compressible 

medium in the form of a longitudinal wave. In free air, sound waves propagate in a 

complex three dimensional manner. In an air-filled duct however, the waves are 

constrained to travel in one direction. These waves will propagate with either planar or 

non-planar wavefronts depending on their wavelength relative to the radius of the duct.  

 

For acoustic waves of low frequency travelling in a cylindrical tube, plane wave 

propagation can be assumed.  At such low frequencies, involving acoustic waves of 

sufficiently large wavelength, higher order modes are evanescent. That is, they decay 

rapidly with distance along the duct and so do not propagate. 

 

The frequency at which each higher order mode converts from non-propagating to 

propagating or vice versa is called the cut-off frequency. The cut-off frequency 

corresponding to the first non-planar mode is 
r
c

c 84.1=ω  for an air-filled cylindrical duct 

of radius r. Expressed in Hertz, this is approximately
r

f c
100

=  . For example, in a 

cylindrical tube of radius r = 5 mm, the first non-planar mode has a cut-off frequency        

fc = 20 kHz. At frequencies lower than fc, higher order modes do not propagate inside      
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the duct. Consequently, waves with frequencies lower than the cut-off frequency can be 

considered to propagate as plane waves. 

 

A mathematical description of the propagation of planar acoustic waves in non-leaking and 

leaking cylindrical ducts is the theme of this chapter. 

 

2.2 Wave Equation in an Air-Filled Duct 

 

The propagation of sound in a gas-filled cylindrical duct is well described by a single 

equation. The so-called wave equation is derived by considering the variation in length, 

pressure and density of an arbitrary section of the gas in the duct caused by the passage of 

a pressure wave.  

 

xδConsider a section of gas which initially has a length . During the passage of the sound 

wave this length changes. For example, assume that the left face of the gas section moves 

under the influence of the sound wave from x to ),( txx ξ+ , while the right face moves 

from xx δ+  to ),( txxxx δξδ +++ , as indicated in Figure 2-1. Its length has increased 

from ( ) ( )txtxxx ,, ξδξδ −++xδ  to .  Therefore, its volume has increased by a factor of: 

 

( ) ( )
⎥⎦
⎤

⎢⎣
⎡ −+

+
x

txtxx
δ

ξδξ ,,1  (2.1)
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x∂
∂

+
ξ1xδHowever, in the limit of small  this is simply  and so the volume of the section of 

gas is seen to have changed to 

 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
x

xS ξδ 1  (2.2)

 

where S is the cross-sectional area of the duct. 

 

 

Figure 2-1: Change in the length of a gas section in a duct as an acoustic wave passes. 

The displacements of the left face and of the right face are not 
 

 

The change in the pressure experienced by the section of the gas is evaluated by 

considering the force applied to it. The gas to the left of the section pushes toward the 

right, exerting a pressure ( )[ ]ttxxpp ,,10 ξ++  on the left face of the section, while the gas 

to the right of the section pushes in the opposite direction exerting a slightly different 

pressure ([ ttxxxxpp ,,10 ) ]δξδ ++++  is the ambient pressure and p, where p0 1 is the 

additional pressure due to the wave. In the small amplitude approximation, the slight 

difference between x and ξ+x is unimportant in evaluating the function. Therefore, the net 
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force, Fx, in the x direction caused by the difference in the pressure across the section is 

given by 

 

( ) ( )[ ]txxptxpSFx ,, 11 δ+−= x
x
pS δ⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

− 1 = . (2.3)

 

Using Newton’s second law of motion, F = ma, where F is the force, m is the mass and a 

is the acceleration term, the force exerted on the section of gas can also be written as:  

 

2

2

0 t
xSFx ∂

∂
=

ξδρ (2.4) 

 

where 0ρ  is the density of the original section. By combining Equations (2.3) and (2.4) the 

force term can be replaced as follows: 

 

 

2

2

0
1

tx
p

∂
∂

=
∂
∂

−
ξρ (2.5) 

 

 

The final relationship required in the derivation of the wave equation arises from the fact 

that heat transfer during sound wave propagation is negligible. Under these adiabatic 

conditions the ideal gas law can be applied which shows that the total pressure p is 

uniquely determined as a function of the density ρ and that the atmospheric pressure 

gradient with no wave propagation is written as ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρd

dp .  
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Using a Taylor-series expansion, the pressure can be written as: 

 

( ) ( ) ρρρρ d
dppp 00 −+≈  (2.6)

 

 

However, since p = p  + p0 1, the second term on the right side of equation (2.6) 

approximates the new pressure p1. Therefore, 

 

( ) 101 ρ
ρ

ρρ
ρ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≈

d
dp

d
dpp  (2.7)

 

As the change in density of the gas section is related to the expansion factor arising from 

the change in length, it can be written as 

 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
=+

x
ξ

ρρρ
1

0
10  

(2.8)

 

x∂
∂ξAssuming that is a small quantity, a binomial expansion can be used to replace 

⎟
⎠
⎞⎜

⎝
⎛

∂
∂+ x
ξ1

1
⎟
⎠
⎞⎜

⎝
⎛

∂
∂− x
ξ1with . Therefore, Equation (2.8) becomes 

 

x∂
∂

−≅
ξρρ 01  (2.9)

 

1ρ can be eliminated to give By substituting (2.9) into (2.7), the density term 
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⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−=
xd

dpp ξ
ρ

ρ01  (2.10)

  

It is now possible to obtain the wave equation directly in terms of pressure by 

differentiating Equation (2.5) with respect to x. 

 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

−=
∂

∂
xtx

p ξρ 2

2

02
1

2

 (2.11)

 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

x
ξ from Equation (2.10) into Equation (2.11) yields the wave equation: Substituting for 

 

2
1

2

22
1

2 1
t
p

cx
p

∂
∂

=
∂

∂ (2.12) 

 

where c is the wave speed and is given by 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

ρd
dpc 2  (2.13)

 

For an ideal gas,   

 

γ

ρ
ρ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

00p
p  (2.14)

 

where γ is the ratio of specific heats. Therefore the wave speed c can be written as 
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0

0

ρ
γ p

c =  (2.15)

 

 

The relationship between the pressure and density variables is shown by the ideal gas law 

to be 

  

M
RTp ρ

=  (2.16)

 

where R = 8.314 J/kg-K is the universal gas constant [26], T is the absolute temperature of 

the gas in degrees Kelvin and M is the average molecular weight of the gas.  

 

Equations (2.15) and (2.16) can be combined to give  

 

M
RTc γ

= (2.17) 

 

For air, M = 0.02895 kg/mol and the ratio of the specific heats γ = 1.4 [26]. Therefore, at 

20°C (equal to 293K),  

 

343
02895.0

293314.84.1
=

××
=c -1 (2.18) m s
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2.3 Characteristic Impedance 

  

2.3.1 Free Field 

 

The characteristic impedance  of a medium is the ratio of sound pressure p to particle 

velocity u in free field (i.e. in a condition of no reflecting waves). This impedance is a 

material constant and is equal to the product of the density ρ of the medium and the speed 

of sound c in that medium. 

cz

 

c
u
pzc ρ==  (2.19)

 

 

2.3.2 Air-Filled Cylindrical Duct 

 

Due to the restrictions imposed by the dimensions of the cylindrical tube on the 

propagating acoustic wave, boundary conditions are introduced and it is convenient to 

introduce the volume velocity, U = Su, where S is the cross-sectional area of the tube and u 

is the particle velocity. The acoustic impedance at any cross-section in the tube is defined 

as the ratio of the pressure and the volume velocity: 

 

U
pZ =  (2.20)

 

Combining equations (2.19) and (2.20), the acoustic impedance at a cross-section of area  

S is given by: 
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S
c

Su
pZ ρ

±==  (2.21)

 

with the positive value applying to waves travelling in the +x direction and the negative 

value applying to waves travelling in the –x direction. The term 
S
cρ is defined as the 

characteristic impedance Zc of the fluid-filled duct (in the current discussion, the fluid is 

air). 

 

2.4 Input Impedance 

 
The input impedance of a duct is defined as the ratio of the pressure and volume velocity at 

the entrance of the duct. 

 

in

in
in U

p
Z =  (2.22)

 

where the volume velocity Uin is simply the particle velocity uin multiplied by the cross-

sectional area Sin at the entrance of the duct. 

 

2.4.1 Input Impedance of a Non-Leaking Cylindrical Tube 

 

A common method for evaluating the input impedance of a cylindrical tube involves first 

calculating the impedance at the end of the tube. By using appropriate formulations the 

impedance at any point along the tube can then be calculated. Figure 2-2 shows a 
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schematic diagram of a tube, indicating both the input impedance Zin and the load 

impedance Zload  at the end of the duct.   

 

 

Figure 2-2: Schematic diagram of a cylindrical duct 
  

Assuming plane wave propagation but including the effect of losses, the input impedance 

of an air-filled cylinder of length l and radius r is given by [26]: 

 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+

+
=

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+

+
=

lk
c

SZ
j

lkj
c

SZ

S
c

lk
c

SZ
j

lkj
c

SZ

ZZ
load

load

load

load

cin

tan1

tan

tan1

tan

ρ

ρρ

ρ

ρ
(2.23)

 

where Z  is the input impedance, Zin load is the load impedance (at the end of the cylinder), 

 is the characteristic impedance, cZ ρ  is the air density, ω is the angular frequency, and 

αjkk −=  is the complex propagation constant, with 

 

c
k ω

=  (2.24)

 

and 
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( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+=

pCrc ρ
κωγ

ρ
ηωα

2
1

2
1  (2.25)

 

γ is the ratio of the principal specific heats of air, Cp is the specific heat of air at constant 

pressure, η is the coefficient of shear viscosity of air, κ is the thermal conductivity of air 

and c is the speed of sound in air. The complex propagation constant by Kinsler [26], 

described in this section, is an approximation of the complex wave number reported by 

Keefe [27] which will be introduced and explained in Section 3.2.4. 

 

Note that Keefe [27] gives a more accurate, frequency dependent formulation of , but 

the deviation from 

cZ

S
cρ  is extremely small and may therefore be neglected without 

introducing significant errors. 

 

For an open-ended cylinder, the load impedance Zload is the radiation impedance Zrad which 

for an unflanged end is given by: 

 

rk
S
cjrk

S
cZ rad

ρρ 6.0
4
1 22 +=  (2.26)

 

Substituting Equation (2.26) into (2.23) gives the input impedance of an open-ended air-

filled cylinder: 

 

( )
( ) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

+−
++

=
lkrkjlkrk

lkrkjrk
S
cZ in tan25.0tan6.01

tan6.025.0
22

22ρ
 (2.27)
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For a cylinder which is closed at the far end, the load impedance Zload = ∞. In a similar 

manner, substituting into Equation (2.23) gives the input impedance of a closed-ended air-

filled cylinder: 

 

lk
S
cjZin cotρ

−=  (2.28)

 

2.4.2 Input Impedance of a Leaking Cylindrical Tube 

 

Figure 2-3 shows a schematic diagram of a straight tube which is open at the far end and 

comprises n leaks and n+1 cylindrical sections. The input impedance of the whole duct,  

Zin(1), is made up of contributions from the impedances of the n+1 cylindrical sections and 

the impedances of the n holes in the duct walls.   

 

To calculate Zin(1), the load impedance, Zload(n+1), of the final cylindrical section must first 

be determined. As this is simply the radiation impedance at the end of the duct [28-30], 

then Zload(n+1) = Z  where Zrad rad is calculated using Equation (2.26). 
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Figure 2-3:   Schematic diagram of cylindrical duct with multiple leaks 
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The next step involves calculating the input impedance, Zin(n+1), of the (n+1)th cylindrical 

section as follows: 

 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+

+
=

+
+

+
+

+

1
)1(

1
)1(

)1(

tan1

tan

n
nload

n
nload

nin

lk
c

SZ
j

lkj
c

SZ

S
cZ

ρ

ρρ
(2.29) 

 

Once zin(n+1) has been calculated, Zload(n) can be calculated as follows:  

 

)()1(

)1()(
)(

nhnin

ninnh
nload ZZ

ZZ
Z

+
=

+

+  (2.30)

 

where  is the impedance of the hole introduced in Section 2.4.3 and discussed in 

greater detail in Section 4.2.2.  In the same manner as was seen in Equation (2.29), the 

input impedance of the n

)(nhZ

th cylindrical section is then calculated from the load impedance 

Zload(n) where: 

 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+

+
=

n
nload

n
nload

nin

lk
c

SZ
j

lkj
c

SZ

S
cZ

tan1

tan

)(

)(

)(

ρ

ρρ  (2.31)

 

and l  is the length of the nth cylindrical section.  n

 

The procedure of calculating the load impedance, hole impedance and input impedance is 

repeated for each subsequent section until the first cylindrical section is reached and Zin(1) 

is found.   
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2.4.3 Input Impedance of a Side Hole 

 

The input impedance of a hole in the wall of a duct can be modelled as the impedance of a 

short capillary tube. Exact expression for the series impedance and shunt admittance per 

unit length of capillary tube were derived by Kirchoff in the 19th century [31]. These 

expressions involve Bessel functions, which makes it difficult to investigate terms such as 

the radius of the capillary tube given the value of its impedance. However,               

Benade [5, 32, 33], Backus [28, 29, 34] and Keefe [27, 35, 36] have all introduced 

approximations which have enabled simplified expressions for the impedance and 

admittance to be derived in which the Bessel functions are dropped. These approximations 

depend on the relative sizes of the wavelength of the acoustic wave propagating in the 

capillary tube and the boundary layer thickness. Two such approximations are discussed in 

detail in Chapter 4 when they are employed in the calculation of the size of a single leak in 

a cylindrical duct from a measurement of the input impedance of the duct.  

 

 

2.5 Conclusion 

 

In this chapter, the theoretical input impedance of both a non-leaking cylindrical tube and a 

leaking cylindrical tube has been discussed. The input impedance for the non-leaking 

cylindrical tube has been shown to depend on the load impedance at the end of the tube. 

For the leaking cylindrical tube, the calculation of the input impedance also depends on the 

individual impedances of the leaks present in the duct.  
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The following chapter looks at an experimental method for measuring both the bore profile 

and the input impedance of a duct. This method is then employed in Chapter 4 to enable 

the detection, location and prediction of the size of a single leak in the wall of a duct. 
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Chapter 3 

 

Acoustic Pulse Reflectometry 

 

The methods for detecting, locating and sizing leaks in a duct that are developed in this 

thesis all rely on first measuring the related properties of input impulse response, bore 

profile and input impedance. Acoustic pulse reflectometry is a technique which enables the 

measurement of the input impulse response of a duct. Application of suitable algorithms to 

this measured input impulse response then enables a bore reconstruction to be calculated 

and the input impedance of the duct to be determined. 

 

In this chapter, the technique of acoustic pulse reflectometry is described and the 

algorithms for calculating the bore profile and input impedance of a duct are explained. In 

addition, examples of input impulse response, bore profile and input impedance 

measurements made using acoustic pulse reflectometry are presented. 

 

3.1 Acoustic Pulse Reflectometry 

 

The technique of acoustic pulse reflectometry involves measuring the time sequence of 

reflections that is produced when a sound pulse is injected into a duct of varying cross-

sectional area. With this information, and knowledge of the input pulse waveform, the 

input impulse response of the duct can be calculated.  Application of a layer-peeling 

algorithm then enables the changes in impedance along the duct, and hence the bore 

profile, to be calculated. 
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3.1.1 Experimental Apparatus 

 

A typical acoustic pulse reflectometry experimental set-up consists of a signal source, 

loudspeaker, source tube, microphone, amplification for both input and output signals and 

couplers for connecting the object under investigation to the source tube (as shown in 

Figure 3-1). 

 

Figure 3-1: Schematic diagram of an acoustic pulse reflectometer 
 

The reflectometer employed in the present study uses a National Instruments NI-6052E 

data acquisition board connected within a PC to generate an electric pulse. This electrical 

signal is amplified and sent to a Fane CD150 compression driver loudspeaker. The acoustic  

pulse that emerges from the loudspeaker is directed down a 6 m long coil of copper tubing 

(referred to as the source tube) of 5 mm internal radius into the object under investigation.  
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The reflections that return from the object are recorded by a Knowles EK3132 microphone 

embedded halfway along the length of the source tube (a distance  

l1 = 3 m from the loudspeaker and a distance l2 = 3 m from the coupling to the object). The 

distance l2 ensures that there is no overlap of the reflections returning from the object with 

the tail of the excitation pulse. The distance l1 ensures there is no overlap of the object 

reflections with further reflections from the loudspeaker. Using a sampling frequency of  

50 kHz, the National Instruments data acquisition board samples the microphone signal 

which is then stored on the PC for subsequent signal processing.  To improve the signal-to-

noise ratio, the measurement procedure is repeated 1000 times and the samples are 

averaged. 

 

3.1.2 Input Impulse Response 

 

In order to determine the input impulse response of an object, it is necessary to remove the 

effects of the input pulse shape from the recorded object reflections. The signal processing 

technique used in this procedure is deconvolution. The input pulse shape is recorded by 

rigidly terminating the source tube with an end cap and repeating the procedure described 

in Section 3.1.1. The object reflections are then deconvolved with the input pulse shape to 

arrive at the input impulse response of the object [1, 37]. 

 

To demonstrate the evaluation of the input impulse response of a test object, Figure 3-2 

shows an input pulse measured using the reflectometer described in Section 3.1.1. 

Meanwhile, Figure 3-3 shows the reflections that return from a stepped tube which 

comprises a cylindrical section of length 0.15 m and radius 5.9 mm and a cylindrical 

section of length 0.15 m and radius 3.85 mm. Figure 3-4 shows the input impulse response 

of the stepped tube, calculated by deconvolving the reflections of Figure 3-3 with the input 

pulse of Figure 3-2. 
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Figure 3-2: Input pulse 
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Figure 3-3: Reflections from stepped tube 
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Figure 3-4: Input impulse response of stepped tube 
 

3.2 Theory of Acoustic Reflection 

 

To be in a position to understand how the bore profile and input impedance of a duct can 

be calculated from its input impulse response, it is first necessary to understand what 

happens to an acoustic pulse when it propagates within a duct of varying cross-sectional 

area.  

3.2.1 Single Reflection from a Single Discontinuity 

 

Figure 3-5: Reflection from a single discontinuity 
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At any change in cross-sectional area in a duct, there is an associated change in the 

acoustic impedance. As a result, when an acoustic pressure pulse encounters an increase or 

decrease in cross-sectional area, there is partial reflection and partial transmission of the 

pulse. 

 

Figure 3-5 shows a cylindrical tube of cross-sectional area S0 discontinuously joined to a 

second cylindrical tube of cross-sectional area S . When an incident pressure wave 1

 

( )kxtjePp −++ = ω
00  (3.1)

 

reaches the boundary between the two cylinders, a reflected wave  

 

( )kxtjePp +−− = ω
00  (3.2)

 

and a transmitted wave 

 

( )kxtjePp −++ = ω
11  (3.3)

 

are generated. In this notation, indicates that the pressure wave propagates in cylinder j 

in the positive/negative x direction.  

±
jp

 

The pressure and velocity must be continuous across the boundary. Therefore, at  

x = 0, 

 

+−+ =+ 100 ppp  (3.4)
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Combining Equation (3.4) and Equation (3.5) gives: 

 

10

10

01

01

0

0

SS
SS

ZZ
ZZ

p
p

cc

cc

+
−

=
+
−

=+

−

 (3.6)

 

 

However, at x = 0, the ratio of the instantaneous pressures of the incident and reflected 

waves is simply the ratio of their pressure amplitudes. Therefore, the reflection coefficient 

r0,1 (the ratio of the pressure amplitude of the reflected wave to that of the incident wave) is 
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In a similar manner, an expression for the transmission coefficient t0,1 (the ratio of the 

pressure amplitude of the transmitted wave to that of the incident wave) can also be found:  
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Examination of Equations (3.7) and (3.8) reveals that the reflection and transmission 

coefficients depend only on the change in cross-sectional area. 
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For a wave travelling from cylinder 1 towards cylinder 0, the reflection and transmission 

coefficients for the boundary can be found by interchanging the subscripts in        

Equations (3.7) and (3.8). 

 

3.2.2 Multiple Reflections from Multiple Discontinuities 

 

An acoustic wave propagating in a duct of varying cross-section will experience partial 

reflection and transmission at each change in cross-sectional area that it encounters. The 

result is that, after only a short time, there will be a complicated jumble of forward and 

backward travelling waves propagating within the duct. In this section, the time history of 

an acoustic pulse incident on a tubular object of varying cross-section is considered.  

 

 

 

Figure 3-6: Cylindrically segmented tubular object 
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Figure 3-7: Schematic diagram of the time history of an acoustic wave propagating within a 
duct of varying cross-sectional area 
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A duct whose cross-sectional area varies with axial distance can be modelled by a series of 

N cylindrical segments, each of length L with corresponding two way travel time T = 2L/c. 

Figure 3-6 shows such a duct terminated at the left end by a semi-infinite cylinder (defined 

as being the 0th segment). 

 

[ ]nTp r
+
,0When an input pressure signal  is incident on the object from the source tube (i.e. 

incident on the boundary between segments 0 and 1), the signal will be partially reflected 

and partially transmitted at each inter-segment boundary. In this notation, [ ]nTp rlj
±

/,  

represents the contribution from the wave propagating in the positive/negative x direction, 

to the total pressure at the left/right end of the jth cylindrical segment at the discrete time 

nT, where .
2
3,1,

2
1,0 etcn =  

 

If it is first assumed that the signal experiences no losses whilst propagating through the 

cylindrical segments, the time history of the acoustic wave as it propagates within the 

object can be displayed schematically (Figure 3-7). The arrows indicate the direction of 

propagation (forwards or backwards) in each segment at different times. The pressures at 

the left and right sides of each segment at different times are also displayed.  

