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A B S T R A C T

Microblogs and social media platforms are now considered among the most popular

forms of online communication. Through a platform like Twitter, much information re-

flecting people’s opinions and attitudes is published and shared among users on a daily

basis. This has recently brought great opportunities to companies interested in tracking

and monitoring the reputation of their brands and businesses, and to policy makers and

politicians to support their assessment of public opinions about their policies or political

issues.

A wide range of approaches to sentiment analysis on Twitter, and other similar mi-

croblogging platforms, have been recently built. Most of these approaches rely mainly on

the presence of affect words or syntactic structures that explicitly and unambiguously re-

flect sentiment (e.g., “great”, “terrible”). However, these approaches are semantically weak,

that is, they do not account for the semantics of words when detecting their sentiment

in text. This is problematic since the sentiment of words, in many cases, is associated

with their semantics, either along the context they occur within (e.g., “great” is negative

in the context “pain”) or the conceptual meaning associated with the words (e.g., “Ebola“

is negative when its associated semantic concept is “Virus“).

This thesis investigates the role of words’ semantics in sentiment analysis of microblogs,

aiming mainly at addressing the above problem. In particular, Twitter is used as a case

study of microblogging platforms to investigate whether capturing the sentiment of

words with respect to their semantics leads to more accurate sentiment analysis mod-

els on Twitter. To this end, several approaches are proposed in this thesis for extracting

and incorporating two types of word semantics for sentiment analysis: contextual seman-

tics (i.e., semantics captured from words’ co-occurrences) and conceptual semantics (i.e.,

semantics extracted from external knowledge sources).

Experiments are conducted with both types of semantics by assessing their impact in

three popular sentiment analysis tasks on Twitter; entity-level sentiment analysis, tweet-

level sentiment analysis and context-sensitive sentiment lexicon adaptation. Evaluation

under each sentiment analysis task includes several sentiment lexicons, and up to 9 Twit-

ter datasets of different characteristics, as well as comparing against several state-of-the-

art sentiment analysis approaches widely used in the literature.
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The findings from this body of work demonstrate the value of using semantics in sen-

timent analysis on Twitter. The proposed approaches, which consider words’ semantics

for sentiment analysis at both, entity and tweet levels, surpass non-semantic approaches

in most datasets.
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1
I N T R O D U C T I O N

The emergence of microblogging services and social media platforms has given

web users a venue for expressing and sharing their thoughts and opinions on

all kinds of topics and events. Twitter,1 with nearly 650 million users and over

500 million messages per day,2 has quickly become a gold mine for organisations to mon-

itor their reputation and brands by extracting and analysing the sentiment of the Tweets

posted by the public about them, their markets, and competitors. This new phenomenon

has been a motivation for more research efforts, where natural language processing, in-

formation retrieval and text processing techniques are utilised to build models and ap-

proaches to analyse and track sentiment on Twitter and other similar microblogging

services (e.g, Tumbler,3 Plurk,4 Twister5).

Most existing approaches to sentiment analysis on microblogs proved effective when

sentiment is explicitly and unambiguously reflected in the text through affect (i.e. opin-

ionated) words, such as “great” as in “I got my new iPhone 6, such a great device!”

or “sad” as in “So sad, now four Sierra Leonean doctors lost to #Ebola”.

However, merely relying on affect words is often insufficient, and in many cases does

not lead to satisfactory sentiment detection results [33]. Common examples of such cases

occur when the sentiment of words differs according to (i) the context in which those

words occur (e.g., “great” is negative in the context “pain” and positive in the context

“smile”), or (ii) the conceptual meaning associated with the words (e.g., “Ebola” is likely

to be negative when its associated concept is “Virus” and likely to be neutral when its

associated concept is “River”). Therefore, ignoring the semantics of words when calcu-

lating their sentiment, in either case, may lead to inaccuracies, which is a problem that

most existing approaches to sentiment analysis on microblogs commonly face.

In this thesis, we investigate the role of words’ semantics in sentiment analysis of mi-

croblogs, aiming mainly at addressing the above problem. In particular, we research sev-

1 https://twitter.com

2 http://www.statisticbrain.com/twitter-statistics

3 https://www.tumblr.com/

4 http://www.plurk.com/

5 http://twister.net.co/
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4 introduction

eral methods for extracting and employing two types of semantics for sentiment analysis:

contextual semantics, i.e., semantics inferred from co-occurrence of words, and conceptual

semantics, i.e., semantics extracted from background ontologies and knowledge bases.

We use Twitter as a representative case study of microblogging services in the exper-

imental work conducted in this thesis. Specifically, we study the impact of both types

of semantics in multiple sentiment analysis tasks on Twitter. This includes: entity-level

sentiment analysis, i.e., detecting the sentiment of individual named-entities (e.g., “Katy

Perry”, “Obama”, etc.), and tweet-level sentiment analysis, i.e., detecting the overall senti-

ment of a given tweet. Also, we investigate the use of semantics for context-aware senti-

ment lexicon adaptation, i.e., amending the prior sentiment orientation of words in general-

purpose sentiment lexicons with regards to the words’ semantics in the context they

occur.

The research work and contribution introduced by this thesis is fivefold:

• We propose a new semantic representation of words, called SentiCircle, that auto-

matically captures the contextual semantics of words in tweets and calculates their

sentiment orientation accordingly. We investigate several methods for using the pro-

posed representation in entity- and tweet-level sentiment analysis tasks as well as

in adapting general-purpose sentiment lexicons.

• We extract and use the conceptual semantics of words as features for training sen-

timent classifiers and study the impact of this approach on the sentiment classifica-

tion performance at tweet level.

• We investigate using the contextual and conceptual semantics of words together for

sentiment analysis. In particular, we propose enriching the SentiCircle representa-

tion with the conceptual semantics of words and study what impact this has on

sentiment analysis at tweet level.

• We propose an approach that finds patterns of words that share similar contextual

semantics and sentiment and uses these patterns as features for training sentiment

classifiers for tweet- and entity-level sentiment analysis.

• We investigate the impact of removing words which have low discrimination power

(aka stopwords) from tweets on sentiment analysis performance.

To our knowledge, the work in this thesis is one of the first works to introduce and

investigate the use of the semantics of words in Twitter sentiment analysis. The reason
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behind focusing our work and evaluation on tweets data is due to (i) the global popularity

of Twitter in comparison to other microblogging platforms, and (ii) the common use of

Twitter in the literature on microblogging sentiment analysis.

In the following subsections, we explain the motivation behind our thesis, and detail

our research questions, hypotheses and contributions.

1.1 motivation

The advent and the rapid growth of social media and microblogging services have dra-

matically changed the amount of user-generated content on Web, with more and more

people sharing their thoughts, expressing opinions, and seeking support on such social

environments.

Monitoring and analysing sentiment on microblogs, especially Twitter, provides enor-

mous opportunities for both public and private sectors. For private sectors, for example,

it has been observed that the reputation of a certain capital stock, product or company

is highly affected by the rumours and sentiment published and shared among users on

microblogging platforms and social networks [20, 124]. Understanding this observation,

companies realised that monitoring and detecting the public’s opinion from microblogs

leads to building better relationships with their customers, obtaining better understand-

ing of their customers’ needs and providing better response to the dramatic changes in

their markets.

For public sectors, recent studies [108, 164, 74, 14, 75, 147] suggest a connection between

the sentiment expressed on microblogs towards certain public events, and the develop-

ment and outcome of these events. For example, aggregated Twitter sentiment has been

shown to be correlated to political polls [108, 164, 74], and can be also used to understand

how people react to crises such as the Westgate Mall Terror Attack in Kenya [147].

The clear and palpable potential that sentiment analysis of microblogs has introduced

to either sector, as shown above, has attracted an increasing research interest to this

area in recent years. A large number of approaches and tools have been developed for

extracting sentiment from Microblogging data, focusing mostly on Twitter data. Each of

these approaches comes with certain strengths and weaknesses when applied to tweets,

as will be explained in the subsequent sections.
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1.1.1 Sentiment Analysis of Twitter: Gaps and Challenges

Sentiment analysis is usually defined as the task of identifying positive and negative opin-

ions, attitudes and emotions towards some subject or the overall polarity of a document

[114].

Sentiment analysis is relatively an old research problem [90] with much research work

being done and focused mostly on extracting sentiment from conventional text, i.e., for-

mal text found on traditional online media platforms, such as personal blogs and news

platforms. Existing approaches to extracting sentiment from conventional text can be cat-

egorised as supervised approaches, which use a wide range of features and labelled data

for training sentiment classifiers, and lexicon-based approaches, which make use of pre-built

lexicons of words weighted with their sentiment orientations (i.e., positive, negative, neu-

tral) to determine the overall sentiment of a given document (see Chapter 2).

Much progress in terms of sentiment classification performance has been achieved by

each approach when applied to conventional text of formal language and well known

domains, where labelled data is available for training, or when the analysed text is well

covered by the used sentiment lexicon [89]. Nevertheless, extracting sentiment from mi-

croblogging data, and specifically Twitter data, using these approaches introduces new

challenges, due to several characteristics possessed by Twitter data. For example, super-

vised approaches are domain-dependent and require re-training with the arrival of new

data [6]. Obtaining manually labelled tweets from each new domain is labour-intensive.

