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Abstract

Particle Image Velocimetry (PIV) is a non-intrusive technique for simultaneously
measuring the velocities at many points in a fluid flow. The fluid is seeded with
tracer particles and the region under investigation is illuminated. An image of the
illuminated region is captured and then, a short time period later, a second image is
taken. Suitable analysis of these images yields an instantaneous velocity vector map.

Until recently, restrictions in the rate at which images could be captured have
limited the PIV technique to the analysis of slow flows. However, advances in camera
technology have now opened up the possibility of using PIV in the analysis of faster
flows. Indeed, image capture rates are now fast enough to enable two images to be
captured during a fraction of an acoustic cycle, indicating the potential for using PIV
to analyse sound fields.

In this thesis, after some aspects of sound field theory have been outlined and
following a discussion of the theory of PIV, the development of experimental PIV
apparatus for measuring sound fields is described. Measurements of the temporal
variation in the velocities of particles within some common sound fields are presented.
In particular, the passage of an acoustic pulse is monitored and the sinusoidal motion
of particles in a resonating tube is recorded yielding the corresponding standing wave
pattern. Finally, the main limitations of the PIV technique when applied to acoustic
fields are discussed.
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C h a p t e r 
Introduction

A
fter the first acoustic velocity measurements were carried out by

Rayleigh at the end of the th century, there followed a long period
during which there were only small advances in the measurement of ve-

locities in sound fields. Indeed, it was nearly a century later, with the employ-
ment of optical methods, that acoustic velocimetry took its next leap forward.

Particle Image Velocimetry (PIV) has become a widely used optical method
for measuring fluid flow velocities. It has the unique features of being non-
intrusive and whole-field; that is, simultaneously measuring the velocities at
many points in a fluid flow without any disturbance to it. The technique in-
volves seeding the fluid with tracer particles and illuminating the region under
investigation. Two or more images of the illuminated region are then captured
in rapid succession. Finally, the images are analysed to extract the velocity values.

Until recently, restrictions in the rate at which images could be captured have
limited the PIV technique to the analysis of slow flows. However, advances in
camera technology have now opened up the possibility of using PIV in the analy-
sis of faster flows, in particular for the measurement of sound fields.

. The Aims

The main goals of the present work are:

. To investigate the possibility of employing PIV to study high-speed acoustic
motions, exploring the limits under which the principles underpinning PIV
remain valid for acoustic measurements.





Introduction

. To develop a PIV set-up which is capable of measuring acoustic particle ve-
locities. That is, a measurement system that is able to accurately record the
oscillatory motion of particles in sound fields.

. To employ the extended PIV set-up in the spatial and temporal measurement
of acoustic velocity.

. Outline of Thesis

Chapter  presents a brief theory of sound fields. In particular, the equations of
resonant tubes, which are later studied experimentally, are introduced.

Chapter  is an in-depth review of the theory and development of Particle
Image-Velocimetry. The chapter covers the structure of PIV systems, describing
in detail each component of the technique. It then presents the theory behind
the most common method of PIV data analysis. Throughout, specific attention
is paid to the digital form of the technique.

Based on the previous chapters, Chapter  discusses the potential problems
associated with using PIV for sound field measurements. The assumptions upon
which PIV are based are examined to verify that they remain valid when measur-
ing sound fields. In particular, the level of intrusion caused by the measurements
and the degree to which the results truly reflect the actual acoustic velocities are
investigated.

Chapter  describes the experimental configuration used in this study pre-
senting the design of the data acquisition and data analysis systems.

Chapter  examines some applications of acoustic PIV. It presents the results
of the measurement of some common sound fields. In particular, the passage of
an acoustic pulse is monitored and the sinusoidal motion of particles in resonat-
ing tube is recorded yielding the corresponding standing wave pattern. Finally,
it discusses some unexpected results encountered during the acoustic PIV mea-
surement of oscillatory motions.

The thesis concludes with Chapter  which contains a summary of the main
findings of the research and some ideas for future work.





Part I

Theory







C h a p t e r 
Sound Fields

A l l s c i e n c e i s e i t h e r
p h y s i c s o r
s t a m p c o l l e c t i n g .

Ernest Rutherford

T
his chapter covers those parts of sound field theory which are related to
this study. A detailed development of the theory presented in this chap-
ter can be found in most standard acoustics and fluid dynamics text-

books (Meyer and Neumann ; Morse and Ingard ; Kinsler et al.

; Skudrzyk ; Landau and Lifshitz ) and consequently only the
most pertinent results are outlined here.

. Terminology

.. Fluid Flows

Throughout this study, it is considered that the fluid under investigation con-
sists of fluid elements, which are volumes small enough that all the sound field
parameters can be assumed to be constant within them. The position of a fluid
element, in the Cartesian co-ordinate system, is denoted by

#—x = (x, y, z) = xx̂ + yŷ + zẑ, (..)

where x̂, ŷ and ẑ are the unit vectors. When at rest, i.e. when there is no force
applied to any of its elements, the fluid has an equilibrium pressure of P0 and





Sound Fields

equilibrium density of ρ0.
When the effect of energy dissipation is considered, the fluid is said to be

real or viscous. Energy dissipation in fluids is an irreversible process which is
caused by viscosity, which is the internal friction between molecules of the fluid,
or thermal conduction or both. In the idealised case, where all of these effects are
negligible, the fluid is referred to as ideal or inviscid.

Fluids are also classified according to their compressibility. In a compressible
fluid the equilibrium density is a function of space and time while it is a constant
value in an incompressible fluid.

.. Acoustical Parameters

In the presence of forces generated by a sound field, the instantaneous properties
of the fluid are said to be acoustical in nature. Under this condition, a fluid
element has an instantaneous displacement from its equilibrium position denoted
by

#—
ξ = (ξx, ξy, ξz).

The velocity associated with this instantaneous displacement is known as the
acoustic velocity and is denoted

#—v = (vx, vy, vz) = ∂t
#—
ξ . (..)

The acoustic pressure p is the difference between the the instantaneous pressure P

and the equilibrium pressure:

p = P − P0. (..)

The instantaneous density ρ defines the condensation of the fluid as

s =
ρ − ρ0

ρ0
. (..)

. Fundamental Equations

A sound field in a fluid can be fully described by the corresponding acoustic
velocity #—v and two thermodynamic quantities, which are usually acoustic pres-





.. Fundamental Equations

sure P and condensation s. These parameters are related by three fundamental
equations presented in this section.

.. Equation of Motion

The equivalent of Newton’s equation of motion in an incompressible viscous
fluid is the Navier-Stokes equation which in its general form may be written as

ρ
(
∂t

#—v + ( #—v .
#—∇) #—v

)
= −

#—∇p + η∇2 #—v +

(
1
3

η + ηB

)
#—∇(

#—∇. #—v ). (..)

where η is the shear or dynamic viscosity coefficient of the fluid and ηB is the bulk
viscosity coefficient of the fluid.

For an incompressible fluid, when
#—∇. #—v = 0 and the viscosity is zero, the

Navier-Stokes equation is reduced to Euler’s equation of inviscid motion given
by

ρ
(
∂t

#—v + ( #—v .
#—∇) #—v

)
= −

#—∇p. (..)

For steady flow, Euler’s equation simplifies to Fourier’s law, which is expressed
as

ρ ( #—v .
#—∇) #—v = −

#—∇p. (..)

In the linear acoustics approximation, the second order term in Euler’s equa-
tion is negligible and the equation is reduced to

ρ ∂t
#—v = −

#—∇p, (..)

which is known as the linear Euler equation.

.. Equation of Continuity

Based on the law of conservation of mass, the equation of continuity of a fluid can
be derived as

∂tρ +
#—∇.(ρ #—v ) = 0, (..)

which relates the motion of the fluid to its compression or expansion. In the
linear acoustic estimation, the linear equation of continuity is given by

∂ts +
#—∇. #—v = 0. (..)
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.. Equation of State

When the host fluid is a perfect gas, in most cases, the change of all parameters
of the sound field is much faster than the change of temperature. As a result,
the temperature can be assumed to be a constant implying that the host fluid is
adiabatic. This requires the condition

P

P0
=

(
ρ

ρ0

)γ

, (..)

where γ is the ratio of specific heats given by

γ =
cP

cV
, (..)

with cP and cV representing the specific heat at constant pressure and specific heat
at constant volume, respectively.

The equation of state for an adabatic gas is given by

p = c2 (ρ − ρ0), (..)

where c is the thermodynamic speed of sound given by

c =

(
P0

ρ0

) 1
2

. (..)

In the linear approximation, when the condensation is much smaller than
unity, the linear equation of state can be found from Taylor’s expansion of the
instantaneous pressure around its equilibrium value. This yields

p = B s, (..)

where B is the adiabatic bulk mudulus given by

B = ρ0 (∂ρP)ρ0 . (..)
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. Linear Sound Waves

.. Propagating Waves

Combining the linear forms of the fundamental equations for an inviscid fluid
yields the linear lossless wave equation of propagation of sound as (Kinsler et al.

)
�2p( #—x , t) = 0, (..)

where �2 denotes the d’Alembertian operator defined as

�2 = ∇2 − c−2 ∂t
2, (..)

with c being the speed of propagation of sound in the fluid and ∇2 denoting the
Laplacian operator.

The general solution of Equation (..) is a harmonic plane wave. That is, a
wave where, at any point on a plane perpendicular to the direction of propaga-
tion, the properties of the sound field are the same.

In potential or irrotational fluids, i.e. when
#—∇ × #—v = 0, the acoustic veloc-

ity may be presented in terms of the gradient of a scalar, known as the velocity
potential, by

#—v ( #—x , t) =
#—∇φ( #—x , t). (..)

Using the linear Euler equation (..), the pressure can be expressed in terms
of the temporal differentiation of the velocity potential:

p( #—x , t) = −ρ0 ∂tφ( #—x , t). (..)

Practically, when calculating properties of sound fields, the aim is to obtain the
velocity potential which in turn yields the other parameters. It can be shown
that, with the same linear approximation, the velocity potential satisfies the wave
equation as

�2φ( #—x , t) = 0, (..)

In this study, the plane waves of interest are one-dimensional, satisfying the

Sometimes the velocity is expressed, conventionally, by the gradient of the velocity potential
with a minus sign, i.e. #—v ( #—x , t) = −

#—∇φ( #—x , t).
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reduced linear wave equation

(∂2
x − c−2 ∂t

2) φ(x, t) = 0, (..)

which has real harmonic solutions in terms of the trigonometric functions. It is
convenient to express these solutions in the complex exponential form and then
use the real part. With this in mind, the solution of Equation (..) can be
written as

φ(x, t) = <
[
φx(x) e−ıωt

]
, (..)

where ω is the angular frequency of the wave and the velocity potential φx is a
function only of space fulfilling the Helmholtz equation

(∇2 + k2) φx( #—x ) = 0, (..)

with k being the wave number related to the wavelength λ by

k =
ω

c
=

2π

λ
. (..)

Solving the Helmholtz equation (..), the final form of the velocity potential
may be given by

φ(x, t) = <
[
φ0 eı(kx−ωt)

]
, (..)

where φ0 is the amplitude. Equation (..) describes a monochromatic (i.e. with
constant frequency ω) travelling wave propagating in an infinite medium in the
x direction and with a speed of ω/k.

The linear lossy wave equation for a viscous fluid may be obtained by combin-
ing the linear equations of continuity and state with the Navier-Stokes equation
for incompressible fluid to give

�2
Lφ( #—x , t) = 0, (..)

where �2
L stands for the lossy d’Alembertian operator defined as

�2
L = (1 + τf∂t)∇2 − c−2 ∂t

2, (..)

Usually, when only linear operations are involved, the real part sign is omitted during cal-
culations but appears in the final results.





.. Linear Sound Waves

with τf denoting the relaxation time of the viscous fluid element.
It can be shown (Kinsler et al. , §.) that the general solution of the

lossy wave equation (..) is the same as the lossless version but with a complex
wave number

k = k + ı α, (..)

where the boldface denotes a complex variable and α is the absorption coefficient.
Thus, one-dimensional wave propagation in a real fluid can be described by

φ(x, t) = φ0 eı(kx−ωt). (..)

.. Standing Waves

Many observed acoustical phenomena take place in finite media where the sound
waves meet the boundaries of the finite media. In such a case, based on the prop-
erties of the boundaries, the incident waves convert to reflected and/or transmit-
ted waves.

Sound fields in finite one-dimensional media can be described by acoustic
transmission line theory. With reference to Equation (..), a lossy transmission
line consists of an incident wave

φ→(x, t) = φ→0 eı(+kx−ωt), (..)

and its reflection from a real boundary

φ←(x, t) = φ←0 eı(−kx−ωt), (..)

where it is assumed that the boundary wall is rigid or acoustically hard, that is, the
incident wave is almost completely reflected. The linear superposition of these
waves at each point inside the finite medium and at any instant yields

φ(x, t) = φ→(x, t) + φ←(x, t). (..)

Applying the boundary conditions for a finite medium, Equation (..) can
only be satisfied for a limited number of frequencies known as the natural or
characteristic frequencies of that finite medium. Moreover, the waves described
by the solutions of this equation do not propagate in space and are said to be
stationary or standing waves.
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.. Impedance

The acoustic impedance acting on a surface of area S is defined as the quotient of
the complex acoustic pressure and the complex volume velocity associated with
that area:

Z(x, t) =
p(x, t)
S v(x, t)

. (..)

The specific acoustic impedance is, in general, given by the quotient of the acoustic
pressure and velocity as

ZS(x, t) =
p(x, t)
v(x, t)

. (..)

In the special case, where the acoustic pressure and velocity correspond to a plane
wave, the specific acoustic impedance is

Z0 = ρ0 c. (..)

which is known as the characteristic acoustic impedance or the wave impedance of
the medium.

. Theory of the Resonance Tube with Rigid Ends

Consider a tube of length L which is driven at one end (x = 0) by a sound
generating device, eg a piston or a loudspeaker, and closed at the other end (x =

L). Both ends of the tube are assumed to be rigidly terminated. Let the sound
generating device produce a monochromatic wave with frequency ω shown by

x ′(t) = l sin(ωt), (..)

where l is the displacement amplitude of the sound generating device.

In the steady state, the velocity potential created by the sound source inside
the tube, as a finite medium, can be described by the standing wave Equation
(..) as

φ(x, t) = φ→0 eı(+kx−ωt) + φ←0 eı(−kx−ωt). (..)

Other commonly used synonyms of ‘tube’ in the literature are duct, pipe or wave-guide.
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The ‘exact’ boundary conditions of this system may be given by

v(x ′, t) = ∂xφ(x, t) |x=x ′ = ∂tx
′(t), (..)

for the sound generating side and

v(L, t) = ∂xφ(x, t) |x=L = 0, (..)

for the rigid termination side of the tube.

.. Assumptions

Before solving the standing wave Equation (..) some assumptions must be
taken into account.

First, it is supposed that the wave equation is linearised. However, the bound-
ary condition Equation (..) leads the constant velocity amplitudes v→0 and v←0
to be a function of time and, consequently, generating non-linear solutions. This
may be overcome by assuming that the displacement amplitude of the sound
generating device is negligible comparing to the length of the tube (Temkin ,
§.) or

l

L
� 1, (..)

which causes the boundary condition Equation (..) to be replaced by

v(0, t) = ∂xφ(x, t) |x=0
∼= 0. (..)

Hence, Equations (..) and (..) are required to be met for a linear regime.
The second assumption is important in order to have a plane and longitudi-

nal sound wave inside the tube. Of these criteria, the first one can be fulfilled
when the length of the tube is much larger than its transverse dimensions or, in
other words, if

L �
√

S. (..)

where S denotes the transverse cross section of the tube. Apparently, the wave
created by the sound generation device can be purely longitudinal when the de-
vice motion is perpendicular to the axis of the tube. However, in practice this
may not happen perfectly. It can be shown that there exists a cut-off frequency
proportional to l/

√
S under which, even when the device motion normal is not
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absolutely axial, any transverse waves are dumped quickly (Temkin , §.).
This criterion may be written as

ω /
l√
S

. (..)

Finally, it is assumed that the attenuation is negligibly small, i.e. k ∼= k which
implies ZS

∼= Z0.

.. Solutions

Under the previous assumptions, the standing wave Equation (..) may be
fulfilled by the real solutions

φn(x, t) = φ0 cos(knx) sin(ωnt) + const, (..)

with

kn =
2π

nλ
, (..a)

ωn = 2πnf. (..b)

Here, n denotes a natural number and each of its values stands for a certain mode
of vibration. Similarly, the value of ωn corresponds to the nth angular resonance
frequency.

Using the velocity potential solutions (..), and in the light of Equations
(..) and (..), the acoustic velocity and pressure may be derived as

vn(x, t) = v0 sin(knx) sin(ωnt), (..)

and
pn(x, t) = p0 cos(knx) cos(ωnt), (..)

respectively, where v0 and p0 are the velocity and pressure amplitude related by

p0 = v0 Z0. (..)





C h a p t e r 
Particle-Image Velocimetry

T h e w o r d y o u ’ v e e n t e r e d
[ v e l o c i m e t r y ] i s n ’ t i n
t h e d i c t i o n a r y .

Merriam-Webster’s Online Dictionary
http://m-w.com

D
espite its high-tech features, Particle Image Velocimetry (PIV) is based
on a simple idea: recording moving objects at known times and extract-
ing their displacements by comparing the recordings. Maybe this is the

most basic understanding one can have of the concept of ‘velocity’.
This chapter is an overview of the principles of PIV and the theory of PIV

data analysis in general.

. Historical Overview

The description of fluid flow can be traced back to very early works of art in
the way that the artists painted streams, rivers or ocean waves. However, from
a scientific point of view, maybe the first documented flow visualisation was per-
formed by Lèonardo da Vinci in his qualitative studies of cardiac mechanics
and the vascular system in the th century (Gharib et al. ). Figure (.)
shows Vinci’s schematic drawings of the cardiovascular system.

In  Osborne Reynolds used flow visualisation to demonstrate the lam-
inar to turbulent transition (Reynolds ) which enabled him to specify a di-
mensionless number to describe the flow, later named the Reynolds number. The
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Adopted from (Gharib et al. ).

Figure .: Lèonardo da Vinci’s vision.

flow visualisation employed by Reynolds involved sketching water flow in dif-
ferent laminar and turbulent phases. Later, at the beginning of the th century,
Ludwig Prandtl studied the steady and unsteady behaviour of water flow in a
tunnel by applying mica particles to trace fluid motion at the surface (Prandtl

).
The invention of photography provided researchers with the ability to record

their flow observations with greater reliability and accuracy. It is possible that,
prior to the scientific application of taking pictures for fluid dynamics research
purposes, art photographers began capturing images of flows (Grant ).
Ogle Winston Link is well-known for his photo collection picturing Ameri-
can steam locomotives at the end of their era (Figure (.)). His most renowned
works were taken at night using elaborate flash bulb systems to capture steam
particles in air.

In parallel with progress in photographic technology, namely the increase in
the spatial resolution of photographs, the innovation of the laser made it possible





.. Historical Overview

Figure .: ‘Hotshot Eastbound’ by Ogle Winston Link in ’s.

to improve the temporal resolution. These improvements paved the way for a
new family of optically-based flow visualisation measurement systems, with the
overarching name of laser velocity-meter (velocimetry).

Like many other scientific breakthroughs, the first use of laser velocimetry was
accidental. In their Brownian motion studies using laser scattering, Cummins

et al. found an unpredicted net shift in the frequency of the incident laser (Cum-

mins et al. ). They created a model calculating the velocity of particles from
the Doppler shift and promptly published a paper describing the fundamen-
tals of Laser Doppler Velocimetry (LDV ), also known as Laser Doppler Anemome-
try (LDA) (Yeh and Cummins ).