 

Over the next two sections, equations are developed which describe the relationships 

between the pressures at different positions in the duct. 
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3.2.3 Plane Wave Scattering at a Junction between Segments 

 

Figure 3-8 shows an arbitrary junction (between the jth and (j+1)th segments) of the 

tubular object of Figure 3-6.  As was discussed in Section 3.2.1, the pressure and volume  

velocity across the boundary between two cylindrical segments must be continuous. 

Therefore 

 

 

Figure 3-8: The jth and (j+1)th cylindrical segments 
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j
jc S

cZ ρ are the characteristic impedances of jth and (j+1)th and where  

cylindrical segments respectively. 

 

Equations (3.9) and (3.10) can be rearranged to give the following matrix expression which 

relates the pressures on either side of the boundary to the cross-sectional areas of the two 

cylindrical segments. A matrix expression of this type, which relates properties either side 

of a junction, is often referred to as a scattering equation.   
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From Equation 3.7, the reflection coefficient for the junction between the jth and (j+1)th 

cylindrical segments can be written:  

 

1

1
1,

+

+
+ +

−
=

jj

jj
jj SS

SS
r  (3.12)

 

By combining Equations (3.11) and (3.12), the scattering equation can also be expressed in 

terms of the reflection coefficient: 
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3.2.4 Plane Wave Propagation through a Cylindrical Segment  

 

So far it has been assumed that sound propagation is lossless. In fact, viscous losses and 

heat conduction losses are significant when sound waves propagate within ducts of the 

diameters and lengths used in this project.  

 

In order to take into account the effects of such losses, the following matrix expression can 

be used to relate the forward and backward traveling waves (  and [ ]nTp lj
+
+ ,1 [ ]nTp lj

−
+ ,1

ckward trav

) at 

the left side of the (j+1)th cylindrical segment to the forward and ba eling 

waves ( [ ]nTp + [ ]nTp −
rj+ ,1  and rj+ ,1 )  at the right side of the segment. 
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where the term e-ΓL represents the delay of T/2 experienced by an acoustic wave when 

propagating through a segment of length L and also the attenuation experienced by the 

wave. For a cylinder of radius r and length L, an expression for the complex wave number 

Γ is given by Keefe [27]: 

 

( )
pv

iωωα +=Γ  (3.15)
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where ( )ωα  is the frequency dependent attenuation due to boundary layer effects, 

ω  is the angular frequency and is the phase velocity. These parameters can be written 

as: 

pv

 

( ) ( )321 −−− ++= vvv CrBrAr
c
ωωα  (3.16)

 

( )311 −− −+= vv
p

CrAr
cv
ωω  (3.17)

 

rprv
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⎞
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⎝

⎛
=

η
ω , is the ratio of the duct radius to the viscous boundary layer, ρ is the  where 

air density and η is the coefficient of shear viscosity of air. The coefficients A, B and C 

depend on the thermodynamic constants: 
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( )
vD 1−= γ

κ
η pCv = , where  , Cp is the specific heat of air at constant pressure, κ is 

the thermal conductivity of air, γ  is the ratio of the principal specific heats of air,  
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-1273/16.331 τ+=c is the speed of sound in air in m s  and τ  is the air temperature in 

Kelvin. 

 

The complex wave number, Γ , given in Equation (3.15) is related to the complex 

propagation constant, k,  described in Section 2.4.1 by a factor of  -j, that is  k = -j Γ .  It 

should be noted that the expressions for α  in both the complex wave number,        

Equation (3.16), and the propagation constant, Equation (2.25), are the same if the higher 

order terms, , are ignored in the complex wave number. In fact, the expression 

for 

32 −− + vv CrBr

α used by Kinsler, introduced in Section 2.4.1, is an approximation of the expression 

used by Keefe described in this section. For large values of the hole radius, r, the sum of 

the high order terms, , is significantly smaller than the first term enabling the 

higher order terms to be ignored in the analytical calculations for the leak size with no 

significant loss of accuracy. For example a 2mm hole radius results in  values of 

1.68014× 10

32 −− + vv CrBr

1−
vAr

-5 and 1.68014× 10-6 for the frequency points of 200 Hz and 2000 Hz. The 

value of  is 3.9802632 −− + vv CrBr × 10-11 and 3.98026× 10-13 for the frequency points of 200 

Hz and 2000 Hz respectively.  

 

Similarly, the phase velocity approaches the speed of sound for large values of the hole 

radius r. Therefore, in the expression for the propagation constant described in Section 

2.4.1, Equation (2.24), the speed of sound is used as an approximation of the phase 

velocity. Again using the approach described above, the value of  in     

Equation (3.17) is significantly less than unity for large values of r enabling the term to be 

ignored in the analytical calculations for the leak size. Indeed using the same example of a 

2mm hole radius, the value of   is 5.84693

31 −− − vv CrAr

31 −− − vv CrAr × 10-6 and 35.84693× 10-7 for the 
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frequency points of     200 Hz and 2000 Hz. When the term  is significantly less 

than unity, 

31 −− − vv CrAr

cv p

ωω
≈  and hence, , as can be seen from Equation (3.17). cv p ≈

 

3.2.5 Plane Wave Propagation through Multiple Segments 

 

By combining Equations (3.13) and (3.14), a single matrix equation describing plane wave 

propagation from one cylindrical segment to the next can be derived. The equation 

describes the pressure waves on the right side of the jth segment in terms of those on the 

right side of the (j+1)th segment. 
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where θ is the discretised  frequency and  
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For a duct like that of Figure 3-6, which is modeled as N cylindrical segments and is 

coupled at the left end to a semi-infinite tube (the ‘zeroth’ segment), each of the segments 

has a matrix of the same form as Equation (3.22). The forward and backward travelling 

waves at the junction between the semi-infinite tube and the first segment can be expressed 

in terms of those in the final Nth segment through the multiple application of         Equation 

(3.21) 
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In the frequency domain, the ratio of the backward traveling waves and the forward 

travelling waves at the entry of the duct is defined as the reflectance . The 

reflectance of the duct is therefore  

)( θjeIIR
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Providing that the dimensions of the duct (and hence the elements of matrix M) are known, 

the reflectance can be determined from the ratio of the forward and backward travelling 

waves at the right end of the duct. This ratio depends on how the duct is terminated at the 

far end and can be expressed in terms of the load impedance Z  at the end of the duct L
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where Z  is the characteristic impedance of the Nth cylindrical segment. N

 

For example, if the duct terminates in an unflanged open end, the load impedance is  

 

( ) ⎥⎦
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 So, by combining (3.24), (3.25) and (3.26), the reflectance of the duct is  
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The reflectance is simply the frequency domain description of the input impulse response. 

Therefore, by inverse Fourier transforming the reflectance the input impulse response of 

the duct iir[nT] can be obtained. 

 

3.3 Bore Reconstruction – The Inverse Problem 

 

 the duct’s geometry from a 

flectometry measurement of its input impulse response. 

 

3.3.1 Layer-Peeling Algorithm 

 the attenuation experienced by the acoustic waves whilst propagating 

ithin the duct. 

 

In Section 3.2, equations were described that enable the input impulse response of a duct to 

be calculated from its measured geometry. In order to carry out a bore reconstruction, it is 

necessary to solve the inverse problem of calculating

re

 

In 1995, Amir, Rosenhouse and Shimony [38] developed a layer-peeling algorithm which 

calculates the radial dimensions of a duct from its input impulse response. The algorithm 

compensates for

w
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Consider again the duct model of Figure 3-6. An incident wave injected into the duct via 

the ‘zeroth segment’ (the semi-infinite tube) will experience partial reflection and partial 

transmission at each segment boundary within the duct. The wave propagation in the 

zeroth and first segments in such a case is shown in Figure 3-9. 

 

 

 

 

Figure 3-9: Forward and backward travelling waves in a duct 
 

 

When the wave injected into the duct is an acoustic impulse ( ) then the 

reflected wave is the input impulse response (

[ ] [nTnTp r δ=+
,0 ]

[ ] [ ]nTiirnTp r =+
,0 ).   At time t =0 (defined as 

being the instant that the incident wave arrives at the entrance to the duct boundary 

between the zeroth and first segments), there are no backward travelling waves in the first 

cylindrical segment. That is, [ ]nTp l
−
,1 [ ]nTp r

−
,1 and are both zero. Consequently, the 

backward travelling wave in the zeroth segment is simply the reflection of the forward 
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traveling wave in that segment. The reflection coefficient at the boundary between the 

segment 0 and segment 1 is therefore: 

 

]0[
]0[
]0[
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where  and   are the incident and reflected waves and is the input 

impulse response, all at t = 0. 

]0[,0 Tp r
− ]0[,0 Tp r

+ ]0[ Tiir

 

In Equation (3.12), the reflection coefficient for the boundary between two arbitrary 

segments (the jth and the (j+1)th) was expressed in terms of the cross-sectional areas of 

those segments. Rearranging Equation (3.12) therefore allows the cross-sectional area of 

the (j+1)th segment to be expressed in terms of the area of the jth segment and the 

reflection coefficient r : j,j+1
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Therefore, assuming that the cross-sectional area S0 of the zeroth segment (the semi-

infinite cylinder) is known, the area S1 of the first segment can be found from the reflection 

coefficient r0,1 using Equation (3.29). Assuming cylindrical symmetry, the radius of the 

segment can also be determined. 

 

The forward and backward travelling pressure waves [ ]nTp l
+
,1  and at the left side 

of the first segment, can be obtained from the forward and backward waves in the zeroth 

segment by rearranging Equation (3.13), to give: 

[nTp l
−
,1 ]
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Next the pressure waves at the right side of the first segment must be found. To determine 

the forward and backward travelling pressure waves [ ]nTp r
+
,1  and , at the right 

side  

[nTp r
−
,1 ]

[ ]nTp l
−
,1[ ]nTp l

+
,1of the first segment, a delay of T/2 is added to  and subtracted from . In 

addition, a digital filter representing the losses in a cylindrical segment is applied. This 

filter depends on the radius of the segment.  

 

Referring back to Equations (3.14) and (3.15), the continuous frequency domain lossy 

filter for waves propagating through a cylindrical segment is given by 

 

( ) pvljll eeeH /)( ωωαω −−Γ− == (3.31) 

 

The numerical computation of the equivalent digital frequency domain lossy filter is 

detailed in [38, 39]. By inverse Fourier Transforming the discretized lossy filter, the digital 

filter  is found. [nTh j ]

]

 

Moving from the left side to the right side of a cylindrical segment, the forward travelling 

wave is simply passed through the filter [nTp lj
+
, [ ]nTh j . Meanwhile the backward 

traveling wave is passed through the inverse filter of [nTp lj
−
, ] [ ]nTh j . 

[ ] [ ] [nThnTpnTp jljlj ⊗= ++
,, ] (3.32)

 

[ ] [ ] [nThnTpnTp jljlj
1

,,
−−− ⊗= ]  (3.33)
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[ ]nThjwhere the operators ⊗ and  represent convolution and deconvolution, and 1−⊗  is the 

digital lossy filter in the jth segment. 

 

At the boundary between the first and second segments, when t = T/2, there is no backward 

travelling wave in the second segment. Therefore, the reflection coefficient at the junction 

between the first and second cylindrical segments is given by: 

 

]2/[
]2/[
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1
2,1 TP

Tpr +

−

=  (3.34)

 

It should be noted that, when implementing the algorithm in practice, it is more convenient 

and entirely equivalent to subtract a delay of T from [ ]nTp l
−
,1 and leave  unchanged. 

The time origin shift then requires the reflection coefficient r

[nTp l
+
,1 ]

1,2 to be calculated at t = 0 

rather than at t = T/2. 

 

Again, using Equation (3.29), the cross-sectional area S2 can be obtained from the 

previously calculated cross-sectional area S1 and the reflection coefficient r1,2. The layer 

peeling procedure is carried out recursively until the reflection coefficient at each junction 

is determined and the entire area profile of the duct is calculated. 

 

3.3.2 Experimental Results  

 

Figure 3-10 shows a bore reconstruction of the stepped tube described in Section 3.1.2 

(comprising cylindrical sections of radius 5.9 mm and 3.85 mm respectively). The 

reconstruction was calculated by applying the layer peeling algorithm to the measured 
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input impulse response of Figure 3-4. It can be seen that the cylindrical sections of radius 

5.9 mm and 3.85 mm are reconstructed with reasonable accuracy. 
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Figure 3-10: Bore reconstruction of stepped tube 
 

3.4 Input Impedance 

  

It is possible to calculate the complex input impedance of a tubular object from its input 

impulse response [2, 8, 9]. The equations for calculating the input impedance can be 

derived by describing the pressure and velocity at the object’s input in terms of the 

excitation impulse and the input impulse response: 

 

[ ] [ ] [ ]nTiirnTnTp r += δ,0  (3.35)
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[ ] [ ] [ ]nTiirnTnTUZ r −=× δ,00  (3.36)

 

where  is the total pressure at the input to the tubular object at time nT, [nTp r,0 ] [ ]nTU r,0  is 

the volume velocity at the object’s input at time nT and is the input impulse 

response of the object. 

[nTiir ]

 

Equation (3.35) and (3.36) can be written in the frequency domain as 

 

[ ] [ ]θθ jj
r eIIReP += 1,0  (3.37)

 

[ ] [ ]θθ jj
r eIIReUZ −=× 1,00  (3.38)

 

[ ]θj
r eU ,0[ ]θj

r eP ,0 [ ]θjeIIR[ ]nTp r,0where  is the FFT of ,  is the FFT of   and [nTU r,0 ]  is 

the FFT of  [ ]nTiir . 

 

The input impedance of a tubular object is defined as pressure divided by volume velocity. 

Using this definition, Equations (3.37) and (3.38) can be combined to express the input 

impedance in terms of the input impulse response: 
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Using Equation (3.39), the experimental value of input impedance of the stepped tube 

described in Section 3.1.2 was calculated from the input impulse response of Figure 3-4.  

The plot of the input impedance is shown in Figure 3-11 below. 
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Figure 3-11: Magnitude of the input impedance of a stepped tube 
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Chapter 4 

 

Investigating a Single Leak in a Cylindrical Duct using Analytical 

Methods 

 

In this chapter, a method for predicting the radius of a single leak in the side wall of a 

cylindrical object is discussed. This method was proposed by Sharp [1]. The basic 

procedure involves experimentally determining the input impedance of the tube under 

investigation by means of the pulse reflectometry method discussed in Chapter 3. By 

inverting the theoretical expression for the input impedance of a cylindrical tube with a 

side hole presented in Chapter 2, the impedance of the leak in the tube can be calculated 

assuming the geometry of the tube is known. Appropriate theories presented in this chapter 

can then be used to predict the size of the leak in the side wall of the cylindrical tube from 

the calculated impedance of the hole.  

 

Leak radius predictions are presented for holes of various sizes drilled in the side walls of 

two different cylindrical pipes. The first cylindrical pipe, with a slightly thicker wall, had 

holes of larger radius drilled in the side wall. Meanwhile, the second cylindrical pipe had a 

thinner wall enabling smaller holes to be drilled in the side wall. 

 

The method for predicting the size of the leak requires that the position of the leak is 

known. Thus, the chapter begins with a description of the detection and location of a single 

leak in the side wall of a cylindrical pipe using the technique of acoustic pulse 

reflectometry.  
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4.1 Locating the Position of a Leak 

 

Using the technique of pulse reflectometry discussed in Chapter 3, it is possible to detect 

the presence of a leak in cylindrical duct and find its location by examining the resulting 

bore reconstruction.  

 

Being able to use the technique of pulse reflectometry for locating the position of a leak 

arises from the fact that a small leak in the cylindrical tube behaves as a side branch of 

complex impedance. From [30], the side branch is known to cause a reduction in the 

magnitude of the impedance experienced by the pulse travelling in a duct. When the pulse 

encounters this reduction in impedance, it is partially reflected (in a similar manner to the 

partial reflection at a widening of the bore). As a result, when the reflections from a duct 

containing a leak are used to calculate the input impulse response and then fed into the 

layer peeling algorithm, an expansion occurs in the bore reconstruction at the position of 

the leak. 

 

Therefore, when reflections from a pulse travelling within a duct containing a leak in the 

side wall are fed into a reconstruction algorithm, the calculated bore profile should be 

correct up to the position of the leak. Thereafter, there will be an expansion in the bore 

reconstruction whose extent will depend on the size of the leak. 

 

Using acoustic pulse reflectometry, a measurement was made of the input impulse 

response of a straight cylindrical pipe of length 0.508 m and wall thickness 1 mm. The pipe 

had a 1 mm diameter hole drilled at a distance of 0.31 m along its length. Figure 4-1 shows 

the bore reconstruction that results when the layer peeling algorithm is applied to the input 

impulse response measurement.  
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Figure 4-1: Bore reconstruction of a cylindrical pipe with a 1 mm diameter leak 
leak  

 

The first part of the bore reconstruction of Figure 4-1 shows the DC tube – a cylindrical 

tube employed during an acoustic pulse reflectometry measurement for DC offset 

calibration [1]. From 0.51 m, the reconstruction shows the leaking pipe under 

investigation. The radius of this pipe is predicted accurately up to the position of the leak at 

0.82 m on the graph. Thereafter, a spurious expansion in the reconstructed bore profile can 

be clearly seen.  Since, the reconstruction of the leaking cylindrical pipe starts from      

0.51 m, the distance to the position of the leak is simply a subtraction of the start of the 

pipe reconstruction from the distance to the point where the reconstruction deviates from 

the correct profile. In this way the location of the leak using the bore reconstruction is 

found to be approximately 0.31 m from the beginning of the cylindrical pipe. This is 

consistent with the measured location of the leak discussed earlier on.   

 

 68



 

 

 

 

0.6 0.7 0.8 0.9 1
4

5

6

7

8

9

10

11

12

13

Length (m)

Ho
le

 ra
di

us
 (m

m
)

2 mm hole radius 
1.5 mm hole radius
1 mm hole radius
0.5 mm hole radius 

 

Figure 4-2: Bore reconstructions of cylindrical pipe with four different leak sizes 
 

 

 

 

To further study the effect that a leak has on the bore reconstruction, three more holes of 

diameter 2 mm, 3 mm and 4 mm were drilled in the cylindrical pipe. The four holes were 

then sealed. Unsealing each hole one at a time, acoustic pulse reflectomtery measurements 

were made of the cylindrical pipe with a 2 mm diameter leak, with a 3 mm diameter leak  

and with a 4 mm diameter leak. Figure 4-2 shows the resultant bore reconstructions along 

with the reconstruction for the 1mm diameter leak shown previously in Figure 4-1. 
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It can be seen clearly that the lowest rate of expansion in the reconstruction from the 

position of the leak occurs for the pipe containing the 1 mm diameter leak. The greatest 

rate of expansion is observed in the reconstruction of the pipe containing the 4 mm 

diameter leak. It can therefore be concluded that the larger the hole, the greater the rate of  

expansion in the reconstruction. This is due to the fact that there is a greater reduction in 

the impedance magnitude seen by the incoming pulse.  

 

4.2 Input Impedance of a Duct Containing a Single Leak 

 

4.2.1 Experimental Measurements 

 

As discussed in Chapter 3, by applying Equation 3.39 to a reflectometry measurement of 

the input impulse response of a duct, the input impedance can be determined.  

 

In order to verify this approach, experimental input impedance curves were determined for 

the cylindrical pipe with a 1 mm, 2 mm, 3 mm and 4 mm diameter hole from the 

reflectometry measurements discussed in the previous section.  Figure 4-3 shows the 

experimentally determined impedance curve for the pipe with the 1 mm diameter hole 

drilled in the wall.  
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Figure 4-3: Experimental input impedance curve for cylindrical pipe with 1 mm diameter 
leak 
 

 

4.2.2 Theoretical Impedance Curves  

 

A theoretical expression for the complex impedance of a side hole can be derived by 

considering the side hole as a side branch [30]. The full expression involves Bessel 

functions, which makes it difficult to investigate terms such as the radius of the hole given 

the value of its impedance. However, for the situation where the boundary layer thickness 

is much smaller than the hole radius, Sharp [1, 10] used the expression for calculating the 

input impedance of a hole given in Equation (4.1): 

 

 71



( )
24 h

hh
h r

Erl
jkZ

π
ρω

π
ρω +

+=  (4.1)

2

58.0595.1 ⎟
⎠
⎞

⎜
⎝
⎛−=

r
r

E hwhere l  is the depth, r  is the radius and h h is the sum of the inner and 

outer end corrections for a hole set flush with the cylinder wall and k is taken as the real 

part of the complex propagation constant. Hence, the attenuation is dependent on the hole 

radius rh, not the cylinder radius r. 

 

By substituting the theoretical expression for the impedance of a side hole (Equation 4.1) 

into the input impedance equations (Equations (2.29) to (2.32)) presented in Chapter 2, the 

theoretical input impedance of a cylindrical pipe with a single hole drilled in the wall can 

be calculated.  