This is because machine learning algorithms often require a large number of labelled in-

stances for training in order to produce classifiers that are able to generalise from training

data to unseen instances. Given the great variety of topics and domains that constantly

emerge from Twitter, the aforementioned constraints affect the applicability of such ap-

proaches.

Lexicon-based approaches do not require training from labelled data. Instead, they rely

on sentiment lexicons, such as SentiWordNet [8] and MPQA subjectivity lexicon [176], for

sentiment detection. However, traditional lexicon-based methods tend to be ill-suited for

Twitter data. Firstly, because sentiment lexicons are composed by a generally static set

of words that do not cover the wide variety of new terms, malformed words and collo-

quial expressions that constantly emerge on Twitter (e.g, “looov”, “luv”, “gr8”). Secondly,

these methods usually make use of the lexical structure of a sentence to determine its sen-
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timent, which becomes problematic in Twitter, where ungrammatical structures are very

common due to the 140-character length limit [160].

From the above, one can conclude that traditional sentiment analysis approaches need

adaptation before they can be efficiently applied to Twitter data and other similar mi-

croblogging data sources. This has led to the development of sentiment analysis ap-

proaches that take into account the characteristics of Twitter in order to tackle the afore-

mentioned limitations. For example, to overcome the lack of manually annotated training

data, supervised methods on Twitter often rely on the distance supervision approach [60]

which makes use of automatically generated training data, where emoticons, such as “:-)”

and “:(”, are typically used to label the tweets as positive or negative. As for lexicon-based

sentiment analysis, recent methods are designed [106, 160] to overcome the problem of

the language informality, noisy and ill-structured sentences in tweets by relying on lexical

rules, such as the existence of emoticons, intensifiers, negation and booster words (e.g.,

“Very”, “Extremely”), as well as using pre-defined lists of abbreviations and short-forms

that are often found in tweets (e.g., “gr8”, “luv”).

Overall, most existing sentiment analysis approaches on Twitter adapt fairly well to

some of tweets’ special characteristics, and therefore produce relatively higher perfor-

mances than those tuned to work on conventional text. Nevertheless, these approaches

are semantically weak, that is, they generally do not account for the semantics of words

when calculating their sentiment or the sentiment of tweets they occur within [33, 55].

Semantics is generally concerned about exploring what a word or an expression is

supposed to mean in a given piece of text [42]. In sentiment analysis, understanding the

meaning or the semantics of the word will likely strengthen our understanding of the

type of the sentiment or the emotion that this word represents in the text it occurs, as

will be explained subsequently.

1.1.2 From Affect Words to Words’ Semantics

In the previous section we showed that, existing approaches to Twitter sentiment anal-

ysis (machine learning and lexicon-based) usually address some of the challenges and

limitations introduced by Twitter data. However, most of these approaches face a com-

mon problem, that is: they are fully dependent on the presence of affect words or

syntactical features that explicitly reflect sentiment. Nonetheless, sentiment in practice

is usually conveyed through the latent semantics or meaning of words in texts [139, 24].
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For example, The underlying semantics of the word “great” in “I had a great pain in

my lower back this morning :(” does not reflect a positive sentiment. Also, the words

“Ebola” and “ISIS” (Islamic State in Iraq and Syria) in “Ebola is spreading in Africa

and ISIS in Middle East!” implicitly denote a negative sentiment. However, both su-

pervised and lexicon-based approaches on Twitter are likely to fail in spotting the correct

sentiment for these words in such examples, and consequently the overall sentiment of

both sentences. This happens mainly because:

• either approach in the first sentence does not account for the semantics of the word

“great” in the context it occurs (e.g., “pain”). As a result, the existence of “great”

is considered positive even though it describes the negative word “pain”.

This type of semantics is usually known as contextual semantics, since it is typically

inferred from the co-occurrence patterns of words in a given context [177, 167].

• either approach in the second sentence, does not consider the explicit semantics of

the words “Ebola” (i.e., “Virus/Disease”) and “ISIS” (i.e., Islamist Militant Group),

which commonly denote a negative sentiment. As a results, the sentence is wrongly

assigned a neutral sentiment.

This type of semantics is known as conceptual semantics as it refers to the semantic

concepts of words obtained from background knowledge sources such as ontologies

and semantic networks [136].

Thus, considering both contextual and conceptual semantics is rather important when

detecting the sentiment that words express in tweets. This is especially crucial for words

that often change their contextual semantics (e.g., “great pain”, “great smile”) or their

conceptual ones (e.g., “Ebola” -> “Virus”, “Ebola” -> “River”) as explained above.

The above limitation of traditional or non-semantic approaches has recently brought

an increasing interest in the use of semantics in sentiment analysis (aka, semantic sen-

timent analysis). In particular, several approaches that use the contextual or the contextual

semantics of words were proposed. These approaches have shown success in captur-

ing the precise sentiment that words indicate in texts, producing therefore better perfor-

mances than traditional or non-semantic approaches, when applied to conventional text.

[166, 97, 87, 24, 55]. Nevertheless, semantic approaches (contextual and conceptual) are

generally not tailored to Twitter and the like. First, they are limited by their underlying
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lexical or semantic resources (i.e., sentiment lexicons, semantic ontologies), which is es-

pecially problematic when processing general Twitter streams, with their rapid semiotic

evolution and language deformations [139]. Secondly, these approaches are designed to

mainly function on conventional text of formal language and well-structured sentences

that Twitter data generally lack, as described earlier.

The work presented in this thesis addresses the problem of building semantic senti-

ment analysis models on Twitter. Our models are tailored to Twitter data and employ

both contextual and conceptual semantics in their workflow, aiming to capture the sen-

timent of words with regards to their semantics, and consequently improve the overall

performance of sentiment analysis.

In the rest of this chapter we state the research questions that we address in this thesis,

we describe our research hypotheses, we present our contributions to the state of the art,

and we provide the outline of the thesis.

1.2 research questions , hypotheses and contributions

The main research question investigated in this thesis is:

Could the semantics of words boost sentiment analysis performance on Twitter?

The main focus, as noted, is towards improving the performance of Twitter sentiment

classifiers by developing solutions that consider the semantics of words in their sentiment

detection workflow. Given the dimensions of the sentiment analysis problem discussed

earlier (i.e., the type of the sentiment analysis approach and the type of semantics used),

we aspire to achieve improvement in sentiment detection performance by addressing the

three following research sub-questions:

RQ1 Could the contextual semantics of words enhance lexicon-based sentiment anal-

ysis performance?

Typical Lexicon-based methods on Twitter assign sentiment to words regardless of

their context, i.e., regardless of their contextual semantics (e.g., “great” is assigned

a positive sentiment in both the contexts “pain” and “smile”). One assumption to

address this limitation is that lexicon-based methods that consider the contextual
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semantics of words when calculating their sentiment, perform better than those that

do not.

Our hypothesis for extracting and using contextual semantics in sentiment analysis

is:

H1 Context-driven semantics of words can enhance lexicon-based sentiment analysis per-

formance.

Thus, to test the above hypothesis we propose a dynamic representation of words

that captures their semantics from their context and update their sentiment orienta-

tions accordingly. The proposed representation first derives the contextual seman-

tics of a word from its co-occurrences with other words, as inspired by the distribu-

tional hypothesis-“Words that occur in similar contexts tend to have similar meanings”

[65, 52, 177]. Next, the contextual semantics of the word is used to calculate its

overall sentiment.

We assess the effectiveness of the proposed representation for lexicon-based sen-

timent analysis on Twitter in three tasks: entity-level sentiment analysis, tweet-level

sentiment analysis and context-aware sentiment lexicon adaptation. We design several

methods that use the proposed representation under each of these tasks.

Hence, the contribution of our work under this research question can be sum-

marised as follows:

– Propose a semantic representation model, called SentiCircles, that dynamically

captures the contextual semantics and sentiment of words from their context.

– Introduce several lexicon-based and rule-based methods, based on SentiCir-

cles, for entity and tweet levels sentiment analysis, and sentiment lexicon adap-

tation.

– Build and release a new gold-standard dataset for evaluating our proposed

methods in each sentiment analysis task.

RQ2 Could the conceptual semantics of words enhance sentiment analysis perfor-

mance?

As mentioned earlier, sentiment is often not directly detectable via affect words, but

instead associated with the words’ conceptual semantics in tweets.

Our proposition for addressing the above question is to detect the sentiment of

terms based on their conceptual semantic similarities to other terms whose senti-
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ment is known. For example, the entities “iPad”, “iPod” and “Mac Book Pro” fre-

quently appear with positive sentiment in a given Twitter corpus and they are all

mappable to the semantic concept “Apple Product”. As a result, an entity such as

“iPhone”, whose sentiment might not be known, is more likely to have a positive

sentiment since it is also mappable to the concept “Apple Product”.

Thus, our hypothesis for this question is the following:

H2 Semantic concepts tend to correlate with positive or negative sentiment, and hence can

be used to determine the sentiment of terms under those concepts.