Laser Speckle Velocimetry (LSV ), first demonstrated by Barker and Fourney

(), had the novelty of measuring the flow velocity in a less intrusive way than
that offered by LDV. The technique, based on the measurement of the velocity
of the visualised fluid-markers, also has the advantage of being whole-field.

It is difficult to pinpoint the first usage of PIV as this method emerged from
LSV, borrowing many data acquisition and analysis components from the laser
velocimetry family. It has been pointed out (Adrian ; Westerweel )
that when people were performing LSV observations, they were not aware that
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they were in fact carrying out PIV measurements. An extensive review of the
development of PIV may be found in Adrian (b).

The theory underpinning the analysis of PIV data is mainly due to Adrian

(Adrian ; Adrian and Yao ; Adrian a; Keane and Adrian ,
, ). In its early days, PIV data evaluation was quite time consuming as
it was based on opto-mechanical techniques. One major advance which has
eliminated this problem is the use of digital technology in the data process-
ing, enabling the method to be automated and, almost, real-time (Willert and

Gharib ; Westerweel ).
Nowadays, PIV is a well-established technique. It has been applied to the

study of flows in many research fields and commercial PIV measurement systems
are readily available.

. Pulsed Light Velocimetry

Consider a system of independently moving objects. An ideal velocity-meter
which can measure both the magnitude and direction of the velocities of the
objects should follow the rationale below:

data acquisition. Marking the moving objects in space and time.

Rule .i. Spatial marking is necessary when the actual objects are not vis-
ible. It can be achieved by adding some easy-to-visualise but faithful-to-
follow external objects to the system.

Rule .ii. The spatial marking must not be intrusive to the system. In
addition, the markers must not interact with each other.

Rule .iii. Temporal marking is defined as capturing the spatial state of the
system at a given time. The marking time should be short enough so that
the moving objects can be considered as ‘frozen’ within it.

data analysis. Evaluating the recorded markings. Based on the funda-
mental definition of velocity and depending on the characteristics of the
marking data, an evaluation process can be applied to yield the velocity
vectors corresponding to the observed objects.
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This abstract velocity-meter can be applied to fluid flows almost without los-
ing its generalisation. Since the fluid elements under investigation are not visible
normally, some fluid markers, also called tracer particles or seeding particles, which
fulfill rules (.i) and (.ii) are added to it. Based on rule (.iii), the tracer parti-
cles are illuminated at least twice for a short enough time and their images are
recorded for subsequent processing. The analysis process converts the images
to a grid of velocity vectors or a vector-map. As the temporal marking part of
the measurement is usually carried out by short pulses of light, the technique is
referred to as Pulsed Light Velocimetry (PLV ).

.. The PLV Class

Adrian () classified PLV according to the attributes of the applied fluid
markers and the phases of the PLV images (Figure (.)). In the first step, the
PLV class is organised according to the fluid marker type. Molecular markers,
which are activated by laser beams to visualise the flow, are used only in the
study of certain flows whereas particulate markers have a more general usage. It
is particulate markers which are of particular interest in this study.

Depending on how the PLV data collection system is configured, for par-
ticulate markers the acquired data falls into one of three phases, each of which
requires its own specific method of analysis. These three phases are explained in
the next section.

.. PLV Data Phases

Raw PLV data comprises an image which records the positions of the fluid mark-
ers, referred to as particle-images, at an arbitrary time. The phase of a PLV image
is specified by two dimensionless numbers. We review these numbers here and
leave their analytical definitions for later.

source density N S. A number that determines whether the particle-
images are distinct individuals or whether they overlap each other in the
image plane and form a speckle.

image density N I. In processed PLV data, which has a grid structure with
velocity vectors at each grid point, a vector is representative of a specific re-
gion around it known as an interrogation area. Image density is the number
of particle-images within an interrogation area.
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Pulsed Light Velocimetry (PLV)

Molecular Markers

Photochronic

Fluorescent

Particulate Markers

Particle-Images (PIV)
N S � 1

Low Image Density PIV (PTV)
N I � 1

High Image Density (PIV)
N I � 1

Speckle Patterns (LSV)
N S � 1

Figure .: Pulsed Light Velocimetry class as grouped by Adrian ().

Different values of source and image densities result in three possible phases
for PLV data (Figure (.)).

... Laser-Speckle Phase: N S � 1, N I � 1

When the source density N S is too high, which obviously requires the image
density N I to be high too, the particle-images cannot be found in the single
form. Instead, the light scattering from the tracer particles overlaps and creates
a pattern known as laser speckle (Figure (.c)). The image processing method
require for this phase determines the displacement of speckles between successive
exposures, a technique referred to as Laser Speckle Velocimetry (LSV ).

... Low-Density Particle-Image Phase: N S � 1, N I � 1

In this case the source density N S is so low that the distances between particle-
images are much more than their dimensions. This leaves most of the interroga-
tion areas empty. The ones which do contain some scattering particles have so
few of them that it becomes easy to link the particle-images from two successive
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a) PTV: N S � 1, N I � 1. b) PIV: N S � 1, N I � 1. c) LSV: N S � 1, N I � 1.

The circles display interrogation areas.

Figure .: PLV data phases.

exposures; i.e. it is practical to ‘track’ each individual particle (Figure (.a)). The
related image analysis method for this phase is called Particle Tracking Velocime-
try (PTV ). Because of the lack of spatial data, it is not possible to get a regular
multi-field grid of velocity vectors from this ‘particle-tracking’ phase.

... High-Density Particle-Image Phase: N S � 1, N I � 1

This phase falls between the laser-speckle and particle-tracking phases. That is,
the source density N S is low enough to give separate particle-images, but there
are sufficient scattering particles contained within each interrogation area for
velocity vectors to be extracted (Figure (.b)). The high image density N I in-
creases the ambiguity in matching the scattering particles in successive exposures,
making particle-tracking style processing inefficient. Instead, the displacement
of particle-images is calculated ‘in group’ using statistical techniques. This is the
essence of Particle Image Velocimetry (PIV ) image evaluation.

.. PIV Principles

The remainder of this chapter is focused on the high-density particle-image, or
PIV, phase. The principles of PIV are, in general, the same as those described in
the implementation of the abstract velocity-meter at the beginning of §.. The
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forthcoming sections, as outlined in Figure (.), discuss each element of the PIV
method in detail.

Flow

Data Acquisition

Data Analysis

Pre-Processing

Data Processing

Post-Processing

Result

Seeding

Visualisation

Particle-Imaging

Recording

Figure .: Principles of PIV.

. Visualisation

.. Light Sources

While white light sources have the advantages of being low-cost and not re-
stricted by laser safety rules, they are not the best choice as they are less colli-
mated than monochromatic sources and recording mediums are not optimised
for them.

Lasers have been used widely in PIV set-ups since the early days of the tech-
nique. Apart from being free of the disadvantages of white light sources, the
variety of laser types makes them suitable for specific purposes.

cw. Continuous Wave (CW ) lasers have an output beam which can be oper-
ated continuously. The power is adjustable and, by applying a mechanical
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shutter, it is possible to generate short pulses from the output. However,
the output power may not be high enough for high-speed flow visualisation
or short-exposure PIV recording.

pulsed. Unlike continuous wave lasers, pulsed lasers have a discrete out-
put. Pulsed lasers can be one or more of the following types:

q-switched. The output of a Q-switched laser is a short-duration
high-energy pulse which is generated using a shutter-like device. 

The device releases the output only when the built-up laser energy
reaches a specific limit.

single-pulsed. Also known as the normal mode, the output of a
single pulsed laser consists of only one pulse which is of the order of
0.1 to 1 ms.

repetitive-pulsed. Also known as scanning lasers, the repetitive-
pulsed lasers have an output of the order of 104 pulses per second.

mode-locked. Although laser beams are monochromatic, in the laser
cavity there is a range of modes close in frequency to each other; this
can affect the characteristics of the output. The locking technique
synchronises the phases of all the modes and, consequently, generates
an output of regularly-spaced pulses. The duration of each pulse is
around 10−15 to 10−12 s.

Table (..) lists some common lasers employed in PIV and describes their
properties. It can be seen that Nd:Yag lasers have features which are very appro-
priate for PIV measurement.

.. Light Sheet

The minimum optical configuration needed to create a sheet from a beam of
light is a cylindrical lens. When the light beam is narrow and collimated, a
single cylindrical lens can be effective in generating a sufficiently thin light sheet.
However, in most cases it is preferable to add a few more optical elements into the
configuration to allow control of the thickness, height and intensity distribution
of the sheet. In this section, various ways of generating light sheets, along with a
formulation of their intensity distribution, are presented.

The ‘Q’ refers to the measure of the sharpness of the resonance peak.
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Laser Name Wavelength Power CW Pulsed
nm QS∗ ML† SP‡ RP§

He-Ne Helium-Neon 633 10−3 - 10−2 W X
Cu Copper-Vapor 510, 578 1 - 30 W X

Ar+ Argon-Ion 488, 514 60 - 100 W X X X
Cr+3 Ruby 694 X X

Nd:YAG Neodym:YAG¶ 532 > 0.4 J per pulse X X X
∗ Q-Switch.
† Mode-Locked.
‡ Single-Pulsed.
§ Repetitive-Pulsed.
¶ Yttrium-Aluminium-Garnet.

Source: Young ().

Table .: General properties of some lasers used in PIV.

... Configurations

Figure (.) shows some schematic optical configurations for creating light sheets,
as suggested by Raffel et al. ().

One way to manipulate the light sheet emerging from a cylindrical lens is to
add two more lenses of the same type in order to vary the height and thickness
(Figure (.a)). Because of safety reasons, which will be explained shortly, the fo-
cal point of this configuration is chosen to be virtual. This restricts the structure
spatially and consequently puts a lower limit on the thickness of the final light
sheet.

Sandwiching the sheet-generating cylindrical lens between two spherical lenses
(one diverging and one converging) provides the option of more dynamic vari-
ation of the height and thickness of the sheet (Figure (.b)); nonetheless, these
parameters cannot be controlled independently of each other. The configuration
has the advantage of being more economical by using spherical lenses as opposed
to cylindrical.

Both of the previous configurations contain a lens with a negative focal length.
This ensures there is no real focal point in the set-up which prevents any high-
energy concentration point in the system. When using a high-energy laser as
a light source, focal points are generally to be avoided as they can burn small
particles like dust floating around the point or, in a less likely case, ionise the
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∆zL

−50 mm +500 mm+200 mm

Top View

Side View

a) −Cylindrical, +Cylindrical, +Cylindrical

∆zL
Top View

Side View

−100 mm +350 mm+200 mm

b) −Spherical, +Cylindrical, +Spherical

∆zL
Top View

Side View

+100 mm +60 mm+200 mm

c) +Cylindrical, +Cylindrical, +Cylindrical

Shifting the lenses respect to each other adjusts the height and/or thickness of the light sheet. Adopted
from Raffel et al. ().

Figure .: Some light sheet generation configurations.

air particles. In cases where versatility is crucial, a configuration such as the one
depicted in Figure (.c) can be used in conjugation with appropriate safety pre-
cautions.
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... Intensity Profile

If the generated light sheet is assumed to lie in the x-y plane, and the illuminated
area of interest is small enough to make the light intensity distribution constant
in the plane, the intensity profile will be a function only of the depth z. The
spatial variation in intensity of light emitted from a point source is Gaussian in
nature; the same is true of light from a line source. Hence, the intensity profile
of a light sheet can be expressed as a Gaussian function of z:

I(z) = I0e
−8(z−z0)2/∆zL

2
, (..)

with I0, z0 and ∆zL being the maximum intensity, position of the centre and
thickness of the light sheet respectively.

Some modern optical set-ups offer an intensity profile with a rectangular box
form given by

I(z) =

{
I0 if |z − z0| 6 ∆zL/2

0 elsewhere
. (..)

. Particle-Imaging

Figure (.) illustrates the optical details of the particle-imaging system in a PIV
set-up. The camera’s convex spherical lens is assumed to be thin and aberration-
free with a focal length of γf and diameter of DL . The average distance of the
light sheet described in §.. to the camera lens is do, while the average distance
of the camera lens to the image plane is di. The finite thickness of the light sheet
∆zL causes the visualised seeding particles to lie at different depths from the lens.
Therefore, their images are magnified by a factor which depends on the depth z.
Assuming the origin of the axes is chosen to be at the centre of the light sheet:

M(z) =
di

do − z
, −

∆zL

2
< z < +

∆zL

2
, (..)

where do and di are related to each other by

1
do

+
1
di

=
1
γf

. (..)

§...
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x

y

z

x̃ ỹ

#—x

#—

x̃

do

di

∆zL

2 rI

2 rI
M

Camera Lens

Interrogation Spot

Interrogation Cell

Gaussian Light Sheet Image Plane

Figure .: Particle imaging system.

Throughout, it is assumed the light sheet thickness is much smaller than the
distance of particles to their images, i.e. ∆zL � (do + di). This implies that
perspective projection can be ignored; that is, the tracer particles can be mapped
from the light sheet volume to the x-y plane, referred as the object plane. The
mapping for any function f( #—x ) is given by its mean over the intensity across the
light thickness:

〈f( #—x )〉I(z) =
1
I0

∫+∆zL/2

−∆zL/2
I(z)f( #—x ) dz. (..)

The lack of perspective projection means that the variation of the magnification
M(z) across the light sheet thickness is negligible and can be written as

M ≡ M(0) =
di

do
. (..)

The purpose of the particle-imaging system is to map the positions of the
tracers in the object space (the light sheet) to the recording media image plane.
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This transformation involves some loss of data originating from both the imaging
and recording processes. The aim is to anticipate the output of the imaging
device considering the data loss error. To facilitate this, diffraction theory is
used to describe the formation of particle-images and then their diameters are
determined as a function of the imaging system parameters.

.. Scattered Light Field

In this section, the analytical structure of the light field is discussed. Through-
out, it is assumed that the light source used for illuminating seeding particles is
monochromatic and coherent. In common with the particle-image expression,
the corresponding tracer particle is sometimes referred as a particle-source.

Let us consider the scattered light wave from the particle-source, ǎ( #—x ), to
have an angular frequency ω̌ and complex field amplitude A( #—x ). The field can
be described by the following equations (Goodman , §.)

ǎ( #—x ) = <
[
A( #—x ) e−ıω̌t

]
, (..a)

A( #—x ) = A0(
#—x ) e−ıϕ̌( #—x ); (..b)

where A0(
#—x ) and ϕ̌( #—x ) are a non-imaginary amplitude and phase respectively.

In this context, it is the time-invariant part of the wave, the complex field ampli-
tude, which is of interest and which satisfies the Helmholtz equation

(∇2 + ǩ2) A( #—x ) = 0, (..)

where ǩ is the wave number, ordinarily related to the wavelength λ̌ and group
speed č by

ǩ = 2π/λ̌ = 2πω̌/č. (..)

.. Diffraction Pattern

In spite of the geometrical optics prediction, typical particle-images on a record-
ing medium plane are not regions with sharp borders that are well-separated from

To distinguish between light field and sound field, the parameters for light waves are marked
by check signs (ˇ).
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the background; instead, they fade out to it in the form of fringes. This can be
explained by Huygens’s principle founded on the wave nature of light.

Particle-images can be thought of as a colony of diffraction patterns, pro-
duced by light waves scattered from the tracer particles, which are incident on
the imaging system aperture. Depending on the distance of the tracer particle
from the aperture do, the distance of the aperture to the image plane di, the size
of the aperture (camera lens diameter) DL, and the wavelength of the scattered
light λ̌, the produced diffraction pattern can be grouped into different regimes.
The regimes can be specified by a dimensionless quantity known as the Fresnel
number:

N F =
DL

2

4 λ̌ do
. (..)

Generally, in a PIV experiment, the Fresnel number is much smaller than unity,

N F � 1. (..)

This means that the object distance do is much greater than the aperture size,
implying that both the incident and diffracted light waves are effectively planar.
Such a regime is known as Fraunhofer or far-field diffraction.

The diffraction pattern of a particle-image can be treated as a two-dimensional
distribution of irradiance in the image plane. In the case of a monochromatic
field, the irradiance distribution is simply the square of magnitude of the corre-
sponding complex amplitude,

Ĩ(
#—
x̃ ) = |A(

#—
x̃ )|2. (..)

The form of the irradiance distribution can be determined by the diffraction
pattern regime and the aperture properties. For a common PIV set-up, the dif-
fraction pattern, as mentioned earlier, is of the Fraunhofer type and the camera
lens is a circular aperture. Bearing these in mind, and using the Kirchhoff-Fresnel
formula, which is a precise mathematical extension of Huygens’s principle, it can
be shown that the irradiance distribution of the particle-images takes the form of
an Airy pattern (Hardy and Perrin , §). This pattern is expressed by the

Sometimes intensity is used as a synonym of irradiance or illuminance . As discussed in
Fowles (, §.), the word ‘intensity’ is not technically correct in this context. Hence, unlike
the other resources, usage of the expression image intensity field in this work is avoided and
substituted by irradiance distribution.
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Airy function which in the polar co-ordinate system of the particle-image is:

Ĩ(r̃) = Ĩ0

(
J1(r̃/r̃0)

r̃/r̃0

)2

, with (..a)

Ĩ0 =

(
DL

2

2 r̃0

)2

, (..b)

r̃0 =
λ̌ di

π DL

; (..c)

and J1(r̃) denotes the first order Bessel function of the first kind. Equation
(..a) describes a circularly symmetrical diffraction pattern consisting of a
bright central disk surrounded by a set of dark-light concentric annular bands.
The set starts with a dark band and the illuminance of the light bands diminishes
rapidly. The bright central area is known as the Airy disk (Figure (.)).

x̃

ỹ

#—

x̃ p

#—

r̃

r̃A

log Ĩ(r̃)

Figure .: The Airy pattern irradiance distribution in particle-image plane.
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.. Impulse Response

An imaging device can be considered to be a linear system with both an input
and output. To measure the ‘quality’ of the system, a standard input is needed
as a basis for comparison. The standard input normally used is a sudden surge,
or impulse, with infinite amplitude and zero width. This surge, better known as
the Dirac δ-function, is referred to as the unit impulse. The output of a system
when the input is a unit impulse is the impulse response or point-spread function
of that system.

The impulse response may be treated as a ‘mapper’ which transforms the
particle-source field amplitude in the object space Ao(

#—x ) to the particle-image
field amplitude in the image plane Ai(

#—
x̃ ). This mapping is given by the super-

position integral

Ai(
#—
x̃ ) =

∫∫+∞
−∞ HA(

#—
x̃ ; #—x ) Ao(

#—x ) d #—x , (..)

where the complex impulse response is denoted by HA(
#—
x̃ ; #—x ). The integral in

Equation (..) is said to be the convolution of the functions HA(
#—
x̃ ) and Ao(

#—
x̃ )

and in a simplified form is shown as

Ai(
#—
x̃ ) = HA(

#—
x̃ ) ~ Ao(

#—
x̃ ), (..)

where the sign ~ denotes the convolution operator. Broadly speaking, the more
the input Ao and the output Ai look like each other, the higher the quality of the
imaging system.

In PIV theory, it is assumed that the particle-sources are geometrical points
described by the Dirac δ-function, i.e. the input is a unit impulse. As a con-
sequence, the output is simply the input impulse response of the system. That
is, the impulse response for a PIV system is given by the Airy pattern (..a)
which in its radial form in the coordinate system of the particle-image is given
by

|HA(r̃)|2 =
Ĩ(r̃)

Ĩ0
. (..)

This is an important property of the system which is not often explicitly men-
tioned in the literature.

Practically, when used in calculations, equation (..) is substituted by a
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Gaussian approximation (Westerweel , §A.) given by

|HA(r̃)|2 ∼= e−(r̃ / 2r̃0)2
. (..)

.. Source-Image Mapping

It is convenient to break up the mapping of particle-sources from the visualisa-
tion volume to the recording plane into a few steps.