 

In this way, theoretical input impedance curves were calculated for the cylindrical pipe 

with the four different leak sizes introduced in Section 4.1. The parameters used in the 

model were l1 = 0.31 m, l  = 0.198 m, l2 h = 0.001 m and r = 0.005 m, which match the 

measured parameters of the actual pipe. To represent the four different leak sizes,  was 

set equal to 0.5 mm, 1 mm, 1.5 mm and 2 mm in turn. Figure 4-4 shows the theoretically 

calculated impedance curve for the pipe with the 1 mm diameter hole drilled in the wall. 

hr
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Figure 4-4: Theoretical input impedance curve for cylindrical pipe with 1 mm diameter 
leak 

 

 

4.2.3 Comparison between the Experimental and Theoretical Impedance Curves 

 

In order to establish the suitability of the acoustic pulse reflectometry technique for 

measuring input impedance, the experimental input impedance curves measured in Section 

4.2.1 were compared with the theoretically determined curves of Section 4.2.2. For each 

leak size, a good match was found between the experimental and theoretical curves. Figure 

4-5 shows one such match for the cylindrical pipe with a 1 mm leak in the side wall. The 

graph shows the two data sets of Figure 4-3 and Figure 4-4. It is clear that there is a good 

agreement between the impedance curve measured using the reflectometer and the 

theoretical curve.    
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Figure 4-5: Comparison between the theoretical and experimental input impedance curves 
for the cylindrical pipe with a 1 mm diameter leak 

 

 

4.3 Predicting the Leak Size from Experimental Measurements 

 

4.3.1 Determining the Hole Impedance Experimentally 

A theoretical expression for calculating the impedance of a hole was presented in Section 

4.2.2. An alternative expression for calculating the impedance of a side hole in a duct from 

the duct’s input impedance can be found by inverting the theoretical input impedance 

equations presented in Chapter 2. 
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Figure 4-6: Schematic representation of cylindrical pipe 1 containing a single leak 
 

 

A cylindrical pipe containing multiple leaks was shown in Figure 2-4. As an aid in 

illustrating the derivation of the impedance of a single hole in the wall of a cylindrical 

pipe, the pipe is redrawn in Figure 4-6 containing only one leak. The leaking pipe can be 

thought of as consisting of two non-leaking cylinders of lengths l  and l1 2, one before the 

hole and one after. These are represented in Figure 4-6 as cylindrical section 1 and 

cylindrical section 2. From this model, an expression can be found for the impedance of 

the hole Z  in terms of the input impedance of the leaking pipe Zh in(1).  

 

The load impedance at the end of the first cylindrical section, Zload(1), is made up of 

contributions from the input impedance of the second cylindrical section, Zin(2), and the 

impedance of the hole, Z . As Z and Zh in(2) h form a parallel acoustic circuit, the impedance of 

the hole can be expressed in terms of the impedances Zload(1) and Zin(2): 

 

 75



)1()2(

)1()2(

)2()1(

111

loadin

loadin

inloadh ZZ
ZZ

ZZZ
−

=−=  (4.2)

 

Thus 

 

)1()2(

)2()1(

loadin

inload
h ZZ

ZZ
Z

−
=  (4.3)

 

Equation (2.23) gives the input impedance of a non-leaking cylinder with a load impedance 

at its end. The first cylindrical section of length l1 is such a cylinder, with an input 

impedance  and a load impedance . By rearranging Equation (2.23), an 

expression is obtained for the load impedance  (i.e. the impedance at the end of the 

first cylindrical section) in terms of the input impedance of the leaking pipe, : 
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where k is the complex propagation constant described in Section 2.4.1. 

 

Equation (2.27) gives the input impedance of an open-ended non-leaking cylinder. The 

second cylindrical section of length l2 is such a cylinder, with an input impedance . 

Rewriting Equation (2.27) gives: 
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Substituting Equations (4.4) and (4.5) into Equation (4.3) gives the complex impedance of 

the hole, Zh, in terms of the complex experimental input impedance of the leaking pipe, 

. )1(inZ

 

Assuming that the length and radius of the pipe are known, and the axial position of the 

leak has been established by the method described in Section 4.1, the hole impedance can 

therefore be found from an experimental measurement of the input impedance of the duct. 

 

4.3.2 Calculating Leak Size from Hole Impedance 

 

Once the complex impedance of the side hole, Zh, has been determined from a 

reflectometry measurement of the duct’s input impedance, it is then possible to evaluate 

the radius of the hole. This is achieved by inverting the expression for the complex 

impedance of a side hole given in Equation (4.1).   

 

Expanding Equation 4.1 gives: 
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Considering only the imaginary part of Equation (4.6): 
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Rearranging gives a cubic equation for r : h
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By substituting the imaginary part of the hole impedance (determined experimentally as 

described previously) into Equation (4.8) and solving the cubic expression, a prediction of 

the hole radius is obtained. 

 

4.3.3 Radius Prediction Results for Cylindrical Pipe 1 

 

The method described over the past two sections was applied to the acoustic pulse 

reflectometry input impedance measurements of the cylindrical pipe with 1 mm, 2 mm,     

3 mm and 4 mm diameter leaks. The results are shown in Figure 4-7.  

 

Examination of Figure 4-7 reveals that for the 1 mm, 2 mm, 3 mm and 4 mm diameter 

holes, between 100 Hz and 2500 Hz, the hole radius predictions are generally in good 

agreement with the measured sizes.  The divergences of the predictions at integer multiples 

of approximately 850 Hz are due to the hole being in the vicinity of a pressure node at 

these frequencies. For the 1 mm hole diameter, the predictions become very poor after the 

first divergence (i.e. above 850 Hz). 
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Figure 4-7: Hole size predictions for cylindrical pipe 1 containing 1 mm, 2 mm, 3 mm and 

4 mm diameter leaks 

 

The radius predictions over the frequency ranges 221-606 Hz, 1046-1321 Hz and 1871-

2036 Hz were averaged and their means, variances from means and percentage differences 

tabulated (see Table 4-1). The radius predictions for the radii 2 mm and 1.5 mm were 

found to agree with the physically measured values to within 10% in all the calculated 

frequency ranges. The radius predictions for the 2 mm diameter hole were found to agree 

to within 10% up to the frequency bandwidth of 1046-1321 Hz. The agreement between 

the predicted and measured radii for the 1 mm diameter hole was found to be much worse 

in all the calculated frequency ranges.  These results suggest that the proposed method is 

able to successfully predict the sizes of larger leaks but breaks down when the holes 

become smaller than 1 mm in diameter.  
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Frequency 
range (Hz) 

Measured 
radius (mm) 

Average 
prediction 
(mm) 

Variance Percentage 
difference (%) 

221-606 2.00 1.96 0.04 2 
 1.50 1.56 0.06 4 
 1.00 0.99 0.01 1 
 0.50 0.37 0.13 26 
1046-1321 2.00 1.90 0.1 5 
 1.50 1.40 0.1 6.7 
 1.00 0.93 0.07 7 
 0.50 33.5 33 6600 
1871-2036 2.00 1.92 0.08 4 
 1.50 1.36 0.14 9.3 
 1.00 5.44 4.44 444 
 0.50 11.5 11 2200 

 
Table 4-1: Hole size predictions with associated accuracies for cylindrical pipe 1 

containing 1 mm, 2 mm, 3 mm and 4 mm diameter leaks 

 

 

4.3.4 Radius Prediction Results for Cylindrical Pipe 2 

 

To investigate this hypothesis, a second cylindrical pipe was used. This 0.677 m long pipe 

was made from aluminium and had a thinner wall thickness of 0.2 mm, enabling smaller 

hole sizes to be drilled. The internal radius of the pipe was 7.5 mm so it was necessary to 

use an adapter to connect it to the source tube. The adapter had a radius ra = 5 mm and a 

length la = 0.013 m. Figure 4-8 shows a schematic diagram of the second cylindrical pipe 

with the adapter at the input.  
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Figure 4-8: Schematic representation of cylindrical pipe 2 with a single leak and input 

adapter 

 

 

Two holes, of 0.2 mm and 0.3 mm diameter, were drilled at a distance l1 = 0.3695 m from 

the pipe input. The two holes were sealed then, unsealing each in turn, two acoustic pulse 

reflectometry measurements were made to find the input impulse responses (and 

consequently the input impedances) of the adapter/pipe combination with a 0.2 mm and a 

0.3 mm diameter side hole. Figure 4-9 shows the experimentally measured input 

impedance curve for the adapter/pipe combination with 0.3 mm diameter side hole. 

 

 

 

 

 81



 

 

 

 

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6
x 107

Frequency (Hz)

Im
pe

da
nc

e 
m

ag
ni

tu
de

 (O
hm

s)

 

Figure 4-9: Experimentally measured input impedance for adapter/pipe combination with 

0.3 mm diameter side hole 

 

In order to make radius predictions it is first necessary to determine the input impedance of 

the cylindrical pipe alone (i.e. to remove the effect of the presence of the adapter).  Noting 

that the input impedance of the cylindrical pipe is equal to the load impedance of the 

adapter, in a similar manner to that shown in Equation (4.4) it is possible to express the 

input impedance of the cylindrical pipe in terms of the input impedance of the adapter/pipe 

combination: 
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Using Equation (4.9), the input impedances of the second cylindrical pipe with side holes 

of 0.2 mm and 0.3 mm diameter were determined from the experimental measurements of 

the adapter/pipe combinations. The procedures outlined in Sections 4.3.1 and 4.3.2 were 

then applied to these input impedances to give predictions of the radii of the two holes. The 

results can be seen in Figure 4-10. 
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Figure 4-10: Hole size predictions for cylindrical pipe 2 containing 0.2 mm and 0.3 mm 

diameter leaks 

 

Examination of Figure 4-10 shows that there is a breakdown in the radius predictions for 

the 0.2 mm and 0.3 mm diameter holes. This further confirms the trend that was observed 
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in Figure 4-7 and Table 4-1 that the method gives poor predictions of the sizes of smaller 

holes.  

 

4.4 Extending Theory to Small Radius Holes 

 

The theory on which the hole size prediction method described in Section 4.3 was based 

assumed that the boundary layer thickness was much smaller than the hole under 

investigation. For smaller holes, this assumption becomes increasingly invalid. In this 

section, an adaptation of the theory is presented in which it is assumed that the boundary 

layer thickness is comparable to the size of the hole under test. Using this adapted theory, 

the hole size prediction method is again tested on smaller radius holes and the results are 

presented. 

 

4.4.1 Hole Impedance Theory for Small Holes 

 

In a paper of 1975, Backus [34] took the full expression for the complex impedance of a 

side hole in a cylindrical pipe and, by assuming that the boundary layer thickness was 

comparable to the hole radius, produced a simplified equation for smaller holes. In this 

simplified expression, the Bessel functions of the full expression are approximated by a 

truncated power series.  

 

Backus developed his theory by expressing the input impedance of the hole as:  

 

)sinh( hch lZZ Γ=  (4.11)
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where is the characteristic impedance, cZ Γ is the propagation constant and is the length 

of the hole.  

hl

 

For a sufficiently short hole, the product of the propagation constant and the hole length is 

much less than unity and the hyperbolic sine may be eliminated. In such cases, Backus 

gave the expression for the hole impedance as: 

 

hsh lZZ ×=  (4.11)

 

where  is the series impedance. Backus provided simplified equations for calculating the 

series impedance which eliminated the use of Bessel functions. The simplified expression 

for calculating  was given as:  
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By substituting Equation (4.12) into Equation (4.11), the hole impedance can be calculated 

as follows: 
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4.4.2 Radius Prediction Results for Cylindrical Pipe 1 

 

In order to investigate the effectiveness of the adapted small radius theory, the 

methodology outlined in Section 4.3.1 was again applied to the experimental 

measurements of the input impedance of the first cylindrical pipe with 1 mm, 2 mm, 3 mm 

and 4 mm diameter leaks. In this way, the impedances of the four different side holes were  

established. However, rather than applying Equation (4.8) to obtain predictions of the hole 

radii, the following rearranged version of Equation (4.11) was used:  
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Figure 4-11: Hole size predictions for cylindrical pipe 1 containing 1 mm, 2 mm, 3 mm 

and 4 mm diameter leaks using the adapted small radius theory 
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Figure 4-11 compares the predictions of the hole radii with their actual values. It is clear 

that for the 1 mm diameter hole, the predicted value for the radius is generally in good 

agreement with the actual value over all the frequencies tested. For the 2 mm, 3 mm and    

4 mm hole diameters, however, the predictions become steadily worse. 

 

The radius predictions over the frequency ranges 221-606 Hz, 1046-1321 Hz and 1871-

2036 Hz were averaged and their means, variances from means and percentage differences 

tabulated (see Table 4-2). The radius predictions for the 1 mm diameter hole were found to 

agree with the physically measured value to within 10% for the frequency ranges of 1046-

1321 Hz and 1871-2036 Hz. Over the frequency range of 221-606 Hz, the predictions for 

the 1 mm radius hole agreed with the physical measurement to within 15%. The radius 

predictions for the 2 mm, 3 mm and 4 mm radius holes were generally very poor. These 

results suggest that, with the adapted “small radius” theory incorporated, the hole size 

prediction method is able to successfully predict the sizes of smaller leaks but breaks down 

when the holes become larger than 1 mm in diameter.  

 

Frequency 
range 

Measured 
radius (mm) 

Average 
prediction 

Variance Percentage 
difference (%) 

221-606 2.00 3.51 1.51 76 
 1.50 2.70 1.20 180 
 1.00 1.44 0.44 44.00 
 0.50 0.43 0. 07 14.00 
1046-1321 2.00 3.46 1.46 73 
 1.50 2.38 0.88 59 
 1.00 1.33 0.33 33 
 0.50 0.48 0.02 3.27 
1871-2036 2.00 3.09 1.09 55 
 1.50 1.81 0.31 21 
 1.00 7.37 6.37 637 
 0.50 0.54 0.04 8 

Table 4-2: Hole size predictions with associated accuracies for cylindrical pipe 1 

containing 1 mm, 2 mm, 3 mm and 4 mm diameter leaks using the adapted small radius 

theory 
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4.4.3 Radius Prediction Results for Cylindrical Pipe 2 

 

To confirm the effectiveness of the adapted “small radius” theory in predicting the sizes of 

smaller holes, the method was applied to the input impedance measurements of cylindrical 

pipe 2 with 0.2 mm and 0.3 mm diameter leaks that were determined in Section 4.3.4 (after 

removing the effects of the adapter).  

 

Figure 4-12 compares the predictions of the hole radii with their actual values. It is clear 

that the radius of the 0.2 mm diameter leak has generally been predicted well over the 

entire plotted frequency range. The radius of the 0.3 mm diameter leak has been well 

predicted over most of the frequency range with a reduction in the accuracy of the 

predictions between 500 Hz and 1000 Hz. 
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Figure 4-12: Hole size predictions for cylindrical pipe 2 containing 0.2 mm and 0.3 mm 

diameter leaks using the adapted small radius theory 
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The radius predictions over the frequency ranges 221-386 Hz, 1211-1321 Hz and 1871-

1981 Hz were averaged and their means, variances from means and percentage differences 

tabulated (see Table 4-4). The radius predictions for both holes were found to agree with 

the physically measured values to within 10% over the three frequency ranges calculated.  

These results confirm that when the adapted “small radius” theory is incorporated into the 

methodology of Section 4.3.1, the sizes of smaller leaks can be successfully predicted.  

 

Variance (mm) Percentage 
difference % 

Frequency 
range (Hz) 

Measured 
radius (mm) 

Average 
prediction 
(mm) 

221-386 0.15 0.14 0.01 6.7 
 0.10 0.11 0.01 10 
1211-1321 0.15 0.14 0.01 6.7 
 0.10 0.11 0.01 10 
1871-1981 0.15 0.14 0.01 6.7 
 0.10 0.11 0.01 10 

Table 4-3: Hole size predictions with associated accuracies for cylindrical pipe 2 

containing 0.2 mm and 0.3 mm diameter leaks using the adapted small radius theory 

 

4.5 Extending Theory to multiple leaks 

 

The analytical methods described in this chapter cannot be easily extended to the case of 

investigating multiple leaks. This is due to an increased number of unknown variables 

resulting in the need for complex mathematical formulations to find the solution. The case 

of extending to multiple leaks can be illustrated by applying the procedure described in 

Section 4.3 to Figure 4-13, which shows a cylindrical pipe with two leaks in the side wall. 

 

It is possible to calculate the load impedance, Zload(3), from the expression for the radiation 

impedance given by Equation (2.26). From this the value of Zload(3), the input impedance,  

Zin(3), of the third cylindrical duct  can be calculated using Equation (2.23). Meanwhile, the 

input impedance, Zin(1), of the first cylindrical section is known as it is equal to the 

measured experimental input impedance of the cylindrical pipe. Using this value of Zin(1), 

the load impedance, Zload(1), can be calculated from the inversion of the theoretical input 
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impedance equation given by Equation (4.4). However, despite having calculated Zload(3) , 

Z , Z   and Zin(3) in(1) load(1), it is still not possible to calculate the hole impedances, Zh(1)  and 

Z  as the values of  Z  and Zh(2), load(2) in(2) remain unknown. It is worth noting that  the number 

of unknown hole impedances will increase with the number of leaks present in the side 

wall of the cylindrical pipe. This makes the sizing of multiple leaks using analytical 

equations a non trivial problem. 
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Figure 4-13: Schematic representation of a cylindrical pipe with two leaks 
 
 
 
 

4.6  Concluding Remarks 

 

It has been demonstrated in this chapter that by modelling a leak in a cylindrical pipe as a 

side branch, and providing the appropriate theoretical approximations are made, analytical 

methods can be used to predict the size of a single hole in the side of a pipe. However, 

extending this analytical approach to multiple leaks is non–trivial as the resulting 

expressions tend to have too many unknown parameters.  
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The remainder of this thesis concentrates on using numerical optimisation techniques to 

investigate cases where more than one leak is present in the side wall of a cylindrical pipe.  

Zload(3) 
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Chapter 5 

 

Optimisation Theory 

 

A major limitation was discovered in Chapter 4 when applying an analytical approach to 

the problem of leak detection as discussed in Section 4.5. The limitation was that extending 

the analytical methods to the investigation of more than one leak proved impossible, with 

the expression becoming extremely complicated.  

 

For this reason, it was decided to explore the potential of a numerical optimisation 

approach in the investigation of both single and multiple leaks in ducts. In this chapter, the 

theory and algorithms underpinning various numerical optimisation methods are described.   

 

Numerical optimisation involves finding the optimal solution to a function which is 

dependent on one or more variables. The function being optimised is in many cases a 

theoretical model developed after studying both the problem and solution being sought. 

Finding the solution to the function therefore leads to the solution of the physical problem 

that is represented by the function. The methodology of finding the optimal solution of the 

function is the minimisation or maximisation of a related “objective” function.  It has been 

found that most real world problems are solved by minimisation of the objective function. 

This is indeed the case for the input impedance equations describing a leaky duct. 

However, it is important to note that there is no loss of generality in describing a function 

just on the basis of minimisation. The maximisation solution if required can simply be 

found by inversing the sign of the minimisation expression.   
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In Chapters 6 and 7, the application of single variable, two variable and multiple variable 

optimisation methods to the problem of detecting, locating and finding the size of one or 

more leaks in a cylindrical pipe will be discussed. To begin with though, it is necessary to 

understand how the various optimisation methods work. In this chapter, the different 

optimisation methods are described and explained.  

 

5.1 Definition of Numerical Optimisation 

 

Numerical optimisation is a type of mathematical problem where it is required to minimize 

or maximise a non-linear function f(x) on an n-vector with variables x defined in a closed 

connected set X having a set of non-linear or linear constraints [40]. Hence a typical 

numerical optimisation problem is usually formulated as follows: 

 

RXx ⊂∈Minimise f(x) under the conditions 0)( ≤xgi and for i = 1,2,3…..,m, where 

 are the constraints, R is the set of real numbers and m the number of iterations in 

each search direction. 

)(xgi

 

It is common to replace the constraints by simple boundaries in which case the 

numerical optimisation is referred to as unconstrained optimisation. When conditions are 

imposed, the specific name of constrained optimisation is used. All the optimisation 

methods considered in this work employ unconstrained optimisation. The common feature 

of constrained and unconstrained optimisation is that they are both based on iterative 

methods. 

)(xgi

 

An iterative method in the context of numerical optimisation is defined as a dynamic 

process that generates a sequence of approximations converging to the exact solution. At 
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each step of the iteration, an improved approximation is obtained from the previous one. 

The accuracy of the solution depends on the number of iterations performed. Most iterative 

methods retain the coefficients matrix in its original form throughout the process and have 

the advantage of requiring minimal memory. 

 

5.1.1 Comparison of Optimisation and Analytical Methods 

 

By definition, optimisation can be used to solve any function representing a modelled 

problem as long as the function has been correctly described mathematically. By adjusting 

the unknown function parameters in an iterative process, the optimum solution of the 

function is eventually found. As the function has to be calculated over and over again at 

each iteration stage, optimisation solutions are computer intensive. However, with the 

advent of faster computer processing powers this is becoming less of a limitation.  

 

The main limitation of optimisation methods is that there are several things which can go 

wrong during the process of optimisation, even if a function is properly described 

mathematically. Errors can arise due to the problem of local minima, parameter values that 

are out of reasonable limits, lack of convergence of the function and unnecessarily long 

computations due to wrong choice of the sensitivity levels. Most of these can be overcome 

by carefully testing the function and offering the optimisation added information such as 

simple bounds of parameters. However, this is an additional task which is not encountered 

in analytical solutions. 

 

On the contrary no iteration is required in an analytical method for finding a solution to a 

problem. Analytical methods therefore tend to be less computer intensive and are generally 

more efficient mathematically as they require less calculations of the function. Once a 

solution is feasible from the analytical function, its application is guaranteed. This is not 
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the case with optimisation solutions where added information such as simple parameter 

bounds may be required to offer guidance to the optimisation routine.  

 

The greatest limitation of analytical methods, as discovered in Chapter 4, is that a solution 

is not always available. This is as a result of too many unknown parameters or the 

difficulty of finding a mathematical expression if the problem is too complex.  

 

5.1.2 Summary of Numerical Optimisation Terms Used  

 

Several commonly used terms in numerical optimisation are employed in this thesis. 