Therefore, to address this research question, we propose to extract and incorporate

the semantic concepts (e.g. “Person”, “Company”, “City”) of named entities (e.g.

“Steve Jobs”, “Vodafone”, “London”) found in tweets into both supervised machine

learning and lexicon-based methods to enhance their performances.

For the supervised machine learning approach, we propose adding semantic con-

cepts as features into the training set of sentiment classifiers in order to measure the

correlation of the representative concepts with negative/positive sentiment. For the

lexicon-based approach, we consider integrating the concepts into our contextual

semantic representation, SentiCircles and study the impact on the overall sentiment

detection performance.

Our contributions under this line of work are:

– Introduce and investigate the use of conceptual semantics in supervised and

lexicon-based sentiment analysis on Twitter.

– Implement three methods for using the conceptual semantics of words as fea-

tures to train supervised sentiment classifiers.

– Propose a new method, based on SentiCircles, for incorporating the conceptual

semantics of words into lexicon-based sentiment analysis on Twitter.

RQ3 Could semantic sentiment patterns boost sentiment analysis performance?

People tend to convey sentiment in certain contextual semantic structures or pat-

terns rather than in individual words. For example, it is likely that similar word

distributions and word co-occurrences (Patterns) are used to express sentiment to-

wards “Beatles” and “Katy Perry”, which are likely to differ from the patterns for

“iPod” and “McDonald’s”. Knowing and extracting these patterns from text might

help in boosting the performance of sentiment classification methods on Twitter.
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Our hypothesis here is:

H3 Patterns capturing words with similar contextual semantics and sentiment can be

used to enhance sentiment analysis performance.

To address the above question, we propose building a new approach for extracting

patterns of words of similar contextual semantics and sentiment from tweets data

and using these patterns as classification features for supervised sentiment classi-

fier training. Compared to other works on pattern-based sentiment analysis (see

Chapter 5), our approach does not rely on the syntactic structure of tweets, nor

requires pre-defined sets of syntactic or semantic templates for pattern extraction.

Evaluation on our proposed patterns covers testing their effectiveness in tweet- and

entity-level sentiment analysis.

Contributions of this line of work are:

– Propose a novel approach that automatically extracts patterns from the contex-

tual semantic and sentiment similarities of words in tweets.

– Use patterns as features in tweet- and entity-level sentiment classification tasks.

– Conduct quantitative and qualitative analysis on a sample of our extracted se-

mantic sentiment patterns and show the potential of our approach for finding

patterns of entities of controversial sentiment in tweets.

RQ4 What effect does stopword removal have on sentiment classification performance?

Words are usually characterised by their discrimination power, which often deter-

mines their contribution towards making correct classification decision. In senti-

ment analysis, words of low discrimination power in a certain context are consid-

ered stopwords and get removed from the analysis accordingly.

Several stopword extraction and removal methods have been used for sentiment

analysis of conventional text [163, 7, 148]. However, the impact of these methods on

Twitter sentiment analysis is not well explored.

Our hypothesis for this question is:

H4 Different stopword removal methods could have different impact on sentiment analysis

performance on Twitter.

Thus, to address the above question, and as an additional contribution of this the-

sis, we analyse the effectiveness of several stopword removal methods for senti-
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ment classification of tweets and whether removing stopwords influences the per-

formance of Twitter sentiment classifiers. To this end, we apply six different stop-

word removal methods to Twitter data from six different datasets and observe the

impact of removing stopwords on supervised sentiment classification methods. We

assess such impact by observing fluctuations in: (i) the level of data sparsity, (ii) the

size of the classifier’s feature space, and (iii) the classifier’s performance in terms

of accuracy and F-measure.

Our contribution under this line of work is summarised as follows:

– Conduct an analysis study on the impact of several stopword removal methods

in Twitter Sentiment analysis using different Twitter datasets and sentiment

classifiers.

– Measure fluctuations of removing stopwords on the level of data sparsity, the

size of the classifier’s feature space and its classification performance.

– Show that, despite the popular use of pre-compiled stoplists in Twitter senti-

ment analysis, they can have negative impact on the sentiment classification

performance.

– Show that, in practical applications for Twitter sentiment analysis, the ideal

stopword generation method is the one that removes those infrequent terms

appearing only once in the Twitter corpus.

1.3 thesis methodology and outline

The main purpose behind our work in this thesis is to improve the performance of Twitter

sentiment analysis by using both, the contextual and conceptual semantics of words. To

this end, we design a general methodology that we use in the different parts of this thesis.

Our methodology consists of three main steps; extraction, incorporation and assessment,

as depicted in Figure 1 and detailed below:

1. Extraction: design methods for capturing the contextual and conceptual semantics

of words from a given collection of tweets.

2. Incorporation: investigate several methods and models for incorporating and using

both types of semantics in sentiment analysis.
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3. Assessment: measure the performance of our semantic methods in multiple sen-

timent analysis tasks on Twitter; entity-level sentiment analysis, tweet-level senti-

ment analysis, and sentiment lexicon adaptation.

(2)	  Incorpora,on	  (1)	  Extrac,on	   (3)	  Assessment	  	  

Semantic Sentiment 
Analysis Methods 

Contextual Semantics 
Extraction 

Conceptual Semantics 
Extraction  

Tweet-Level Sentiment 
Analysis 

Entity-Level Sentiment 
Analysis 

Sentiment Lexicon 
Adaptation  

Figure 1: General methodology for extracting, incorporating and assessing the effectiveness of

words’ semantics in Twitter sentiment analysis.

Note that we experiment with our proposed methods in each of the three steps using

different settings, i.e., several Twitter datasets and different sentiment lexicons. As for

evaluation and assessment, we compare against several state-of-the-art Twitter sentiment

analysis methods.

Figure 2 shows the general pipeline of our work with regard to the core contribution

chapters of this thesis. As can be noted, the three-step methodology described above is

used in each of these chapters.

The material of this thesis is distributed in individual chapters as follows:

Part I: Background and Literature Review

In Chapter 2 we provide a fundamental background knowledge of the sentiment analy-

sis task, subtasks, levels and popular approaches. After that, we present a comprehensive

overview of the existing work in the the area of sentiment analysis on Twitter. Through-

out our review, we reveal the strengths and weaknesses of the reviewed work and map

them to our research questions and hypotheses.

Part II: Semantic Sentiment Analysis of Twitter

In Chapter 3 we describe our work on using the contextual semantics of words for im-

proving the performance of lexicon-based sentiment analysis methods on Twitter. We also

explore the use of contextual semantics for context-aware adaptation of general-purpose

sentiment lexicons. The work in this chapter addresses our first research question.
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Tweets 

Extracting Conceptual 
Semantics  

Conceptual 
Semantics 

Incorporation 

Tweet-Level 
Sentiment 
Analysis 

Semantic  
Concepts 

Supervised 
Classifier 

 Extracting Contextual 
Semantics 

SentiCircles 

Entity-Level 
Sentiment 
Analysis 

Sentiment 
Lexicon 

Adaptation  

Extracting Semantic 
Sentiment Patterns 

SS-Patterns 

SS-Patterns 
Incorporation 

Lexicon-based 
Methods 

Supervised 
Classifier 

Extracting Stopwords 

Stopword 
Removal & 
Classifier 
Training 

Stopwords 

Supervised 
Classifier 

C
ha

pt
er

 4
 

C
ha

pt
er

 3
 

C
ha

pt
er

 5
 

C
ha

pt
er

 6
 

Figure 2: Pipeline of our work under each chapter, and thesis contribution outline. Arrows cross-

ing two different chapters mean that a component developed in one chapter is used in

the other one.

In Chapter 4 we present our work on using the conceptual semantics of words to improve

the performance of both lexicon-based and supervised sentiment analysis approaches on

Twitter, addressing thereby, the second research question of this thesis.

In Chapter 5 we present our approach for extracting semantic sentiment patterns of

words and using these patterns for boosting supervised sentiment classification perfor-

mance on Twitter. In this chapter we address our third research question.

Part III: Analysis Studies

In Chapter 6 we present our analysis on the impact of removing stopwords on the perfor-

mance of Twitter sentiment classifiers. Our fourth research question is addressed in this

chapter.

Part IV: Discussion and Conclusion

In Chapter 7 we discuss the work presented in this thesis, highlight our contributions

and point out future work.

In Chapter 8 we present our main conclusions.
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Part I

B A C K G R O U N D

The good opinion of mankind, like the lever of Archimedes, with the given fulcrum,

moves the world.

Thomas Jefferson





2
L I T E R AT U R E R E V I E W

Sentiment analysis has established itself in the past few years as a solid research

topic, providing organisations and businesses with solutions to monitoring and

analysing the public’s opinion towards their products, brands and services. To

this end, a vast amount of research has been done, mostly focusing on sentiment detection

of conventional text such as review data, online blogs and discussion forums. However,

the explosion of social networks and microblogging services, has dramatically shifted the

research interests towards the analysis of sentiment of microblogging data, and particu-

larly tweets data. Twitter,1 has become one of the most popular microblogging services,

producing content reflecting opinions about topics, products and life-events [76, 110, 47].