The first mapping is from the object space to the image plane using the geo-
metrical optics theory. Consider, for the moment, that the diffraction effect in an
imaging system with a converging lens is negligible. Under this condition, the
prediction provided by geometrical optics theory is predominant. That is, the
particle-image is the exact reproduction of the particle-source, but, magnified
and inverted;

x̃p = −M x, ỹp = −M y, (..)

where
#—
x̃ p denotes the position of the particle-image as a geometrical point.

A similar relationship exists between the complex field amplitudes (Goodman

, §.)

A(G)

i (
#—
x̃ p) =

1
M

Ao(
#—x ), (..)

where A(G)

i indicates the geometrical prediction.

Finally, to obtain the actual field amplitude of particle-images, the diffrac-
tion effect must be incorporated. This is a mapping from the geometrical point
form of the particle-image to its diffraction pattern. Goodman () gives the
final image output as a convolution of the aperture impulse response and the
geometrical prediction. The convolution in our notation can be re-written as

Ai(
#—
x̃ ) =

∫∫+∞
−∞ HA(

#—
r̃ ) A(G)

i (
#—
x̃ p) d

#—
x̃ p, (..)

where as illustrated by Figure (.),

#—
r̃ =

#—
x̃ −

#—
x̃ p.

Substituting Equation (..) into the convolution expression gives the source-
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image mapping in the following compact form

Ai(
#—
x̃ ) =

1
M

HA(
#—
x̃ ) ~ Ao(

#—x ), (..)

The convolution (..) expresses the final form of the complex amplitude
field in the image plane, however, in practice the quantity of interest is the ir-
radiance Ĩ(

#—
x̃ ). For any given position

#—
x̃ in the image plane, the square of the

magnitude of the complex amplitude field generated by two particle-images po-
sitioned at

#—
x̃ p and

#—
x̃ ′

p is

|Ai(
#—
x̃ )|2 =

∫∫+∞
−∞

∫∫+∞
−∞ HA(

#—
x̃ −

#—
x̃ p) H∗

A(
#—
x̃ −

#—
x̃ ′

p) A(G)

i (
#—
x̃ p) A(G)∗

i (
#—
x̃ ′

p) d
#—
x̃ pd

#—
x̃ ′

p.

(..)
Assuming the imaging system is set to be in the PIV phase, the source density
N S is very low. Hence, there is no overlapping between neighbouring particle-
images. This implies that, at each position in the image plane, the irradiance
value is generated by only one particle-image or

A(G)

i (
#—
x̃ p) A(G)∗

i (
#—
x̃ ′

p) = |A(G)

i (
#—
x̃ p)|

2 δ(
#—
x̃ p −

#—
x̃ ′

p). (..)

This greatly simplifies Equation (..) to

|Ai(
#—
x̃ )|2 = |HA(

#—
x̃ )|2 ~ |A(G)

i (
#—
x̃ )|2, (..)

which can be written alternatively as

Ĩ(
#—
x̃ ) =

1
M2 |HA(

#—
x̃ )|2 ~ I( #—x ). (..)

In other words, in the PIV phase, the impulse response of the light intensity
distribution is simply the square of the magnitude of the imaging system impulse
response.

.. Resolution Limit of Camera Lens

The Fraunhofer diffraction imposes a resolution limit on the imaging aperture.
Optical systems with this limit are said to be diffraction-limited or aberration-free.
According to the Rayleigh criterion, the minimum distance between two particle-
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images at which they can still be ‘resolved’ by the camera lens is the radius of
the corresponding maximum Airy disk (Hardy and Perrin , §). This
distance is known as the theoretical resolution limit.

The Airy disk radius, r̃A, can be obtained by calculating the first zero of
the Bessel function J1(r̃/r̃0) occurring for r̃/r̃0

∼= 3.8217. Applying Equation
(..c), the radius is given by

r̃A
∼= 1.22 λ̌

di

DL

. (..)

It is convenient to express this quantity as a pure function of the system pa-
rameters. Combining Equations (..) and (..), Equation (..) can be
alternatively written as

∆L ≡ r̃A
∼= 1.22 λ̌ (M + 1) f#; (..)

where ∆L denotes the resolution limit of the camera lens and f# is the f-number
of the aperture lens defined as

f# =
γf

DL

. (..)

.. Particle-Image Size

The convolution equation (..) together with the system resolving limitations
can be used to calculate the particle-image dimensions. Adrian and Yao ()
used a Gaussian approximation for the convolution components—the Airy irra-
diance distribution and the image predicted by geometrical optics—and obtained
the following estimated value for the particle-image radius

r̃p
∼=

(
M2 rp

2 +
1
4

∆L
2 +

1
4

∆R
2
) 1

2

; (..)

where ∆R notates the resolution limit of the recording medium.

. Spatial Correlation Theory

The concepts presented in this section are based on appendix A.
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.. Source and Image Densities

Earlier, in §.., the concepts of source and image densities were introduced. In
this section, more accurate definitions for these quantities, as given by Adrian

(, ), are presented.
Consider a cylindrical volume in the particle-source space which is created

by the intersection of the illuminating light sheet (of thickness ∆zL) with a circle
whose radius is r̃p/M; i.e., the circle that is produced when a particle-image with
a radius given by Equation (..) is back-projected on to the object space. This
cylindrical volume is said to be a resolution cell expressed by

VR = ∆zL π

(
r̃p

M

)2

. (..)

The mean number of particle-sources in a resolution cell is the source density
and is given by

N S = C VR, (..)

where C is the mean number of particle-sources per unit volume.
From the definition of the source density, it can be immediately concluded

that the condition for particle-images to be thoroughly separated from each other
is that the corresponding particle-sources are laid uniquely within resolution
cells. That is, if more than one particle-source shares the same resolution cell
their associated particle-images overlap. Applying Equation (..), the probabil-
ity of exactly k particles being in a volume VR is given by the Poisson distribution
(A..) as

p
k; N S

=
N S

k

k!
e−N S . (..)

For N S � 1, the probability p
k>1; N S

becomes significant which means forma-
tion of speckle patterns, whilst for N S � 1 one has

p
k; N S

∼=
N S

k

k!
.

implying the phase is particle-image.

By analogy with the resolution cell definition, an interrogation cell can be
defined as

V I = ∆zL π
( rI

M

)2
, (..)
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which describes a cylindrical volume created by the intersection of the light sheet
with a circle whose radius is given by back-projecting an interrogation spot with
radius DI in the image plane. The mean number of tracer particles in an interro-
gation cell is the image density given by

N I = C V I. (..)

In the case that N I � 1, the probability p
k>1; N S

is high, meaning that there
are many particle-images in each interrogation spot; i.e. the phase is high-density
particle-image. On the other hand when N I � 1, the probability p

k<1; N S
is

more significant implying the phase is low-density particle-image.

.. Displacement Field

Assume that the flow under study is described by the velocity field #—v
 #—x (t)

.
If an ideal tracer particle at time ti is located at position #—x (t) with velocity
#—v p

 #—x (t)
, based on Rule (.i), at time tj the particle displacement field is given

by
#—

d #—x ;ji ≡
#—

d ( #—x ; ti, tj) =

∫ tj

ti

#—v p

 #—x (t)
 dt. (..)

The displacement field is an ‘averaging’ over time, which means it does not
give any information on the motion of the flow within the averaging time. Thus,
there always exists some error ε where

|
#—

d #—x ;ji − #—v
 #—x (t)

 (tj − ti)| 6 ε, ti 6 t 6 tj. (..)

Needless to say, a PIV experiment only measures the velocity of the flow
where the tracer particles are positioned. That is, since the particles are located
randomly, the flow can only be probed by random sampling.

.. Particle-Source Pattern

Particle-sources can be treated as geometrical points randomly distributed in the
object space. Assume there are N p tracer particles in the flow under investigation
and at any time t the particle α is positioned at #—x α(t). The scattered light
intensity, at any point #—x (t) in the object plane, may be described by the Dirac





.. Spatial Correlation Theory

δ-function as

I( #—x ) =

N p∑
α=1

I(zα) δ(x − xα, y − yα). (..)

This equation can be given in a compact form by

I
 #—x (t)

 = I0

〈
G

 #—x (t)
〉

I(z)
, (..)

where

G
 #—x (t)

 =

N p∑
α=1

δ
 #—x (t) − #—x α(t)

 . (..)

The dimensionless quantity G
 #—x (t)

 is known as the particle-source pattern.

For each element ti of a given time set {t1, t2, . . . , tn}, the particle-source
pattern has a value G

 #—x (ti)
 which for brevity may be denoted as

Gi(
#—x ) ≡ Gi

 #—x (t)
 ≡ G

 #—x (ti)
 . (..)

As time passes, from all of the possible patterns (the ensemble of patterns), a
‘history’ is generated which describes a stochastic process. We describe the sto-
chastic process of the particle-source patterns as

{G1(
#—x ), G2(

#—x ), . . . , Gn( #—x )},

or in a compact form as {G( #—x )}, where G( #—x ) is said to be a random variable or
a realisation.

Let #—s #—x ;ji indicate the displacement between two points ( #—x , ti) and ( #—x ′, tj)

by
#—s #—x ;ji = #—x ′(tj) − #—x (ti), (..)

The process {G( #—x )} may be considered as a chain of events in which each indi-
vidual random variable Gj(

#—x + #—s #—x ;ji) at ( #—x + #—s #—x ;ji, tj), as an output, is produced
by another random variable Gi(

#—x ) at ( #—x , ti), as the input. In order to link these
input and output signals, an impulse response HGjGi

( #—s #—x ;ji) can be specified and,

§A.
Definition (A.v)
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consequently, each random variable can be written as the following convolution

Gj(
#—s #—x ;ji) = HGjGi

( #—s #—x ;ji) ~ Gi(
#—s #—x ;ji). (..)

Assuming the displacement field to be local, i.e.
#—

d #—x ;ji
∼=

#—

d ji, the impulse re-
sponse can be expressed as the shift of the input by the local displacement:

HGjGi
( #—s #—x ;ji) = δ( #—s #—x ;ji −

#—

d ji); (..)

At any point #—x , the data of velocimetry interest to extract from the process
{G( #—x )} is the displacement #—s #—x ;ji. One way to do this is to find out how ‘corre-
lated’ the random variables Gi(

#—x ) and Gj(
#—x + #—s #—x ;ji) are by calculating the co-

variance matrix  corresponding to the process {G( #—x )}. Using Equation (A..),
the covariance matrix elements for the random variables are given by the follow-
ing cross-covariance 

R GjGi
(
#—
s̃ #—x ;ji) = cov{Gi(

#—x ), Gj(
#—x + #—s #—x ;ji)}

= E{
Gj(

#—x ) − E{Gj(
#—x )}

 Gi(
#—x + #—s #—x ;ji) − E{Gi(

#—x + #—s #—x ;ji)}
},

(..)
where cov{ , } stands for the covariance operator  and the expectation value  is
denoted by E{ }. Substituting Equation (..) into the cross-covariance relation
yields

R GjGi
(
#—
s̃ #—x ;ji) = cov{Gi(

#—x ), HGjGi
( #—x + #—s #—x ;ji) ~ Gj(

#—x + #—s #—x ;ji)}

= HGjGi
( #—s #—x ;ji) ~ cov{Gi(

#—x ), Gj(
#—x + #—s #—x ;ji)}

= HGjGi
( #—s #—x ;ji) ~ R GiGi

( #—s #—x ;ii),

(..)

Defining the auto-covariance  values as the diagonal members of the covariance

§A...
§A....
§A....

§A...
§A....
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matrix denoted by
R Gi

( #—s #—x ;i) ≡ R GiGi
( #—s #—x ;ii),

the cross-covariance can be alternatively given by

R GjGi
( #—s #—x ;ij) = {HGjGi

~ R Gi
}( #—s #—x ;i). (..)

That is, the non-diagonal members of the covariance can be generated by know-
ing the diagonal members. Using Equation (..), it can be shown (Adrian

b) that the covariance matrix elements are of the form

R GjGi
( #—s #—x ;ji) = C δ( #—s #—x ;ji −

#—

d ji). (..)

Each element of the covariance matrix given for a particle-source pattern de-
scribes a point in the displacement-probability space; i.e. R GjGi

( #—s #—x ;ji) repre-
sents the likelihood that the displacement of particles from the realisation Gi(

#—x )

to the realisation Gj(
#—x + #—s #—x ;ji) is equal to to

#—

d ji. The set of these points is
referred to as the correlation plane.

The covariance matrix in Equation (..) describes a correlation plane with
one infinite sharp peak and zero elsewhere. In the velocimetry of a particle-source
pattern process by an imaging system, the aim is to ‘measure’ the correlation
plane of the process. That is, to find the correlation plane corresponding to
particle-images. Due to the limiting errors in the imaging system, discussed in
§.., the measured correlation plane contains some noise and has a wider and
shorter peak. In the next section the formulation of the measured correlation
plane is presented.

.. Particle-Image Pattern

Earlier, in §.., the impulse response of light intensity was described. The
impulse response may be employed to derive irradiance distribution from light
intensity distribution. Combining Equations (..) and (..), the following
convolution exists

Ĩ(
#—
x̃ ) = Ĩ0 |HA(

#—
x̃ )|2 ~

(
1

M2 〈G( #—x )〉I(z)

)
. (..)
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By analogy with the particle-source pattern definition, the second part of the
convolution is named the particle-image pattern and is given by

G̃(
#—
x̃ ) = 〈G(x̃, ỹ, z)〉I(z), (..a)

or, alternatively, in the explicit form of

G̃(
#—
x̃ ) =

1
Ĩ0

N p∑
α=1

Ĩ(zα) δ(
#—
x̃ −

#—
x̃ α). (..b)

Let
#—

d̃ ij and
#—
s̃ #—

x̃ ;ij be, correspondingly, the equivalents of
#—

d ij and #—s #—x ;ij in
the image plane given by

#—

d̃ ji = M (x̂.
#—

d ji, ŷ.
#—

d ji), (..)

#—
s̃ #—

x̃ ;ji = M (x̂. #—s #—x ;ji, ŷ. #—s #—x ;ji), (..)

where x̂ and ŷ are the unit vectors and . denotes the scalar product operator.
Knowing the source-particle pattern form, the covariance matrix of the particle-
image pattern process can be obtained (Adrian b). The cross-covariance of
two realisations G̃i and G̃j is of the form of

R G̃jG̃i
(
#—
s̃ #—

x̃ ;ji) =
C̃ O

M2 δ(
#—
s̃ #—x ;ji −

#—

d̃ ji), (..)

where C̃ O is the number of particle-sources per unit area which remain within
the light sheet expressed as

C̃ O = C M2 ∆zL FO(ẑ.
#—

d ji). (..)

Here FO(ẑ.
#—

d ij) is the out-of-plane loss-of-correlation given by

FO(ẑ.
#—

d ji) =

〈
I(z + ẑ.

#—

d ji)
〉

I(z)

〈I(z)〉I(z)

. (..)

Comparing Equations (..) and (..) indicates that the ‘measured’ R GjGi
,

or R G̃jG̃i
, has the same structure as the original R GjGi

; but mapped within the
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imaging system and altered by a constant. The constant involves number of
source particle-sources in the illuminated volume and an error originating from
particle-sources losing their pairs between the successive realisations.

As the final step in calculating the spatial correlation properties of PIV data,
the cross-covariance of the irradiance can be derived using the known cross-
covariance of the particle-image pattern. This derivation as given by Adrian

(b) may be written down as

R ĨjĨi
(
#—
s̃ #—

x̃ ;ji) = (Ĩ0 M h0)
2 {FH ~ R G̃jG̃i

}(
#—
s̃ #—

x̃ ;ji); (..)

with

h0 =

∫∫+∞
−∞ |HA( #—x )|2 d #—x , (..)

and

FH(
#—
s̃ #—

x̃ ;ji) =
{|HA |2 ~ |HA |2}(

#—
s̃ #—

x̃ ;ji)

h2
0

, (..)

as the normalised self-correlation peak. Substituting Equation (..) into (..)
yields

R ĨjĨi
(
#—
s̃ #—

x̃ ;ji) = C̃ O Ĩ2
0 h2

0 FH(
#—
s̃ #—

x̃ ;ji −
#—

d̃ ji). (..)

In its new form, the correlation is an indirect function of the complex amplitude
impulse response. This implies the correlation peak width is proportional to the
dimensions of the particle-images.

.. Interrogation

The PIV correlation theory presented so far describes the displacement of flow
within two realisations without any limited spatial boundary. In practice, it is
desirable to measure the displacements inside the interrogation cells. To do this,
the irradiance field in each realisation is limited to a region of interest defined by
a window function.

Like the light sheet intensity profile, described in §..., the typical window
functions are of the Gaussian or rectangular box form given by

W (
#—
x̃ ) = W0 e−8(x̃−x̃I)

2/∆x̃I
2 −8(ỹ−ỹI)

2/∆ỹI
2
, (..)
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or

W (
#—
x̃ ) =

{
W0 if |x̃ − x̃I| 6 ∆x̃I/2 ∧ |ỹ − ỹI| 6 ∆ỹI/2

0 elsewhere
, (..)

where (x̃I, ỹI) and (∆x̃I, ∆ỹI) are, respectively, the centre and dimensions of the
interrogation area. For consistency, throughout, the interrogation area is denoted
as S I.

The interrogated irradiance field is defined as

I(
#—
x̃ ) = W (

#—
x̃ ) Ĩ(

#—
x̃ ). (..)

Given
Ii(

#—
x̃ ) ≡ I

 #—
x̃ (ti)

 , (..)

the cross-covariance matrix for Ii(
#—
x̃ ) and Ij(

#—
x̃ ) over a shift #—s #—x ;ji is given by

R IjIi
(
#—
s̃ #—

x̃ ;ji) = cov{Ii(
#—
x̃ ), Ij(

#—
x̃ +

#—
s̃ #—

x̃ ;ji)}, (..)

which may be calculated by a similar procedure presented in §... Introduc-
ing the window function changes the averaging of irradiance distribution, conse-
quently, some new terms appear in the outcome cross-covariance. It is convenient
to present the cross-covariance in terms of its ensemble mean and fluctuations by

R II(
#—
s̃ ) =

〈
R II(

#—
s̃ )
〉

+ R ′
II(

#—
s̃ ), (..)

where, for the sake of brevity, the realisation information indices are omitted. In
the next section, the ensemble mean covariance is studied in detail.

.. Analysis Modes

Consider a frame is a recording medium at a specific time, and an exposure is
registering a realisation of the image plane on a frame. PIV data acquisition
has the option of recording images with a combination of number of frames
and exposures. Depending on this combination, the ensemble mean covariance
appeared in Equation (..) has different forms as presented in this section.





.. Spatial Correlation Theory

... Single-Frame, Single-Exposure

While no velocimetry can be carried out in this analysis mode, it includes some
components which can be used in the other analysis modes. As there is only one
frame, the ensemble mean covariance is, actually, auto-covariance which in its
normalised form is known as auto-correlation. In this special case, since there
is only one realisation, the auto-correlation is a self-correlation. Following the
notation in Adrian (b), the auto-covariance R I can be decomposed to the
following 〈

R I(
#—
s̃ )
〉

= R C(
#—
s̃ ) + R F(

#—
s̃ ) + R P(

#—
s̃ ), (..)

where R C stands for the mean background correlation, R F is the fluctuation of
the background noise and R P shows the self-correlation peak, also known as the
pedestal (Figure (.)). As expected, the pedestal is located at the origin of the
correlation plane.

s̃x
s̃y

R

R C + R F

R P



Figure .: Typical correlation plane for single-frame single-exposure mode.

§A....
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... Multiple Frames - Single Exposure

The ensemble mean covariance in this mode is cross-covariance or, when it is
normalised, cross-correlation. Keane and Adrian () gives the double-frames
single-exposure ensemble mean cross-covariance as〈

R II(
#—
s̃ )
〉

= R C(
#—
s̃ ) + R F(

#—
s̃ ) + R D(

#—
s̃ ). (..)