Detailed definitions of the terms are given throughout this chapter. However for clarity, a 

summary of the definitions is given here. 

 

(1) Target function; this is a function with known values, often determined 

experimentally. The known values are used as a guide to the optimisation. Details of how 

this is done are discussed in the sections on individual optimisation methods (Sections 5.2, 

5.3 and 5.4).  

 

(2) The function being optimised is a theoretical model with similar characteristics or 

variable types as the target function. Some or all of the variables of this function are 

adjusted during optimisation to find a match with specified values of the target function. 

 

(3) Objective function f or f(x); this is a combination of the target function and the 

function being optimised, designed to yield a minimum value representing the optimal 

function solution. 
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(4) Local minimum k; this is the minimum value of the function within a certain bound 

which is a subset of the possible function parameter values. Usually there are several local 

minima of a function during optimisation. A more detailed definition of local minimum is 

given in the discussions on the individual optimisation methods. 

 

(5) Global minimum k ; this is the actual minimum value of the function f. It can also 

be referred to as the smallest of all the local minima.  

 

(6) Local minimiser; this is the line or position vector on which function f is dependent. 

Minimisation of this line, leads to a subsequent reduction in the value of function f. 

 

(7) Global minimiser; this is the line or position vector containing the global minimum 

of function f.  

 

5.2 Optimisation of a One Variable Function 

 

Consider the case where the function f has a single variable x. Optimisation enables the 

value or values of x (for ℜ∈x ) for which f is a minimum to be found. In most cases the 

problem may actually only require values which satisfy simple bounds, such that 

 

hx ≥ gx ≤or  (5.1)

 

All values of x which do not satisfy the condition specified in Equation 5.1 are rejected as 

they are values known to be beyond the limits of the required solution. The requirement 

specified in Equation (5.1) can also be expressed as 
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or   ],(),,[ gxhx −∞∈∞∈ ],[ ghx ∈ (5.2)

 

In optimisation terms, when finding the minimum of a function with one variable, care 

must be taken to ensure that the minimum value found does not belong to a dip in the 

function curve such that another lower dip lies elsewhere in the curve. In fact the minimum 

value of the function found must represent the lowest dip in the curve of the function. This 

value is called the global minimum, k , of function f and is expressed in mathematical 

terms as a value in a closed interval ℜ  of a function domain, with the global 

minimum ℜ∈xℜ∈k  being present if )()( kfxf ≥ for all . The point k  is called a global 

minimiser for onℜ . f

 

The several minimum values of the function found during the process of optimisation 

resulting from the existing dips in the function curve are called local minimum function 

values in contrast to the global minimum value. Therefore, a function with one variable has 

a local minimum on a closed intervalℜ  in its domain, at ℜ∈k 0>δ, if there is some  

such that whenever ℜ∈k)()( kfxf ≥ δ<k−x and . The point  is called a local 

minimiser for onℜ . The meaning of this mathematical expression is that  

for all x sufficiently close to k. 

k

f )()( kfxf ≥

 

The other way of defining local minimisers is in terms of calculus notation.  This is 

because differentiation of the function f can be used to find out if the function is being 

optimised near to the local minimum value or away from the local minimum value. 

Differentiating a function can also be used to indicate if the function local minimum has 

been calculated. A local function minimum occurs when the derivative of function f is 

equal to zero, , which in differentiation terms indicates that the slope of the 

function at that point is horizontal. Since a function derivative of zero also occurs at the 

0)( =′ kf
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maximum function value, further tests are carried out to confirm that the function value is a 

local minimum. This can be done by considering the value of    near its root as x is 

increased. If   changes from negative to positive then the function value at 

)(kf ′

)(kf ′ 0)( =′ kf  

is a local minimum. Alternatively, if the second derivative of is greater than 

zero, , then the function value is a local minimum. 

)(kf

0)( >′′ kf

 

The procedure for determining the function local minimum using the function derivatives 

can be written as follows: 

 

 (a) If for x near k (excluding x = k), then: 0)( ≠′ xf

)(xf ′(i) f has a local minimum at k if changes sign from negative to positive 

as x increases through k; 

 

)(xf ′(ii) f has a local maximum at k if changes sign from positive to 

 negative as x increases through k; 

 

)(xf ′(iii) f has a point of inflection at k if does not change sign as x 

increases through  k. 

 

(b) If  then: 0)('' ≠kf

(i) f has a local minimum at k if ; 0)('' >kf

(ii) f has a local maximum at k if ; 0)('' <kf

0)( ≠′′′ kf then k is a point of inflection.  If but 0)('' =kf

 

To find the minimum function value involves finding the local minimum function values 

from which it is possible to determine the global minimum function value. 
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5.3 Methods for Optimising One Variable Functions 

 

5.3.1 Newton-Raphson Method  

 

The Newton-Raphson method has previously been used to successfully find the local 

minimiser for a function with one variable [41-44]. Optimisation using the Newton-

Raphson method involves finding the function root at  using Equation (5.3). 0)(' =xf

 

)(''
)('1

r

r
rr

xf
xfxx −=+  (5.3)

 

where  is the minimiser being incremented at the current position of the function,  is 

the incremented position, is the first derivative of the function at the current 

position and  is the second derivative of the function at the current position. 

rx 1+rx

)(' rxf

)('' rxf

 

The process of optimisation starts by specifying a current position for the minimiser, . 

The next position of the minimiser is calculated by substituting the current position into 

Equation (5.3). The iterative process is repeated until the minimum function value is 

calculated. 

rx

    

As discussed previously, a test is built into the method to determine whether the 

optimisation is iterating towards a local minimum or towards some other type of stationary 

point. To approach a local minimum at each iteration step of , either and 

 or and should hold. These two conditions can be combined 

into a single test condition as follows: 

0)(' >rxf)(xf

0)(' <rxfrr xx <+1 rr xx >+1
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0)(')( 1 <−+ rrr xfxx  (5.4)

 

Therefore, Equation (5.3) can be rewritten to incorporate the single test condition as 

follows: 

 

)(''
))('()(')(

2
1

r

r
rrr

xf
xfxfxx =−+  (5.5)

 

Examination of Equation (5.5) shows that a division by would bring the equation 

back to Equation (5.3). Therefore Equation (5.3) and (5.5) are proportionate and can work 

in a similar way during the optimisation though Equation (5.5) gives an added advantage 

of incorporating a test condition in each iteration step. 

)(' rxf

 

5.3.2 Interval Reduction Method 

 

The Interval Reduction method uses function values to carry out the iterations with the aim 

of progressively reducing the interval between the function values during the process of 

optimisation [45]. The reduction of the interval between the function values at each step of 

the optimisation then leads to finding the function minimum. Thus, contrary to the 

Newton-Raphson method, in the Interval Reduction method it is assumed that nothing is 

known about the derivatives of .  f

 

One disadvantage of the Interval Reduction method is that it is possible to have several 

local minimum values of the function in an interval such that the reduction process fails to 

pick out all the function minimum values in the current interval. This happens because the 

method reduces the interval between two function values without examining all the 
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possible function values in that interval. To overcome this limitation it is necessary to 

provide a check to determine that there is only one local minimum in the interval where the 

reduction process is happening. The condition of a function variable having only one 

minimum value in a given interval is known as unimodality.   

 

5.3.3 Grid Search Method 

 

The Grid Search method is a variation of the Interval Reduction method which works by 

defining extra interior points within the interval that is being reduced. For example, 

choosing three interior points in an interval creates four subdivisions in the interval, any of 

which can contain the minimum value of the function. The method then provides a check 

to determine which of the subdivisions contains the local minimum and should be selected 

for use in the next interval reduction phase.  

 

One common check that is used to select which of the subdivisions to use in the next 

iteration stage is to compare the function values on the current interior points and boundary 

points. Suppose the interval is (xo,x ) and the points of subdivision are x , x4 1 2 and x3, where 

x < x < x < x < x0 1 2 3 4 and x - x = x  – x = x  – x = x - x1 0 2 1 3 2 4 3.  Assuming unimodality, only the 

following possibilities can arise: 

)()()( 321 xfxfxf <≤ , in which case the minimiser lies in ; ),( 20 xx

)()()( 321 xfxfxf <> , in which case the minimiser lies in ; ),( 31 xx

)()()( 321 xfxfxf ≥> , in which case the minimiser lies in ; ),( 42 xx

Thus we should take as the next interval the subinterval - either ,  or 

 - that has the lowest calculated value of f at the midpoint.   

),( 20 xx ),( 31 xx

),( 42 xx
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To obtain a minimum to n decimal places, the iteration is stopped after an interval of 

length less than or equal to  is obtained which contains the local minimum. The 

midpoint of that interval then gives the local minimum with an error bound of , 

i.e. it gives the local minimum to n decimal places. Since each iteration halves the interval 

length, an interval (a,b) is reduced to a length of at most  when k is the smallest 

integer that satisfies  

n−10

)1(105 +−× n

n−10

 

5.3.4 Golden Section Search Method 

 

An improvement to the Grid Search method can be made by relaxing the rule that the 

subdivisions within the interval being reduced should be equal. The Golden Section Search 

method, therefore, works by relaxing the requirement for equal subdivisions and uses only 

two interior points and one new function evaluation for each iteration [44, 46]. The 

condition of unimodality is still assumed for the Golden Section Search method. 

 

The process of finding the minimum function value starts by calculating the function 

values of the four initial points chosen, , where and  are the boundary 

points and and are the two interior points. The condition of the Golden Section 

Search method is that the distance between and  and and should be equal.   

),,,( 3210 xxxx 0x 3x

1x 2x

1x 2x0x 3x
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Figure 5-1: Subdivisions using the Golden Section Search method 
 

During iteration the current length is denoted by Li, and its end points by  and   such 

that L

0x 3x

i = - . The points of subdivision,  and , are such that the subintervals 

and are of equal length, but not the same length as . This makes it 

possible to choose the interval length for the next iteration, L

1x 2x3x 0x

),( 21 xx),( 10 xx ),( 32 xx

i+1 to be equal to both 

and02 xx − 13 xx − . The function evaluations can then be reduced by choosing the positions 

of 1x  and  so that they are points of subdivision, not just of the current iteration but 

potentially the next iteration. Therefore, if the next interval is , then 

2x

1x),( 20 xx  should be 

the next subdivision of it nearer ; while if the next interval is then 2x 2x),( 31 xx  should be 

the next subdivision of it nearer 1x  Examination of Figure 5-1 shows that if the . 
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subdivision  is chosen, the length of the interval in the iteration L),( 20 xx i+2 is equal 

to . Meanwhile, if the next subdivision chosen is , L01 xx − ),( 31 xx 23 xx − equals .   i+2

The logic of choosing intervals as described above makes it possible to calculate a fraction 

σ  so that L  is written as: i+1

 

L = iLσ  (5.6)i+1

 

where 0<σ<1. Therefore L  can be written as:  i+2

 

L =  iL2σ (5.7)i+2

 

By examination of Figure 5-1, L  can be expressed as: i

 

L  = L + L (5.8)i i+1 i+2

 

where Li+1  is equal to or 02 xx − 13 xx −  and L   is equal to  or .   01 xx − 23 xx −i+2

Substituting Equations (5.6) and (5.7) into Equation (5.8) leads to: 

 

iii LLL 2σσ +=  (5.9)

 

From Equation (5.9) a quadratic equation can be written as shown in Equation (5.10). 

 

(5.10)012 =−+ σσ  
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( )51
2
1

−− ( )51
2
1

+−The roots of Equation (5.10) are   and . Thus, since 0<σ<1, we 

have ( )51
2
1

+−σ  =  = 0.618034. 

 

Therefore, given the length of the initial interval, the length of all subsequent intervals and 

the positions of subdivisions can be determined. If the local minimiser lies in the interval 

at a particular stage, then the points of subdivision 1x),( 30 xx  and  are obtained as 

follows: = = 

2x

13 xx − 02 xx − )( 03 xx −σ . 

 

5.4 Optimisation of a Two Variable Function 

 

In this section, optimisation methods for functions involving two variables are developed 

using many of the ideas used in the optimisation of functions with one variable. Detailed 

descriptions of the numerical optimisation methods involving two variables are given by 

[46]. In the same way that the optimisation of a function with one variable can be 

represented through a two dimensional plot, two variable optimisation methods are 

represented using three dimensional plots. For example, Figure 5-2 shows the three-

dimensional plot of a smooth two variable function, 

. When a two variable function is depicted in a 

three dimensional plot, it is possible to draw key information about the behaviour of the 

function during optimisation.   

1
2
221

2
121 10001000),( xxxxxxxfz −+−==
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A two variable function can also be represented in a two dimensional form as a contour 

plot. Figure 5-3 shows a contour plot of the function     

, represented three dimensionally in         

Figure 5-2.  

2
2
221

2
121 10001000),( xxxxxxxfz −+−==
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Figure 5-2: Three dimensional plot of a two variable function 
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Figure 5-3: Contour plot of two variable function 
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In Figure 5-3, the x  and x1 2 axes show the possible values that the function variables can 

have during the optimisation. The grey shading represents the z values which are the 

possible function values during optimisation.  

 

The basic process of optimising a two variable function involves finding the function 

minimum in terms of both x  and x1 2 at each optimisation step. After initiating the 

optimisation with values of x  and x1 2, the next step is to find a minimum value along one 

axis. If a minimum value of the function is found, the optimisation using that variable is 

stopped. The next step is to find the minimum function value using the other variable. 

Once the minimum function value is found using the second variable, the optimisation is 

stopped again. The process is then repeated starting with the first variable. This 

optimisation procedure can be described in terms of perpendicular steps as shown in   

Figure 5-4.  The details of various different optimisation methods will be discussed in the 

following sections, which include an explanation of how the variable values are retained or 

discarded at each optimisation stage and a discussion of the various techniques for 

determining the step sizes and the direction of the optimisation. 

 

Figure 5-4: Perpendicular steps during optimisation to find the function minimum 
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Optimising in each of the step directions shown in Figure 5-4 is very similar to the 

optimisation of a one variable function. As in the one dimensional case, local minima can 

occur at boundary points or interior points ofℜ . In one dimension, the points where the 

tangent to a graph is horizontal are called stationary points. Similarly, in two dimensions, a 

stationary point of a smooth function  is a point where the tangent plane to the 

graph of f is horizontal. Furthermore, in one dimension, a point k is a stationary point of a 

smooth function f(x) if = 0. There is a similar equivalence in two dimensions, 

namely that a point  is a stationary point of a smooth function  if 

,( 21 xxf )

)(' kf

),( 21 kk ),( 21 xxf

( ) 0, 21
1

=
∂
∂ kk
x
f ( ) 0, 21

2

=
∂
∂ kk
x
f and . (5.11)

 

By extending the definition of a local minimum and global minimum given in Section 5.2 

to the two dimensional case, it can be stated that a function of two variables, on some 

region , has a local minimum  at ),( 21 kkf ℜ∈),( 21 kkℜ  if for 

all  sufficiently close to . The point  is called a local minimiser 

for onℜ . Similarly, the function has a global minimum on a closed interval 

),(),( 2121 kkfxxf ≥

ℜ∈),( 21 xx ),( 21 kk ),( 21 kk

ℜf  in its 

domain, at ( ) ℜ∈21 ,kk , if ),(),( 2121 kkfxxf ≥ for all . The point ℜ∈),( 21 xx ),( 21 kk  is 

called a global minimiser for onℜ . f

 

For a two variable function, planes cutting through the three dimensional space of the 

function, either along the variable x  or x1 2, are called the section functions of f. They are 

functions of one variable, obtained from f by fixing the value of x  or x1 2 while varying the 

other parameter.  
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The lines of intersection between the section functions and the shape of the function f 

represent possible lines of optimisation where a minimum can be sought, such that the 

local minima at the interior points of a smooth function occur where the tangent 

plane to the graph of f is horizontal. The tangent plane by definition is a plane in 

space that just touches the graph describing the two variable function f. 

),( 21 xxf

),,( 21 zxx

 

One dimensional graphs of the section functions can be obtained by slicing through the 

surface with vertical planes. The section function f),( 21 xxfz = 1 is calculated by slicing a 

vertical plane defined by giving x2 a constant value while varying x1 such that the vertical 

plane is parallel to the x1 -axis. The section function f2 is calculated by slicing a vertical 

plane defined by giving x1 a constant value while varying x2 such that the vertical plane is 

parallel to the x2 -axis. In this way the  coordinates of any minimum on 

the  surface can be defined by finding the minimum values on both the section 

function f

),( 21 xx

),( 21 xxf

 and section function f1 2. The surface of function f has a local minimum if every 

vertical plane slicing through a particular point shows a minimum at that point. Therefore, 

the surface of function f has a horizontal tangent if every vertical plane slicing through a 

particular point shows a horizontal tangent at that point. Similarly the surface has a 

stationary point if every vertical plane slicing through a particular point shows a stationary 

point at that point 

 

Instead of the vertical planes being parallel to either the x  –axis or x1 2 –axis, a plane 

orientated in the direction of a minimum can be specified by defining a straight line in the 

- plane in the parametric form as ),( 21 xx

,)(
,)(

222

111

mqkmx
mqkmx

+=
+=

 (5.12)
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where m is the parameter determining the angle of the plane  in space, 

 is a point on the line, and q

),( 21 xx ),,( 21 zxx

),( 21 kk  and q  are constants. 1 2

 

Thus, any function whose graph is the curve of intersection of a surface z =  and 

a vertical plane can be written as F(m) =  Showing that the surface has a 

stationary point at is equivalent to showing that the graph of every function F(m) 

through that point has a stationary point at that point.  It follows that if the section 

functions through  have stationary points , the intersection functions F(m) 

through  have stationary points.  

),( 21 xxf

)).(),(( 21 mxmxf

),( 21 kk

),( 21 kk ),( 21 kk

),( 21 kk

 

It can be shown that F has a stationary point at m = 0, for all such functions F for every 

choice of q1 and q2. The first step is to define equations for the section functions: 

 

)(),( 1
'

121
1

kfkk
x
f

=
∂
∂  (5.13)

 

)(),( 2
'

221
2

kfkk
x
f

=
∂
∂  (5.14)

 

where f1 and f2 are the section functions through , and have stationary points at  

if  = 0 and = 0. The derivative of F can be found by the chain rule for the 

function of two derivatives:  

21,kk 21,kk

)( 1
'

1 kf )( 2
'

2 kf
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2

1

1 dm
dx

x
f

dm
dx

x
f

dm
dF

∂
∂

+
∂
∂

=  (5.15)

also, 
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1
1 q

dm
dx

=  (5.16)

 

and 

2
2 q

dm
dx

=  (5.17)

 

Therefore, 

 

),(),()0( 21
2
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1

1 kk
x
fqkk

x
fq
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dF

∂
∂

+
∂
∂

=  (5.18)

 

)0(
dm
dF is zero when the partial derivatives of f vanish at , whatever the values of  

q

),( 21 kk

 and q .  1 2

 

5.4.1 Basic Optimisation Procedure 

 

The local minimisers of a two variable function can be determined by finding the 

stationary points through Equation (5.18).  Since a stationary point can either be a 

maximum or minimum point, an extra check is needed which can be developed by defining 

a Taylor polynomial for any function value near the minimum . ( )21,kkf),( 21 xxa
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 111



The vectors for X and K can be written as and . A vector h can also be 

defined as: 
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Therefore 
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The gradient vector of function f can be written as: 
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The Hessian matrix G(x) is given by 
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∂For a smooth function, = and the Hessian matrix is symmetric. Therefore, 

Equation (5.19) can be written as 
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At the minimum = 0 and Equation (5.24) simplifies to  )(Kf∇

.)(
2
1)()( hKGhKfhKaa T+=+=  (5.25)

 

To check if the stationary point is a minimum, )(Kf∇ and are used in a similar 

manner to when the stationary points were checked using  and . That is, if 

and 

)(KG

)(' kf )('' kf

0)( >KG )(Kf∇ = 0 then the stationary point found through Equation (5.25) is a local 

minimiser of f. 

 

5.5 Methods for Optimising Two Variable Functions 

 

Methods of optimising a function with two variables use a similar search strategy which 

follows a three step process. The methods are extensively covered by [42, 47-49]. The 

process starts by making an initial approximation and proceeds as follows: 

(a) A search direction is selected 

(b) A local minimiser is calculated in the search direction 

(c) The optimisation proceeds to the new point. 

 

The three steps are repeated until either the desired accuracy is achieved or the algorithm is 

deemed to have failed. The method of choosing a search direction is known as a line search 

method.  
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5.5.1 Alternating Variables Method 

 

The search direction alternates between the variables, so that the first search is along a line 

parallel to the x  -axis, the second search is along a line parallel to the x1 2 -axis, the third 

search is along a line parallel to the x  -axis, and so on. That is, the search directions are: 1

[ ]0,10 =q , , , [ ]1,01 =q [ ]0,12 =q [ ]1,03 =q , ……. 

 

The procedure for finding a two variable function minimum using the Alternating 

Variables method therefore works as follows: 

 

(a) A search direction is chosen to be parallel to each of the axes in turn 

⎩
⎨
⎧

=
T

T
rq

]0,1[
]1,0[

  
oddrfor
evenrfor

 

(b) Starting from xr determine a line minimiser for the function along the line 

 using one of the methods for finding the local minimiser for a one dimensional 

function, such as the Interval Reduction method. In this way a value for m will be found 

that minimises . 

rr mqX +

)( rr mqXf +

 

(c) The next stage of the optimisation is continued by moving to the new point 

 rrr mqXX +=+1

 

(d) The optimisation is stopped if the required accuracy is reached or the iteration limit 

has been reached, otherwise the procedure is repeated from step (a) with r replaced by r+1.  
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5.5.2 Steepest Descent Method 

 

The major deficiency in the Alternating Variables method is that no use is made of the 

function f properties in arriving at the search direction. The Alternating Variables method 

only follows a predetermined sequence of search directions. The Steepest Descent method 

on the contrary makes use of the properties of the function f to generate a new search 

direction at each iteration, along which f is guaranteed to be reduced in value [49]. In the 

Steepest Descent method, the search direction used at each iteration is the direction in 

which f is currently decreasing most rapidly. 