Broadly speaking, existing approaches to sentiment analysis can be categorised into

two main categories: traditional approaches and semantic approaches. Traditional approaches

rely on the presence of words or syntactical features that explicitly reflect sentiment.

Semantic approaches, on the other hand, exploit the latent semantics of words in text to

capture their context and update their sentiment orientations accordingly.

In this chapter, we provide an overview of the sentiment analysis literature, targeting

mainly those works on Twitter, since analysing sentiment from tweets is the main focus

of this thesis. In particular, the main elements and dimensions of the sentiment analysis

problem are introduced in Section 2.1. A literature review of the sentiment analysis re-

search on Twitter is provided in Section 2.2. Key existing works on semantic sentiment

analysis are reviewed in Section 2.3. Discussion on the main strengths, limitations and

gaps in the state-of-the-art of Twitter sentiment analysis is provided in Section 2.4.

2.1 background

In this section we provide the reader with the fundamental background knowledge about

sentiment analysis, which constitutes the basis of the research presented in this thesis.

1 https://twitter.com
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2.1.1 Fundamentals

Sentiment analysis is the task of identifying positive and negative opinions, emotions and

evaluations in text. It is a multidisciplinary task, which exploits techniques from com-

putational linguistics, machine learning, and natural language processing, to perform

various detection tasks at different text-granularity levels.

Sentiment analysis is a very rich research problem, with a large amount of work be-

ing published every year targeting the various aspects and dimensions of the problem.

Broadly speaking, the problem of sentiment analysis can be divided into four main di-

mensions, as depicted in Figure 3 and summarised below.

1. The sentiment analysis task which varies from polarity detection to more fine-

grained tasks, such as emotion detection and sentiment strength detection, as will

be explained in the next subsection.

2. The sentiment analysis level which is determined based on the granularity of text

used for the analysis (e.g., document-level, sentence-level, phrase-level, etc).

3. The sentiment analysis approach which covers the type of sentiment analysis ap-

proach used (e.g., supervised approaches, lexicon-based approaches, hybrid ap-

proaches).

4. The data type: sentiment can be extracted from conventional text (e.g., news articles,

product reviews) as well as microblogging data (tweet messages, Facebook status

updates, SMS, etc).

Sen$ment	  Analysis	  

Levels	  Tasks	   Approaches	  

-‐  Machine	  Learning	  
	  
-‐  Lexicon-‐based	  

-‐  Hybrid	  

-‐  Subjec$vity	  Analysis	  

-‐  Polarity	  Analysis	  

-‐  Sen$ment	  Strength	  

-‐  Emo$on	  Detec$on	  	  

-‐  Word-‐Level	  

-‐  Phrase-‐Level	  

-‐  Sentence	  Level	  

-‐  Document	  Level	  

Data	  Type	  

-‐  Conven$onal	  Data	  

-‐  Microblogging	  Data	  

Figure 3: Four dimensions of the sentiment analysis research problem.
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The rest of this section describes each of these dimensions in depth, providing refer-

ences to external resources when necessary. For clarity, we are going to use the following

review about the iPhone 5 as an example2 to illustrate the different dimensions of senti-

ment analysis (each sentence in the example is coupled with a number for easy reference):

(1) I have recently upgraded to iPhone 5. (2) I am not happy with the screen size. (3)

It is just too small :(. (4) My best friend got Galaxy Note 3. (5) He got a much larger

screen than mine!!!. (6) Even if his hardware outperforms mine, I easily outrun him

with all the apps I can get :)

1.Sentiment Analysis Subtasks

The basic subtask in sentiment analysis is polarity detection, that is, decide whether the

sentiment of a given text is positive or negative. In our example, sentences (2) and (3) have

negative sentiment while sentence (6) has a positive sentiment. 3

Another popular subtask is subjectivity detection, which aims to identify whether the

text is subjective (i.e., has a positive or negative sentiment) or objective, (i.e., has a neutral

sentiment). For example, sentences (1) and (4) are objective sentences, i.e., they are factual

or neutral. On the other hand, sentences (2), (3), (5) and (6) are all subjective.

Subjectivity and polarity detection are, to a large extent, the most popular subtasks

in sentiment analysis [89], but not the only ones. Other relevant subtasks include: (i)

emotion detection, which aims to identify the human emotions and feelings expressed

in text, such as “happiness”, “sadness”, “anger”, etc. In our example, sentence (3) shows

“sadness” emotions while sentence (6) shows “happiness” emotions. (ii) Sentiment strength

detection, which aims at measuring the strength or the intensity of the sentiment in text.

For example, this task tries to detect how strong the positive sentiment is in sentence (6)

and how strong the negative sentiment is in sentence (3).

2. Sentiment Analysis Levels

Broadly speaking, the aforementioned tasks have been extensively researched in the lit-

erature, aiming at analysing the sentiment at four different text granularity levels. Each

one of these levels differs from the others in the level of granularity of the analysed text,

as follows:

2 The review is obtained from http://reviews.cnet.com/. The reviewer’s name is anonymized for privacy

purposes.
3 Polarity detection in some work also involve the detection of a third sentiment class, neutral sentiment.

http://reviews.cnet.com/
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• Word-level sentiment analysis: given a word w in a sentence s, decide whether this

word is opinionated (i.e., express sentiment) or not. If so, detect what sentiment

the word has. Note that when the word is considered a named-entity (i.e., the word

represents an instance of a predefined category, such as Person, Organisation, Place,

Product, etc.), the task is called entity-level sentiment detection. In our example, the

entity “iPhone” receives a negative sentiment on average while the entity “Galaxy

Note 3” receives a positive one.

• Phrase-level sentiment analysis: also known as expression-level sentiment analysis.

Given a multi-word expression e in a sentence s, the task is to detect the sentiment

orientation of e. For example, the expression “I am not happy” in sentence (2) has

a negative sentiment.

• Sentence-level sentiment analysis: given a sentence s of multiple words and phrases,

decide on the sentiment orientation of s. For example, sentence (2) has a negative

sentiment while sentence (6) has a positive sentiment.

• Document-level sentiment analysis: given a document d, decide on the overall sen-

timent of d. This is usually done by averaging the sentiment orientation of all sen-

tences in d.

It is worth noting that when a word or a phrase describes a specific aspect or feature of

a common sense object (e.g., product) in text, the sentiment analysis task is called aspect-

level sentiment analysis. Aspect-level sentiment analysis is defined as: given a document

d, an object o and a set of of aspects A, detect the sentiment expressed in d towards

each aspect ai ∈ A of the object o. For example, in sentence (2) the aspect “screen size”

of “iPhone” has a negative sentiment while the same aspect of “Galaxy Note 3” has a

positive sentiment.

3. Sentiment Analysis Approaches

Early research efforts in sentiment analysis go back to the late-seventies with the work

of Jaime Carbonell in belief models and systems [35]. However, the major take-off of the

research was in the early 2000 along with the explosion of Web 2.0, which helped increase

the awareness of the importance of the field and its potentials for business, economics,

politics and online marketing areas. Extensive research efforts in sentiment analysis have

been conducted during the last two decades resulting in a large amount of models and
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methods being proposed. These methods have generally followed two main approaches,

the machine learning and lexicon-based approach:

• The machine learning approach: this approach considers the problem as a typical text

classification problem. A machine learning classifier, such as Naive Bayes (NB) or

Maximum Entropy (MaxEnt) [18], is trained from a corpus of pre-annotated data

(i.e., a collection of textual elements, such as documents or sentences, annotated

with their sentiment labels). Once trained, the classifier can be applied to infer

the sentiment of unseen documents (i.e., documents of unknown sentiment labels).

Pioneering work in this vein was published in 2002 by Pang and Lee [115] per-

forming polarity classification (positive vs. negative) on a movie review dataset.4

To this end, the authors used three supervised classifiers, SVM [66], Naive Bayes

and Maximum Entropy (MaxEnt). Many variations to this approach have since been

proposed [113, 44, 173, 125] following the same training/inferencing principle.

• The lexicon-based approach: this approach, on the other hand, assumes that the senti-

ment orientation of a given document is the average of the sentiment orientations

of its words and phrases [165]. This approach relies on sentiment lexicons (i.e., pre-

built dictionaries of words with associated sentiment labels) in order to extract the

opinionated words in the documents and use them to calculate its overall sentiment

accordingly. To this end, several lexicons have been built such as SentiWordNet [8],

MPQA subjectivity lexicon [176] and the LIWC lexicon [118].

4. Sentiment Analysis Data Types

Along the last two decades of sentiment analysis, the proposed sentiment analysis meth-

ods have been applied to several types of textual data coming from different web sources

such as review websites, online blogs, news portals, discussion forums, social networks

(Facebook,5 MySapce,6 etc.), microblogging services (e.g., Twitter, Tumbler,7 etc.), etc.