Comparing this covariance to the auto-covariance Equation (..), the pedestal

s̃x
s̃y

R

#—

d̃

R C + R F

R D

.

Figure .: Typical correlation plane for multiple-frames single-exposure mode.

is replaced by the displacement-correlation peak R D which contains the informa-
tion of the mean displacement of the particle images within the interrogation
area (Figure (.)). The displacement-correlation peak, in its precise form, is
given by

R D(
#—
s̃ #—

x̃ ;ji) = C̃ OI(
#—
s̃ #—

x̃ ;ji) Ĩ2
0 h2

0 FH(
#—
s̃ #—

x̃ ;ji −
#—

d̃ ji). (..)

This relationship is comparable to the cross-covariance of the interrogated irra-
diance fields given in Equation (..). The only difference is that the latter

§A....
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is described by the number of particle-images per unit area which stay within
the light sheet and the interrogation areas between successive realisations. This
quantity, denoted by C̃ OI, is referred as the effective particle-image density and is
given by

C̃ OI(
#—
s̃ #—

x̃ ;ji) = N I FI(
#—
s̃ #—

x̃ ;ji) FO(ẑ.
#—

d ji), (..)

with
FI(

#—
s̃ #—

x̃ ;ji) =
1
S I

{Wj ~ Wi}(
#—
s̃ #—

x̃ ;ji), (..)

which is known as the in-plane loss-of-correlation.

... Single Frame - Multiple Exposures

When, due to hardware limitations, the image recording process is not fast
enough to capture each realisation in a separate frame, the resultant data can
be analysed in a way which is a combination of the previous modes. The out-
come irradiance field, denoted by IΣ, is a super-position of the individual reali-
sations. As there is only one frame, the displacement can be extracted from an
auto-covariance. In the case of a single-frame double-exposures state, the auto-
covariance as given by Keane and Adrian () is〈

R IΣ
(
#—
s̃ )
〉

= R C(
#—
s̃ ) + R F(

#—
s̃ ) + R P(

#—
s̃ ) + R D−(

#—
s̃ ) + R D+(

#—
s̃ ). (..)

Here the displacement-correlation peaks appears as R D− or R D+ (Figure
(.)). This is not a surprising result as the single-frame does not store any
temporal information about the super-positioned realisations which causes a di-
rectional ambiguity.

There are techniques which can be employed to eliminate the directional
ambiguity. A common method introduced by Adrian (a) is referred to as
image-shifting, where the first realisation is spatially pre-shifted. The pre-shifting
is performed by physically displacing the camera by a certain value during the
two realisations. This solution also removes the pedestal which may make the
extraction of some small displacements hard or impossible.
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∓
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d̃

±
#—

d̃

.

Figure .: Typical correlation plane for single-frame double-exposure mode.

.. Estimation Values

In the spatial correlation theory presented so far, it has been assume that the
statistical properties of the PIV data are known. In particular, Equation (..)
expresses a cross-covariance value which is calculated by some presumably known
expectation values:

R IjIi
(
#—
s̃ #—

x̃ ;ji) = cov{Ii(
#—
x̃ ), Ij(

#—
x̃ +

#—
s̃ #—

x̃ ;ji)}

= E{
Ij(

#—
x̃ ) − E{Ij(

#—
x̃ )}

 Ii(
#—
x̃ +

#—
s̃ #—

x̃ ;ji) − E{Ii(
#—
x̃ +

#—
s̃ #—

x̃ ;ji)}
}.

(..)
In this equation, the expectation operators perform ensemble averaging ; that is,
averaging over all possible values of the argument. In practice, when observing
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a process, there is no pre-knowledge of that process available to describe the fea-
tures of the process; however, it is possible to ‘estimate’ the features of the process
by the observation itself. This is the fundamentals of the statistical inference tech-
nique (Hogg and Tanis ).

Let the mean of the observed values be called the observation averaging. It
can be shown (Priestly ) the estimated values of the features of a static
ergodic  process can be obtained when the ensemble averaging is substituted
by the observation averaging. Implementing this to PIV data, the associated
cross-covariance can be estimated when the ensemble averaging is replaced by
the spatial averaging. The final form of the estimated cross-covariance is given
later in §....

. Digital Analysis

Traditionally, the spatial correlation analysis method was applied to PIV data
using hardware-based techniques. These included semi-optical methods, in-
troduced initially for LSV data analysis by Burch and Tokarski () using
Young’s fringes, and fully-optical methods, as suggested by Coupland and Hal-

liwell (). The disadvantages of the opto-mechanical methods, like com-
plexity and temporal consumption, caused it to become obsolete and to be sub-
stituted by software-based methods which have been increasingly efficient and
economical.

This section contains an introduction to the digital interface to the spatial
correlation theory which, in a more general form, is known as Digital Particle-
Image Velocimetry (DPIV ).

.. Pre-Processing

Before the correlation-based digital image evaluation, some verification of the
PIV data suitability may be necessary. This includes checking whether there is
enough data to produce valid output and mapping the data to the digital space.
The PIV data may be directly digitally recorded, or it may be digitised after
recording. In both cases the digitisation parameters must be chosen in such

A process is said to be ergodic when, for infinite number of observations, the observation
averaging is the same as the ensemble averaging.
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a way that the data loss is optimised. The following subsections discuss these
aspects of PIV data pre-processing in more detail.

... Image Sampling

In the first step of digitising the particle-image field, the data space is divided into
discrete components named pixels. With the sampling impulse response defined
as

HI∆I(
#—
x̃ ) =

{
1/∆

2
px if |x̃| < ∆px/2 ∧ |ỹ| < ∆px/2

0 elsewhere
, (..)

with ∆px being the size of the pixels, the discrete irradiance field can be obtained
from the continuous irradiance field:

I∆( #—x ∆) = {HI∆I ~ I}(∆px. #—x ∆), (..)

where #—x ∆ = (x∆, y∆) is a dimensionless discrete vector. Using this definition, the
associated auto- and cross-covariances can be derived as

R I∆
( #—s ∆) = {(HI∆I ~ HI∆I) ~ R I}

∆px.( #—s ∆)
 , (..)

and

R I∆I∆
( #—s ∆) = FI(ẑ.

#—

d ji) {(HI∆I ~ HI∆I) ~ R I}

∆px.( #—s ∆) −
#—

d̃
 , (..)

(Westerweel , §.), with #—s ∆ being the dimensionless discrete correlation
space.

... Data Bandwidth

The bandwidth of a two-dimensional matrix with elements Mij is defined as the
value of |i − j| such that Mij 6= 0. In the case where the bandwidth of a matrix
is a finite value, that matrix is said to be band-limited. According to the sampling
theorem, a band-limited matrix is reconstructible if it is sampled at a minimum
rate of twice of its bandwidth, also known as the Nyquist rate.

Assume that the Fourier transform of the irradiance field is given by the
matrix F [I] where F denotes the Fourier transform operator. It can be shown
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that F [I] is ‘nearly’ band-limited (Priestly ). By sampling PIV data, the
irradiance field may be treated as a signal which is reconstructed in the discrete
form. The sampling rate, at which the data can be recovered, may be determined
by the bandwidth of F [I].

Westerweel (, §.) gives the bandwidth of the PIV imaging system as

WP
∼=

0.86
r̃A

, (..)

where r̃A is the Airy disk radius given by Equation (..). Since the radius of
the particle-image, as expressed by Equation (..) is larger than r̃A, WP acts
like an upper limit for the bandwidth of F [I], which is the PIV data bandwidth.
According to this, for a typical imaging system, a data sampling rate of 64 mm−1

is quite sufficient.

... Quantisation

While data sampling converts the argument of the irradiance I(x̃) to a discrete
value, quantisation digitises the value of the irradiance itself. The digitisation is
a mapping from real values to some limited integers, also known as number of
colors.

Quantisation is an irreversible mapping which adds some noise to the output
data. It has been shown (Westerweel , §.) that the noise produced by an
8-bit quantiser is negligible. That is, digitising the irradiance field to an image of
256 colors—which is not necessarily, but typically, in gray-scale—preserves the
data for processing.

... Valid-Data Yield

An inappropriate value of the effective particle-image density C̃ OI, described
by Equation (..), can cause a noise peak in the correlation plane which is
stronger than the displacement peak. Introducing the quantity valid-data yield
helps to optimise the value of C̃ OI.

Similar to the discussion in §.., the probability of finding exactly k particles
in an interrogation area may be written as

p
k; N OI

=
N OI

k

k!
e−N OI , (..)
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where N OI, which could be non-integer, is the effective number of particle-image
pairs per interrogation area given by

N OI = C̃ OI S I. (..)

Assume k ′ is the number of particle-image pairs per interrogation area that is
sufficient to remove the majority of the noise peak in the correlation plane. The
valid-data yield is defined as the probability of having k ′ or more particle-image
pairs in an interrogation area and is given by 

Γk ′(N OI) ≡ p
k>k ′; N OI

= 1 −

k ′∑
k=0

p
k; N OI

. (..)

Figure (.) shows some different values of Γk ′(N OI). It can be seen when the

N OI

Γ k
′
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O
I)
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Figure .: Some values of valid-data yield.

effective number of particle-image pairs per interrogation area is approximately
between 10 and 15, the probability of finding at least 4 particle-image pairs per
interrogation area (k ′ = 4) is almost 1. Choosing N OI to be a larger number
causes overlapping of particle-images and should be avoided.


Westerweel (, § ..) gives the valid-data yield, in our notation, as Γk′(C̃ OI). This

cannot be correct as the argument of the valid-data yield function must be a dimensionless num-
ber.
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To summarise, setting the interrogation area to have, roughly, 10-20 particle-
image pairs is necessary to reduce the noise in the correlation plane.

.. Data Processing

... Implementing Estimation

Given the discrete irradiance field described by Equation (..) and following
the arguments presented in §.., in this section the estimation value of the
cross-covariance of discrete PIV data is presented.

Consider two interrogation areas I ′∆( #—x ∆) and I ′′∆ ( #—x ∆) with the same size of
N×N pixels. Given that the spatial average of discrete irradiance is

Ī∆ ≡ 〈I∆( #—x ∆)〉 =
1

N2

N∑
x∆=1

N∑
y∆=1

I∆( #—x ∆), (..)

it can be seen that the the mean value is the same for all realisations:

〈I ′∆( #—x ∆)〉 = 〈I ′′∆ ( #—x ∆)〉 = Ī∆. (..)

The cross-covariance of the two realizations I ′∆( #—x ∆) and I ′′∆ ( #—x ∆) over a shift
#—s ∆ can be estimated as

R̂ I ′∆I ′′∆
( #—s ∆) =

1
N2

N∑
x∆=1

N∑
y∆=1

I∆( #—x ∆) − Ī∆

 I∆( #—x ∆ + #—s ∆) − Ī∆

 , (..)

where subtracting the mean values removes the background noise values R C and
R F discussed in §.. (Westerweel ). The estimated cross-correlation is
given by

{I ′∆ ? I ′′∆ }( #—s ∆) =
R̂ I ′∆I ′′∆

( #—s ∆)

R̂ I ′∆I ′′∆
(0)

, (..)

where the sign ? denotes the correlation operator.

... DFT-based Correlation

The digital calculation of the measured discrete correlation plane, given by Equa-
tion (..), is computationally intensive and, in practice, when the calculation
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is needed to be repeated many times, is not functional. One way to overcome
this problem is to perform the computations in the frequency domain, where the
processing is less expensive, by making use of Discrete Fourier Transforms (DFT ).

Using the cross-correlation theorem, Equation (..) can be alternatively writ-
ten as

{I ′∆ ? I ′′∆ }( #—s ∆) = DFT
−1 [DFT [I ′∆] DFT [I ′′∆ ]

]
( #—s ∆), (..)

where DFT denotes the discrete fourier transform.
Usually, the DFT algorithm used in computations is the classical Fast Fourier

Transform (FFT ) method introduced by Cooley and Tukey (). The al-
gorithm reduces the processing for an interrogation area of N × N pixels by a
factor of 2 log2(N)/N2. One disadvantage of the classical FFT is that it is only
efficient when N is a power of 2,imposing restrictions on the interrogation area
size. However, there are many other alternative algorithms (Press et al. ,
Chapter ) which can lessen the restrictions and increase the interrogation area
size choice.

... Sub-Pixel Peak Detection

The information stored in the discrete correlation plane, given by {I ′∆ ? I ′′∆ }( #—s ∆),
allows the position of the displacement peak to be determined with a resolution
of less than a pixel. In fact, since the correlation peak always covers more than
one discrete unit in the correlation plane (Westerweel ), the displacement
peak can be detected with sub-pixel accuracy. Based on this idea, Willert and

Gharib () introduced the sub-pixel peak detection theory by interpolation
which is essential for calculating second order quantities, e.g. vorticity or pres-
sure.





C h a p t e r 
Acoustic Velocimetry

Using Particle-Imaging

E v e r y t h i n g y o u c a n
i m a g i n e i s r e a l .

Pablo Picasso

L
aser velocimetry methods are ordinarily applied to fluid flows under no

or negligible external forces. Consequently, when implemented on sound
fields, PIV principles should be validated in order to meet the new condi-

tions. This chapter examines aspects of PIV theory and discusses the limitations
of PIV when applied to sound fields.

. Acoustic Velocimetry Techniques

Unlike the scalar quantities associated with fluids in sound fields, particularly
pressure and temperature, measurement of acoustic velocity vectors is not straight-
forward. Figure (.) shows the most common acoustic velocimetry techniques
classified in terms of their level of intrusion during a measurement. The tech-
niques are described briefly in this section.

.. Intrusive Techniques

In the late th century, Rayleigh described a system for measuring acoustic ve-
locity (Rayleigh , §b). After observing the torque that a non-symmetrical
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Acoustic Velocimetry

Intrusive
Methods

Rayleigh Disc
(Rayleigh )

Two-Microphone
(Fahy )

HWA
(Pratt el al. )

Microflown
(van der Eerden et al. )

Non-Intrusive
Methods

LDV
(Taylor ) PLV

FDV
(Buick et al. ) PIV

Figure .: Acoustic velocimetry techniques are grouped according to intrusiveness.

obstacle of appropriate dimensions experiences in a sound field, Rayleigh sug-
gested using the deviation of a disc floating in a fluid from its equilibrium po-
sition to calculate the acoustic velocity of the fluid. The technique, which is
referred to as the Rayleigh disc, has now been consigned to history and is no
longer in use.

One way to measure acoustic velocity vectors is to calculate them from scalar
quantities which can be measured more easily. For example, a two-microphone
method may be applied to extract velocity from pressure (Fahy ).

Thermo-electric methods like Hot-Wire Anemometry (HWA) (Pratt et al.

) or Hot-Film Anemometry (HFA) offer a better accuracy at the expense of a
more complicated set-up. The Microflown (van der Eerden et al. ), which
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is based on a thermo-electric structure, is convenient to use but has an upper
limit for velocity measurement which is usually lower than the range of interest
in acoustic studies.

Because of their physical presence in a sound field, and because their dimen-
sions are not negligible when compared to the wavelength of the sound field, all
of the devices used in the techniques mentioned so far have the disadvantage of
being intrusive in nature.

.. Non-Intrusive Techniques

As they are optically based, the laser velocimetry techniques inherit the charac-
teristic of non-, or at least low-, intrusion. Of these, LDV (LDA) and PLV are of
special interest.

Taylor () was the first to apply LDV to resonant tubes. The technique
involves measuring acoustic velocity by the Doppler shift of waves scattered
from tracer particles within small volume found by the intersection of two laser
beams. The technique is now well-established and widely used; however, it suf-
fers from the lack of a whole-field feature.

The use of PLV in the study of sound fields has only recently taken off due to
previous limitations in capturing images of high-speed flows. The applications
of this technique in sound fields may be grouped according to the type of fluid
markers used in the measurements.

Fluorescent Dye Velocimetry (FDV) is a PLV-based technique in which dye is
used as the molecular marking (§..) for fluid visualisation (Buick et al. ).
The method has been applied successfully to acoustic streaming measurements.
In comparison to PIV, FDV has the advantage of eliminating the interaction
between sound field and particulate fluid markers (§..); however, there are
limitations in applying dye to the fluid under investigation.

Using particulate marking in PLV sound field measurements actually involves
acoustic PIV, which is the focus of this chapter.

. Acoustic PIV Applicability

Investigation of the limitations of applying PIV to sound fields may be imple-
mented in two parts. First, the restrictions of PIV as an existing technique is
presented. This includes positioning the spatial and temporal ranges of PIV in
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the framework of sound fields. Later, in §., the effects of the presence of sound
fields in PIV measurements are discussed.

.. PIV Ranges

A detailed description of spatial resolution of particle-images is given in §.. At
the time of this study, a typical CCD camera has a resolution of the order of
1000 × 1000 pixels together with the pixel spacing ∆R . 10 µm. Given some
rough values for the laser wavelength λ̌ ≈ 500 nm, magnification M ≈ 2, f-
number f# ≈ 1 and applying Equation (..) it may be seen that a 10 µm
displacement is mapped to almost 3 pixels. The associated uncertainty is ap-
proximately 1 µm.

For improving the spatial resolution of PIV down to micron and sub-micron
level, some substantial work has been carried out leading to a method known
as Micron-resolution PIV (micro-PIV or µPIV ) introduced by Meinhart et al.

(). Their µPIV set-up could map a 200 nm displacement to almost  pixels
(spaced by 6.8 µm) with an uncertainty of about 53 nm. The technique requires
sub-micron seeding particles for tracing the flow faithfully and sub-micron width
of the illuminating light sheet for avoiding out-of-the-plane motions.

The temporal resolution of a PIV set-up depends, at least, on the following
parameters:

Illumination. Intensity of illumination, duration of each illumination
and time separation between illuminations.

Recording. Sensitivity of recording medium, duration of each recording
and time separation between recordings.

Synchronisation. The duration of each illumination and each recording
together with the corresponding time separations must be matched.

Of these, the right temporal parameters of the recording parameters seems to
be harder to achieve. Recent advances in digital imaging has eliminated a big
part of this problem by the use of interline CCD chips, allowing recordings with
a time separation of the order of nano-seconds. However, the technology still
suffers from a lack of flexibility in recording durations. This deficiency may
be covered by taking advantage of the more flexibility available in the duration
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of illuminations. The limitation of this method is determined by the trade-
off between the flexibility of illumination duration and illumination intensity;
that is, shorter illumination durations may be reached at the expense of lower
illumination intensity.

.. Sound Field Ranges

One feature of acoustical phenomena is that their characteristic quantities have a
broad range. In particular, this may involve the orders of 1 Hz to 108 Hz in the
frequency domain while, in different media and depending on the pressure level,
the acoustic displacement of interest could vary from 10−8 m to 10−2 m. This
makes the development of a versatile measurement system a challenging task.

Sound fields in the linear regime simply involve acoustic motion, that is, the
motion of the fluid in the field is directly generated by the sonic source. As the
Reynolds number of the fluid—identified by the ratio of the inertial force to
the viscous force—gets higher values, the fluid transits to the non-linear regime.
The fluid in the non-linear regime may be purely in the acoustic motion phase,
as when energy is transferred to the higher modes, or it could transit to the hy-
drodynamic motion where secondary flows are formed as a result of time-averaged
fluctuations with a non-zero mean. These hydrodynamic motions are mainly
known as acoustic streaming (Nyborg ; Lighthill ) or steady streaming.

Figure (.) illustrates sound field ranges in the frequency and space domains
in comparison with the PIV ranges discussed previously. The sound field ranges
are grouped into acoustic and hydrodynamic motions and the ranges of each
group, as explained later, are presented based on the corresponding characteristic
parameters. It is assumed that the PIV measurements sample the sound field
under investigation at a rate of ∼ 10 in space and time. Hence, as shown in
the figure, the ‘applicable’ PIV ranges are smaller than their actual values by one
order.