 

The direction in which f is decreasing most rapidly is determined by finding the most 

negative value of the gradient of f at the current point. This is determined by calculating 

the rate of change of a function with two variables, at a point x, in the direction of a unit 

vector q. This is the same as the rate of change of f along the line at m = 0. mqxmx +=)(

 

)( mqxf
dm
d

+  (5.26)

 

5.6 Optimisation of a Multiple Variable Function 

 

The practicality of implementing optimisation methods by searching in a particular 

direction and then minimising the function in that direction by means of a line search are 

largely utilised in optimisation techniques involving multiple variables [43], [50] and [51]. 

The Newton-Raphson method, Broyden-Fletcher-Goldfarb-Shanno (BFGS) method and 

the Fletcher-Reeves method can all be fitted into this framework.  These methods are 
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widely used for solving a variety of constrained and unconstrained non-linear optimisation 

problems. 

 

Unconstrained optimisation of a function of n variables is achieved by generalising the 

techniques used in optimising two function variables from the two-dimensional to the n-

dimensional case, where n >2 is the number of variables in the function f.   

 

The definitions of the local and global minimisers discussed in Section 5.2 and Section 5.4 

can be extended to the n-dimensional case.  Therefore, it can be stated that a function of n 

variables, on some region , has a local minimum  at  if for 

all  sufficiently close to 

ℜ )(Kf ℜ∈)(K )()( KfXf ≥

[ ]nkkkK ,......,, 21=ℜ∈)(X K , where  and . 

The point 

[ ]nxxxX ,......,, 21=

ℜ is called a local minimiser for onK f .  The function has a global minimum 

on a closed interval  in its domain, at ( ) ℜ∈Kℜ )()( KfXf ≥, if for all ℜ∈)(X . The 

point ℜ  where f is a function with n variables. K  is called a global minimiser for onf

 

The location of local minimisers can also be extended to the n-dimensional case. Therefore 

to obtain the first partial derivative, the function f is differentiated with respect to the ith 

variable xi, treating all the other variables as constant. The result can be differentiated 

again with respect to j to give the second partial derivatives. 
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Assuming that all the second partial derivatives of f, regarded as functions of the variables 

x , are continuous, the symmetric relationship can be written as: i
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The gradient vector can be generalised as 
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( )Kf∇As in the two dimensional case, the point at which =0 is called the stationary point. 

 

The Hessian matrix G(X) of f in the n-dimensional case, is the n matrix whose elements i,j 

are given by ,  
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so that 
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The second-order Taylor polynomial approximating f about a point can be written in a 

generalised way: 
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It follows that the sufficient conditions for a local minimiser of a function with n variables 

are that: 

 

(a) =0 ( )Kf∇

(b) is positive definite. ( )KG

 

One way to check for the positive definiteness of the Hessian matrix is to calculate 

its eigenvalues. If all the calculated eigenvalues are positive then the Hessian matrix 

( )KG

( )KG  

is regarded as positive definite. 

 

( )KGAnother method for checking that the Hessian matrix is positive definite utilises the 

properties of matrices and has an advantage of avoiding the computationally intensive 

calculation of eigenvalues. Any positive definite symmetric matrix A can be written as 

 

(5.33)TLDLA =  

 

where L is a real lower triangular matrix with ones along the diagonal and D is the 

diagonal matrix with positive diagonal elements. The  decomposition gives a 

straightforward way of determining whether a symmetric matrix is positive definite. In the 

case of the Newton-Raphson method, the decomposition strategy is even more useful. The 

Newton-Raphson method requires solution of a linear equation of the form Ax = b, where a 

check is necessary to ensure matrix A is positive definite. Using the  decomposition 

enables the check for positive definiteness and the determination of the solutions to be 

carried out simultaneously. 

TLDL

TLDL
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5.7 Methods of Optimising Multiple Variable Functions 

 

5.7.1 Newton-Raphson Method  

 

The Newton-Raphson method for optimising a function with multiple variables uses the 

Jacobian matrix to solve a system of linear equations in an iterative process [46]. The 

equation for solving the minimiser is written as: 

 

)()( 11 rrrr XhXJXX −+ −=  (5.34)
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Therefore the Jacobian matrix of fh ∇= is the Hessian matrix G of f and  

Equation  (5.34) becomes: 

 

)()( 11 rrrr XfXGXX ∇−= −+  (5.36)

 

Equation (5.36) is the Newton-Raphson iteration formula for solving . The equation 

is an extension of Equation (5.3) which was used for solving the problem in one 

dimension.  

0=∇f
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Equation (5.36) can be written as: 

 

)()( rrr XfXG −∇=Δ  (5.37)

 

where  =rΔ rr XX −+1 ,  is a displacement vector which is added to the current position 

vector to determine the next position vector. Therefore, rather than use Equation (5.36) 

directly, which involves solving the inverse of the matrix ,  Equation (5.37) can be 

used such that  a system of linear equations are solved to find the displacement vector and 

calculate the next position using  

)( rXG

 

(5.38)rrr XX Δ+=+1  

 

Similar to the two-dimensional case, it necessary to check for  positive definiteness 

in order to check whether the stationary point is a minimum of function f. In the case of the 

Newton-Raphson method the  decomposition of can be used both to check 

for positive definiteness and to solve Equation (5.36).  

)( rXG

TLDL )( rXG

 

While the Newton-Raphson method converges rapidly to local minimiser K once the 

iterations are sufficiently close to K, the method can behave rather badly if X0 is not close 

to K. The solution to this difficulty is to combine the Newton-Raphson method with line 

searching. 

 

Therefore, the process of optimisation starts with a line search using Equation (5.12). The 

search direction using the Newton-Raphson method is given by  

 

)()( 1 rrr XfXGq ∇−= −  (5.39)
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Equation (5.39) is equivalent to the difference vector of the Newton-Raphson method as 

can be seen by rearranging Equation (5.37). Therefore the method of defining the line 

direction given in Equation (5.39) is called the Newton-Raphson search direction. Once the 

search direction has been found the next step is to find the derivative of the function f 

with the variables replaced by the search direction in terms of a single variable m. The 

search direction  and single variable m are used for finding the next minimiser values by 

substitution into the parametric form of the equation shown in Equation (5.12). 

rq

rq

 

The number of function evaluations required at each iteration to determine the search 

direction is the same as the number of function evaluations needed for each step in the 

Newton-Raphson method without incorporating the search direction. 

 

The Newton-Raphson method with line searches is an example of a descent method, 

provided is positive definite. The descent method signifies that each step taken 

brings about a reduction in the function f value calculated at the current position when 

compared to the previous position. 

)( rXG

 

Also, the first-order Taylor polynomial approximation for f about  can be written as KX ≠

 

( ) ( ) ( )XfqXfqXf TrTrr ∇+≈+ εε (5.40) 

 

From Equation 5.40 it can be seen that q is a descent direction if is less than 

zero. It can be noted by comparison of Equation (5.39) and Equation (5.40) that 

and that when is positive definite  is  

( )Xfq Tr ∇ε

( ) ( ) rrTrTr qXGqXfq −=∇ε ( )Xfq Tr ∇ε)( rXG

negative. Therefore, as long as is positive definite at each iteration, the Newton-

Raphson method with line searches converges to a local minimiser, if one exists. 

)( rXG
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However, there is no guarantee that will be positive definite at each iteration. If 

is not positive definite during an iteration stage, the search can be started again for 

a new vector for which is positive definite. In practice this is rarely done. An 

alternative is to switch to another method which does give a descent direction, such as the 

Steepest Descent method, with search direction . 

)( rXG

)( rXG

)( rXG

)( rr Xfq −∇=

 

The most popular alternative is to use a search direction which is a compromise between 

the Newton-Raphson search direction and the steepest descent search direction, given 

implicitly by 

 

)())(( rrr XfqIXG −∇=+υ  (5.41)

 

where the value υ  is chosen so that  is a positive definite matrix, which 

ensures that the direction of the search is a descent direction. 

IXG r υ+)(

 

The last stage of the Newton-Raphson method is to determine a value of m that minimises 

along the line . For this, the Interval Reduction method, Grid 

Search method or the Golden Section Search method discussed in Sections 5.3.2, 5.3.3 and 

5.3.4 respectively can be used. Alternatively the roots of  can be 

calculated and then checked to determine whether the stationary point given by m is a local 

minimiser. 

)( rrTr mqXfq +∇ rr mqX +

0)( =+∇ rrTr mqXfq

 

Equation (5.3) can be re-written as: 

 

 122



)('
)(1

r

r
rr

mF
mFmm −=+  (5.42)

 

where and . By substituting the 

expressions for  and into Equation (5.42), the following is obtained: 

)()( rrTrr mqXfqmF +∇= rrrTrr qmqXGqmF )()(' +=
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The limitation of using Equation (5.43) is that it involves recalculating the value of the 

Hessian matrix in the denominator at each iteration. On the other hand, the Golden Section 

Search method for finding the local minimiser of requires only a single 

function evaluation at each iteration of the line search. For a given one variable function, it 

usually takes many more iterations to obtain a local minimiser to a given accuracy using 

the Golden Section Search method than it does using the Newton-Raphson method. 

However, the total number of function evaluations required when the Golden Section 

Search method is used is independent of n, the number of variables in the original problem; 

whereas for the Newton-Raphson method the total number of function evaluations 

increases rapidly with n. It follows that as n increases, the Golden Section Search method 

becomes progressively more efficient than the Newton-Raphson method.  

)( rr mqXf +

 

5.7.2 Rank One Method 

 

The Rank One method seeks to improve the Newton-Raphson method by introducing 

another matrix H( rX rX) which is an approximation to the G( ) matrix [46, 52]. A 

numerical procedure is used to determine the matrix H( rX ) which is used instead of 
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rXG( ) in the equations for calculating the local minimisers. Therefore, instead of 

calculating the matrix G( rX ) at each iteration as is the case with the Newton-Raphson 

method, an approximation matrix H( rX rX) is used in the place of G( ) when optimising 

function f with the Rank One method. 

 

The procedure followed for the Rank One method is as follows: 

 

(a) The search direction is calculated using Equation (5.44). 

 

  )()( 1 rr
i XfXHq ∇−= − (5.44)

 

rX rXwhere H( ) is the numerically determined approximation of the Hessian matrix G( ). 

 

(b) A search is made in the direction qr along the line  to determine the line 

minimiser 

rr mqX +

1+rX . 

 

rX 1+rX(c)  The approximation matrix, H( )  is updated to H( ). 

 

To ensure that the search direction chosen at each iteration stage is in the direction of 

descent, the matrix H( rX )  must be positive definite.  

 

rXIn effect, the sequence of the matrices H( )  are chosen by an iterative process but it is 

also necessary to specify the initial values of the matrix H( rX ). The simplest way of 

specifying the initial values of H( rX )  is to use an identity matrix . While this may be a 

poor approximation of G( rX 0X), it does give a descent direction. In fact, with H( ) = I, 

which is the steepest descent direction. Therefore unless there is a better )( )0(
0 xfq −∇=
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positive definite symmetric approximation to G( 0X )-1 0X available, H( ) = I defines the 

initial starting values for the approximation matrix. 

 

Since the Hessian matrix G( 0X )-1 is rXpositive definite and symmetric, H( ) should also 

be updated to be a symmetric matrix. A straightforward way of updating the matrix H( rX )  

to obtain 1+rH rE is to add a correction matrix , so that 

 

(5.45)rrr EHH +=+1   

 

rE is defined as  The correction matrix 

 

(5.46)  Tr auuE =

 

where u is a non-zero vector and a is a non-zero scalar. 

 

The vector and scalar values u and a are derived from the first order Taylor polynomial 

approximation for  about rX .  f∇

 

( ) ( ) ( )( )rrr XXXGXfXf −+∇≈∇ 00  (5.47)

 

when incremented Equation (5.47) can be written as 

 

( ) ( ) ( )( )rrrrr XXXGXfXf −+∇≈∇ ++ 11  (5.48)

 

rXThe gradient at  can be written as 
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( ) ( )rrrrr XfXfsss ∇−∇=−=Δ ++ 11  (5.49)

 

rXwhere  is the gradient at rsΔ .  

rX  can be written as The change in 

 

rrr sXG Δ≈Δ −1)(  (5.50)

 

also 

 

(5.51)rrr sH Δ=Δ +1  

 

Substituting Equation (5.45) into Equation (5.51) gives: 

 

rTrrrrrr suuasHsEH Δ+Δ=Δ+=Δ )()( (5.52)
 

 

Rearranging (5.52) to make u the subject of the formula gives 

 

rT

rrr sHsu Δ−Δ
=  

sau Δ
(5.53)

 

Taking a as 

 

rTa =
1  

su Δ
(5.54)

 

Equation (5.53) becomes 
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(5.55)rrr sHsu Δ−Δ=  

 

 

5.7.3 Broyden-Fletcher-Goldfarb-Shanno (BFGS) Method 

 

The BFGS method relies on adding a correction matrix as in the case of the Rank One 

method. However, in this case a rank two correction matrix is used   [46]. The matrix E is 

required to be symmetric and is written in the form of: 

 

TTTT

TTr

cwwwvvwbavv
cwbvwbwavvE
+++=

+++=

)(
)()(

 (5.56)

 

where v and w are linearly independent vectors and a, b and c are scalars.  

 

Substituting Equation (5.45) and (5.56) into Equation (5.51) gives: 

 

wscwbvvsbwavsH rTrTrrr ))(())(( Δ++Δ+=Δ−Δ (5.57)
 

 

rΔThe left side is a linear combination of and . The right side is a linear 

combination of v and w. Therefore the two vectors can be taken as 

rr sH Δ

 

(5.58)rv Δ=  

 

(5.59)rr sHw Δ=  

 

Defining a and b as shown in Equation (5.60) and (5.61)  
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1))(( −ΔΔ= rT sa  (5.60)

 

1))(( −ΔΔ−= rrTr sHsb  (5.61)

 

and setting c = 0, Equation (5.57) can be written as 

 

)1(11
rT

rT

rT

TT

rT

T

rT

rT
rrr

sv
sw

sv
wvvw

sv
vv

sv
swHH

Δ
Δ

+
Δ
+

−
Δ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Δ
Δ

++=−Δ +  (5.62)

 

 

5.7.4 Fletcher-Reeves Method 

 

The Fletcher-Reeves method uses only the gradient of the function together with a positive 

definite quadratic function to locate a minimiser in a finite number of iterations and is a 

type of line search method [53]. It has the property that, when applied to the quadratic 

function where A is a positive definite symmetric matrix, the successive search directions 

are conjugate with respect to A. 

Using a quadratic function to describe the gradient of f, the derivative of f can be written as 

 

 aAXXf +=∇ )( (5.63)

 

For a line search starting in the direction of q the gradient of function f becomes 

 

mAqXfamqXAmqXf +∇=++=+∇ )()()(
(5.64) 
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Also 

 

AqmqXfqamqXAmqXfq TTT +∇=++=+∇ )()()( (5.65)

 

From Equation (5.65), the right side can be reduced to zero by taking m as follows 

 

Aqq
Xfqm T

T )(∇
−=  (5.66)

 

Substituting Equation (5.66) into Equation (5.65) gives 

 

0)( =+∇ mqXfqT  (5.67)

 

Equating g to be equal to , Equation (5.64) can be written as )( mqXfqT +∇

 

rrrr Aqmgg +=+1  (5.68)

 

where g is given by Equation (5.67). 

 

rTr

rTr

Aqq
gqm −=  (5.69)

 

Substituting Equation (5.66) into Equation (5.68) gives 

 

r

rTr

rTr
rr Aq

Aqq
gqgg −+=+1  (5.70)
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The search directions for the Fletcher-Reeves method are specified by applying a scalar 

quantity u to the steepest search direction . The scalar quantity is added to 

 in such a way that the successive search directions are conjugate to A.  

11 ++ −= rr gq

1+rg

The search direction therefore can be written as 

 

Trrrr qugq +−= ++ 11 (5.71) 

 

where  

 

rTr

rTr
r

Aqq
Aqgu

1+

=  (5.72)

 

Therefore, to find a local minimiser for a function f of several variables using the Fletcher-

Reeves method, the following is done 

(a) the starting vector is is determined, taking and r = 0. )( 00 xfq −∇=0x

)( ii mqxf +(b) the value of m which minimises along the line is calculated. If 

the sequence of iterations has converged to the desired accuracy, or is clearly not 

converging, the search is stopped. 

ii mqx +

(c)  the new search directions are computed from Equation (5.71) which can be written 

as 

 

( ) ( ) ( )
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11
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(d) the iteration counter r is set to r+1. 
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5.7.5 Rosenbrock Algorithm 

 

The Rosenbrock algorithm is a 0th order form of numerical optimisation meaning that no 

derivatives of the objective function are required in any of the optimisation strategies 

employed [54]. The optimisation strategies, used in the algorithm iteration cycles, are 

based on the features of the one variable optimisation methods presented in Section 5.3. 

The first optimisation strategy incorporated is that the algorithm uses predetermined step 

sizes similar to the Interval Reduction, Grid Search and Golden Section Search methods 

discussed in Sections 5.3.2, 5.3.3 and 5.3.4.   The next optimisation strategy is that the 

algorithm uses alternating search steps during the minimisation stage of the objective 

function, similar to the Alternating Variables method presented in Section 5.5.1. The last 

optimisation strategy incorporated is that the Rosenbrock algorithm uses orthogonal 

vectors to determine the new search direction steps when starting a new iteration cycle. In 

calculating orthogonal vectors, the algorithm takes advantage of the concept of finding the 

steepest descent direction without having to calculate the objective function derivatives. 

Thus, the Rosenbrock algorithm, whilst a 0th order optimisation method itself, utilises the 

benefits of the 1st order optimisation methods.  

 

5.7.5.1 Search Strategy in an Iteration Cycle 

 

The Rosenbrock algorithm uses predetermined step sizes and search directions at the start 

of an iteration cycle. However, the algorithm has an advantage over the conventional one 

variable optimisation methods in that the widths of the steps are varied during each search 

in a given direction.  
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The concept of alternating the search directions is derived from considering the function 

variables to be a base of vectors in an N-dimensional coordinate system where N is the 

number of function variables. The first search is conducted along a line parallel to the x1-

axis, the second search along a line parallel to the x2-axis, the third search along a line 

parallel to the x -axis until the search along the x3 N-axis is made and one search cycle is 

completed.  

 

The width of the steps in the search direction of a given vector is determined by initially 

trying a step of arbitrary size. If this succeeds in yielding a lower value of the function, the 

step width is multiplied by a positive number greater than one. In the case of a failure, the 

step width is multiplied by a negative number between 0 and 1. Each step made in the 

direction of the vectors is called a trial. 

 

The alternating searches are repeated from x  to x1 N until at least one trial has been 

successful in each direction, and one has failed. A new set of directions for the vectors is 

then calculated.  The set of trials made with one set of directions, and the subsequent 

change of these directions is known as an iteration cycle.  

  

5.7.5.2 Changing Search Direction Vectors 

 

As discussed in Section 5.7.5.1, a new set of direction vectors is calculated at the end of an 

iteration cycle. The new set of directional vectors should be orthogonal to the current set of 

vectors. This ensures the new vectors are in the most likely steepest descent direction.  

 

It is worth noting that derivative based optimisation methods such as the Newton Raphson 

method calculate the steepest descent direction by finding the objective function derivative. 
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The Rosenbrock algorithm being an 0th order optimisation method does not use derivatives 

but instead uses the Gram-Schmidt procedure to orthogonalize the existing set of direction 

vectors. Using this procedure a new set of direction vectors q1 to qN can be found by 

orthogonalizing the multidimensional vectors x  to x1 N  of the current iteration cycle.  

 

The first step required to find the new set of search direction vectors using the Gram-

Schmidt procedure is to normalise vector x  using Equation (5.74) 1

 

1

11

1
1 x

xx
q

T
=  (5.74)

 

To find , the projection  to  is subtracted from  as shown in Equation (5.75) 2q 1q 2x 2x

 

( ) 11222 qqxxq T−=  (5.75)

 

and then normalised using Equation (5.76) 

 

2
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2
1 q

qq
q

T
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To find the next orthogonal vector, , the projections  to  and  to  are both 

subtracted from  as shown in Equation (5.77) 

1q 2q3q 3x 3x

3x

 

( ) ( ) 22311333 qqxqqxxq TT −−=  (5.77)

 

and then normalised using Equation (5.78) 

 133



 

3

33

3
1 q

qq
q

T
=  (5.78)

 

The procedure is carried out in this manner until the Nth orthogonal vector  has been 

calculated. 

Nq

 

To illustrate how the Gram-Schmidt algorithm works, the steps for calculating a set of 

orthogonal vectors  and  from any two basis vectors x1q 2q 1 and  are shown in        

Figure 5-5. The two basis vectors x

2x

1 and , from which the orthogonal vector will be 

calculated, are shown in light green and light blue. First of all, the basis vector x

2x

1 is 

normalised using Equation (5.74). The resulting vector is the first orthogonal vector  

which is shown in red. The projection to the next basis vector,  from the normalised 

vector  is shown by the dashed red line. Subtracting the projection  to  from  

using Equation (5.75) gives the vector indicated by the purple arrow. Normalising this 

purple vector using Equation (5.76) gives the second orthogonal vector  which is shown 

in dark blue.  