Most of the data published by these sources can be divided into two main categories

with respect to their characteristics. These categories are (i) conventional data and (ii) mi-

croblogging data:

• The Conventional Type of Data:

4 http://www.cs.cornell.edu/people/pabo/movie-review-data/

5 https://www.facebook.com/

6 https://myspace.com/

7 https://www.tumblr.com/

http://www.cs.cornell.edu/people/pabo/movie-review-data/
https://www.facebook.com/
https://myspace.com/
https://www.tumblr.com/
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Early work on sentiment analysis focused on detecting the sentiment of text found

in review data (e.g., product reviews), online blogs, discussion forums and news

articles. Several resources were built to this end. This includes the Cornell movie re-

view dataset [113], the customer review dataset [71], the MPQA corpus [174], and

the NTCIR multilingual corpus [143]. Two main characteristics are commonly at-

tributed to these resources. First, they are all composed of formal, well-written and

well-structured documents. Secondly, they are all manually annotated for sentiment

by human coders. We refer to these type of data as conventional data or conventional

text. We also refer to the sentiment analysis on this type of data as sentiment analysis

over conventional text or conventional sentiment analysis.

• The Microblogging Type of Data:

The evolution of microblogging services and social networks in the last decades,8

such as Twitter and Facebook, has created a new phenomenon. The amount of

the user-generated content on the web has increased exponentially, with literally

millions of tweets and status updates being published every hour. Such extraordi-

nary phenomenon has a big impact on the sentiment analysis research community,

where the interest in sentiment analysis has drifted away from analysing conven-

tional data to the analysis of microblogging data. This new research direction is

known as Sentiment Analysis of Microblogs.

Unlike conventional text, microblogging text is usually very short (e.g., tweet mes-

sages are limited to 140 characters), lack of complete and correct sentence structures,

and contains many abbreviations, ill-formed words and irregular phrases.

Despite the wide spread of microblogging services on the web, most of the existing

work on microblogging sentiment analysis focuses on the sentiment analysis of

tweets data. This research area is known as Sentiment Analysis of Twitter [60, 11,

16, 82, 110, 1, 123, 45, 22, 5, 61, 116, 10, 4]. In addition to the works focused on

analysing Twitter data, a number of studies exist on sentiment analysis over other

microblogging services and social media platforms such as MySpace [159, 111],

Facebook [83, 84], Sina Weibo [69],9 etc.

8 The real take-off of microblogging services was by the official launch of the Facebook Status Updates service

in March 2005.
9 http://weibo.com/

http://weibo.com/
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2.1.2 A Note on Terminology

This chapter introduces a large number of research terms, phrases and acronyms that

are often used in sentiment analysis. Some of these terms might be known to the reader

while others might not. This document tries to cover each of these terms with an inline,

footnote, or side-note description according to their importance and complexity.

The reader might notice that some of these terms are interchangeably used in different

contexts, yet they refer to the same thing. Below are the most popular cases:

• Sentiment analysis, sentiment classification and sentiment detection refer in this doc-

ument to the same task. However, sentiment analysis usually refers to the main re-

search area while sentiment classification and sentiment detection are often used in

supervised machine learning and lexicon-based approaches respectively.

• Sentiment class, sentiment label, sentiment orientation and sentiment score refer to

the sentiment value of a given text. While sentiment class, label and orientation are

literal values (e.g., positive, negative, neutral), sentiment score is usually a numerical

value (e.g., -1 denotes negative sentiment and +1 denotes positive sentiment).

In the rest of this chapter, we provide a thorough review of existing work in the Twitter

sentiment analysis literature, followed by a deep discussion on the advantages and lim-

itations of these works. The identified gaps and limitations motivate the research work

presented in this thesis.



28 literature review

2.2 sentiment analysis of twitter

Twitter is an online microblogging service created in March 2006. It enables users to

send and read text-based posts, known as tweets, with 140-character limit for compati-

bility with SMS messaging. As of July 2014, Twitter has about 270 million active users

generating 500 million tweets per day.10

Tweet messages usually convey sentiment [110]. However, unlike conventional data,

tweets have certain characteristics, that make the problem of analysing sentiment over

Twitter data a harder problem than the one of analysing conventional data. Tweet mes-

sages are too short encouraging the use of abbreviations, irregular expressions, poor

grammar and misspellings. Such characteristics make it hard to identify the opinionated

content in tweets using sentiment analysis approaches designed for conventional text

[137].

Aiming to target the above problem, research work has been conducted, especially in

the past four years, focusing on the particular problem of sentiment analysis over Twitter

data. Similar to conventional sentiment analysis, existing approaches to Twitter sentiment

analysis can be divided into machine learning and lexicon-based approaches.

In the second part of this chapter we describe existing works on Twitter sentiment anal-

ysis under the machine learning approach (Section 2.2.1.1) and lexicon-based approach

(Section 2.2.1.2) separately, exploring their strengths and weaknesses. Moreover, since the

main goal of this thesis is towards semantic sentiment analysis, we will further divide the

literature into traditional approaches, i.e, those ones that do not consider semantics (Section

2.2.1), and semantic approaches, i.e., those ones using semantics (Section 2.3). Our literature

review of semantic sentiment analysis approaches in Section 2.3 covers not only Twitter

specific works, but also approaches focused on conventional text. This is because (i) the

underlying concept of using semantics is pretty much the same for both tasks, and (ii)

the lack of research work on semantic sentiment analysis on Twitter.

10 https://investor.twitterinc.com/releasedetail.cfm?ReleaseID=862505

https://investor.twitterinc.com/releasedetail.cfm?ReleaseID=862505
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2.2.1 Traditional Sentiment Analysis Approaches

2.2.1.1 The Machine Learning Approach

The machine learning approach to sentiment analysis is characterised by the use of a

machine learning algorithm and a training corpus. The approach usually functions in

two phases, a training phase and an inference phase, as illustrated in Figure 4.11 In the

training phase a machine learning algorithm is used to train the classification model

using a set of features extracted from the tweets of the training corpus. In the inference

phase the trained model is used to infer the sentiment label of unseen tweets (i.e., tweets

of unknown sentiment classes).

Labeled Tweets 

Feature	  
Extractor	  

Features 
Machine	  Learning	  

Algorithm	  

Training	  Phase	  

Unlabeled Tweets 

Feature	  
Extractor	  

Features 
Classifica8on	  

Model	  

Inference	  Phase	  

Sentiment Label 

Figure 4: Pipeline of the machine learning approach to sentiment analysis on Twitter.

Machine learning models are often divided into three main categories based on the

supervision required during the training (learning) phase:

1. Supervised classifiers require training from labelled samples (e.g., tweets labelled with

their sentiment class). Naïve Bayes (NB), Maximum Entropy (MaxEnt) and Support

Vector Machine (SVM) are well-known examples under this category [81].

2. Unsupervised classifiers work with unlabelled samples. Popular unsupervised algo-

rithms include clustering algorithms (e.g., k-means, k-medoids, hierarchical cluster-

ing), hidden Markov models and some unsupervised neural network models such

as self-organising maps [18].

11 Creation of this figure is inspired by a previous figure from the NLTK toolkit (http://nltk.googlecode.

com/svn/trunk/doc/book/ch06.html).

http://nltk.googlecode.com/svn/trunk/doc/book/ch06.html
http://nltk.googlecode.com/svn/trunk/doc/book/ch06.html
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3. Semi-supervised classifiers require both labelled and unlabelled samples. Algorithms

like label propagation and graph-based models are in this category [187].

The performance of the machine learning approach is generally affected by three main

factors, as shown in Figure 5. These factors are: (i) the training methodology, (ii) the type

of features used to describe/characterise the data, and (iii) the choice of the machine

learning classifier (algorithm). Therefore, we review research work in this section with

respect to these three factors.

The Machine Learning 
Approach 

(1) The Training Methodology (2) Types of Features (3) Types of Classifiers 

Figure 5: Three main factors that affect the sentiment classification performance of the machine

learning approach.

1. The Training Methodology

Most exiting works in Twitter sentiment analysis under the machine learning approach

use supervised classifiers, and therefore, they require labelled corpora for classifier train-

ing. In Section 2.1.1 we saw that previous works on conventional sentiment analysis

[115, 113, 97, 173, 183] tend to train their models from manually labelled corpora, such as

the movie review dataset,12 which was constructed by Pang and Lee [115, 113] and the

Customer Review dataset,13 introduced by Hu and Liu [71].

Similar to conventional text, generating manually labelled Twitter data is a labour-

intensive task. In addition, the use of abbreviations, colloquial terms and ill-formed

words may make the annotation of Twitter data even more difficult than the annota-

tion of conventional text [123]. Aiming to overcome this problem, several studies on

Twitter sentiment analysis [60, 11, 16, 110, 45, 82, 123, 156] have relied on the distant su-

pervision [125] approach to automatically construct large corpora of annotated tweets for

sentiment classifier training. The distant supervision approach assumes that emoticons,14

12 http://www.cs.cornell.edu/people/pabo/movie-review-data/

13 www.cs.uic.edu/~liub/FBS/Reviews-9-products.rar

14 http://en.wikipedia.org/wiki/Emoticon

http://www.cs.cornell.edu/people/pabo/movie-review-data/
www.cs.uic.edu/~liub/FBS/Reviews-9-products.rar
http://en.wikipedia.org/wiki/Emoticon
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hashtags,15 emoji,16 etc., are good indicators to the sentiment in tweets and can be used

to automatically assign sentiment labels.