The characteristic frequency and displacement of acoustic motions is essen-
tially the frequency and amplitude of the associated oscillatory motions. In
air, typical amplitudes of linear oscillatory motions with 100 to 200 dB SPL
(Pref = 20 µPa) and a frequency range of 1 to 2 kHz is reported to be of the


Riley () suggests the term ‘steady streaming’ as an alternative to ‘acoustic streaming’.

This is due to the fact that the associated phenomenon involves incompressible flows, while,
‘acoustic streaming’ implements compressibility of the fluid.
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Figure .: A rough illustration of acoustic PIV ranges based on the characteristic
frequency and displacement of the fluid. The product of the characteristic parameters
at each point gives the corresponding velocity amplitude. It is assumed that the PIV
(µPIV) measurements sample the fluid motion at a rate of ∼ 10 and the cut-off
velocity of the fluid is around 10 m/s. The dashed lines represent the PIV (µPIV)
borders.

order of sub-millimeter (Hann and Greated a,b). Thus, acoustic motion
is, at least in some regions, measurable by PIV. In contrast, based on Vignola

et al. (), amplitudes in water with 180 dB SPL (Pref = 1 µPa) at a frequency
of ∼ 2 kHz are of much lower sub-micron values which are quite out of the
PIV borders. Nevertheless, it seems to be possible potentially to apply µPIV to
acoustic motions in liquids. It should be noted that applying µPIV to sound
flow passages of dimensions much greater than the micron order cannot yield
relatively whole-field results, being closer to a point measurement technique.

Increasing the sound intensity level in order to gain higher amplitudes of
acoustic motions may cause two undesirable effects. First, this increments the
acoustic velocity which demands higher temporal PIV sampling and, conse-
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quently, shrinks the PIV ranges. Secondly, increasing the amplitude in this way
can create some unwanted non-linear events such as distortion or streaming.

In hydrodynamic motions, the characteristic parameters are a few orders
greater than the ones of acoustic motions. Acoustic streaming velocities are
normally of the order of . 1 cm/s and rarely up to a few meters per second
(Akulichev ). This well-fits the hydrodynamic motions within the PIV
ranges.

. Previous Studies On Acoustic PIV

Based on the discussed acoustic ranges, the applications of PIV to sound fields
can be mainly divided into the measurement of acoustic and hydrodynamic mo-
tions. The following is an overview of these applications where some of them are
also covered in Campbell et al. ().

.. Acoustic Motions

Due to the restrictions in applying PIV to acoustic motions, namely difficulties
associated with capturing images rapidly enough to track fast tracer particles, the
literature on this topic is quite sparse.

In the first attempt to use PIV to study a sound field, due to the lack of
illumination intensity for short exposures and/or the difficulty in sending illu-
mination pulses fast enough, the image recording process was carried out over
a few acoustic cycles (Hann ; Hann and Greated a,b). The acquired
data was a set of streaks rather than particle-images and consequently required a
slightly different data analysis method to that used in general PIV. As the image
recoding process takes more than half of an acoustic cycle, no phase information
can be obtained using this method.

The direct measurement of acoustic displacement in air using real particle-
imaging was introduced by Blackshire () and later extended by Humphreys Jr

et al. (). The output of the measurement is the ‘absolute displacement’ of
fluid particles from their equilibrium which is not the same as the ‘instanta-
neous displacement’ that leads to velocimetry. The technique is based on two
independent laser sources, with a static delay of half an acoustic cycle, which
are synchronised with the sound field by a microphone trigger. The displace-
ment data is extracted from a single-frame double-exposure recording followed
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by auto-correlation analysis. The advantage of this system is that it extracts phase
information as well as the amplitude and direction of acoustic displacement.

.. Hydrodynamic Motions

The application of PIV to the study of different types of acoustic streaming, that
involve velocities which are much lower than the velocities associated with typical
acoustic oscillatory motions, demands less challenging conditions.

Initiated by Sharpe et al. (), a considerable amount of research has
been undertaken on PIV applied to hydrodynamic motions; namely, Rayleigh

acoustic streaming in air (Hann and Greated c; Rockliff et al. ;
Rockliff and Greated ; Skulina et al. ; Johansson et al. )
and Eckart acoustic streaming in water (Cosgrove et al. ). Many of these
studies involve double-frame single-exposure recordings with an exposure time
of the order of a few tens of milliseconds or more.

.. Novelty

The use of PIV in the study of sound fields has provided a better qualitative
understanding of acoustic behaviour, particularly, in complex geometries. In
addition, quantitative results such as standing wave pattern and the impedance
of low-speed flow passages have been achieved.

However, from the flow visualisation point of view, not much remarkable
progress can be seen in recent works. Figure (.) compares recent visualisations
with some similar cases performed in the s. The lack of progress can be
seen particularly in the measurement of high-speed oscillatory motion where no
substantial work has been reported on the capturing of particle-images within
one acoustic cycle.

. Effect of Sound Fields On PIV Measurements

In its general form, PIV is known as a non-intrusive technique, as has been
well-verified through applications such as the measurement of turbulent flows.
However, the presence of a sound field in the fluid under investigation introduces
various new phenomena which may alter the fundamental assumptions that PIV
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a) Brandt and Hiedemann (). b) Hann ().

c) Andrade (). d) Rockliff ().

Figure .: A comparison between flow visualisation on PIV measurements in sound
fields in the s to similar studies in recent research. Figures (a) and (b) show
the visualisation of acoustic oscillatory motion over a few cycles. Figures (c) and (d)
correspond to visualisation of hydrodynamic motion generated by Rayleigh streaming.

provides a non-intrusive measurement (§.). Accordingly, a careful considera-
tion of any acoustical effect on the laser velocimetry configuration must be taken
into account.

To study the level of intrusion incurred during acoustic PIV measurements,
it is convenient to decompose a PIV measurement into sound field, light field
and tracer particles components, as illustrated in Figure (.). Under this as-
sumption, the measurement can be considered non-intrusive provided that none
of these components interact with each other or if the interaction is negligible.
The amplitudes of the interactions depend crucially on the characteristics of the
sound field, like frequency and sound intensity, and the material and optical fea-
tures of the fluid and tracer particles. Hence, the amount of intrusion during an
acoustic PIV measurement is very specific to that measurement. The following is
a discussion of the common interactions which stop acoustic PIV measurements
from being completely non-intrusive or providing reliable output data.
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Figure .: The intrusion parameters in acoustic velocimetry using particle-imaging.

.. Sound Field – Light Field Interactions

The presence of sound waves in a medium is a source of optical inhomogeneity
which makes the light scattered from an object in the medium experience a gra-
dient of the refractive index. This causes the apparent optical properties of the
object, such as the position, to differ from the exact values.

In the case of ultra-sonic waves, the interaction between sound and light fields
can be explained by acousto-optics (Sapriel ). In acoustic LDV measure-
ments, the acousto-optical effect has been studied for propagating (Jack et al.

) and standing sound waves (Jack et al. ) in water. It has been shown
that sound waves may intrude the Doppler signal in a non-negligible way.

The aero-optical effect on the distortion of PIV data has been pointed out
by Elsinga et al. (), reporting three types of errors introduced by the op-
tical inhomogeneity of the medium under investigation: the position and veloc-
ity errors and particle-image blur. The first two errors are systematic while the
last one increases the signal-to-noise ratio of the PIV data. In addition, it was
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demonstrated that the systematic errors are related to the second derivative of the
refractive index in the velocity direction.

In acoustic PIV, the instantaneous refractive index of the fluid under obser-
vation is proportional to the acoustic pressure. According to this and based on
the results by Elsinga et al. (), the source of the velocity error is only sig-
nificant when the second order pressure gradient in the direction of velocity is
remarkable.

.. Sound Field – Tracer Particles Interactions

The interaction between sound field and tracer particles in a PIV measurement
is mutual and may have a strong intrusive participation.

The presence of tracer particles in a fluid can cause attenuation of the prop-
agation of sound in that fluid (Kinsler et al. , §.). In fact, the more
faithfully the tracers follow the fluid, implying that more momentum from the
sound waves is transferred to them, the greater the attenuation of the sound
wave. This leads to a sort of ‘uncertainty’ between the accuracy of the acoustic
PIV measurement and the disturbance of the measured acoustic wave.

Conversely, the effect of sound fields on tracer particles, beyond helping to
measure the fluid motion by forcing the tracers to follow it, takes the unwanted
form of spatial redistribution of the tracer particles. This happens as a result of
migration of the particles introduced by a non-zero averaging motion. Moreover,
the different motions of the tracer particles may cause them to collide and adhere
to each other which leads to a size redistribution. As will be shown later, a con-
sequence of the size redistribution is the velocity redistribution of the particles.

The remainder of this chapter focusses upon the sound field – tracer particles
interactions.

. Motion of Small Particles in Standing Sound
Fields

.. Terminology

The term aerosol refers to a suspension of fine solid or liquid particles in a gaseous
medium. A similar suspension in a liquid is referred to as a hydrosol. The scope
of this study is limited to aerosols.
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In the presence of sound fields, rigid aerosol particles are defined as volumes
with no sound waves inside them, while sound waves can exist inside deformable
aerosol particles.

The motion of fluid around an aerosol particle applies a force to it. The
elements of this force which are parallel and perpendicular to the fluid motion
are known as the drag and lift forces, respectively. When the fluid motion is
oscillatory, as in an acoustic field, the temporal average force that aerosol particles
experience is named the drift force.

The Reynolds number of the aerosol particles helps to describe how the fluid
flows around the particles. The number is defined as the ratio of the inertial and
the viscous forces which, for a spherical particle, may be given as

N Re =
2 rp | #—v − #—v p|

ν
, (..)

where rp is the radius of the particle, | #—v − #—v p| is the relative velocity of the particle
and the fluid and the kinematic viscosity coefficient is denoted by ν.

.. Equation of Motion

In a turbulent flow, the motion of spherical particles with dimensions much
smaller than the minimum wavelength of the turbulence may be described by
the Basset-Boussinesq-Oseen (BBO) equation (Boussinesq ; Basset ;
Oseen ). A general form of the BBO integro-differential equation, which is
also valid for the spacial case of laminar flow, can be written as

4π

3
r3

pρp
d
dt

#—v p = −
4π
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#—∇p

+
1
2

4π

3
r3

pρ0
d
dt

( #—v − #—v p)

+
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∫ t
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t − t ′

d
dt ′

( #—v − #—v p)dt ′

+ Fe, (..)
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where ρp is the density of the aerosol particle and η is the dynamic viscosity of
the fluid.

The first term on the right hand side of this equation describes the force
generated by the pressure gradient

#—∇p in the fluid around the particle.
The second term is the force due to the apparent mass of the particle relative

to the fluid. This force is the outcome of the direct exchange of momentum
between the particle and the fluid, assuming that the fluid is ideal (Lamb ).

The third term of the equation is due to the viscous drag force with 1/τD as
a time constant for the momentum transfer given by

1
τD

=
3
8

CD
ρ0

ρp rp
| #—v − #—v p|, (..)

where CD is the drag coefficient.
The fourth term of the BBO equation (..) is the Basset history integral

force. This force is due to the non-uniform relative motion of the viscous fluid
depending crucially on the path of the motion of the particle.

The last term is due to any potential field force such as gravity or electromag-
netic forces.

... Assumptions

The BBO equation is valid for a wide range of parameters. The scope of interest
throughout this study is defined by the following assumptions.

Assumption .i. The aerosol particles have a spherical shape and they are rigid
in sound waves.

Assumption .ii. The particles do not have any kind of interaction with each
other.

Assumption .iii. The dimension of the aerosol particles is much smaller than
the wavelength of the sound field,

rp

λ
� 1. (..)
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Assumption .iv. The density of the aerosol particles is much greater than the
equilibrium density of the host fluid,

ρp

ρ0
� 1. (..)

Assumption .v. The velocity of the aerosol particles relative to the host fluid
changes slowly so that ∣∣∣∣ d

dt
( #—v − #—v p)

∣∣∣∣� 1. (..)

Assumption .vi. The aerosol particles have low Reynolds numbers implying
that the drag coefficient is given by the Stokes’ law regime as (Stokes )

CD =
24
N Re

. (..)

... Equation of Motion in Standing Sound Fields

The preceding assumptions enable the BBO equation (..) to be greatly simpli-
fied. For example, taking into account Assumption (.iv), the pressure gradient
and apparent mass terms are negligible. In addition, Assumption (.v) ensures
that the Basset history integral value can be ignored. Finally, Assumption (.vi)
determines the final form of the viscous drag force giving the one-dimensional
equation of motion of aerosol particles as

4π

3
r3

pρp
d
dt

vp = 6π η rp (v − vp). (..)

Introducing the relaxation time of an aerosol particle as a function of the size of
the particle:

τp(rp) =
2
9

ρp

ρ0

r2
p

ν
, (..)

the equation of motion can be re-arranged to

τp
d
dt

vp + vp = v. (..)
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In the particular case of a standing wave sound field, substituting Equation
(..) into the equation of motion yields

τp
d
dt

vp + vp = v0 sin(kx) cos(ωt). (..)

The general form of this differential equation may be given as (Polyanin and

Zaitsev )

vp(x, t) = vxµp sin(ωt − ϕ) + vxµg e−t/τp (..a)

vx = v0 sin(kx) (..b)

ϕ = tan−1(ωτp) (..c)

µp = cos(ϕ) (..d)

µg = sin(ϕ), (..e)

where ϕ is a phase shift angle and µp and µg are the entrainment coefficient and
the flow-around coefficient, respectively. After a time approximately equal to τp,
the second term in Equation (..a) is negligible and the particle is approx-
imately in a steady-state. Considering this, the velocity of an aerosol particle
in a sinusoidal standing wave is sinusoidal in nature with the spatial amplitude
reduced by a factor of cos(ϕ) and a temporal delay of ϕ introduced.

.. Velocity Distribution

In practice, an ensemble of aerosol particles has a size distribution. According to
Equation (..a), the velocity of an aerosol particle in a sound field is a function
of its size. This implies that, at any space-time, aerosol particles have a distribu-
tion in the velocity space. One immediate consequence of this argument is that
the number of tracer particles which follow the fluid faithfully is a function of
space-time. Consequently, when performing an acoustic PIV measurement, a
pre-existing knowledge of the velocity distribution behaviour of the tracer parti-
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Figure .: Values of the entrainment coefficient for different frequencies.

cles in the sound field under investigation may be crucial.

... Fluctuation of Number of Illuminated Particles

The tracer particles which contribute to velocimetry, distinguished by illumina-
tion, are a sub-set of the whole ensemble of particles. Given a fixed illumination
volume, in the presence of a sound field, the number of contributing particles is
a function of the dimensions and position of the visualisation volume, as well as
of time. The aim is to calculate this number at any space-time as a pre-requisite
for obtaining the velocity distribution.

Consider a resonant tube with aerosol particles homogenously distributed in-
side it. It is assumed that the velocimetry measurement is performed in a narrow-
enough band, with a length of ∆xL, across the tube so that the velocity within
the illumination volume has an almost constant value implying the criterion

∆xL � λ. (..)

Let the instantaneous number density of the aerosol particles be np; that is, the
number of particles per unit volume at any time. The aerosol particles and the
host fluid can be treated as a multi-phase system where each phase fulfills the
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continuity condition independently. Hence, the equation of continuity for the
aerosol particles may be written as

∂tnp + ∂x(np vp) = 0, (..)

Expressing the instantaneous number density as equilibrium number density np0

and fluctuating number density np:

np = np0
+ δnp, (..)

the equation of continuity can be linearised to

∂tδnp + np0
∂xvp = 0. (..)

Using the boundary condition of Equations (..) and (..), a solution of the
linear continuity equation is

δnp = −np0

v0

c
cos(ϕ) cos(kx) cos(ωt − ϕ), (..)

giving the instantaneous number density as

np(x, t) = np0

(
1 − np0

v0

c
cos(ϕ) cos(kx) cos(ωt − ϕ)

)
. (..)

The number of illuminated particles in the volume (∆zL W ∆xL) can be given by

N p = ∆zL W

∫x+∆xL

x

np(x) dx, (..)

where W and ∆zL are the width of the tube and the thickness of the light sheet,
respectively. After integration, the number of illuminated particles may be ex-
pressed in terms of equilibrium and fluctuating parts by

N p = N p0
+ δN p, (..a)

where

N p0
= (∆zL ∆xL W) np0

, (..b)
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and

δN p = N p0

v0

c
cos(ϕ) cos(ωt − ϕ)

(
sin(kx − k∆xL) − sin(kx)

k∆xL

)
. (..c)

Using Equation (..), when k∆xL � 1, the fluctuation in the number of
illuminated particles can be approximated as

δN p
∼= N p0

v0

c
cos(ϕ) cos(ωt − ϕ) cos(kx). (..)

Equation (..) shows that the value of δN p depends mainly upon the ratio
of the acoustic velocity to the phase velocity. In linear sound fields this ratio is a
small number implying that the fluctuation is negligible in the linear regime and

N p
∼= N p0

. (..)

This value of the instantaneous number of illuminated particles will be used to
calculate their velocity distribution.

... Calculation of Velocity Distribution

As a consequence of homogenous spatial distribution, the illuminated aerosol
particles in an acoustic PIV measurement have almost the same size distribu-
tion as the whole ensemble. The probability density function (PDF) of the size
distribution is defined by

dN p0
= f r(rp) drp, (..a)

where dN p0
represents the number of illuminated particles whose radii are be-

tween rp and rp + drp. The normalisation condition gives the total number of
illuminated particles at any space-time which, following on from the discussion
in §..., may be approximated to its equilibrium value:∫+∞

0
f r(rp) drp = N p0

. (..b)

Commonly, the size distribution of aerosol particles is described by a log-normal
distribution.
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In a similar way, the PDF of the velocity distribution of the illuminated par-
ticles and the associated normalisation condition may be written as

dN p0
= fv(vp) dvp (..a)

∫+v0

−v0

fv(vp) dvp = N p0
. (..b)

Combining Equations (..a) and (..a) and expressing each differential el-
ement of the velocity space in terms of a differential element in the size space,
the PDFs of velocity and size distributions are related to each other by

fv(vp) ∂ϕvp ∂rpϕ drp = f r(rp) drp. (..)

Typical values for the phase shift ϕ of the tracer particles commonly used in
acoustic PIV measurements are much smaller than unity. Considering this, after
some algebraic manipulation, Equation (..) reads

fv(vp) =

(
rp

2ϕ v0 sin(kx) sin(ωt − 2ϕ)

)
f r(rp), ϕ � 1. (..)

Since the area under the distribution curve is assumed to be constant, a rough
estimation of the width of the distribution may be given by

σv
∼= σv0 v0 | sin(kx) sin(ωt − 2ϕ)|, (..a)

where

σv0 =
2ϕ N p0

rp f r(rp)
. (..b)

Equation (..a) states that at the extremum points of the acoustic velocity
the velocity distributions of the aerosols are wider than the velocity distributions
where the acoustic velocity is zero. The ratio of these velocity distribution widths
is given by tan(2ϕ).
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Johann Wolfgang von Goethe, Faust

The experimental set-up, designed for acoustic PIV measurements, comprises a
set of hardware which is controlled by, and whose output is analysed by, self-
written software (Figure .). The measurement cycle is initiated by the software
sending a series of input signals to the hardware. The signals contain the re-
quired information for both running the experiment and performing the mea-
surement. The measurement cycle continues as the hardware output is received
and analysed by the software.

Typically, acoustic PIV measurements need to be run temporally as well as
spatially, requiring a large number of inputs and the analysis of a high volume
of output. This makes automating the measurement cycle a crucial factor in
speeding up the process and cutting down on human error. To this end, the
software layer has been designed to allow the number of hardware components
to be kept to a minimum, enabling a large number of PIV measurements to
be made in rapid succession via automation of the system. Some other benefits
include making the system more flexible, time-effective and cost-friendly.

In the following, the hardware and software components are discussed in
detail.
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Figure .: Experimental design.