1q

2x

1q 1q 2x 2x

2q

 

5.8 Conclusion 

 

In this chapter the different optimisation methods for finding the minimum value of a 

single variable, two variable and multiple variable function have been identified. These 

methods of optimisation can offer an alternative to the analytical methods discussed in 

Chapter 4 for investigating the problem of leaks in a duct.  The reason for using this 

alternative approach has been motivated by the need to find solutions to the limitations 

encountered when applying analytical methods to the problem of investigating leaks in a 
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duct. The main limitation of the analytical method is the inability to extend the method to 

the investigation of multiple leaks as suitable mathematical expressions are non existent 

and complicated. 

 

Figure 5-5: Steps for calculating orthogonal vectors from a set of base vectors 
 

 

The other limitation is that, though analytical methods were successfully applied to the 

investigation of single leaks in a duct, there still remained room for improvement in the 

accuracy of the solutions. Therefore, application of optimisation methods to the problem of 

detecting, locating and finding the size of one or more leaks in a cylindrical pipe follows in 

the next two chapters.  

 

 

 

 

 135



Chapter 6 

 

Investigating a Single Leak in a Cylindrical Duct using Numerical 

Optimisation 

 

In this chapter, the methods of optimisation discussed in Chapter 5 are applied to the 

problem of locating and sizing a single leak in a cylindrical duct. Although analytical 

methods for investigating single leaks were successfully employed in Chapter 4, it is still 

instructive to apply the optimisation approach to the simple case of a single leak. Primarily, 

it enables the success of the optimisation approach to be evaluated. In particular, the 

accuracy of hole size/location predictions made using optimisation methods can be 

compared with the accuracy achieved using analytical methods.  

 

Optimisation methods that enable a function with one variable to be minimised can be used 

to predict either the size of a single leak given its location or the location of a single leak 

given its size. The objective function is derived from the input impedance expressions 

introduced in Chapter 2, with the function minimiser being either the hole size or the hole 

position. Over the coming sections, two dimensional plots are displayed which show the 

relationship between the function and minimiser values. The results of using the single-

variable Newton Raphson method, the Grid Search method and the Golden Section Search 

method to predict either the size or the position of a single hole in a cylindrical duct are 

also presented.  

 

Optimisation methods that enable a function with two variables to be minimised can be 

used to predict both the size and the location of a single leak in one go. Again, the 
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objective function is derived from the input impedance expressions of Chapter 2. However, 

in this case, there are two function minimisers – the hole size and the hole position. Three  

dimensional plots are presented which show the relationship between the function value 

and the two minimiser values. The Alternating Variables method and the Steepest Descent 

method are then used to locate and size a single leak in a cylindrical duct. When employing 

the Alternative Variables method, the Grid Search method is used to find the local 

minimiser in the selected search direction and minimiser interval. In the case of the 

Steepest Descent method, the Newton Raphson method is used to find the local minimiser. 

 

6.1 Objective Function 

 

The objective function that is to be optimised is defined in such a way that, when it is 

minimised, the optimised parameters are close to the solution being sought. When 

investigating leaks in a duct, the objective function can be expressed as  

 

( )∑
=

−=
40

4
(mod)(exp) )83.48,(83.48)(

i
iinini ixzizxf  (6.1)

 

where zin(exp) is the target function which is the experimentally measured input impedance 

of the pipe containing the leaks, zin(mod) is the theoretical input impedance of a model duct 

containing side holes (the calculation of which was outlined in Chapter 2), and xi are the 

function minimisers. The equation shows a subtraction between the complex values of 

zin(exp) and zin(mod) from which either the impedance magnitude or the impedance phase can 

be extracted (in this chapter the optimisations are all magnitude based but in Chapter 7 

both magnitude and phase based optimisations are presented). By carrying out the 

summation from i = 4 to i = 40, the objective function incorporates impedance 

measurements over a frequency range of 195.3 Hz to 1953.1 Hz. The frequency range used 
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matches the range used in Chapter 4 when investigating the single leak size using 

analytical means. Measurements outside this range are not included as they tend to be 

noise affected. The frequency interval of 48.83 Hz arises because a sampling frequency of  

50 kHz and a sample length of 1024 points was used for the experimental measurements 

(as discussed in Chapter 3). 

 

For the case of a pipe with a single circular hole in its wall, the theoretical input impedance 

zin(mod) of the pipe depends on the total length of the pipe l, its internal diameter r, its wall 

thickness l , the distance of the hole from the pipe input lh 1, and the radius of the hole r .  h

 

When applying one variable optimisation methods to the problem of investigating a single 

leak in a cylindrical pipe, all but one of the aforementioned parameters of the pipe under 

investigation must be known. There is only one function minimiser - either the hole 

position or the hole radius – and the objective function is written either as 

 

( )∑
=

−=
40

4
1(mod)(exp)1 )83.48,(83.48)(

i
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or 

( )∑
=

−=
40

4
(mod)(exp) )83.48,(83.48)(

i
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In the case that the size of the hole is known but its position is to be found, Equation (6.2) 

is used. The hole position l1 is set to an arbitrary value. All the other parameters of the duct 

model are set equal to those of the duct under investigation. The optimisation routine then 

adjusts the value of l1 until the objective function f is equal to zero (to within pre-specified 

bounds). 
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If the hole position is known but its size is unknown, Equation (6.3) is used.  In this case, 

the hole radius rh is assigned an arbitrary value while all the other parameters of the duct 

model are set equal to those of the duct under investigation. The optimisation routine then 

adjusts the value of rh until the objective function f is equal to zero (again to within pre-

specified bounds). 

 

When applying two variable optimisation methods to a cylindrical pipe containing a single 

leak, there are two function minimisers; the hole position and the hole radius. All the other 

parameters of the pipe under investigation must be known. The objective function is 

written as 

( )∑
=

−=
40

4
1(mod)(exp)1 )83.48,,(83.48),(

i
hininh irlzizrlf  (6.4)

 

Both the hole position l1 and the hole radius rh are assigned arbitrary values. All the other 

parameters of the duct model are set equal to those of the duct being investigated. The 

optimisation routine then adjusts the values of both l  and rh1  in Equation (6.4) until the 

objective function f is equal to zero (to within pre-specified bounds). 

 

6.2 One Variable Objective Function 

 

6.2.1 Variation of Objective Function with Hole Radius 

 

The response of the objective function described by Equation (6.3) in Section 6.1 to a 

change in the hole radius can be observed by plotting the values of the objective function 

as the hole radius is varied. This requires all the possible values of the objective function 

within the specified range of the function minimiser to be evaluated and plotted. 
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Optimisation methods discussed later in the chapter seek to find ways of discovering the 

function minimum without having to calculate all the possible values of the objective  

function as the minimiser is varied. In this way, they aim to achieve a reduction in the 

computational load. The advantage of plotting the objective function values as the 

minimiser is varied is that it gives an easy way of observing the behaviour of the objective 

function, from which information necessary to apply the more complicated methods can be 

deduced. 

 

To investigate the effect of varying the hole radius, the fixed parameters of the theoretical 

model in Equation (6.3) were set as l  = 1 mm, r = 5.0 mm, l  = 0.32 m and lh 1 2 = 0.198 m to 

match the dimensions of the first cylindrical pipe introduced in Chapter 4. The 

experimental input impedance for the pipe with a hole of radius 2 mm was taken as the 

target function, zin(exp).  The hole radius r of the theoretical model was variedh   from         

0.01 mm to 5 mm over the frequency range of 195.3 Hz to 1953.1 Hz and the different 

values of zin(mod) were calculated. The values of the objective function were then 

determined and plotted. Figure 6.1 shows the resultant plot of the objective function using 

the experimental input impedance of the cylindrical pipe with 2 mm radius sidehole.  The 

graph therefore shows the magnitude of the difference between  and  summed 

over the frequency range of 195.3 Hz to 1953.1 Hz plotted against the variation in the hole 

radius (as stated in the objective function of Equation 6.3). 

(exp)inz (mod)inz
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Figure 6-1: Plot of the objective function variation with hole radius for cylindrical pipe 1 

with side hole of 2mm 

 

 

 

Examination of Figure 6-1 shows that the objective function is close to zero at the 

minimiser value of 2 mm. Therefore, the objective function gives a correct prediction for 

the hole radius of 2 mm. It can also be observed from Figure 6-1 that there are two local 

minima in the plot of the objective function at the minimiser values of approximately      

0.4 mm and 1.3 mm. Therefore the value of the objective function at the minimser value of 

2 mm is really a global minimum of the objective function. 
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6.2.2 Variation of Objective Function with Hole Position 

 

It is also possible to plot the response of the objective function to a change in the hole 

position following the procedure discussed in Section 6.2.1.  To demonstrate this, the fixed 

parameters of the theoretical model in Equation (6.2) were set as l = 0.5 m, l  = 1 mm,            h

r = 5.0 mm, r  = 2 mm. The theoretical input impedance values, zh in(mod), were calculated by 

varying l1, the hole location from the start of the cylindrical pipe.  The position of the hole 

from the end of the cylindrical pipe l was defined as l  = l - l2 2 1. The target function was 

again set equal to the experimental input impedance of the first cylindrical pipe with a 2 

mm radius sidehole. Figure 6-2 shows the plot of the objective function using this target 

function. 

 

 

Figure 6-2:  Plot of the objective function variation with hole position for cylindrical pipe 

1 with side hole of 2 mm 

 

 

 142



It can be seen from Figure 6-2 that the value of the objective function is close to zero at the 

minimiser value of 0.31 m. As such it can be concluded that the objective function gives 

the correct prediction of the hole position. However, it can also be noted from Figure 6-2 

that there are several positions of local minima in the plotted objective function. Indeed, 

the objective function when plotted against hole position variation tends to show a more 

rugged plot than when it is plotted against hole radius variation (see Figure 6-1).  

 

6.3 Application of One Variable Optimisation Methods 

 

Optimisation methods provide a way of finding the minimum of the objective function 

without having to calculate all the function values (as was the case when plotting the 

values of the objective function in Section 6.2). In this section, the one variable 

optimisation methods discussed in Chapter 5 are applied to the prediction of either the size 

or the location of a single hole in the side of a cylindrical pipe.  

 

One variable optimisation methods work by reducing the objective function to a value 

close to zero. The value of the minimiser at this low value of the objective function should 

correspond to the correct prediction of either the hole size or hole position depending on 

which parameter of the leak is being investigated.   
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Figure 6-3: Comparison of the start and target impedances when searching for the hole 
size (start value of rh = 0.1 mm) 
 

 

When implementing the one variable optimisation methods, the hole radius or the hole 

position in the theoretical model must be given an arbitrary start value; For the 

optimisation methods presented in this section, the start value of the hole radius was taken 

as 0.1 mm whilst the start value of the hole position was taken as 0.1 m. 

 

As in Section 6.2, the test object was chosen to be the cylindrical pipe with parameters      

lh = 1 mm, r = 5 mm, r  = 2 mm, l  = 0.32 mm and lh 1 2 = 0.198 mm. The experimentally 

measured input impedance of the pipe was taken as the target value for the optimisation. 

The start value for the optimisation routine was found by calculating the theoretical 

impedance of the pipe with the same parameters as above except that rh  was set at 0.1 mm 

for the case of finding the hole size and l1 was set at 0.1 m (with l  = l – l2 1) for the case of 

finding the hole position. Figure 6-3 shows a comparison of the start and target impedances 
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when searching for the hole size. Similarly, Figure 6-4 shows the start and target 

impedances when searching for the hole position. 
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Figure 6-4: Comparison of the start and target impedances when searching for the hole 

position (start value of l1 = 0.1 m) 

 

It can be seen, from both Figure 6-3 and Figure 6-4, that the start value of the theoretical 

impedance doesn’t provide a good match with the experimentally measured target 

impedance. The optimisation methods discussed in the following sections work by varying 

either the hole radius or the hole position until a match in the two impedances is achieved.  

 

6.3.1 Application of the Grid Search Method 

 

The Grid Search method, whose theory was presented in Section 5.3.3, is implemented 

here for the purpose of predicting the hole size and hole position. The computer program to 

implement the Grid Search method was written in Mathcad and variables were defined to 

store information on the following; boundary values a and b for the initial minimiser 

 145



interval, the number of iterations it and the function evaluations eval. The method 

terminates when the local minimiser is known to be within distance ε of the current iterate. 

6.3.1.1 Predicting Hole Size 

 

The initial interval boundaries were set as 0.1 mm to 9 mm and an initial hole radius of   

0.5 mm was used. The stopping tolerance ε was set as 0.05 mm so that the final radius 

prediction would agree with the physical measurement to within 2.5 %. Step sizes of   

0.001 mm were used within each of the iteration stages. The step size was chosen so that it 

was small enough to operate within the stopping tolerance of 0.05 mm. Too large a step 

size would result in the local minimum point being missed and the optimisation routine 

would not exit. 
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Figure 6-5: Comparison of the final impedance (after optimisation of the hole size using 

the Grid Search method) and the target impedance 
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The objective function described in Equation (6.3) was then optimised using the Grid 

Search method until the difference between the local minimiser and the current iterate was 

within the set stopping tolerance of 0.05 mm. Figure 6-5 shows a comparison of the final 

value of the input impedance of the duct model after optimisation and the experimentally 

measured target impedance. Examination of Figure 6-5 reveals that the two input 

impedance curves are now in good agreement.  

 

The values of the physically measured hole radius (parameter target value), the initial start 

value of the minimiser (parameter start value) and the final minimiser value (optimised 

parameter value) are shown in Table 6-1.  The percentage difference between the 

parameter target value (TV) and optimised parameter value (OV) is also presented, together 

with the number of iterations (it) and function evaluations (eval).  

 

It can be seen from Table 6-1 that, after 7 iterations and 12 function evaluations, the 

predicted hole radius was 2.021 mm. This agrees with the actual hole radius of 2.00 mm to 

within 1.05%. 

 

Parameter 
target 
value 

Parameter 
start 
value 

Optimised 
parameter 

 

 

 

a 
(mm) 

b 
(mm) (TV) 

(mm) 
(SV) 
(mm) 

Value 
(OV) 
(mm) 

it eval 100×
−

TV
OVTV  

(%) 

0.100 9.000 2.000 0.500 2.021 7 12 1.05 

Table 6-1: Hole radius predictions with associated accuracies for cylindrical pipe 1 with   

2 mm radius leak using the Grid Search method 
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6.3.1.2 Predicting Hole Position             

 

The initial interval boundaries were set as 0.01 m to 0.4 m and an initial hole position of 

0.15 m was used. The stopping tolerance was set as 0.005 m so that the hole position 

prediction would agree with the physical measurement to within 2 %. Step sizes of      

0.001 m were used within each of the iteration stages. The step size was chosen so that it 

was small enough to operate with in the stopping tolerance of 0.005 m. Too large a step 

size would result in the local minimum point being missed and the optimisation routine not 

stopping as discussed previously. 
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Figure 6-6: Comparison of the final impedance (after optimisation of the hole position 

using the Grid Search method) and the target impedance 

 

 

The objective function described in Equation (6.2) was optimised until the difference 

between the local minimiser and the current iterate was within the set stopping tolerance of 

0.005 m. Figure 6-6 compares the final value of the input impedance of the theoretical 
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model after optimisation with the experimentally measured target. It can be seen that the 

two input impedances are now closely matching.  

 

The values of the physically measured hole position (parameter target value), the initial 

start values of the minimiser (parameter start value) and the final minimiser value 

(optimised parameter value) are shown in Table 6-2.  The percentage difference between 

the parameter target value (TV) and optimised parameter value (TV) are also presented 

together with the number of iterations (it) and function evaluations (eval).  

 

 It can be seen from Table 6-2, that after 7 iterations and 12 function evaluations, the 

predicted hole position was 0.313 m. This agrees with the actual hole position of 0.310 m 

to within 0.967 %. 

 

Parameter 
target 
value 

Parameter 
start 
value 

Optimised 
parameter 

 

6.3.2 Application of the Golden Section Search Method 

 

The Golden Section Search method, discussed in Section 5.3.4, uses less iterations and 

function evaluations than the Grid Search method. The method is therefore a potentially 

more attractive alternative to the Grid Search method. This section discusses the 

application of the Golden Section Search method to the prediction of either the hole size or 

the hole position.  

 

 

 

 

Table 6-2: Hole position predictions with associated accuracies for cylindrical pipe 1 with   

2 mm radius leak using the Grid Search method 

a 
(m) 

b 
(m) (TV) 

(m) 
(SV) 
(m) 

Value 
(OV) 
(m) 

it eval 100×
−

TV
OVTV  

(%) 

0.010 0.400 0.310 0.150 0.313 12 17 0.967 
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6.3.2.1 Predicting Hole Size 

 

As with the Grid Search method, the initial interval boundaries were set as 0.1 mm to        

9 mm and an initial hole radius of 0.5 mm was used. The stopping tolerance was set as 

0.05mm so that the radius prediction would agree with the physical measurement to within 

2.5 %. Step sizes of 0.001 mm were used within each of the iteration stages. The step size 

was chosen so that it was small enough to operate within the stopping tolerance of        

0.05 mm.  

 

The objective function described in Equation (6.3) was then optimised until the difference 

between the local minimiser and the current iterate was within the set stopping tolerance of  

0.05 mm. Figure 6-7 shows a comparison of the final value of the input impedance of the 

duct model after optimisation and the experimentally measured target impedance. 

Examination of Figure 6-7 reveals that the theoretical input impedance and experimental 

impedance curves are now closely matching.  

 

The values of the physically measured hole radius (parameter target value), the initial start 

values of the minimiser (parameter start value) and the final minimiser value (optimised 

parameter value) are shown in Table 6-3.  The percentage difference between the 

parameter target value (TV) and optimised parameter value (TV) are also presented together 

with the number of iterations (it) and function evaluations (eval).  
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Figure 6-7: Comparison of the final impedance (after optimisation of the hole size using 

the Golden Section Search method) and the target impedance 

 

From Table 6-3, it can be seen that the Golden Section Search method predicted the hole 

radius to be 2.036 mm. This agrees with the actual hole radius of 2.00 mm to within 1.8%. 

It can also be seen that the prediction was arrived at after 6 iterations and 9 function 

evaluations.  

 

As expected the Golden Section Search method arrived at a solution with fewer iterations 

and function evaluations than the Grid Search Method. However, the accuracy of the 

predictions was not quite as good as that provided by the Grid Search method. The reason 

for this is that the Golden Section Search method generally takes larger iteration intervals 

than the Grid Search method. Large iteration intervals are more useful for separating a 

global minimum, where the function being evaluated shows several local minima, but tend 

to give poorer prediction results than methods utilising smaller iteration interval sizes. 
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Parameter 
target 
value 

Parameter 
start 
value 

Optimised 
parameter 

 

 

6.3.2.2 Predicting Hole Position 

 

The initial interval boundaries were set as 0.01 m to 0.4 m and an initial hole position of 

0.15 m was used. The stopping tolerance was set as 0.005 m so that the hole position 

prediction would agree with the physical measurement to within 2 %. Step sizes of      

0.001 m were used within each of the iteration stages. The step size was chosen so that it 

was small enough to operate within the stopping tolerance of 0.005 m. 

The objective function described in Equation (6.2) was optimised until the difference 

between the local minimiser and the current iterate was within the set stopping tolerance of 

0.005 m. Figure 6-8 compares the final value of the input impedance of the theoretical 

model after optimisation with the experimentally measured target impedance. It can be 

seen that the two input impedances are now in good agreement.  

 

The values of the physically measured hole position (parameter target value), the initial 

start values of the minimiser (parameter start value) and the final minimiser value 

(optimised parameter value) are shown in Table 6-4.  The percentage difference between 

the parameter target value (TV) and optimised parameter value (TV) is also presented 

together with the number of iterations (it) and function evaluations (eval).  

 

a 
(mm) 

b 
(mm) (TV) 

(mm) 
(SV) 
(mm) 

Value 
(OV) 
(mm) 

it eval 100×
−

TV
OVTV  

(%) 

0.100 9.000 2.000 0.500 2.036 6 9 1.8 

Table 6-3: Hole radius predictions with associated accuracies for cylindrical pipe 1 with   
2 mm radius leak using the Golden Section Search method 
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Figure 6-8: Comparison of the final impedance (after optimisation of the hole position 

using the Golden Section Search method) and the target impedance 

 

From Table 6-4, it can be seen that the Golden Section Search method predicted the hole 

position to be 0.305 m. This agrees with the actual hole position of 0.310 m to within 

1.6%. It can also be seen that the prediction was arrived at after 10 iterations and 16 

function evaluations.  

 

As with the prediction of hole radius, the Golden Section Search method arrived at a 

solution with a few iterations and function evaluations than the Grid Search method. 

However, again, the predictions were not quite as accurate as those provided by the Grid 

Search method.  
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Parameter 
target 
value 

Parameter 
start 
value 

Optimised 
parameter 

 

 

 

6.3.3 Application of the Newton-Raphson Method 

 

The Newton-Raphson method behaves a little differently to the methods of optimisation 

considered in this chapter so far. The difference in the method is that it utilises the 

calculated values of the objective function to determine the value of the function 

minimiser. The values of the objective function are used to calculate the gradient of the 

function from which the step size of the minimiser is determined. Therefore, boundary 

values for the minimiser interval are not required when using the Newton-Raphson 

method. It is sufficient to define the function minimiser starting value only. 

 

As with the Grid Search and the Golden Section Search methods, the performance of the 

Newton Raphson method in minimising the objective function was tested using the 

cylindrical pipe test object. Both the hole size and then the hole position were predicted 

using the method.  