Go et al. [60], for example, used emoticons such as “:), :-), :D” and “:(, :-(, : (” to

construct a training corpus of 1.6 million positive and negative tweets. The corpus was

made public and used by the authors to train supervised classifiers for polarity sentiment

classification.

Pak and Paroubek [110] generated a corpus of tweets of three sentiment classes (posi-

tive, negative and neutral). As in [60], positive and negative tweets were annotated using

emoticons, while neutral tweets were obtained by crawling several newspapers accounts

on Twitter (e.g., New York Times and Washington Posts).

In addition to emoticons, other works proposed using hashtags as additional indicators

of tweets’ sentiment [45, 82]. Kouloumpis et al. [82] utilised three sets of positive, negative

and neutral hashtags (e.g., #bestfeeling, #worst, #news) to label tweets extracted from the

Edinburgh Twitter corpus,17 where each tweet is annotated based on the polarity of these

hashtags. Evaluation results showed that an AdaBoost.MH classifier [141], trained from

tweets labelled using hashtags solely, gives lower performance than the one trained from

tweets labelled using a combination of hashtags and emoticons. In a similar vein, Davidov

et al [45] used 50 different hashtags such as “#sucks”, “#obama”, “#sarcasm” as direct labels

to tweets extracted from the O’Connor Twitter corpus [108]. Each hashtag was used to

annotate 1000 tweets resulting in a training dataset of 50K tweets of 50 different sentiment

classes (each class corresponds to a single hashtag representing a particular sentiment

emotion). The annotated corpus was used to perform a 50-class classification task, as

well as a binary-hashtag classification task (i.e., check whether the tweet expresses any of

the fifty selected emotions or not).

In addition to polarity and subjectivity classifications, the distant supervision approach

was used to build training corpora for emotion detection on Twitter [123, 156]. Emotion

detection is usually a multiple classification task (see Section 2.1.1) and requires training

corpora containing tweets of multiple emotion classes (e.g., happy, sad, anger, fear, joy).

Purver and Battersby [123] exploited the use of emotions and hashtags as noisy labels

to annotate tweets with the six basic emotion classes defined by Ekman [51] (happy, sad,

anger, fear, surprise, disgust). To this end, the authors used a collection of tweet messages,

in which each tweet contains, at least, an emoticon or a hashtag that corresponds to one

15 http://en.wikipedia.org/wiki/Hashtag

16 http://en.wikipedia.org/wiki/Emoji

17 http://demeter.inf.ed.ac.uk

http://en.wikipedia.org/wiki/Hashtag
http://en.wikipedia.org/wiki/Emoji
http://demeter.inf.ed.ac.uk
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of the six emotion classes. For example, the emotion class “happy” was assigned to tweets

containing either the hashtags #happy or #happiness, or an emoticon such as “:-)” or “;-

)”. The authors performed a cross-validation test on the produced labels. In particular,

several classifiers were trained from tweets labelled with emoticons, and tested on tweets

labelled with hashtags and vice versa. The goal was to check whether hashtags and

emoticons assigned to similar emotion class are good indicators to the actual emotional

state conveyed in tweets. Evaluation results came back with a positive answer; both,

emoticons and hashtags are indeed good indicators of the emotional states in tweets.

However, the results also showed that the classification performance was higher (60-65%

range) for the emotion classes happiness, sadness and anger than for the classes fear, surprise

and disgust. The authors argued that the low performance of the latter classes was because

these classes are generally negative and they often share similar emoticon and hasghtag

indicators.

Recently, Suttles and Ide [156] have exploited the use of emoji18 as noisy labels in ad-

dition to emoticons and hashtags. Similar to [123], the task was to build an annotated

Twitter corpus for emotions classification. However, the authors proposed classifying

emotions into eight different, yet bipolar classes identified by Plutchik [120] (joy vs. sad-

ness, anger vs. fear, trust vs. disgust, and surprise vs. anticipation). For data annotation, the

authors used a combination of 69 emoticons, 70 emoji and 56 hashtags. A cross-validation

test on these labels showed similar results to [123]: (i) using all the three types of labels

for annotation resulted in reliable performance, and (ii) the performance tended to be

higher for joy and sadness classes than for other classes.

Barbosa and Feng [11] followed a slightly different approach. Instead of using hashtags

or emoticons as noisy labels, they collected and annotated their training data using three

third-party Twitter sentiment detection services including Twendz,19 TweetFeel,20 and

Sentiment140.21 While Twends and TweetFeel use pre-built sentiment lexicons to label

each tweet as positive or negative, Sentiment140 uses a MaxEnt classifier trained from

the same Twitter corpus used in [60]. The annotation agreement between each pair of

sentiment detection services was between 40% and 60%. The authors also found that the

best strategy to enhance the labelling results is by combining the labels from the three

18 emoji are smileys which were used first in Japanese oneline media and text messages in 1998.
19 http://twendz.waggeneredstrom.com

20 http://www.tweetfeel.com

21 http://www.sentiment140.com/

http://twendz.waggeneredstrom.com
http://www.tweetfeel.com
http://www.sentiment140.com/
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websites. Evaluation results showed that such a strategy gives a higher classification

performance than using each service solely.

From the above review, it can observed that the distant supervision approach was, to

a large extent, successfully used for the automatic sentiment annotation of tweets. Classi-

fiers trained from automatically labelled corpora achieved performances as high as 83%

in accuracy [60]. However, the distant supervision approach is based on the assumption

that the sentiment of a tweet corresponds to the sentiment of the hashtags or emotions

within it. This assumption is susceptible to errors when dealing with tweets that either (i)

do not contain any sentiment indicators, (ii) contain multiple, yet contradictory, sentiment

indicators, or (iii) when an emoticon has a different sentiment to the tweet it belongs.

Due to the above limitations, several works argued that the distant supervision ap-

proach is often inaccurate and may harm the performance of sentiment classifiers [152,

91]. Instead, they proposed using approaches which, either do not use noisy sentiment la-

bels (i.e., emoticons, hashtags, etc.) at all, or lower the dependency on them when training

sentiment classifiers.

Liu et al. [91] trained their classifiers from a combination of noisy and manually la-

belled tweets. In particular, the authors first trained a Bayesian classifier from a small

set of manually labelled tweets. After that, they interpolated the language model of the

classifier with an another model trained from noisy labels (emotions) as follows:

Pco(W|C) = αPa(W|C) + (1−α)Pu(W|C) (1)

Where Pco(W|C) is the interpolated language model, Pa(W|C) is the language model

trained from manually labelled tweets, and Pu(W|C) is the language model trained from

noisy labelled tweets. The authors trained and evaluated their model using the Sanders

Twitter corpus [138]. Evaluation results showed that the smoothed model outperforms

consistently other baseline models not considering interpolation.

Speriosu et al. [152] decided not to use noisy labels. Instead, they proposed a label

propagation method on Twitter follower graphs. First, a graph was constructed with

users, tweets, word unigrams, word bigrams, hashtags, and emoticons as nodes, which

are connected based on the link existence among them (e.g., users are connected to the

tweets they created; tweets were connected to the word unigrams they contained, etc.).

A label propagation method was then applied, where sentiment labels were propagated

from a small set of nodes, manually assigned a sentiment label, throughout the graph.

They claimed that their label propagation method outperforms MaxEnt trained from

noisy labels.
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2. Types of Features

The second factor, which affects the performance of sentiment classifiers, is the choice of

the features used for classifier training. Many types of features have been used in Twitter

sentiment analysis, including (i) word n-gram features,22 (ii) lexicon features, (iii) Part-

Of-Speech tags (POS) features, and (iv) microblogging features. [60, 116, 110, 11, 13, 45,

1, 82, 123].

Go et al. [60] used word unigrams and bigrams in conjunction with POS tags in the

training of NB, MaxEnt and SVM classifiers. They found that a MaxEnt classifier trained

from a combination of unigrams and bigrams outperforms other models trained from

other combinations of features by nearly 3%. However, a contrary finding was reported

by Bermingham and Smeaton [13]. They found that the best performance, based on a

different dataset to the one used in [60], was achieved by a NB classifier trained from

word unigrams only.

In a similar vein, Pak and Paroubek [110] investigated the POS tag features in addition

to three different variations of word n-grams, unigrams, bigrams and trigrams. However,

They did not include the POS tag features into the feature space directly. Instead, they

used the distribution of these features within the tweet messages of a given sentiment

class (i.e., P(POS|C)) in order to calculate the posterior probability of a NB classifier

trained from word n-grams. Evaluation results showed that, using bigram features for

training gives the highest performance compared to using unigrams or trigrams. The

authors also argued that their NB model, which is augmented by the POS distributions

in tweets, outperforms SVM and CRF classifiers trained from word n-grams only.

Despite the popular use of word n-grams in the previous work, these features have

been argued to hinder the classification performance because of the large number of in-

frequent words in Twitter, which make the data very sparse [4, 11, 5]. Instead, features

like character n-grams and microblogging features have been investigated. Aisopos et al.