. Hardware

The hardware configuration is illustrated in Figures (.) and (.). The input
signals, explained in §., are sent to a data acquisition board (DAQ) housed
within a PC. The DAQ performs two main jobs; generating voltages to trigger
the other devices and synchronising or delaying the triggered events. In this way,
the DAQ is used to control the loudspeaker, to create the desired phenomena
inside the tube; and the laser and digital camera, to perform the measurements
on the tube. The measurement process ends with the recorded images from the
camera being downloaded to the PC via a frame-grabber card and stored in a
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digital medium for processing later. The technical specifications of the devices
are given in Table (.).

DAQ

Frame Grabber

Camera

Sound Field
Set-up

Laser Optical
Set-up

Figure .: Experimental set-up: hardware configuration.

.. The Tube

The transparent tube used in the study is made of Perspex material. The ther-
mal conductivity of Perspex is about 16% that of glass, making it possible to

Perspex is the UK trade name for polymethyl-methacrylate (PMMA).
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Device Specifications
DAQ IOtech DaqBoard-2000, 16 bit, 200 kHz

Loudspeaker
Laser Laser Quantum, 532 nm, 250 mW, CW solid-state

light sheet generator Three cylindrical lenses (Figure .c),
Focal lengthes: +19 mm, +200 mm and +60 mm

Camera PCO DoubleShutter Sensicam
Camera lens A γf = 12.5 - 75 mm
Camera lens B γf = 55 - 110 mm

Tube Perspex
Length 62.0 cm
Square cross-section 3.5 cm × 3.5 cm
Wall thickness 0.5 cm

Table .: Specifications of hardware devices.

thermally insulate the volume inside the tube more efficiently than glass. More-
over, allowing about 92% of visible light, Perspex is a better choice over glass in
transmitting light energy.

One end of the tube is terminated in an acoustically rigid manner while the
other end is, via an adaptor, connected to the loudspeaker. The tube length is
62.0 cm with a square cross-section of dimensions 3.5 cm × 3.5 cm and a wall
thickness of 0.5 cm.

The choice of a cuboidal tube shape is in order to avoid the flare problem
which is common in cylindrical tubes due to the unwanted light reflected from
their curved walls. The area in PIV images which is affected by flare suffers a
severe lack of data. In principle, it is conceivable to overcome the flare problem
when the light scattered from the tracer particles has a different wavelength to the
light reflected from the walls. In this way, the flare light may be easily filtered.

.. Tracer Particles

During the measurement, the tube under investigation is seeded using smoke
for the tracer particles. The smoke is generated by burning incense of the joss-
stick type. Figure (.) shows the size distribution of typical joss-stick smoke

This is possible by dying the tracer particles using fluorescence when, after absorbing the
illumination light, they can emit a light with a different wavelength.
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particles measured by an Electric Low Pressure Impactor (ELPI) (Jetter et al.

). The peak of the size distribution is located between 2.6 and 4.0 µm. As
generated from oil-based material, the density of the smoke particles is expected
to be of the order of 1000 to 2000 Kg/m3.

Following the discussions in §..., at sound field frequencies up to a few
kilo-Hertz, sub-micron aerosols whose density is much higher than of air have an
entrainment coefficient near unity (Figure .). This implies that, at low-enough
frequencies, the smoke particles are expected to follow the air flow faithfully.

While incense smoke is the most cost-effective way of visualising air flows,
there are alternative methods which provide better control over physical charac-
teristics of the tracer particles. One example is using aerosol generators which
create micron-sized particles from almost arbitrary liquids. The tracer particles
generated by this device have a sharp peak of size distribution. Moreover, in order
to get particle-images of better quality, it is possible to increase the intensity of
the light reflected from the tracer particles with the right choice of source liquid.

.. Light Sheet

The optical set-up used to generate the light sheet, for illuminating the tracer
particles, consists of three cylindrical lenses, as shown in Figure (.c) on page
, with focal lengths given in Table (.). The generated light sheet is able to
illuminate a region of around 1 cm high across the width of the tube, thickness
of the light sheet has a Gaussian profile with a width of less than 1 mm.

.. Laser

The option exists to run the laser in either a CW mode (§..) or to trigger it
by an external source to produce a beam with an intensity varying as an arbitrary
function of time.

Commonly, in order to fulfil health and safety regulations, burning incense is preferred to
cigarette smoke. Measurements by Jetter et al. () points out that incense smoke particles
are of sub-micron size and may be as unhealthy as cigarette smoke.
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Figure .: Size distribution of smoke particles generated by burning typical joss-sticks
with a peak between 2.6 and 4.0 µm. The data is adopted from Jetter et al. ()

.. Camera

The digital camera device used in the set-up may be triggered, by an external
source, to perform two exposures: a dynamic exposure, whose duration can be
controlled by the trigger source, and a static exposure which lasts for a constant
time of the order of a few milliseconds. The end of the first exposure is separated
from the beginning of the second exposure by a delay of the order of nanosec-
onds.

In a PIV set-up, the recording process may be controlled by either illumina-
tion (the laser) or by exposure (the camera). In the first method, depending on
the purpose of the experiment, the camera shutter is left open to expose one or
more laser illuminations. In the second method, the laser is run in the CW mode
and the exposures are performed by the camera at the desired times and dura-
tions. Due to the fact that the second exposure of the camera is not controllable,
it is only practical to use the first method in this experimental set-up.
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Figure .: Experimental set-up: hardware configuration.

. Software: Input Signals

The following signals are used to control the hardware configuration:

sound wave signal. The loudspeaker is driven by the corresponding sig-
nal for the sound field of interest. Throughout, this signal is referred to as
the sound wave signal.

illumination signal. The laser is triggered by the illumination signal to
produce ‘quasi-pulses’; that is, pulses which are generated as a result of
applying a square-function to the laser running in the trigger mode. Quasi-
pulses provide the flexibility of being able to be triggered at any desired
time. However, since there is no energy storage prior to sending the quasi-
pulse, the output light may not be intense enough for some measurements.

exposure signal. A square-function signal, similar to the illumination
signal, referred to as the exposure signal, is sent to the digital camera device.
Following the discussions in §.., the recording process is controlled by
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the illumination signal. Consequently, in order to ensure that each PIV
image is captured at the instant when the tube is being illuminated by the
light sheet, the recording signal must be carefully synchronised with the
illumination signal.

The illumination and exposure signals are in the form of high-TTL. De-
pending on the aim of the measurement, various combinations of the input sig-
nals may be used. The illumination signals used in this study are of identical
duration and each is covered by one exposure signal. This configuration pro-
duces multiple (double) frames - single exposure data (§...) which is suitable
for a cross-correlation analysis.

.. Scanning the sound wave signals

Although the illumination and exposure signals must be carefully synchronised
with each other, the freedom remains to perform the recording at an arbitrary
delay time after the start of the sound wave signal is sent to the loudspeaker. This
implies that, by progressively increasing this delay, successive PIV measurements
can be made to ‘scan’ the sound wave signal through time and reconstruct it later
by data analysis. This procedure may be applied at any position along the tube
to study the spatial variation of the sound wave signal.

Let τs be the scanning duration of the sound wave under investigation and
ns be the number of points within the scanning duration that velocity measure-
ments are performed. Assuming measurements are taken at equal intervals δτs,
known as the scanning step, as illustrated in Figure (.), the scanning duration is
given by

τs = ns δτs. (..)

The velocimetry time tv, which is the time separation between the start of the
scanning and the mid-point of the delay between two illumination pulses, may
be determined as

tv = n δτs, 0 6 n < ns, (..)

where n is an integer. By progressively increasing the quantised time tv, while
performing a PIV measurement at each time, the velocities associated with the
sound wave may be obtained at the scanning frequency.

Transistor-Transistor Logic (TTL) signals are commonly used for triggering. The signal is
in the form of a square-function and in the high mode its value is between +2 V and +5 V.
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Figure .: The sound wave scanning process.

In order to ensure that all the sound wave information in the scanning dura-
tion is measured, according to the sampling theorem, the scanning rate ns/τs =

1/δτs must be at least equal to the Nyquist rate of the sound wave within the
scanning duration. In other words, if fmax is the highest frequency of the scanned
sound wave, the lower-limit of the scanning rate is

min (1/δτs) = 2fmax.

It may be shown that the upper-limit of 1/δτs is determined by the spec-
ifications of the hardware used for the measurement. Let τi be the minimum
duration of the illumination pulses which crucially depends on the light source
illumination power, the recording device sensitivity and the DAQ precision. The
minimum displacement which can be measured by two identical illumination
pulses of duration τi, assuming that the displacement is measured between the
mid-points of the pulses, is within τi. This implies that the input sound wave
may be measured with the minimum precision of τi or

max (1/δτs) = 1/τi.

For the experimental set-up used in this study, the upper-limit of 1/δτs was ob-
tained to be ∼ 10 kHz.

When carrying out acoustic PIV measurements, the scanning frequency should
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be set to the maximum value obtainable for the system. Although setting the
scanning frequency higher than the Nyquist rate does not provide any more in-
formation about the reconstructed signal, which is assumed to be the same as
the input signals, by doing so any unexpected behaviour of the output can be
sampled.

. Software: Output Data Analysis

A diagram describing the data analysis procedure is given in Figure (.). The im-
age evaluation process begins by reading a pair of raw PIV images downloaded
from camera via the frame-grabber. The images are then pre-processed using
Gaussian smoothing which is effective in removing background noise. The ker-
nel size of the smoothing filter was set to 3× 3.

Three different algorithms were tried for the main data processing. The FFT-
based traditional cross-correlation, as described in §., was implemented as the
standard approach. Introduced by Westerweel et al. (), discrete window
offset was used in a second attempt to improve the accuracy in displacement
detection in the correlation plane. The method is based on spatial offsetting
between the interrogation windows corresponding to the image pair. The offset-
ting value is an integer-pixel vector which is chosen to be roughly equal to the
expected displacement. Hence, the method works best with some pre-existing
knowledge of the fluid motion, however, its ‘built-in’ noise removal is beneficial
in reducing detection error.

Both of the previous processing methods generate unavoidable erroneous ve-
locity vectors caused by non-ideal characteristics of the input PIV images. Con-
sequently, in order to obtain reliable results, applying data validation is neces-
sary when these methods are in use. The PIV image evaluation algorithm of
correlation-based correction ‘automatically’ filters spurious velocity vectors while
calculating displacements in the interrogation area of interest. The method,
founded by Hart (), involves using two (or more) interrogation areas for
detecting each vector. The windows are set apart by a fraction of the interroga-
tion size. The corresponding correlation plane is yielded by element-by-element
multiplication of the interrogation areas.

The post-processing filter was implemented to be used in conjugation with
data processing methods with inaccurate output. A two-dimensional spatial
adaptive local median is a common post-processing filter in which each vector
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is validated by the median of its neighbours. Typical acoustic PIV measurements
include more than two dimensional data, e.g. two dimensions in space and one
more dimension in time or sound intensity. Based on this fact, the adaptive local
median filter was extended to three dimensions using a 3× 3× 3 kernel.
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Figure .: Output data analysis diagram.
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. Sound Pulses

As a preliminary acoustic PIV measurement, the propagation of a sound pulse in
tube A was studied. The structure of this experiment is similar to methods for
finding the impulse response of a loudspeaker with the difference that here the
propagation of the velocity wave, instead of the pressure wave, is measured.

.. Generation and Propagation of Sound Pulses

An ideal pulse may be represented by a δ-function. There are two main factors
which cause the pulse created in practice to deviate from the ideal pulse: the
pulse generation device and the medium in which the pulse propagates.

A wide range of approaches for generating an ideal sound pulse has been re-
ported in the literature including the use of chemical reactions, spark discharges,
electro-acoustic transducers and piezoelectric devices which can produce pulses
of the duration of 0.07 to 2 ms. A review of these means may be found in Mar-

shall () where producing sound pulses of the duration of 0.1 ms by a digital
signal generator, coupled to different sound generation devices, is presented.
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While the pulse generation device diverges the shape of the created pulse
temporally, the spatial deviation from the ideal shape is due to the attenuation
and dispersion properties of the propagation medium. The acoustic harmonic
motions are known to be decayed spatially in an exponential way (Morse and

Ingard , §.). In contrast, Learned () showed that the spatial decay of
sound pulses is non-exponential and is in the form of power-law (Kalinichenko

et al. , §.).

.. Measurement

As a basic estimation of a δ-function, a square-function of duration of 0.1 ms was
chosen as the input signal for driving the loudspeaker. Two TTL illumination
pulses of the duration of 0.1 ms separated by a delay identical to the illumination
durations were used to record the PIV images. Figure (.) illustrates the design
of the input signals.

−2 −1 0 1 2 3 4

Time (ms)

Illumination:End

Illumination:Begin

Sound Wave

Figure .: Input signals for the measurement of a sound pulse.

The measurement was executed at a position 18 cm away from the loud-
speaker and for a scanning duration of 1 ms. At the first attempt, a scanning
resolution of 0.1 ms was applied to produce 10 PIV images. This makes the
temporal overlapping between two consecutive scans to be 50%. Spatially, the
images almost covered the width of the tube. The images were then analysed





.. Linear Harmonic Oscillation

using correction-based correlation with interrogation areas of size of 256 × 256
pixels. The results are shown in Figure (.).

Figure (.) presents the measured velocity pulse obtained by spatial averaging
of the acquired vector-maps across the tube, assuming that the change of the
velocity vectors across the tube is negligible. While the reconstructed velocity
wave is not of a desirable resolution, it confirms that the input square function
is measured as a decayed bipolar pulse. The bipolarity of the result reflects the
response of the loudspeaker to the input square function.

In order to have a better picture of the pulse, as well as testing the system at
a high scanning rate, a second measurement was carried out with an improved
temporal resolution of 0.01 ms, keeping the same scanning duration of 10 ms.
Hence, the temporal overlapping of two consecutive scans in this measurement
is 99%. This produced 100 PIV images which were analysed with the same
parameters as the previous measurement. The result is given in Figure (.).

It is worthy of notice that the extremely high temporal overlapping of the sec-
ond measurement not only did not generate over-sampled repeated information,
but dramatically improved the reconstructed velocity pulse. Using this data, an
excellent fit in the form of a non-symmetrical bipolar Gaussian was obtained
describing the impulse response of the loudspeaker (Figure .). Figure (.)
compares the Fourier transforms of the measured velocity pulses with different
scanning resolutions.

. Linear Harmonic Oscillation

The acoustic velocimetry of standing sound waves inside the tube was carried
out with the tube driven at its first natural frequency. The tube was coupled by a
loudspeaker at one end and rigidly terminated at the other end (§..). Using an
oscilloscope, the first two resonance frequencies were determined to be around
280 Hz and 570 Hz corresponding to periods of about 3.6 ms and 1.8 ms.

Figure (.) shows the input signals used for this measurement. A sinusoidal
sound wave, with a period matching the resonance frequency of interest, was sent
to the loudspeaker while the illumination signal scanned the sound wave over a
full acoustic cycle using a temporal scanning resolution of 0.1 ms. This scanning
resolution yields a sampling frequency of 10 kHz which is around 18 and 9 times
the Nyquist frequency of the two first modes, respectively.
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Figure .: Velocity vector-maps illustrating the temporal scanning of a sound pulse
propagating along the tube. The measurements were carried out 18 cm away from the
loudspeaker. The correlation-based correction algorithm was used with interrogation
areas of size of 256 × 256 with 93.75% overlapping. The horizontal axes show the
width of the tube in mm.
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Figure .: Transversal mean acoustic velocity variation of a sound pulse propagating
along the tube with the scanning resolution of 0.1 ms. Each point corresponds to the
mean value of the velocity vectors in the vector-maps of Figure (.).
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Figure .: Transversal mean acoustic velocity variation of a sound pulse propa-
gating along the tube with the scanning resolution of 0.01 ms. The solid line rep-
resents a bipolar Gaussian fit as a function of time given by 1.29e−(0.87t−2.86)2

−

0.34e−(0.35t−2.56)2 .
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Figure .: Comparison of the Fourier transforms of the velocity pulse with scanning
resolutions of 0.1 ms (10 samplings, dashed line) and 0.01 ms (100 samplings, solid
line).

The sound pressure level at the rigid termination was measured by a probe
microphone (Brüel & Kjær, 4170) connected to a measuring amplifier (Brüel &
Kjær, 2607). The needle of the probe microphone was entered into the tube
through a small hole which was made at the end of the tube. Since the input
sound intensity was controlled by driving the loudspeaker using a Hi-Fi amplifier,
the probe microphone was applied to ‘calibrate’ the Hi-Fi amplifier. Results are
given in Table (.).

.. Variation with Time

Driving the loudspeaker at the two first natural frequencies of the tube, the sound
pressure level at the rigid end of the tube was read from the measuring amplifier
to be 124.0 dB for the first mode and 123.4 dB for the second mode. The
SPL values are corresponded to the Hi-Fi amplifier being set to 2× (Table .).
Monitoring the acoustic pressure on an oscilloscope using the probe microphone
confirmed sinusoidal variation of acoustic pressure.

Based on the described input signals, the PIV measurements were performed
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Figure .: Input signals for the measurement of standing waves.

Hi-Fi amplifier dial SPL of the first mode (dB) SPL of the first mode (dB)
2× 142.0 143.4
4× 151.2 153.0
6× 155.0 156.9

Table .: Calibration of the Hi-Fi amplifier using the probe microphone. The SPL
values are measured at the rigid end of the tube.

at a distance 15 cm away from the loudspeaker. The PIV images were analysed
by interrogation areas of size of 256 × 256 using the correlation-based correc-
tion algorithm. This algorithm generated vector-maps, shown in Figure (.),
which did not need any post-processing including data-validation for excluding
the spurious vectors.

Averaging the resulting acoustic velocity vectors across the width of the tube,
the temporal variation of the standing wave was obtained as shown in Figures
(.a) and (.b) for the first and the second modes, correspondingly. Both
variations are almost in a sinusoidal form with an acoustic velocity amplitude of
about 0.66 m/s (first mode) and 0.48 m/s (second mode). As the experiment
was not designed to extract any temporal phase information, throughout, in
presenting the results the temporal phase is manually set to zero.

Figure (.c) shows the Fourier components of the measured acoustic veloc-
ity for the first two modes. The two highest peaks in the frequency domain are
around the two natural frequencies of the tube. The contribution of the rest of
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Figure .: Velocity vector-maps of the harmonic oscillation at the first resonance
of the tube with a SPL of 126.2 dB and at a position 15 cm away from the
loudspeaker.→
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←The correlation-based correction algorithm was used with interrogation areas of
size of 256× 256 with 93.75% overlapping. The horizontal axes show the width of
the tube in mm.
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the peaks, especially for the first mode, is quite low.

.. Variation with Sound Intensity

In the previous measurement, the standing wave of acoustic velocity was mea-
sured for constant values of sound intensity and axial distance. The measure-
ments were extended by changing the sound intensity while keeping the rest of
the parameters the same.

At 23 cm away from the loudspeaker (0.19 λ1, 0.37 λ2), the acoustic velocity
inside the tube was temporally scanned for the first two modes when the Hi-Fi
amplifier was set to 2×, 4× and 6× (Table .). Analysing the PIV data, based
on the same parameters used previously, the transversal mean acoustic velocity
was obtained as presented in Figures (.a) and (.b) for the two first modes,
respectively. It is noticeable from the results that as the sound intensity increases
inside the tube, the measurement system fails to gain expected values. Later, in
this work, the sources of this anomaly will be investigated, however–for the time
being–the results of this investigation is used to analyse the measurements.

The algorithm employed so far in the processing of the PIV images is founded
upon Correlation-Based Correction (CBC). It will be shown that using correlation-
based correction together with the Symmetric Phase-Only Filter (CBC-SPOF)
dramatically improves the anomalous results towards their expected values.

Figures (.c) and (.d) demonstrate the variation of acoustic velocities by
processing the same PIV images using CBC-SPOF, which imply a significant
change when compared to the results obtained by CBC processing.