 

 

a 
(mm) 

b 
(mm) (TV) 

(mm) 
(SV) 
(mm) 

Value 
(OV) 
(mm) 

it eval 100×
−

TV
OVTV  

(%) 

0.010 0.400 0.310 0.150 0.305 10 16 1.6 

Table 6-4: Hole position  predictions with associated accuracies for cylindrical pipe 1 with   

2 mm radius leak using the Golden Section Search method 
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6.3.3.1 Predicting Hole Size 

 

The initial hole radius for the optimisation was set at 0.1 mm whilst the stopping tolerance 

ε for the minimiser was set as 0.05 mm (for a prediction accuracy of within 2.5 %). The 

maximum number of iterations was set as 1000. 
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Figure 6-9: Comparison of the final impedance (after optimisation of the hole size using 

the Newton-Raphson method) and the target impedance 

 

The objective function described in Equation (6.3) was optimised using the Newton-

Raphson method. However, the stopping tolerances could not be reached within the 

specified number of iterations and the optimisation was stopped. Figure 6-9 compares the 

final value of the input impedance of the duct model after the optimisation was stopped 

with the experimentally measured target impedance. Examination of Figure 6-9 reveals 

that two impedances are in poor agreement.  
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The values of the physically measured hole radius (parameter target value), the initial start 

values of the minimiser (parameter start value) and the final minimiser value (optimised 

parameter value) are shown in Table 6-5.  The percentage difference between the 

parameter target value (TV) and optimised parameter value (TV) is also presented together 

with the number of iterations (it) and function evaluations (eval).  

 

 

 

                 
Parameter 
target 
value 

Parameter 
start 
value 

Optimised 
parameter 

 

 

 

Table 6-5 shows that the agreement between the predicted radius and physically measured 

value is very poor. This is due to the fact that derivative based methods tend to give poor 

prediction results if the function being optimised is non smooth and has sudden changes in 

the slope or gradient of the function. From Figure 6-1, the objective function of Equation 

(6.3) was plotted and revealed a sharp sudden change in slope at a hole radius of 

approximately 0.7 mm. The slope of the function at this position is not defined. This 

sudden change in the slope gradient could be the reason for the breakdown in the 

predictions provided by the derivative based Newton-Raphson method. 

 

 

 

 

 

(TV) 
(mm) 

(SV) 
(mm) 

Value 
(OV) 
(mm) 

it eval 100×
−

TV
OVTV  

(%) 

2.000 0.100 1.4×10-8 1000 2130 100 

Table 6-5: Hole radius predictions with associated accuracies for cylindrical pipe 1 with   

2 mm radius leak using the Newton-Raphson method 
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6.3.3.2 Predicting Hole Position 

 

The initial hole position for the optimisation was set at 0.1 m whilst the stopping tolerance 

ε  for the minimiser was set as 0.005 m (for a prediction accuracy of within 2 %). The 

maximum number of iterations was set as 1000.  
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Figure 6-10: Comparison of the final impedance (after optimisation of the hole position 

using the Newton-Raphson method) and the target impedance 

 

The objective function described in Equation (6.2) was optimised using the Newton-

Raphson method. However, as for the hole radius prediction, the stopping tolerances could 

not be reached within the specified number of iterations and the optimisation was stopped. 

Figure 6-10 shows both the final value of the input impedance of the duct model after the 

optimisation was stopped and the experimentally measured target impedance. Examination 

of Figure 6-10 reveals that the two impedances are still in poor agreement.  
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The values of the physically measured hole position (parameter target value), the initial 

start values of the minimiser (parameter start value) and the final minimiser value 

(optimised parameter value) are shown in Table 6-6.  The percentage difference between 

the parameter target value (TV) and optimised parameter value (TV) is also presented 

together with the number of iterations (it) and function evaluations (eval).  

 

 Parameter 
target 
value 

Parameter 
start 
value 

Optimised 
parameter 

 

 

 

Table 6-6 shows that the agreement between the predicted hole position and the physically 

measured value is very poor. The explanation for the poor prediction is as discussed 

earlier. That is, derivative based methods tend to give poor optimisation results for non 

smooth functions. From Figure 6-2, it is clear that the objective function of Equation (6.2) 

has a number of sudden changes in slope at several values of hole position. These sudden  

changes in slope gradient are the most likely reason for the breakdown in the predictions 

provided by the Newton-Raphson method. 

 

6.4 Two Variable Objective Function 

 

The response of the objective function described by Equation (6.4) to a change in both the 

hole radius and hole position parameters can be observed by plotting the values of the 

objective function as the two parameters are varied. This requires all the possible values of 

(TV) 
(m) 

(SV) 
(m) 

Value 
(OV) 
(m) 

it eval 100×
−

TV
OVTV  

(%) 

0.310 0.100 0.14 1000 2340 54 

Table 6-6: Hole position predictions with associated accuracies for cylindrical pipe 1 with   

2 mm radius leak using the Newton-Raphson method 
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the objective function within the specified ranges of the function minimisers to be 

evaluated and plotted.  

 

To investigate the effect of varying both hole radius and hole position, the cylindrical pipe 

test object with geometrical parameters lh = 1 mm, r = 5.0 mm, r  = 2 mm lh 1 = 0.32 m and 

l2 = 0.198 m was again used. The pipe’s experimentally measured input impedance, zin(exp), 

was taken as the target function. Meanwhile, the fixed parameters of the theoretical model 

were set as lh = 1 mm, r = 5.0 mm and  l = 0.5 m. The hole radius  was then varied from 

0.01 mm to 5 mm while the hole position  was varied from 0.1 m to 0.4 m. For each 

value of r

hr

1l

 and l , the theoretical impedance of the model zh in(mod)1  was calculated over the 

frequency range of 195.3 Hz to 1953.1 Hz. The values of the objective function were then 

evaluated using Equation (6.4) and plotted. The resulting three dimensional plot is shown 

in Figure 6-11.  

 

Figure 6-11: Variation of the objective function with both the hole size and position for 

cylindrical pipe 1 with 2mm radius sidehole 
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Examination of Figure 6-11 reveals a number of ridges, troughs and peaks. As expected, a 

trough along the minimiser value of l1 = 0.31 m can be observed. However, it is not 

possible to see the expected global minimum at r  = 2 mm and lh 1 = 0.31 m as a ridge 

obscures this area of the plot.  

 

To aid visualisation of the objective function, Figure 6-12 shows a contour map 

representation of the three dimensional plot of Figure 6-11. The trough along the minimiser 

value of l1 = 0.31 m can again be observed. It is now clear that a minimum occurs 

somewhere between approximately r  = 1.7 mm and r  = 3.7 mm along the lh h 1 = 0.31 m 

line. The resolution of the contour map makes it impossible to both locate the exact 

position of the minimum and to confirm whether the minimum is a global minimum (or 

one of the several local minima that can be observed). 
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Figure 6-12: Contour map representation of the variation of the objective function for 

cylindrical pipe 1 with 2 mm radius sidehole with both the hole size and position 
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6.5 Two Variable Optimisation Methods 

 

It proved difficult to locate the global function minimum using the objective function plots 

of Figures 6-11 and 6-12. However, this problem can be overcome by employing the two 

variable optimisation methods described in Section 5.5.1 and 5.5.2. These methods also 

enable both the hole size and hole location to be predicted in one operation, without having 

to calculate all the possible objective function values. 

 

In this section, using the same cylindrical pipe test object as in Section 6.4, the success of 

both the Alternating Variable and the Steepest Descent method in predicting both hole size 

and hole position are investigated. As before, the pipe’s experimentally measured input 

impedance was taken as the target value zin(exp) for the optimisation. The start value for the 

optimisation routine was found by calculating the theoretical impedance of the pipe with 

fixed parameters lh = 1mm, r = 5.0 mm and  l = 0.5 m and adjustable parameters               

rh = 0.05 m and l  = 0.1 m. Figure 6-13 compares these start and target impedances. 1
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Figure 6-13: Comparison of the start and target impedances when searching for both hole 

size and hole position simultaneously (start values of rh = 0.05 m and l1 = 0.1 m) 

 

 

It can be seen from Figure 6-13 that, as might be expected, there is a poor match between 

the start impedance of the model and the experimentally measured target impedance. The 

optimisation methods discussed in the following sections work by varying the values of rh 

from 0.01 mm to 5 mm and l1 from 0.1 m to 0.4 m until a match in the two impedances is 

achieved. 

  

6.5.1 Alternating Variables Method 

 

The initial hole radius was set as 0.05 mm and the initial hole position was set as 0.1 m. 

The stopping tolerance for the hole size minimiser was set as 0.05 mm and that for the hole 

position minimiser was set as 0.005 m.   
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Figure 6-14: Comparison of the final and target impedances when searching for both hole 

size and hole position simultaneously using the Alternating Variables method 

 

 

The objective function described in Equation (6.4) was optimised until the differences 

between the local minimisers and the current iterate were within the set stopping tolerances 

of 0.05 mm and 0.005 m for the hole radius and hole position respectively. Figure 6-14 

compares the final value of the input impedance of the duct model after the optimisation 

was stopped with the experimentally measured target impedance. Examination of       

Figure 6-14 reveals that the theoretical input impedance and experimental impedance 

curves are now closely matching.  

 

The values of the physically measured hole radius (parameter target value), the initial start 

values of the minimiser (parameter start value) and the final minimiser value (optimised 

parameter value) are shown in Table 6-7.  The percentage difference between the 
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parameter target value (TV) and optimised parameter value (TV) was is also presented 

together with the number of iterations (it) and function evaluations (eval).  

 

 
  

 Parameter 
target 
value 

Parameter 
start 
value 

Optimised 
parameter 

 

 

 

 

From Table 6-7, it can be seen that the predicted hole radius agrees with the actual hole 

radius to within an accuracy of 2.5 %. The agreement between the predicted hole position 

and the actual hole position values is accurate to within 1.9 %.  The success of the 

Alternating Variables method was expected as it is a non-derivative based method. 

Therefore, it was not affected by sudden changes in the gradient of the objective function 

(such as those observed in Figures 6-11 and 6-12).  

 

6.5.2 Steepest Descent Method 

 

The Steepest Descent method which uses conjugate directions for minimising a two 

variable function was discussed in Section 5.5.2. The method is based on finding the 

direction of the steepest descent of the function in order to find the function minimum 

value.  

The initial hole radius was set as 0.05 mm and the initial hole position was set as 0.1 m. 

The parameter values after the optimisation are shown in Table 6-8. It can be seen from the 

table that neither the hole radius nor the hole position have been accurately predicted. The 

Parameter 
 

(TV) (SV) 
 

Value 
(OV) 
 

it eval 100×
−

TV
OVTV  

(%) 

rh (mm) 2.000 0.050 2.050 36 47 2.5 
L (m) 0.310 0.100 0.304 43 55 1.9 1

Table 6-7: Hole size and position predictions for cylindrical pipe 1 with 2 mm radius leak 

using the Alternating Variables method 
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reason for this is that the Steepest Descent method is a derivative based method and hence 

is unable to cope with sudden changes in the gradient of the objective function. This is 

because the gradient of the function is poorly defined at regions of sudden change and, 

hence, the function derivative cannot be calculated. This leads to a breakdown in the 

optimisation and the subsequent poor predictions. 

 

 

 
  

 Parameter 
target 
value 

Parameter 
start 
value 

Optimised 
parameter 

 

 

 

 

6.6 Conclusion 

 

From the results shown in this chapter, it can be concluded that it is possible to investigate 

a single leak in a cylindrical pipe using numerical optimisation. Correct predictions of the 

hole size and hole position are possible using methods which employ predetermined step 

size and search directions. These methods are the one variable Grid Search method and the 

Golden Section Search method. For the two variable methods, the Alternating Variables 

method was able to give correct predictions of both the hole size and hole location. 

 

The derivative based methods such as the Steepest Descent and the Newton-Raphson 

method (which involve calculating the gradient of the objective function) generally gave 

predictions of hole size and position that were in poor agreement with the actual values. 

This can be attributed to the fact that the objective functions used in this chapter exhibited 

Parameter 
 

(TV) (SV) 
 

Value 
(OV) 
 

it eval 100×
−

TV
OVTV  

(%) 

-6rh (mm) 2.000 0.050 1.06×10 100 
l1(m) 0.310 0.100 0.367 44 176 18 

Table 6-8: Hole size and position predictions for cylindrical pipe 1 with 2 mm radius leak 

using the Steepest Descent method 
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sudden changes in slope in certain regions. For example, it was shown in the objective 

function plot of Figure 6-1 that a sharp peak was present at a hole radius of approximately 

0.7 mm.  

 

In Chapter 7, the Rosenbrock algorithm, a 0th order method (a method which doesn’t 

involve calculating the derivatives of a function) described in Chapter 5, Section 5.7.7 is 

applied to the minimisation of functions of more than one variable. Judging from the 

performance of the non derivative based methods in this Chapter, it is expected that a 0th 

order method is likely to yield better predictions of the sizes and positions of multiple 

holes in the wall of a pipe than a higher order method would.   
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Chapter 7 

 

Investigating Multiple Leaks in a Cylindrical Duct using Numerical 

Optimisation 

 

In this chapter, the problem of detecting, locating and sizing multiple leaks in a cylindrical 

duct is addressed. A similar procedure to that used in Chapter 6 for a single leak is 

employed. First of all, the input impedance of the duct under investigation is determined. 

This input impedance is treated as the target value for the optimisation routine. Next, a 

numerical model of a duct of arbitrary length containing several leaks is derived. The 

theoretical input impedance of this duct model is calculated and used as the start value for 

the optimisation routine. The optimisation routine then proceeds to adjust the length of the 

modelled duct, together with the positions and sizes of the leaks, recalculating the 

theoretical impedance each time until it matches the target value and the objective function 

is minimised. At this stage, the length, position and size of leaks in the numerical duct 

model should match that of the duct. 

 

In Chapter 6 it was demonstrated that the non-derivative based optimisation methods (such 

as the Interval Reduction, Grid Search and Golden Section Search methods) gave accurate 

predictions of both hole size and hole position when used to investigate a single leak in a 

duct. On the other hand, the derivative based optimisation methods, in which the gradient 

of the objective function must be calculated at each iteration step, were unable to predict 

the hole size and hole position correctly. This was attributed to the sharp peaks that were 

observed in the objective function plots, with the slope of the function being poorly 

defined in regions of sudden gradient change.  
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As a result of the success of the non-derivative based optimisation methods, it was decided 

to investigate the possibility of applying the multidimensional Rosenbrock algorithm, 

discussed in Section 5.7.5, to the problem of examining multiple leaks in a duct. The 

Rosenbrock algorithm is a 0th order numerical optimisation method and therefore no 

derivatives of the objective function are required to arrive at the solution. The Rosenbrock 

algorithm has been previously applied with great success to the bore reconstruction of 

musical wind instruments [55-58]. 

 

Over the coming sections, the application of the Rosenbrock algorithm to the problem of 

investigating multiple leaks in a duct is discussed. In Section 7.2, the problem of predicting 

the sizes of the holes in the walls of a cylindrical pipe containing two leaks, when the 

geometry of the pipe and the leak locations are known, is investigated. In Section 7.3, the 

optimisation approach is extended further to enable both the sizes and the positions of the 

holes in a pipe containing three leaks to be predicted. Finally, in Section 7.4, a procedure 

for identifying the number of leaks in a cylindrical pipe and predicting their sizes and 

positions is presented. 

 

In all the test cases for the Rosenbrock algorithm demonstrated in Section 7.1, 7.2 and 7.3, 

the boundary parameters and starting points of the minimisers were set to represent 

extreme initial values for the optimisation. The results of the predictions of the radii and 

locations of the leaks shown in the following sections, therefore, also demonstrate the 

robustness of the Rosenbrock algorithm. The algorithm was tested with various boundary 

and initial values closer to the solution than the extreme values. As expected these values 

led to improved performance in the predictions from the optimisation. For the purposes of 

this thesis only, the prediction results for the extreme initial values have been shown. 
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7.1 Predicting the Sizes of Multiple Leaks in a Duct 

 

To investigate the effectiveness of the Rosenbrock algorithm in predicting the sizes of 

several leaks in a cylindrical pipe when the leak locations and the pipe’s geometry are both 

known, a new test object was introduced. This test object was a cylindrical pipe of total 

length l = 0.8 m, internal radius r = 5 mm and wall thickness lh = 1 mm. It contained two   

2 mm radius sideholes located at distances of 0.22 m and 0.44 m from the input end of the 

pipe. 

 

When investigating a pipe containing two leaks whose locations are known, there are two 

function minimisers – the radii of the two holes, rh(1) and rh(2). The objective function 

(whose general form is given in Equation (6.1)) can be written as 

 

( )∑
=

−=
40

4
)2()1((mod)(exp))2()1( )83.48,,(83.48),(

i
hhininhh irrzizrrf  (7.6)

 

As previously, zin(exp) represents the target impedance for the optimisation routine, zin(mod) is 

the theoretical input impedance of a model duct containing two sideholes (calculated in the 

manner described in Chapter 2 using fixed parameters r = 5 mm, l  = 1 mm, l  = 0.22 m, lh 1 2 

= 0.22 m and l3 = 0.36 m to match the dimensions of the test object), and rh(1) and rh(2) are 

the two function minimisers. Both z  and zin(exp) in(mod) can represent either the impedance 

magnitude or the impedance phase.  

 

In implementing the Rosenbrock algorithm, the boundary parameters for the minimisers 

were set to be 0.5 mm to 3 mm. The initial values of the minimisers must lie within these 

boundaries and were chosen to be rh(1) = 0.6 mm and rh(2) = 0.6 mm.  
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Figure 7-1: Comparison between the initial theoretical impedance of the two leak duct 

model and the experimentally measured (target) impedance of the cylindrical pipe 

containing two 2 mm radius leaks using magnitude information 
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Figure 7-2: Comparison between the initial theoretical impedance of the two leak duct 
model and the experimentally measured (target) impedance of the cylindrical pipe 
containing two 2 mm radius leaks using phase information 
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Figures 7-1 and 7-2 compare the start impedance of the model with the target impedance 

for the optimisation in terms of magnitude and phase respectively. Clearly there is a poor 

match between the two impedances both in magnitude and phase terms. 

 

 and rBy varying the values of rh(1) h(2), the Rosenbrock algorithm attempts to minimise the 

value of the objective function and hence improve the match between the two impedances. 

The initial step size was set as 0.05 mm. When carrying out the searches in each iteration 

cycle of the Rosenbrock algorithm, in the case of a success (a reduction in the calculated 

value of the objective function) the step size was multiplied by +3 while in the case of a 

failure (an increase in the calculated value of the objective function) the step size was 

multiplied by -0.5. Using these settings, the Rosenbrock algorithm was used to minimise 

the objective function of Equation (7.6). 

 

Figures 7-3 and 7-4 compare the final impedance of the theoretical model (after 100 

iterations of the Rosenbrock algorithm) with the target impedance in terms of both 

magnitude and phase. There is clearly now an excellent agreement between the two 

impedances both in magnitude and in phase terms. 

 

The predictions of the radii of the two holes resulting from the optimisation are presented 

in Table 7-1. Examination of the table reveals that when the optimisation routine was 

applied to the measurements of impedance magnitude, predictions of rh(1) = 2.02 mm and 

rh(2) = 1.99 mm were achieved. These agree with the actual 2 mm radius values to within a 

1% error. Meanwhile, when the measurements of impedance phase were used for the 

optimisation, predictions of rh(1) = 1.94 mm and rh(2) = 1.93 mm were made. These agree 

with the actual radii of the holes to within 4% accuracy. 
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Figure 7-3: Comparison between the final theoretical impedance of the two leak duct 

model and the experimentally measured (target) impedance of the cylindrical pipe 

containing two 2 mm radius leaks using magnitude information 
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Figure 7-4: Comparison between the final theoretical impedance of the two leak duct 

model and the experimentally measured (target) impedance of the cylindrical pipe 

containing two 2 mm radius leaks using phase information 
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Although the impedance magnitude measurements provided slightly more accurate 

predictions of the hole radii, Table 7-1 shows that fewer steps were required to arrive at the 

predictions when using the phase information. Indeed, the average number of steps per 

iteration cycle when using the impedance phase measurements was 20.8 compared with 

36.8 when using the impedance magnitude. 

 

 

 

Start 
parameter 
value (SV) 

Target 
parameter 
value (TV) 

Optimised 
parameter 
value  (OV) 

Average 
iteration 
steps (AS) 

 

100×
−

TV
OVTV  

Parameter 
 

   (%) 
Magnitude objective function 
r 0.60 mm 2.00 mm 2.02 mm 1.0 h(1) 36.8 r 0.60 mm 2.00 mm 1.99 mm 0.5 h(2)
Phase objective function 
r 0.60 mm 2.00 mm 1.94 mm 3.0 h(1) 20.8 r 0.60 mm 2.00 mm 1.93 mm 3.5 h(2)
 

Table 7-1: Hole size predictions with associated speeds and accuracies for the cylindrical 

pipe with two 2 mm radius leaks using Rosenbrock algorithm with two leak duct  model 

 

 

 

7.2 Predicting the Sizes and Positions of Multiple Leaks in a Duct 

 

In most practical situations when investigating a leaking pipe, neither the sizes nor the 

positions of the holes are known. In this section, the Rosenbrock algorithm is used to 

predict both the sizes and the positions of several leaks in a duct. The only knowledge  

required by the algorithm is the pipe’s internal radius, its wall thickness and how many 

leaks are present. In order to demonstrate the effectiveness of the Rosenbrock algorithm in 

making such predictions, another cylindrical pipe test object was used. This cylindrical 
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pipe had a total length l = 1.02 m, an internal radius r = 5 mm and a wall thickness            

lh = 1 mm. It contained three 2 mm radius sideholes located at distances of 0.22 m, 0.44 m 

and 0.66 m from the input end of the pipe. 