[4] compared between word n-gram and character (letter) n-gram features. They argued

that the latter features have an advantage over the former. Specifically, they found that

character n-grams are more tolerant to noise than word n-gram. The authors also pro-

posed using a n-gram graph representation [58] of tweets rather than the simple vector

representation. Nodes in this graph correspond to the character n-grams in a given tweet,

22 In the tweet “I like my iPhone! :)”, any single word represents word unigram (e.g, iPhone), any 2 adjacent

words represent a word bigram (e.g., my iPhone), any 3 adjacent words represent a word trigram (e.g., like my

iPhone), and so on.
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while the edges represent the adjacency information (distance) between all pairs of nodes.

(i.e., the distance between two n-grams in a given tweet). The n-gram graph representa-

tions as well as the ordinary vector representation of word n-grams were evaluated using

NB and C4.5 classifiers on a collection of 475 million tweets from Yang and Leskovic [181].

Evaluation results, however, were not as conclusive; using n-gram graphs with C4.5 clas-

sifier gives a higher performance than the vector model, but a lower performance when

the NB classifier is used.

Asiaee et al. [5] claimed that a high classification performance of tweets’ sentiment is

still achievable by using the word n-gram features. Their trick, however, was to covert the

high dimensional back-of-word vector representation (v) into a sparse vector representa-

tion (x) of much lower dimensionality. To this end, they used a random reconstructible

projection (RP) technique [17], where tweets are represented as a random matrix (P) in

a way that the sparse vector representation of a given tweet (t) is computed as: xt = Pvt.

Evaluation results showed that training supervised classifiers such as SVM, NB and KNN

from the new vector representation leads to maintain a high classification performance

compared to using the typical vector representation.

Barbosa and Feng [11] proposed using microblogging features such as retweets, hash-

tags, replies, punctuations, and emoticons. They found that using these features to train

the SVMs enhances the sentiment classification accuracy by 2.2% compared to SVMs

trained from unigrams only. A similar finding was reported by Kouloumpis et al. [82].

They explored several types of microblogging features including emoticons, abbrevia-

tions and the presence of intensifiers such as all-caps (i.e., words with all characters in

upper case) and character repetitions (e.g., looove) for Twitter sentiment classification.

Their results show that the best performance comes from using n-grams together with

microblogging features and the lexicon features, where words tagged with their prior

polarity (positive, negative, neutral).23 On the other hand, using POS features produced

a drop in performance.

Agarwal et al. [1] also explored the POS features, the lexicon features and the mi-

croblogging features. Apart from simply combining various features, they also designed

a tree representation of tweets to combine many categories of features in one succinct rep-

resentation. A partial tree kernel [103] was used to calculate the similarity between two

trees. They found that the most important features are those that combine prior polarity

23 Lexicon features refer to word n-grams (usually unigrams) coupled with prior sentiment in tweets. The prior

sentiment of words is usually extracted using sentiment lexicons such as MPQA and SentiWordNet.
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of words with their POS tags. All other features only play a marginal role. Furthermore,

they also showed that combining unigrams with the best set of features outperforms the

tree kernel-based model and gives about 4% absolute gain over a unigram baseline.

In addition to the work in, [82, 1] Bravo-Marquez et al. [22] have deeply investigated

the usefulness of the lexicon features for sentiment analysis of tweets. In particular they

proposed incorporating three types of lexicon features into classifier training: (i) words’

prior polarities (positive, negative), (ii) emotions expressed in tweets (e.g., sadness, joy,

surprise), and (ii) sentiment strength, a numerical value that refers to the intensity of a

tweet’s sentiment (see Section 2.1.1). These features were extracted using different lexicon

resources and third-party sentiment analysis tools, including the OpinionFinder lexicon

[176], the AFINN lexicon [106], SentiWordNet, the NRC lexicon [100], the SentiStrength

algorithm [160] and the Sentiment140 service [60]. The authors also analysed the discrim-

inative power of all the extracted features for both subjectivity and polarity classifications.

They found that SentiWordNet, OpinionFinder and AFINN-based features are the most

informative features for both classification tasks. They also showed that, while the prior

polarity features are highly discriminative, the emotion features have almost no discrim-

ination values for subjectivity classification. The evaluation was done using CART, J48,

NB, Logistic Regression (LR), and SVM classifiers. Results showed that SVMs trained

from a combination of the three type of features outperform all other combinations by

more than 5% in accuracy and F-measure.

From the above, one can notice that although a wide range of features has been ex-

ploited for classifier training, the question remains of, which set of features or which

combination of them is optimal for sentiment analysis on Twitter.

All Types of Features!

In June 2013, the Semantic Evaluation workshop (SemEval) organised a sentiment analy-

sis task on Twitter [104].24 To this end, the participants were provided with a manually

labelled Twitter dataset, which allows for sentiment analysis classification at tweet and

expression levels. Following the machine learning approach, several supervised mod-

els have been proposed and trained from several sets of features [101, 96, 127, 175, 79,

105, 122, 64, 94]. However, what was interesting about the challenge is that the winning

approach [101], which produced the highest performance among other 44 approaches,

was simply based on a supervised classifier trained from a combination of a very large

24 http://www.cs.york.ac.uk/semeval-2013/task2/

http://www.cs.york.ac.uk/semeval-2013/task2/
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number of different types of features. Specifically, Mohammad et al. [101] used a SVM

classifier trained from a combination of word n-grams (1,2,3 and 4-grams), character

n-grams (3,4 and 5 characters), all-caps, POS tags, lexicon features, negation, hashtags,

punctuations, clusters (the word’s cluster) and emoticons. The lexicon features were ex-

tracted from three pre-built lexicons: NRC, MPQA, and Bing Liu [71] as well as from

two lexicons constructed by the authors specifically for this task. The proposed model

was evaluated on a set of 3,813 tweets for subjectivity classification, achieving the highest

performance of 69.02% in macro F-measure when trained from all type of features. The

authors also studied the contribution of each feature set to the classification performance

by training the model from all the feature types but excluding one type at a time. Sev-

eral interesting findings were reported. For example, unlike Barbosa and Feng [11] and

Kouloumpis et al. [82], the authors found that the word and character n-grams are very

important features to the classification performance, while microblogging features such

as emoticons and hashtags have no actual impact on the performance.

It is also worth noting that other approaches that achieved good performance in the

SemEval task followed a similar approach to [101], i.e., choosing a sentiment classifier and

training it from all or subsets of the above features. Gunther and Furrer [175] proposed

training a linear model from a collection of normalised tokens, stemmed words, words’

clusters and lexicon features (based on SentiWordNet) using stochastic gradient descent

(SGD). Proisl et al. [122] used SVM and NB trained from lexicons features, slangs and

emoticons. Rodrıguez-Penagos et al. [133] trained SVM and CRF classifiers from lexicon

features, negation and quantifiers.

Rather than using a single classifier for classification, Kökciyan et al [79] employed

a multiple classification models, where a NB classifier is used for negative sentiment

classification while a MaxEnt classifier is used for positive sentiment classification. A rule-

based system was then used to decide on the overall sentiment of a given tweet based

on its negative and positive probabilistic scores obtained from each classifier. Features,

such as microblogging features, repetitions (i.e, words with repeated letters), negation

and lexicon features, were used for classifier training. The best performance of 63.53%

was obtained using a combination of slangs, negations, sentiment words and ends-with-

exclamation features.
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3. Types of Machine Learning Classifiers

The third key factor to the effectiveness of the machine learning approaches is the choice

of the classification algorithm or in other words the type of the sentiment classifier. In

the previous subsections, we have seen that the most previous works used supervised

classifiers including NB, SVM, MaxEnt, KNN, CRF, C4.5, CART, J48, LR, etc. [60, 116,

110, 11, 13, 45, 1, 82, 123, 101, 96, 127, 175, 79, 105, 122, 64, 94]. While, some works used

standard versions of the classifiers [60, 11, 22, 101], others altered them in various ways

to better suit the nature of tweets data [91, 110]. This further gave a greater variations

of models of different performances. However, the lowest performance has been always

much higher than the performance of random classifiers. With such a great variation,

there is usually no ultimate or best-choice classifier. This is because the performance of

the classifier is highly dependent on the training methodology, the type of features and

the type of sentiment analysis task. Having said that, one can fairly argue that SVM,

MaxEnt and NB are among the most popular classification methods used for sentiment

analysis of tweets.

Summary

Based on the above review, we notice that the supervised machine learning approach has

proven successful in sentiment classification on Twitter. Nonetheless, the social nature of

Twitter, along with the special characteristics of tweets pose several limitations to this

approach. Firstly, it relies on large annotated corpora of tweets for classifier training. Sen-

timent annotation of textual data is usually expensive [89], especially for continuously

changing and evolving subject domains as on Twitter. Although some of the aforemen-

tioned studies relied on the the distant supervision approach for sentiment annotation of

tweets, this approach has been criticised for harming the sentiment classification perfor-

mance due to its relatively low annotation quality [152]. Secondly, supervised approaches

are usually domain dependent, i.e., classifiers trained on data from one specific domain

(e.g., tweets on political events) could produce low performance when applied to data

from a different domain (e.g., tweets on social events) [6]. Thirdly, tweet messages tend to

be very sparse due to the frequent use of abbreviations, ill-formed words and irregular ex-

pressions in tweets. The sparsity problem usually hinders the classification performance

since many terms in the training data do not appear in the test data [137].