Calculating their RMS values, the variation of the measured acoustic veloci-
ties at the given axial position (0.19 λ1, 0.37 λ2) versus the measured SPL at the
rigid end is shown in Figure (.). As illustrated, the CBC-SPOF processed
results well-agree with the theoretical prediction.

.. Variation with Space

Extending the measurements in one more dimension, the former experiment was
carried out along the axis of the tube. In detail, the standing acoustic velocity
wave was temporally scanned for different frequencies, sound intensities and po-
sitions forming the standing wave patterns of the first two modes.

Figure (.) shows the results analysed by CBC-SPOF processing. A com-
parison of the experimental values with the theoretical standing wave pattern for
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a) Acoustic Velocity of the first mode
with the SPL of 124.0 dB. Each
point corresponds to the mean value
of the velocity vectors in the vector-
maps of Figure (.).
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b) Acoustic Velocity of the second
mode with the SPL of 123.4 dB.
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c) The Fourier transforms of the
acoustic velocities of the first mode
(solid line) and the second mode
(dashed line) of the tube.

Figure .: Transversal mean acoustic velocity variation of the first two modes of the
tube and their Fourier components. Measured at 15 cm away from the loudspeaker
with the scanning resolution of 0.1 ms.
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a) First mode, x = 0.19 λ1.
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Figure .: Variation of RMS acoustic velocity at 23 cm away from the
loudspeaker with SPL measured at the rigid end. A comparison between
the data analysed by CBC (H) and CBC-SPOF (N) is given together with
the theoretical values (—). The RMS acoustic velocities are calculated by
the values presented in Figure (.).
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Figure .: Variation of RMS acoustic velocity as a function of the axial
position. All values are obtained by CBC-SPOF processing. The solid
lines show the corresponding theoretical standing wave pattern of a tube
with perfectly rigid terminations. The loudspeaker is located at x = 0 cm
and the rigid end is at x = 62 cm.





.. Streaming

a tube with perfectly rigid terminations is also given. The results around the
anti-node are in a good agreement with the predicted values. However, the mea-
surements around the nodes are biased towards lower velocities. It seems that
this bias is independent of the absolute value of the acoustic velocity.

Another type of deviation from the theoretical values is evident at positions
close to the loudspeaker (x = 0 cm) where there is an acoustic velocity drop. This
may be explained by pointing out the fact that as the loudspeaker termination is
not absolutely rigid, there is no acoustic velocity node around this position. This
implies that the standing wave pattern around the loudspeaker has a distorted
form.

. Streaming

.. Steady Streaming Visualisation

In order to investigate the presence of streaming, a measurement was carried out
to visualise the tracer particles on a time-averaged basis.

Unlike the other measurements in this work, this experiment is a single-
frame multiple-exposure measurement. An exposure signal of the length of a
few acoustic cycles is sent to the camera (where each acoustic cycle is determined
by the frequency of the sinusoidal sound wave signal). During the exposure sig-
nal, illumination pulses at the frequency of the sound wave signal are sent to the
laser. For a better resolution, a lens of higher magnification was used (Lens B in
Table (.)). The result is a super-imposed collection of particle-images.

In order to verify the reliability of the measurement, this test was carried out
on an object connected to an electrical shaker vibrating at a frequency of 2 kHz.
Figure (.a) shows the result for the first 20 cycles of the vibration of the object
when it starts to oscillate. It may be seen that after around 10 cycles the object
reaches equilibrium where its image intensity is higher.

A similar procedure was applied to the tracer particles in the first resonance
of the tube around the anomalous location along the tube. In order to ensure
that the sound field was in its equilibrium state, the measurement was taken after
100 acoustic cycles. To avoid any streaks, each illumination signal was synchro-
nised to be sent around the phase position corresponding to zero acoustic veloc-
ities. Figure (.b) shows the super-positioning of the particle-images for 10
acoustic cycles. The expected super-position pattern would be a set of regularly-
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.. In-Plane Noise

spaced particle-images corresponding to the number of recorded acoustic cycles.
However, unexpectedly, this number for each individual particle-image does not
exceed more than 2. The cause of this result will be investigated later in §....

. In-Plane Noise

An important outcome of the previously presented acoustic PIV measurements is
the deviation of the experimental acoustic velocities from their expected values.
The deviation is observed to be a function of space, time, and sound intensity but
not the predicted or measured value of the acoustic velocity. The latter implies
that the deviation cannot be immediately linked to the upper-limit restriction
of the acoustic PIV system. In order to explain the anomalous behaviour of the
measurement system, two main questions are investigated. First, an attempt is
made to address the source of the deviation. Secondly, based on the cause of the
anomaly, means to minimise the deviation are demonstrated or suggested.

.. Probing Correlation Plane

Since the information associated with the motion of the fluid under a PIV mea-
surement is stored in the correlation plane, it is sensible to start tracing the source
of the deviation by examining the correlation plane.

Figure (.) certifies the correlation planes obtained by some acoustic PIV
measurements presented previously, namely, a sound pulse and a standing wave
with different values of sound intensities. One common feature shared between
the demonstrated correlation planes is the broad peak along the direction of
illumination. It will be shown that the presence of this wide peak is due to
the narrow height of the light sheet.

The effective height of the light sheet, measured by eye as given in §..,
was around 1 cm. Figure (.) shows the illumination profile, visualised by the
seeding particles, as recorded by the CCD camera. The illumination duration
of this recording was 0.1 ms which is the same duration used in the presented
measurements. The image indicates that the effective height of the recorded
pulsed illumination profile is of the order of 1 mm which is about 10% of the
one of continuous illumination profile as measured by eye. One reason behind
this is the lack of sensitivity of the CCD chip to low-power light. As a trade-
off, this deficiency may be compensated by increasing the illumination power.
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a) Correlation plane of a sound
pulse (Figure .).
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b) Correlation plane of the ex-
tremum of a standing wave (Figure
.c) with a SPL of 142.0 dB.
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c) Correlation plane of the ex-
tremum of a standing wave (Figure
.c) with a SPL of 151.2 dB.
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d) Correlation plane of the ex-
tremum of a standing wave (Figure
.c) with a SPL of 155.0 dB.

Figure .: Comparison between the experimental correlation planes
corresponding to acoustic motions. All correlation planes are obtained by
CBC processing. The brighter regions stand for higher values.
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Figure .: The illumination profile as recorded by the CCD camera with an illu-
mination duration of 0.1 ms.

However, the laser used in this work had an output power of 250 mW which is
classed as low to moderate power. Typically, lasers applied in PIV measurements
are pulsed lasers with an output energy of 50 to 120 mJ per pulses of duration
of 5 ns which is associated with a power of about 10 MW. Accordingly, while it
is not possible to directly compare the output power of a continuous laser to a
pulsed one, it is reasonable to assume that the laser used in this study is of many
orders less powerful than a recommended laser for PIV measurements. However,
the fact that the developed set-up, based on the low-power laser, was able to
measure velocities up to a few meters per second is significant.

The narrow height of the recorded light sheet, relative to the size of the
interrogation areas, causes a strong illumination gradient across the interroga-
tion areas. Consequently, this induces a background correlation peak R C(

#—
s̃ )

(see §...) to appear as broad peak. The background correlation peak has a
Gaussian form with a width of 1/8th of the interrogation area size.

.. Filtering Correlation Noise

The discussed illumination and recording limitations do not prevent the data
acquisition system from losing the displacement signal. In fact, the displace-
ment peak signal is buried under the background correlation noise and may be
extracted by an appropriate filter.

Removing the noise of correlation peaks is neither a new idea nor restricted to
PIV data processing. Optimising the correlation signal-to-noise ratio was stud-
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ied in the s where it was applied to regain radar signals from noisy data
(Carter ; Knapp and Carter ). The approach was first applied to PIV
correlation planes by Wernet and Edwards () based on optical correlators.
More recently, an extension is implemented by Wernet () where the author
demonstrates the effectiveness of phase-only filters (POF ), in particular Symmet-
ric phase-only filter (SPOF ), on PIV image evaluation. The basis of phase-only
correlation is matching by the phase of the Fourier transformed data. This is in
contrast to the traditional method which tries to match based upon the ampli-
tude of the frequency domain. The significant advantage of phase matching over
amplitude matching is that the phase component stores information about the
position of the input objects, while the amplitude component saves information
about their size. Correlation obtained by position-only matching not only yields
a stronger displacement peak, but also fades the rest of the peaks remarkably,
which may be counted as noise. Since the signal of interest in a PIV analysis is
the displacement peak, SPOF effectively eliminates the unwanted peaks includ-
ing background correlation.

The application of SPOF in recovering acoustic displacements measured by
low-light PIV is manifested in this work (§.). Figure (.a) illustrates a cor-
relation plane obtained by CBC which uses Fourier amplitude matching. The
correlation plane, corresponding to a PIV image recorded by the previously men-
tioned narrow illumination, clearly contains a wide background correlation peak
which conceals the displacement peak. The displacement peak, as shown in Fig-
ure (.b), is retrieved by using phase-only correlation.

. Out-of-Plane Noise

.. Acoustic Motion Visualisation

A sound field visualisation experiment with high-magnification was set up to
record the microscopic motion of the particle-sources. The aim of the test was
to provide a direct observation of the motion of the particle-sources under the
anomalous condition using the existing PIV set-up. The specifications of the
measurements are as described in §.., the only difference being the use of a
camera lens of greater magnification (Lens B in Table (.)).

Figures (.) and (.) show visualisations of the sound field generated
when the tube was driven at its first natural frequency. The visualisations were
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a) CBC
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b) CBC-SPOF

Figure .: Comparison between correlation planes obtained by Fourier amplitude
matching (CBC) and phase-only matching (CBC-SPOF). The three-dimensional
plots correspond to the indicated square regions about the displacement peaks. The
correlation plane is the same as in Figure (.b).
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t = 0.4/f t = 0.9/f

t = 0.3/f t = 0.8/f

t = 0.1/f t = 0.6/f

t = 0./f t = 0.5/f

Figure .: Visualisation of sound field in the non-anomalous location
of the tube.
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t = 0.4/f t = 0.9/f

t = 0.3/f t = 0.8/f

t = 0.1/f t = 0.6/f

t = 0./f t = 0.5/f

Figure .: Visualisation of sound field in the anomalous location of the
tube. 
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carried out at, respectively, the non-anomalous and anomalous positions inside
the tube and at selected times within an acoustic cycle. For ease of observation,
negatives of the images are presented. The visualised sound field is comparable
to that presented in the works of Brandt and Hiedemann () and Hann

() (see Figures (.a) and (.b) on page ); however, the temporal resolu-
tion achieved in this study is of the order of 100 times greater than that of the
mentioned works. Consequently, instead of having a ‘dumbbell-shape’ recorded
over a few acoustic cycles, each particle-image is expected to appear as a streak
at the extremum points of the acoustic velocity and as a ‘half-dumbbell-shape’ as
they get closer to smaller velocities.

A qualitative comparison between the two sets of visualisations shows that
the streaks recorded under the anomalous condition are relatively shorter and of
stronger intensities than the non-anomalous streaks corresponding to the same
phase. This is an unexpected result as the anomalous streaks, whether associated
with higher sound intensities or regions around the velocity node, should be
generally longer than the non-anomalous streaks. A more surprising outcome is
observed about the temporal extremum points, t = 0.3/f and t = 0.8/f. At these
points the non-anomalous streaks have a predictably uniform intensity profile.
However, the anomalous streaks of the same phases generated an intensity profile
which looks like full-Gaussian or partial-Gaussian.

.. Discussions

The unexpected behaviour of the visualised acoustic motion may be interpreted
once assuming that, during the illumination time, the particle-sources were laid
on a plane parallel to and within the light sheet volume; and once assuming that
they have a considerable displacement normal to the light sheet while they were
recorded.

... In-Plane Motion

The first of the above assumptions implies that the recorded streaks reflect the
true two-dimensional motion of the particle-sources. Accordingly, it may be
argued that particle-sources actually do not perform the expected harmonic os-
cillations. One may go further and expand this possibility to whether the source
of the unpredicted motion is from the fluid flow itself or due to the fact that the
particle-sources do not follow the flow faithfully.
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The former hypothesis was rejected by measuring the acoustic pressure using
a probe microphone. The measurement, which was carried out similarly to the
description in §., confirmed the sinusoidal form of acoustic pressure variation
implying the same result for acoustic velocity.

Under the measurement conditions, given a frequency of the order of 102 Hz
and SPL of less than about 160 dB, the infidelity of the particle-sources to the
fluid flow in the sound field does not agree with the classical theory presented
in §.... Even by neglecting the measurement conditions, the classical theory
simply predicts the infidelity in the sense of attenuation in the amplitude of
oscillation. This makes tracer particles infidelity to be a less-likely source of
anomaly.

... Out-of-Plane Motion

The idea of the motion of the particle-sources during the illumination time may
be supported by a number of reasons. First, the stronger intensity of the anom-
alous particle-images may imply their motion normal to the recording plane,
therefore, creating shorter streaks. Secondly, the unexpected Gaussian pro-
files of the anomalous streaks, at the temporal extremum points, can prove that
the particle-sources cross the light sheet volume. Consequently, the Gaussian

profile of the light sheet thickness is ‘mapped’ to the expected uniform profile
of the streaks making them appear as Gaussian streaks. Hence, according to
whether the particle-sources cross the light sheet volume completely or partially,
they generate streaks with full-Gaussian or partial-Gaussian profiles, respec-
tively. Finally, considering the out-of-plane motion of source particles explains
the streaming visualisation pattern discussed formerly (Figure .a) by the fact
that the time-averaged motion normal to the light sheet cuts the continuation of
the regularly-spaced particle-images.

One reason behind the out-of-plane motion could be due to the angle be-
tween the light sheet normal and the tube axis. In the PIV set-up used for the
measurement of acoustic oscillatory motions, it is assumed that the normal vec-
tor of the light sheet is perpendicular to the axis of the tube. This prevents all the
particle-sources initially located within the illumination volume from exiting the
volume while avoiding new particle-sources simultaneously entering. However,
in practice this angle may deviate from 90°.

Let the deviation angle be denoted by ϑ. From Equation (..), for a
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Figure .: Variation of out-of-plane loss-of-correlation with the deviation of the
angle between the Gaussian light sheet normal and the tube axis for different values
of thickness of light sheet. The acoustic motion corresponds to an extremum point in
space-time with v0 = 2 m/s and τi = 0.2 ms for the first mode of the tube.
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Figure .: Variation of out-of-plane loss-of-correlation with time at ϑ = 5°, v0 =

2 m/s and τi = 0.2 ms for the first mode of the tube.





.. Out-of-Plane Noise

120 130 140 150 160

SPL (dB)

0

0.2

0.4

0.6

0.8

1
F

O

500 µm

100 µm50 µm10 µm

Figure .: Variation of out-of-plane loss-of-correlation with SPL at the velocity
node of the first mode of the tube with ϑ = 5°and τi = 0.2 ms.
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Figure .: Variation of out-of-plane loss-of-correlation with axial position at a
temporal extremum with ϑ = 5°and τi = 0.2 ms.
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Gaussian intensity profile of the light sheet, the out-of-plane loss-of-correlation
FO may be given as

FO(∆zL) =

√
π

4
∆zL exp

(
−8
(

x + (v0 sin(knx) sin(ωnt)) τi sin(ϑ)

∆zL

)2
)

, (..)

where v is the magnitude of the acoustic velocity, τi is the duration of the il-
lumination and ∆zL is the thickness of the light sheet. Since the determining
experimental parameter in this equation is the light sheet thickness, it is worthy
to analyse the behaviour of FO as a function of ∆zL.

Figures (.) to (.) examine the variations of FO(∆zL) as a function of
deviation angle, time, SPL, and axial position, respectively. In order to apply
these results to the previous measurements, FO is calculated for the first mode
of the tube under investigation with an illumination duration of 0.2 ms. The
graphs show a significant drop of valid detection of the correlation peak for an
effective light sheet thickness of about 0.1 mm and less. Accordingly, the valid
detection probability decreases at some points in space-time-intensity, namely
around the extremum points of the phase and the velocity node of the tube.
This is in general agreement with the previous unexpected observations.

Based on the calculated out-of-plane loss-of-correlation, and assuming that
the in-plane loss is negligible, the anomalous measured velocity may be described
as

v∗n(x, t, ∆zL) = FO(∆zL) v0 sin(knx) sin(ωnt). (..)

Figure (.) compares this theory to the experimental data presented in §...
The fitted curve is associated with a Gaussian light sheet with a thickness of
about 0.05 mm and deviation angle of 9°. Since the height of the light sheet,
as recorded by the camera, was observed to be around 10% of its actual value
(§..), it is reasonable to assume that the same ratio is applicable to the thick-
ness of the light sheet.

It is possible to decrease or eliminate the out-of-plane noise using a more
powerful light source. In this case, the main benefit of more light energy is
to produce a thicker light sheet and not obtain higher quality particle-images.
Another option, which is harder to achieve, is to carefully align the laser sheet
relative to the axis of the tube. Moreover, the use of a camera with a higher
sensitivity allows shorter illumination pulses to be achieved without a significant
loss of the effective light sheet thickness.
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Figure .: Comparison between CBC-processed experimental acoustic velocities
(•), the theoretical fit considering the out-of-plane effect (—) and the expected values
(−−) for the first mode of the tube with SPL = 151.2 dB and τi = 0.2 ms. The
fitted curve corresponds to a Gaussian light sheet with a thickness of 0.05 mm and a
deviation angle of 9°.







C h a p t e r 
Closing Remarks

. Summary and Conclusions

.. Introducing acoustic PIV

While a lot of research has been carried out on the acoustic velocimetry of low-
speed flows, there is a perceptible lack of literature in measuring acoustic ve-
locities particularly by non-intrusive whole-field means (§.). This study is an
attempt to fill this absence by introducing the technique of acoustic PIV.

The verification of the principles of PIV (§..) in the presence of a sound
field has been carried out by examining various interactions between the mea-
surement components and the sound field (§.). Among these interactions, the
effect of sound fields on the tracer particles was found to be negligible for low to
moderate acoustic frequencies and sound intensities.

.. Scanning Sound Waves

The main idea behind the acoustic PIV experimental set-up is to be able to mea-
sure the velocity of the sound wave of interest at a high-enough temporal rate.
An absolute scanning rate of up to 5 kHz has been achieved in this study, which
is suitable for the precise measure of the time variation of sound waves within an
acoustic cycle (§..).

The sound wave scanning process has been successfully applied to both sound
pulses (§.) and sinusoidal waves (§.). Variation of acoustic velocities with
sound intensity and the standing wave pattern of the first two modes of a simple
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tube has been studied. In addition, more improved visualisations of acoustic and
hydrodynamic motions were presented.

.. Low-Light High-Speed PIV

The laser used in this study was a CW solid-state laser externally triggered to pro-
duce quasi-pulses. The power of this laser was of many orders lower than typical
pulsed lasers used in PIV measurements. Considering the fact that measuring
acoustic velocities with a standard PIV system is near to the limitation border of
the technique, it is a challenging task to perform acoustic PIV with low-power
light sources.

Two main problems were encountered using the low-light system. The first
one was due to the narrow height of the Gaussian light sheet used in this study
which caused a significantly broad background peak in correlation planes. This
noise, referred to as the in-plane noise, was successfully eliminated using a phase-
only PIV image processing method (§.). The second problem was the presence
of out-of-plane noise which was caused by the narrow thickness of the light sheet.
It was demonstrated that this noise led to a excessive loss of valid detection at
specific space-time-intensity points (§.).