 

When investigating a pipe with three leaks whose sizes and positions are unknown, there 

are seven function minimisers – the radii of the three holes,  rh(1), rh(2) and rh(3), and the four 

length parameters, l , l , l  and l1 2 3 4 (see Figure 2-3), that define the positions of the three 

holes. The objective function for the optimisation is written: 

 

( )
∑

=

−
=

40

4 4)3(3)2(2)1(1(mod)

(exp)

4)3(3)2(2)1(1 )83.48,,,,,,,(
83.48

),,,,,,(
i hhhin

in

hhh ilrlrlrlz
iz

lrlrlrlf  (7.7)

 

where z  again represents the target impedance for the optimisation routine, zin(exp) in(mod) is 

the theoretical input impedance of a model duct of arbitrary length containing three 

sideholes (calculated in the manner described in Chapter 2 using fixed parameters              

r = 5 mm and lh = 1 mm to match the internal radius and wall thickness of the test object), 

and rh(1), rh(2), rh(3), l , l , l1 2 3 and l  are the seven function minimisers. Both zin(exp) and zin(mod)4  

can represent either the impedance magnitude or the impedance phase. 

 

Before applying the Rosenbrock algorithm to the minimisation of the objective function of 

Equation 7.7, boundary parameters of 0.5 mm to 3 mm were set for the radius minimisers 

and boundary parameters of 0.05 m to 0.5 m were set for the length minimisers. The three 

hole radii were set to initial values of rh(1) = 0.6 mm, rh(2) =0.6 mm and  rh(3) = 0.6 mm  

 

whilst the four length parameters were set to initial values of  l1 = 0.1 m, l2 = 0.1 m,           

l3 = 0.1 m and l4 = 0.1 m. Using these initial values, the start value of the input impedance 

of the model was calculated. Figures 7-6 and 7-7 compare this start impedance with the 
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target impedance for the optimisation in terms of both magnitude and phase. As might be 

expected, for both the magnitude and the phase, there is a poor match between the two 

impedances. 

 

The Rosenbrock algorithm then adjusted the values of the seven minimisers until the 

objective function of Equation (7.7) was minimised. As described in the previous section, 

when carrying out the searches, a multiplier of +3 was applied for a success and a 

multiplier of -0.5 was applied for a failure.  

 

Figures 7-7 and 7-8 compare the final impedance of the theoretical model (after 100 

iterations of the Rosenbrock algorithm) with the target impedance in terms of both 

magnitude and phase. From Figure 7-8, it is clear that there is an excellent match between 

the impedance phase of the model after optimisation and the target impedance phase. 

However, the impedance magnitudes of Figure 7-7 exhibit a less good agreement. These 

results are borne out in the predictions of the radii and locations of the three holes that are 

presented in Table 7-2. 
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Figure 7-5: Comparison between the initial theoretical impedance of the three leak duct 

model and the experimentally measured (target) impedance of the cylindrical pipe 

containing three 2 mm radius leaks using magnitude information 
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Figure 7-6: Comparison between the initial theoretical impedance of the three leak duct 

model and the experimentally measured (target) impedance of the cylindrical pipe 

containing three 2 mm radius leaks using phase information 
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Figure 7-7: Comparison between the final theoretical impedance of the three leak duct 

model and the experimentally measured (target) impedance of the cylindrical pipe 

containing three 2 mm radius leaks using magnitude information 
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Figure 7-8: Comparison between the final theoretical impedance of the three leak duct 

model and the experimentally measured (target) impedance of the cylindrical pipe 

containing three 2 mm radius leaks using phase information 
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Start 
parameter 
value (SV) 

Target 
parameter 
value (TV) 

Optimised 
parameter 
value  (OV) 

Average 
iteration 
steps (AS) 

 

100×
−

TV
OVTV  

Parameter 
 

   (%) 
Magnitude objective function 
r 0.600 mm 2.000 mm 1.800 mm 10.0 h (1)
r 0.600 mm 2.000 mm 2.100 mm 5.0 h (2)
r 0.600 mm 2.000 mm 1.900 mm 5.0 h(3)

0.100 m 0.220 m 0.199 m 9.5 1l  

 

 

 

Examination of Table 7-2 reveals that when the optimisation routine was applied to the 

measurements of impedance magnitude, hole radius predictions of rh(1) = 1.80 mm,        

rh(2) = 2.10 mm and rh(3) = 1.90 mm were achieved. These agree with the actual 2 mm 

radius values with accuracies of 10%, 5% and 5% respectively. The impedance phase 

2l  0.100 m 0.220 m 0.202 m 8.2 
62 

0.100 m 0.220 m 0.208 m 5.2 3l  
0.100 m 0.360 m 0.336 m 6.7 4l  

Phase objective function
r 0.600 mm 2.000 mm 1.900 mm 5.0 h (1)
r 0.600 mm 2.000 mm 1.900 mm 5.0 h (2)
r 0.600 mm 2.000 mm 1.900 mm 5.0 h(3)

0.100 m 0.220 m 0.212 m 3.7 1l  

2l  0.100 m 0.220 m 0.209 m 4.7 
47.2 

0.100 m 0.220 m 0.214 m  2.7 3l  
0.100 m 0.360 m 0.364 m 1.2 4l  

Table 7-2: Hole size predictions with associated speeds and accuracies for the cylindrical 

pipe with three 2 mm radius leaks using Rosenbrock algorithm with three leak duct model 
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measurements gave results of similar accuracy with hole radius predictions of              

rh(1) = 1.90 mm,  rh(2) = 1.90 mm and rh(3) = 1.90 mm, each agreeing with the actual 2 mm 

radius values to within 5%. 

 

The hole position predictions resulting from the application of the optimisation routine to 

the impedance magnitude measurements were l  = 0.199 m, l  = 0.202 m, l1 2 3 = 0.208 m, and 

l4 = 0.336 m. These agree with the actual values to within errors of 9.5%, 8.2%, 5.2% and 

6.7% respectively. Better accuracy was achieved from the impedance phase measurements 

with hole position predictions of l  = 0.212 m, l1 2 = 0.2096 m, l  = 0.214 m, and      l3 4 = 

0.364 m, agreeing with the actual values to within 3.7%, 4.7%, 2.7% and 1.2% 

respectively. 

 

Close examination of the plots of Figures 7-8 and 7-9 shows that the phases of the final 

impedance of the model and the target impedance were in better agreement than their 

magnitudes. The prediction results from Table 7-2 also show better results for the phase 

values. When the experimental results from this section (which incorporate both radius and 

length predictions) are considered alongside those of Section 7.1 (showing the impedance 

magnitude values gave better predictions than the impedance phase values for the hole 

radius alone), it appears that the phase values are more affected by variations in length 

whilst the magnitude values are more influenced by variations in radius.  

 

The superior predictions provided by the impedance phase measurements were not at the 

expense of computational speed. Indeed, the average number of steps per iteration cycle 

was again found to be lower for the phase objective function than for the magnitude 

objective function.  
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It is worth noting that, as might be expected, the average number of steps per iteration 

cycle for the three leak objective functions shown in Table 7-2 are greater than the average 

number of steps for the corresponding two leak objective functions shown in Table 7-1.  

 

7.3 Identifying the Number of Leaks in a Duct and Predicting their Sizes and 

Positions  

 

In Sections 7.2 and 7.3, the number of leaks present in the duct under investigation had to 

be known before predictions of the radii and positions of the holes could be made. In this 

section, it is shown that, providing the number of sideholes included in the theoretical duct 

model is greater than the actual number of leaks in the duct under test, the Rosenbrock 

algorithm can be used both to identify the number of leaks in a duct and to predict their 

sizes and positions. 

 

To demonstrate this, the cylindrical pipe containing two leaks (first introduced in      

Section 7.2) was used as the test object. This pipe had the following parameters: r = 5 mm, 

lh = 1 mm, l1 = 0.22 m, l  = 0.22 m, l  = 0.36 m, rh(1) = 2 mm and rh(2)2 3  = 2 mm. The 

experimentally determined input impedance of the pipe zin(exp) again provided the target 

value for the optimisation routine. 

 

Although the duct under investigation contained two leaks, a theoretical duct model was 

constructed which contained three sideholes. This model was identical to that used in 

Section 7.3 with two fixed parameters r = 5 mm and lh = 1 mm (to match the internal 

radius and wall thickness of the test object) and seven adjustable parameters rh(1), rh(2), rh(3), 

l1, l , l  and l2 3 4. As a result, the objective function described by Equation (7.7) was used in 

the optimisation. 
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Just as in Section 7.3, boundary parameters of 0.5 mm to 3 mm were set for the radius 

minimisers and boundary parameters of 0.05 m to 0.5 m were set for the length minimisers. 

The three hole radii were all set to an initial value of 0.6 mm whilst the four length 

parameters were all set to an initial value of 0.1 m. Using these initial values, the start 

value of the input impedance of the model was calculated. Figures 7-10 and 7-11 show the 

poor match between the start impedance and the target impedance terms of both magnitude 

and phase.  

 

Applying the Rosenbrock algorithm as before, with a multiplier of +3 for a success and a  

multiplier of -0.5 for a failure during the searches, the seven minimisers were adjusted until 

the objective function was minimised. Figures 7-12 and 7-13 compare the final impedance 

of the theoretical model (after 100 iterations of the Rosenbrock algorithm) with the target 

impedance in terms of both magnitude and phase. 
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Figure 7-9: Comparison between the initial theoretical impedance of the three leak duct 

model and the experimentally measured (target) impedance of the cylindrical pipe 

containing two 2 mm radius leaks using magnitude information 
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Figure 7-10: Comparison between the initial theoretical impedance of the three leak duct 

model and the experimentally measured (target) impedance of the cylindrical pipe 

containing two 2 mm radius leaks using phase information 
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Figure 7-11: Comparison between the final theoretical impedance of the three leak duct 

model and the experimentally measured (target) impedance of the cylindrical pipe 

containing two 2 mm radius leaks using magnitude information 
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Figure 7-12: Comparison between the final theoretical impedance of the three leak duct 

model and the experimentally measured (target) impedance of the cylindrical pipe 

containing two 2 mm radius leaks using phase information 
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Again, examination of the two graphs reveals an excellent match between the final 

impedance of the theoretical duct model and the target impedance both in terms of 

magnitude and phase. The resultant predictions of the sizes and positions of the leaks are 

presented in Table 7-3. 

 

 

Start 
parameter 
value (SV) 

Target 
parameter 
value (TV) 

Optimised 
parameter 
value  (OV) 

Average 
iteration 
steps (AS) 

 

100×
−

TV
OVTV  

Parameter 
 

   (%) 
Magnitude objective function 
r 0.600 mm 2.000 mm 1.900 mm 5.0 h (1)
r 0.600 mm 2.000 mm 1.800 mm 10.0 h (2)
r 0.600 mm 0.000 mm 0.100 mm N/A h(3)

0.100 m 0.220 m 0.215 m 2.3 1l  

2l  0.100 m 0.220 m 0.212 m 3.7 
69 

0.100 m 0.360 m 0.348 m 3.4 3l  
0.100 m 0.000 m 0.000 m N/A 4l  

Phase objective function
r 0.600 mm 2.000 mm 1.900 mm 5.0 h (1)
r 0.600 mm 2.000 mm 2.100 mm 5.0 h (2)
r 0.600 mm 0.000 mm 0.000 mm N/A h(3)

0.100 m 0.220 m 0.220 m 0.1 1l  

2l  0.100 m 0.220 m 0.223 m 1.5 
51 

0.100 m 0.360 m 0.366 m 1.8 3l  
0.100 m 0.000 m 0.002 m N/A 4l  

 

Table 7-3: Hole size predictions with associated speeds and accuracies for the cylindrical 

pipe with two 2 mm radius leaks using Rosenbrock algorithm with three leak duct model 

 

From Table 7-3 it can be seen that after the optimisation had been carried out using 

measurements of input impedance magnitude, the radii of the three holes in the model duct 

were rh(1) = 1.9 mm, rh(2) = 1.8 mm and rh(3) = 0.1 mm. Of course, the cylindrical pipe 

under investigation only contained two leaks. This is reflected in the very small final radius 

for the third hole in the model duct. The radii of the first two holes in the model duct agree 

with the actual radii of the holes in the test object to within 10% (a similar accuracy to that 
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achieved in Section 7.2). The positions of the holes in the model duct after optimisation 

using the measurements of impedance magnitude were l  = 0.215 m, l1 2 = 0.212 m,             

l3 = 0.348 m and l  = 0.0003 m. The tiny final value of l4 4 is again a reflection of the fact 

that there was not actually a third hole in the cylindrical pipe under investigation. In the 

model duct, the third hole has been predicted as being very small and has been placed very 

close to the end of the pipe. The other three length parameters are shown to agree with the 

actual values to within a 3.7% accuracy.  

 

Using the phase measurements for the optimisation using the Rosenbrock algorithm 

provided similar results. After the optimisation, the radii of the three holes in the duct 

model were rh(1) = 1.9 mm, rh(2) = 2.1 mm and rh(3) = 0.0 mm. In this case, the third hole in 

the model duct actually has a zero radius (i.e. is non-existent). The final positions of the 

holes in the model duct were given by l  = 0.219 m, l  = 0.223 m, l  = 0.367 m and      l1 2 3 4 = 

0.0002 m. Again, the tiny value of l4 reflects the fact that this hole didn’t exist in the 

cylindrical pipe under investigation. When the optimisation was carried out using 

impedance phase measurements, slightly more accurate predictions of the hole positions 

were achieved with the first three length parameters agreeing with the actual values to 

within 1.8%. 

 

These results demonstrate that, providing that the theoretical duct model used in the 

objective function contains more sideholes than the pipe under investigation, the number of 

leaks in the pipe can be identified and their sizes and positions accurately predicted using 

an optimisation approach.  

 

Finally the Resonbrock algorithm was tested with a theoretical model in the objective 

function having fewer sideholes than the leaks in the pipe. In all such test cases there was a 
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total collapse in the prediction results from the optimisation and as such results have not 

been shown in this thesis. 
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Chapter 8 

 

Conclusion 

 

8.1 Achievement of Aims   

 

A method has been successfully developed in this thesis to detect, locate and predict the 

size of multiple leaks in air-filled pipes. To investigate the leaks, the method was applied 

to the acoustic reflections returning from a cylindrical pipe having one or more leaks in its 

side wall.  The reflections were generated and acquired for processing using an acoustic 

pulse reflectometer.  

 

The method presented in this thesis was first applied to the case of a single hole in the side 

wall of a cylindrical pipe as discussed in Chapter 4. During this investigation it was 

discovered that in order to fully investigate the range of hole sizes from 0.2 mm diameter 

up to 4 mm diameter, two separate theories needed to be applied to the acquired acoustic 

reflections returning from the cylindrical pipe under investigation. The original method 

developed by Sharp, and based on theory developed by Keefe for “large radius” holes, was 

applied to the investigation of holes of 1 mm, 2 mm, 3 mm and 4 mm diameters. The 

success of the method in predicting hole sizes within this range was excellent. All the 

predictions agreed with the physically measured values to within an accuracy of 10%. 

However, the method broke down for predictions involving holes of  0.2 mm and 0.3 mm 

diameters.  
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The method was adapted using theoretical approximations for “small radius” holes 

developed by Backus. This adapted method was applied to a pipe containing holes of 

diameter 0.2 mm and 0.3 mm. With the adjustments to the theory, the method now 

produced predictions of the hole sizes that agreed with the physically measured values to 

within a 10% accuracy.   

 

Having successfully investigated the case of a single leak present in the side wall of a 

cylindrical pipe, in Chapter 5 several numerical optimisation methods which can be 

applied to multiple variable functions were discussed. The different possible methods were 

applied in Chapter 6 to the simple case of a single leak in the side wall of a cylindrical 

pipe. It was concluded that optimisation methods which are non-derivative based offered 

the best option of minimising the objective functions presented in Chapter 6.   

 

In Chapter 7, the non-derivative based Rosenbrock algorithm was described and applied to 

the case of a pipe containing several leaks. In this way, it was possible to predict both the 

size and position of up to three leaks. A method for predicting the number of leaks in a 

cylindrical pipe was also implemented. 

 

Three different cases were investigated during the application of the Rosenbrock 

algorithm. For the case of two leaks of known location in the side wall of a cylindrical 

pipe, the hole radius predictions agreed with the actual values to within 1% error when 

using a magnitude-based objective function and within 4% error when using a phase-based 

objective function.  When there were three holes of unknown size and position, the results 

when using the magnitude-based objective function for the radius and position predictions 

were within 10% accuracy. The results when using the phase-based objective function 

were accurate to within 5 % for the radius and position predictions.  
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The results from the leak investigations using both analytical methods and numerical 

optimisation methods show that the aims of the thesis stated in the introduction have been 

fully met by the work covered in this research. 

 

8.2 Future Work   

 

8.2.1 Larger Diameter Pipes 

 

The investigations in this thesis were limited to cylindrical pipes whose diameters were 

less than the wavelength of the propagating sound wave. Previous work done in this 

specific area of research has also been limited to such pipe diameters, largely due to the 

complexity of having to deal with higher order modes of sound wave propagation if larger 

diameter pipes are employed.  However, with the successful application of numerical 

optimisation of objective functions that incorporate both theoretical impedance models and 

experimentally measured impedances, extending the investigations to larger pipes has 

become more feasible. By including the effects of higher order modes in the theoretical 

impedance models, the optimisation algorithms can be applied to the problem in a similar 

procedure to that described in Chapters 6 and 7.   

 

8.2.2 Complex Bore Geometries and Modelling Musical Wind Instruments 

 

In this thesis, the studies were confined to investigating leaks in straight cylindrical pipes. 

By adapting the theoretical model of the duct that is used in the objective function, it 

should be possible to investigate leaks in ducts with non-cylindrical, non-uniform 

geometry. The first step would be to extend the multiple leak investigations to conical and 
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horn-shaped ducts. Further extension to more complex bore geometries would then be 

possible by treating the shape as a combination of multiple slices. These shapes can then be 

connected by existing techniques such as transmission line modelling (the technique of 

transmission matrices upon which the technique of transmission line modelling is based 

was described in Chapter 3 of this thesis). This technique has been successfully applied in 

musical acoustics to calculate the input impedance of musical wind instruments. The 

different parts of the wind instrument, which are the mouthpiece, lead pipe and the bell, 

have all been successfully modelled and their impedances calculated. The work presented 

in this thesis can be used to extend work in this important area of research to cope with the 

modelling of tone holes. 

 

8.2.3 Leaks of Various Shapes 

 

The work in this thesis was based on modelling the leaks in cylindrical pipes as holes of 

circular geometry. However, the derivation of impedance equations for narrow tubes with 

an arbitrary cross-section has been discussed by Stinson [59]. He presented equations for 

calculating the input impedance of holes with rectangular, slit and triangular shapes. 

Though, most of these equations were applied in the characterisation of sound absorbers, 

the basic underlining derivations are the same and are applicable to the research in leak 

detection.  

 

8.2.4 Longer Pipes 

 

As the leak investigations presented in this work are based on the experimental 

measurement of input impedance using the object’s input impulse response, the methods 
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described should be able to work on any pipe length as long as the impulse response from 

the object has been successfully separated from the noise signal. 

 

Currently the technique of acoustic pulse reflectometry has been used to successfully make 

measurements of tubes with lengths similar to the cylindrical pipes investigated in this 

thesis (i.e. up to approximately 2 m). However, versions of the acoustic pulse reflectometer 

that can be used for measuring the input impulse response of longer objects have been 

proposed.  One of the methods suggested is that of using a longer source tube. This is 

based on the idea that the increased distance between the speaker and the object under 

investigation, would allow for a longer travelling time of the reflections from the object 

before encountering interference from the reflections travelling back from the speaker. 

This method has a limitation in that it is not physically possible to keep increasing the 

length of the source tube of the reflectometer. Alternative methods have been proposed by 

Marshall, Schroeder, Amir and Sharp. The method proposed by Schroeder is considered to 

be more established. This method involves the introduction of a second microphone in the 

source tube such that the input impulse response of the object is found by deconvolving the 

reflected signal with the incident signal.  

 

8.2.5 Water Pipes 

 

It should be possible to extend the leak investigations to water-filled pipes. Several 

acoustical methods currently being used to detect leaks in water-filled pipes show that it is 

possible to extract the leak signal from the noise signal transmitted from the position of the 

leak using existing signal processing techniques. For example the cross-correlation 

technique has been successful in separating the leak signal and locating the leak using a 

simple algebraic relationship between the time lag, sensor-to-sensor spacing, and sound 

propagation velocity in the pipe. The separated noise signal can also be used to identify the 
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type of leak from its spectral charateristics. For example, the leak or orifice signal is 

known to occur within the 500 – 800 Hz range; the leak water impacting on the soil will 

occur normally in the range of 20 -300Hz [60]. 

 

The method described in this thesis offers a more-controlled signal than existing methods 

because the incident wave and reflections are self-generated from the input pulse triggered 

from a noise source such as a speaker. Since the characteristic of the background noise in 

the water pipe is a known variable, appropriate filtering coefficients can be described from 

which it is possible to extract the reflections resulting from the transmitted pulse. It is 

expected that the background noise will be varying as the factors contributing to the noise 

are not constant. Techniques to deal with the changing background noise can be used such 

as adaptive filtering where the filter coefficients are automatically adjusted in real time.  

Having separated the reflections from the noise source, apart from predicting the size and 

position of the leak, it should be possible to study the frequency content of the extracted 

leak signal to identify the leak source or type. One important aspect of this work is that a 

successful application of the method to water pipes would provide a means of detecting 

smaller leaks in water pipe than is currently possible. This is crucial in the water industry 

as it would offer the possibility of identifying cracks in a pipeline before a water burst 

occurs.  
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