. Future Research

.. Instantaneous Measurement of Impedance

One immediate application of acoustic PIV is the calculation of acoustic im-
pedance. While it is possible to measure the acoustic pressure independently
using conventional methods, it is desirable and more convenient to calculate the
pressure from the velocity vector-map (Imaichi and Ohmi ). Combining
this method with acoustic PIV has the advantage of measuring variation of im-
pedance simultaneously and non-intrusively. Estimating the acoustic pressure via
the acoustic velocity is based on the numerical calculation of the spatial gradient
of the velocity, implying that the velocity vector-map must be whole-field with
valid representations of the sound field velocity values in each interrogation area.
Evidently, this requires the tracer particles to be in the absolute fidelity phase.

Measurement of the impedance in this way has potential applications in noise
reduction or the study of musical instruments. One attractive benefit of employ-
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ing acoustic PIV in these applications is that the technique is independent of the
shape of the flow passage, enabling acoustic measurements to be carried out in
complex geometries.

.. Aerosol Measurements

Although this work is based on using aerosol particles to measure sound fields,
acoustic PIV may be employed to use sound fields in the measurement of aerosols.
Velocity vector-maps corresponding to sound fields store more information than
just the acoustical properties. Indeed, the velocity distribution extracted from an
acoustic PIV measurement contains data about the size distribution of the tracer
particles (§...). In addition, it is possible to study the motion and internal
interactions of aerosol particles in sound fields using acoustic PIV.
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A p p e n d i x A

Time Series

B
roadly speaking, physical phenomena are processes varying in time, e.g.
‘wave-like’ structures. These processes are known as time series. In the
following appendix, those elements of time series theory which are re-

ferred to in this study are presented in a compact form. The concepts are mainly
taken from Priestly ().

A. Terminology

Definition A.i. Any functioning which can yield one of many likelihoods is
called an experiment E.

Definition A.ii. All possible outcomes of an experiment E are referred as the
sample space Ω of that experiment. Each single possibility in a sample space is
named an element Ω.

Definition A.iii. Any sub-set of a sample space Ω corresponding to an experi-
ment E is defined as an event E of that experiment.

Definition A.iv. Assume that there is a mapping from every event E, belonging
to a sample space Ω, to a real number p (E). The number p (E) is the probability
of the event E and fulfills the following conditions

0 6 p (E) 6 1 (A..a)

p (Ω) = 1; (A..b)
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Definition A.v. For every element Ω, belonging to a sample space Ω, there exists
a unique real number X (Ω) called a random variable.

A. Univariate Distributions

Consider, for any real number x , the event E(x ) is given by

E(x ) = {Ω; (Ω ∈ Ω) ∧ (X (Ω) 6 x )}. (A..)

The univariate distribution function F (x ) of the random variable X (Ω) is defined
as the probability of the event E(x ), i.e.

F (x ) = p [E(x )]. (A..a)

The distribution function may also be expressed explicitly in terms of the corre-
sponding random variable:

F (x ) = p [X 6 x ], (A..b)

where p [X 6 x ] is the probability for the random variable X .

A.. Discrete Distributions

Assume X is a discrete random variable whose possible values are restricted to the
set {x 1, x 2, x 3, . . .}. The discrete probability p

i
for X has the following properties

p
i
= p [X = x i], (A..a)

0 6 p
i
6 1, (A..b)

∑
i

p
i
= 1, (A..c)





A.. Univariate Distributions

where i is a natural number. The discrete distribution function for p
i

is given by

F (x ) =
∑

i; x i6X

p
i
. (A..)

The mean and variance of the discrete distribution function F (x ) can be calcu-
lated from

µ =
∑

i

x ip
i
, (A..)

and
σ2 =

∑
i

(p
i
− µ)2. (A..)

A.. Continuous Distributions

The random variable X is said to be continuous if we can define a function f (x )

with the following specifications for all x

f (x ) = lim
δx →0

p [x < X 6 x + δx ]

δx
, (A..a)

f (x ) > 0, (A..b)

∫+∞
−∞ f (x ) dx = 1. (A..c)

f (x ) is called the probability density function (PDF of X . Given the PDF of
a random variable, the corresponding continuous distribution function may be
calculated by

F (x ) =

∫ x

−∞ f (x ) dx . (A..)

The mean and variance of the continuous distribution function F (x ) is given by

µ =

∫+∞
−∞ x f (x ) dx , (A..)
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and

σ2 =

∫+∞
−∞ (x − µ)2f (x ) dx . (A..)

A.. The Expectation Value

The statistical properties of a distribution function can be presented in a compact
form by the expectation operator E{ }. The expectation value of a given function
g(X ) is defined as

E{g(X )} =
∑

i

g(x i)p
i
, (A..)

when X is discrete and

E{g(X )} =

∫+∞
−∞ g(x )f (x ) dx , (A..)

when X is continuous.

Using the expectation operator, the definitions of mean and variance can be
re-written as

µ = E{X }, (A..)

and
σ2 = E{(X − µ)2}. (A..)

A.. Special Distributions

A... Binomial Distribution

The binomial distribution with parameter n is defined as

p
i; n

=
n!

i! (n − i)!
p i(1 − p )n−1, i = 1, 2, 3, . . . , n. (A..)

The distribution describes a sample space with only two elements, one of which
has a probability p of occuring. The discrete probability p

i; n
represents the

likelihood of n outcome with probability p .





A.. Multivariate Distributions

A... Poisson Distribution

Consider the binomial distribution Equation (A..) when n → ∞ and p → 0
with the condition n p = a, where a is a positive constant. It can be shown that
p

i; n
, with the given assumptions, can be written

p
i; a

=
ai

i!
e−a, i = 1, 2, 3, . . . , n. (A..)

This discrete probability is known as the Poisson distribution with parameter a.

A... Gaussian Distribution

Assuming that x is a continuous random variable, the associated PDF

f (x ) =
1

(2πσ2)
1
2

e
−

(x −µ)2

2σ2 , (A..)

is said to have a Gaussian distribution function with parameters µ and σ2.

A. Multivariate Distributions

The rationale behind univariate distributions can be extended to multivariate
distributions when describing more than a single random variable.

A multivariate discrete probability distribution for n discrete values is defined
as

p
i1,i2,...,in

= p [X1 = x i1
, X2 = x i2

, . . . , Xn = x in
], (A..)

with
i1 = 1, 2, . . .

i2 = 1, 2, . . .
...

in = 1, 2, . . . .

For n continuous variables, the multivariate probability density function is given





Time Series

by

f (x 1, x 2, . . . , x n) =

lim
δx 1,δx 2,...,δx n→0

p [x 1<X16x 1+δx 1, x 2<X26x 2+δx 2, . . . , x n<Xn6x n+δx n]

δx 1 . . . δx n

.

(A..)

Based on Equation (A..b), the definition of the distribution function can
be extended to its cumulative form:

F (x 1, x 2, . . . , x n) = p [X1 6 x 1, X2 6 x 2, . . . , Xn 6 x n]; (A..)

where for the discrete and continuous random variable it is given by

F (x 1, x 2, . . . , x n) =
∑

i1 ; x i1
6X1

∑
i2 ; x i2

6X2

. . .
∑

in ; x in 6Xn

p
i1,i2,...,in

, (A..)

and

F (x 1, x 2, . . . , x n) =

∫ x i1

−∞

∫ x i2

−∞
. . .

∫ x in

−∞
f (x 1, x 2, . . . , x n) dx 1dx 2 . . . dx n,

(A..)
respectively.

A. Stochastic Processes

Assume that the outcome of an experiment E is a quantity X which is a contin-
uous function of time t. According to definition Equation (A.v), the parameter
X (t) is a random variable of the sample space Ω of E. Let Ω have n elements

{Ω1, Ω2, . . . , Ωn},

for each time t the experiment E can have a set of ‘possible outcomes’, called
records, shown by

{X (t, Ω1), X (t, Ω2), . . . , X (t, Ωn)}.

This set of the likely records is named the ensemble. Each single record in the
ensemble is called to be a realisation and is typically denoted by X (t, Ω).





A.. Stochastic Processes

Assume that t varies over all its possible values and for each value a record is
obtained. In this way, a set of realisations is generated which is referred to as a
stochastic process. A stochastic process with n random variables is shown by

{X (t)} ≡ {X (t1), X (t2), . . . , X (tn)},

and its corresponding cumulative distribution function is denoted as

FX (t1),X (t2),...,X (tn)(x 1, x 2, . . . , x n).

The preceding definitions are also valid for discrete random variables. How-
ever, in most practical cases, the random variables of a stochastic process is a
continuous parameter. This will be assumed in the forthcoming sections sec-
tions.

It is worth noting that the parameter t in a stochastic process {X (t)} need not
necessarily represent time. Depending on the physical implementation of the
process, it can be any quantity.

A.. Stationary Univariate Processes

Let a stochastic process for any t1, t2, . . . , tn be written

{X (t1), X (t2), . . . , X (tn)},

and the same process observed with any arbitrary delay or lag τ be written

{X (t1 + τ), X (t2 + τ), . . . , X (tn + τ)}.

The process is said to be stationary if

FX (t1),X (t2),...,X (tn)(x 1, x 2, . . . , x n) = FX (t1+τ),X (t2+τ),...,X (tn+τ)(x 1, x 2, . . . , x n).
(A..)

A stationary stochastic process describes a physical system in which the statistical
properties do not change over time, i.e. the system is in steady-state or equilib-
rium.

For the rest of this study we assume the processes are stationary.

The so-called random process.
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A... Mean and Variance

Consider the PDF f t(x ) of the random variable {X (t)} of a stationary process.
Using Equations (A..), (A..), (A..) and (A..), the mean and variance of
this random variable are given by

mean{X (t)} ≡ E{X (t)} =

∫+∞
−∞ x f t(x ) dx = µ(t), (A..)

and

var{X (t)} ≡ E{
X (t) − µ(t)

2
} =

∫+∞
−∞

x − µ(t)
2

f t(x ) dx = σ2(t).

(A..)

A... Covariance and Correlation Coefficient

The covariance of two random variables X (t1) and X (t2) is defined as

cov{X (t1), X (t2)} ≡ E{X (t1) X (t2)} − E{X (t1)} E{X (t2)}

= E{
X (t1) − E{X (t1)}

 X (t2) − E{X (t2)}
 }.

(A..)
Parameters X (t1) and X (t2) are said to be uncorrelated if their covariance is van-
ished, or equivalently

var{X (t1) + X (t2)} = var{X (t1)} + var{X (t2)}; (A..)

otherwise, they are correlated random variables.

When the covariance function of two random variables is normalised by their
variances, the outcome is named the correlation coefficient and is defined as

C{X (t1), X (t2)} =
cov{X (t1), X (t2)}var{X (t1)} var{X (t2)}

 1
2
. (A..)





A.. Stochastic Processes

A... Auto-Covariance and Auto-Correlation

Applying Equation (A..) to a stationary process, the covariance of two random
variables with lag τ is given by

cov{X (t), X (t + τ)} = E{
X (t) − µ(t)

 X (t + τ) − µ(t + τ)
 }. (A..)

It can be shown that this covariance is a only a function of τ. Therefore, it can
be written as

R (τ) = cov{X (t), X (t + τ)}. (A..)

The function R (τ) is known as the auto-covariance of the process {X (t)}.
The normalised value of R (τ) is named the auto-correlation function and is

defined as
ρ(τ) =

R (τ)

R (0)
, (A..)

which may be also written in terms of the correlation coefficient as

ρ(τ) = C{X (t), X (t + τ)}. (A..)

In the case of a stationary process with complex random variables, the associ-
ated auto-covariance function is defined by

R (τ) = cov{X (t), X (t + τ)}

= E{
X (t) − E{X (t)}

∗ X (t + τ) − E{X (t + τ)}
 },

(A..)

where the sign ( ∗) denotes the complex conjugate.

A.. Stationary Bivariate Processes

So far, the statistical properties of stationary processes in their univariate form
have been presented. We now focus on the relationship between two stationary
processes.

Consider two stationary univariate processes with continuous complex ran-
dom variables, {X1(t)} and {X2(t)}. The process {X1(t), X2(t)} is known as a sta-
tionary bivariate process if cov{X1(t), X2(t + τ)} is a pure function of τ.





Time Series

In a similar way to equation Equation (A..), the auto-covariance functions
of {X1(t)} and {X2(t)} can be defined as

R 11(τ) = cov{X1(t), X1(t + τ)}, (A..a)

R 22(τ) = cov{X2(t), X2(t + τ)}; (A..b)

respectively. The corresponding auto-correlation functions are given by

ρ11(τ) =
R 11(τ)

R 11(0)
, (A..a)

ρ22(τ) =
R 22(τ)

R 22(0)
. (A..b)

A... Cross-Covariance and Cross-Correlation

To describe the correlation ‘between’ two distinct processes, we introduce the
concept of cross-covariance with lag τ defined by

R 21(τ) = cov{X1(t), X2(t + τ)}

= E{
X1(t) − E{X1(t)}

∗ X2(t + τ) − E{X2(t + τ)}
 }.

(A..)

The normalised value of R 21(τ) is called the cross-correlation function and is writ-
ten

ρ21(τ) =
R 21(τ)R 11(0) R 22(0)

 1
2
, (A..)

Similar expressions exist for R 12 and ρ12 and it can be shown that

R 12(τ) = R ∗
21(−τ). (A..)

A.. Stationary Multivariate Processes

All of the concepts presented for a stationary bivariate process can be generalised
to a multivariate process.





A.. Stochastic Processes

A multivariate process with n sample space elements is expressed by

{
#—X(t1);

#—X(t2); . . . ;
#—X(tn)},

or in a more compact form by {
#—X(t)}; where

#—X is a column vector, containing
the m variants of the process, defined for any t as

#—X(t) =


X1(t)

X2(t)

...

Xm(t)

 . (A..)

Using this definition, the covariance matrix, R, at lag τ may be written as

R(τ) = {R ij(τ)}, i = 1, 2, . . . , m, j = 1, 2, . . . , m; (A..)

where each matrix element is given by

R ij(τ) = cov{Xj(t), Xi(t + τ)}

= E{
Xj(t) − E{Xj(t)}

∗ Xi(t + τ) − E{Xi(t + τ)}
}.

(A..)
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Nomenclature

Roman Letters

A Complex field amplitude of light

B Adiabatic bulk modulus

c Thermodynamic speed of sound of fluid

C Density of particle-source number

CD Drag Coefficient

č Speed of light

cP Specific heat of fluid at constant pressure

cV Specific heat of fluid at constant volume
#—

d Displacement field

D Diameter

di Image distance
#—

d̃ Displacement field in image space

DL Diameter of lens

do Object distance

E Event

E Experiments

F Distribution function

F Force

f Frequency

f# Lens f-number

f Probability distribution function (PDF)

FI In-plane loss-of-correlation
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FO Out-of-plane loss-of-correlation

f r PDF of size distribution of aerosol particles

f v PDF of velocity distribution of aerosol particles

G Particle-source pattern

G̃ Particle-image pattern

H Impulse response

HA Impulse response of imaging system

HI∆I Discrete impulse response

HG Impulse response of particle-source pattern

I Windowed irradiance

∆x̃I = (x̃I, ỹI), Interrogation area dimensions in image plane

I∆ Discrete irradiance field

Ī∆ Mean of Discrete irradiance field

Ĩ Irradiance

I Intensity of light field

Jn The nth order Bessel function of the first kind.

k Wave number

k Complex wave number

ǩ Wave number of light field

L Length

∆L Resolution limit of lens

l Displacement amplitude of the sound generating device

M Magnification

N Interrogation area size in pixels

N F The Fresnel number

N I Image density

N p Number of particle-sources

N p Instantaneous number of aerosol particles

np Instantaneous number density of aerosol particles

N p0
Equilibrium number of aerosol particles

np0
Equilibrium number density of aerosol particles





δN p Fluctuation of number of aerosol particles

δnp Fluctuation of number density of aerosol particles

N Re Reynolds number of the aerosol particles

N S Source density

ns Scanning rate

p Probability

P0 Equilibrium pressure of fluid

P Instantaneous pressure of fluid

p Acoustic pressure

p Reference pressure level

p0 Acoustic pressure amplitude

∆px Dimensions of pixel area

R̂ Estimated covariance matrix element

r Radius

r̃A Radius of the Airy disk

∆R Resolution limit of recording medium

rI Radius of interrogation spot

rp Radius of source-particle

r̃p Radius of particle-image

S Area
#—s Correlation plane

s Condensation of fluid
#—s ∆ = (s∆x , s∆y), Discrete correlation plane

S I Interrogation area
#—
s̃ Correlation plane in image space

t Time

T Temperature in degrees Celsius

TK Temperature in Kelvin

tv Velocimetry time

V Volume
#—v = (vx, vy, vz), Velocity vector, Particle velocity of a fluid element
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v0 Acoustic velocity amplitude

V I Interrogation cell
#—v p Velocity of source-particle, velocity of aerosol particles

VR Resolution cell

W Window function

WP Bandwidth
#—x = (x, y, z), Position vector

x̂, ŷ, ẑ Position normal vectors
#—x ∆ = (x∆, y∆), Discrete position vector
#—
x̃ = (x̃, ỹ), Position vector in image space

x Random variable parameter

X Random variable
#—X Random variable vector

∆xL Length of light sheet

Z Acoustic impedance

Z0 Characteristic impedance

∆zL Thickness of light sheet

ZM Mechanical impedance

ZS Specific impedance

Greek Letters

α Absorption coefficient

αS Spatial absorption coefficient

γ Specific heat ratio

Γ Valid-data yield

γf Focal length

δ Dirac delta-function

η Dynamic viscosity coefficient of fluid

ηB Bulk viscosity coefficient of fluid

ϑ The angle between the light sheet normal and the tube axis

κ Thermal conductivity of fluid

λ Wavelength





λ̌ Wavelength of light field

ν Kinematic (shear) viscosity coefficient of fluid

µ Mean

µg Flow-around coefficient

µp Entrainment coefficient

ρ0 Equilibrium density of fluid

ρ Instantaneous density of fluid

ρp Density of source-particle

ρ Autocorrelation

τi Illumination duration

τs Scanning duration

δτs Scanning step

σv Width of velocity distribution of aerosol particles

τf Relaxation time of viscous fluid elements

τp Relaxation time of aerosol particles

τS Spatial relaxation time of viscous fluid elements

φ Velocity potential of sound wave

φ0 Velocity potential amplitude of sound wave

ϕ Phase

ϕ Phase shift angle

ϕ̌ Phase of light field wave
#—χ = (χx, χy), Position vector in the Fourier’s space

χ Thermal diffusivity of fluid
#—
ξ = (ξx, ξy, ξz), Displacement from equilibrium of a fluid element

Ω Sample space

Ω Element of sample space

ω Angular frequency

ω̌ Angular frequency of light field wave

Other Symbols

ı Imaginary unit

? Correlation
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~ Convolution

. Scalar product

#— Vector symbol

σ Variance

C{ , } Correlation coefficient operator

cov{ , } Covariance operator

R Covariance matrix

R Covariance matrix element

d Differentiation

∂x Partial differentiation
#—∇ Gradient
#—∇. Divergent
#—∇× Curl

∇2 = ∂2
x + ∂2

y + ∂2
z, Laplacian operator

�2
d’Alembertian operator

�2
L Lossy d’Alembertian operator

E{ } Expectation operator

〈 〉 Mean operator

〈 〉x Mean value over x

F [ ] Fourier transform operator

DFT [ ] Discrete Fourier transform (DFT) operator

DFT
−1 [ ] Reverse discrete Fourier transform (DFT) operator

< [ ] Real part

= [ ] Imaginary part





A b o u t t h e C o v e r

A PIV analysis of two woodcut engravings corresponding to  (left) and 
(right) based on the novel The Club Dumas by Arturo Pérez-Reverte. The
 engraving belongs to the book De Umbrarum Regis Novum Portis written by
a fictional author named Aristide Torchia in Venice, where the actual engrav-
ing was performed by the artist Francisco Solé. The  engraving is from the
film The Ninth Gate by Roman Polañski.
Aligned by the engraved borders, the images were analysed using correlation-
based correction combined with the symmetrical phase-only filter.
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