Some attempts have been made to overcome the above limitations, as discussed earlier.

For example, semi-supervised classifiers were used to reduce reliance on automatically
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labelled data or distant supervision [152], and different feature engineering processes and

dimensionality reduction techniques were adopted to reduce the sparseness of tweets

data [4, 5].

However, a common limitation that still face the above reviewed works is that they are

semantically weak since they heavily rely on features extracted from the syntactic, lin-

guistic or lexical representation of words for classifier training. With the absence of these

features, which usually denote sentiment, the trained classifiers tend to fail in extracting

the correct sentiment in tweets, as will be explained in Section 2.2.1.4.

Our work in this thesis targets the above limitation of machine learning approaches by

extracting and using the latent semantics of words, which implicitly reflect sentiment in

tweets, as features to train sentiment classifiers, as will be discussed in Chapters 4 and 5.

2.2.1.2 The Lexicon-based Approach

The lexicon-based approach to sentiment analysis presumes that the sentiment orienta-

tion of a given document can be inferred from the sentiment orientation of its words

and phrases. Unlike the machine learning approach, the lexicon-based approach does

not require feature engineering or classifier training. Instead, it uses sentiment lexicons

to assign sentiment to the opinionated words in the document.

The efficiency of a lexicon-based sentiment analysis method is usually determined

based on the type of the sentiment lexicon and the sentiment detection algorithm, i.e,

the algorithm used to detect the opinionated words in the text and calculate the overall

sentiment.

In Twitter sentiment analysis, several lexicon-based methods have recently been pro-

posed [164, 9, 20, 23, 160, 72]. They can be categorised into (i) Conventional Keyword Match-

ing Methods and (ii) Twitter-based Methods.

1. Conventional Keyword Matching Methods

Conventional keyword matching methods on Twitter (aka conventional lexicon-based meth-

ods) use a pre-built sentiment lexicon along with a simple keyword matching algorithm.

Lexicons, such as SentiWordNet, MPQA and LIWC, are commonly used in this vein. For

example, Tumasjan et al. [164] used the LIWC (Linguistic Inquiry and Word Count) soft-

ware [117] to extract positive and negative emotions from a collection of 104,003 tweets

published in the weeks leading up to the German federal election to predict election

results. Instead of handling each tweet individually, tweets published over the relevant
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time frame were concatenated into one text sample and are mapped into 12 emotional

dimensions (e.g., anger, sadness, anxiety, etc.). Bae and Lee [9] also used LIWC, but this

time for measuring the popular and influential users on Twitter based the sentiment of

their tweets as well as the sentiment of tweets posted by their followers.

Conor et al. [108] calculated the sentiment polarity of a tweet by simply searching for

polarity-bearing words (i.e., positive and negative words) within it. The MPQA subjec-

tivity lexicon was used to this end. The tweet is considered positive if it contains any

positive word, negative if it contains any negative word, and mixed if it contains both.

Tweets were acquired from two different corpora: the The Obama job approval corpus25

and the Obama-McCain Presidential Elections 2008 corpus.26 In addition to extracting

the sentiment of individual tweets, the authors also calculated the average sentiment

of tweets published in a specific day (i.e., the per-day sentiment) by taking the ratio of

positive to negative words found in the aggregated tweets. The sentiment detection per-

formance was checked manually and the evaluation results showed a very low recall

with many false classified samples. This was explained as tweets in both tweet corpora

contain a large number of infrequent and ill-formed, yet opinionated words, which were

not covered by the MPQA lexicon.

Bollen et al. [20] adopted a similar word counting approach using the MPQA lexicon

to sentiment detection of tweets for stock market prediction. However, rather than us-

ing all the words in the lexicon, the authors exploited only those words of “weak” and

“strong” sentiment (e.g., week positive, strong negative). In addition to binary sentiment

detection, the authors also proposed a method to capture more refined emotional states

in tweets such as “Calm”, “Alert”, “Sure”, etc. To this end, they built a new lexicon of

964 words coupled with their emotion labels. The new lexicon was built upon the POMS

lexicon [107] and expanded by adding 892 additional new words to the 72 words in the

original lexicon. The results showed that the inclusion of emotions led to increasing the

performance of the predication model compared to using MPQA solely.

From the above, conventional lexicon-based methods have the advantage of simplicity,

which becomes a requirement when analysing large corpora of tens of millions of tweets

as in [108, 20]. However, these methods often face two main limitations:

25 http://www.gallup.com/poll/113980/Gallup-Daily-Obama-Job-Approval.aspx

26 http://www.pollster.com/polls/us/08-us-pres-ge-mvo.php

http://www.gallup.com/poll/113980/Gallup-Daily-Obama-Job-Approval.aspx
http://www.pollster.com/ polls/us/08-us-pres-ge-mvo.php
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1. Conventional methods are typically poor in detecting complex forms of sentiment

in tweets [160]. This includes, for example, negated sentiment (e.g., “For some

reason I never liked that song”) and boosted sentiment (e.g., “I’m very happy

for you man!” or “I feel extremely tired today”).

2. Traditional lexicons such as MPQA and SentiWordNet are designed to work with

formal and well-written English text. In Twitter, however, the use of malformed

words and irregular expressions is rather popular due to the 140-character limit.

This consequently leads to low retrieval of irregular opinionated words in tweets,

since such words are not usually covered by traditional lexicons, as demonstrated

in [108, 23].

2. Twitter-based Methods

Twitter- or microblogs-based methods for lexicon-based sentiment analysis are more tai-

lored to tweets data (and the like) than conventional lexicon-based methods, and there-

fore, they tend to obtain better sentiment detection performance. This is because Twitter-

based methods try to overcome the aforementioned limitations by: (i) bootstrapping ex-

isting lexicons, or creating new lexicons designed to work specifically on tweets data

[159, 106], and (ii) building algorithms that take into consideration the special character-

istics of tweets when identifying and extracting their sentiment [23, 160, 72].

Pioneering work in this vein is by Thelwall et al. [159], who built SentiStrength, a

lexicon-based method for sentiment strength detection on microblogging data. In the

approach of Thelwall and colleagues, the sentiment strength of a given post is a nu-

merical value representing the intensity of the post’s sentiment. Specifically, the negative

sentiment strength is taken to be a number between -1 (not negative) to -5 (extremely neg-

ative). Similarly, the positive sentiment strength is a number between 1 (not positive) and

5 (extremely positive). SentiStregnth uses a human-coded lexicon of words and phrases

specifically built to work with social data. We refer to this lexicon in this thesis as Thelwall-

Lexicon. The lexicon initially consisted of 298 positive terms and 465 negative terms ex-

tracted from a collection of MySpace comments and manually annotated with sentiment

strengths values between 2 and 5. A training algorithm was proposed subsequently to

optimize the terms’ sentiment strengths. In particular, the algorithm iteratively selects

a term, updates its sentiment strength by -1 or +1, and checks whether that improves

the classification performance on a corpus of human annotated texts. To overcome the

problem of ill-formed language, SentiStrength applies several lexical rules, such as the ex-
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istence of emoticons, intensifiers, negation and booster words (e.g., absolutely, extremely).

To this end, the authors built three lists of booster, emoticons and negation words. The

assessment of SentiStrength was done by comparing its performance against random

and majority class classifiers as well as several machine learning classifiers including NB,

SVM and J48. To this end, the authors used a test set of 1,041 MySpace27 comments.

The comments were manually annotated with their sentiment strengths by three human

coders. Evaluation results showed that SentiStrength significantly outperformed the best

machine learning classifier by over 2% for the positive sentiment strength detection. The

authors claimed that the gain in performance is due to the ability of SentiStrength in

dealing with the irregular English forms in text and using them to boosting the overall

detection performance.

In a subsequent work [160] by the same authors, several improvements were added

to the original algorithm. This mainly included extending the Thelwall-Lexicon to 2,310

terms by adding the negative terms of the General Inquirer lexicon [153]. The authors

also updated the negation rule, where negating the negative terms in the new version

of SentiStrength turns them neutral rather than positive. The new SentiStrength was

evaluated on 6 test datasets of different social media services including Twitter, BBC

Forum, Digg.com, MySpace, Runners World Forum and YouTube. The results showed

that SentiStrength outperformed the baselines method (majority classification) over the

six datasets significantly. However, the machine learning methods were shown to perform

slightly better than SentiStrength on most of the datasets.

The same authors [111] proposed another approach based on SentiStrength, where

the focus was toward polarity and subjectivity detection rather than sentiment strength

detection. In particular, the authors used similar sentiment rules to those used in Sen-

tiStrength to calculate the positive and negative sentiment strength of a given document.

The strength scores were subsequently used to compute the document’s overall sentiment.

The document is considered positive if its positive strength is larger than its negative one

and vice versa. Moreover, the document is considered neutral (objective) if the absolute

values of its positive and negative strengths are equal to 1. The proposed algorithm was

evaluated on three human-annotated datasets collected from Twitter [110], Digg [112] and

MySpace [158], and its performance was compared against SVM, NB and MaxEnt classi-

fiers trained from word unigrams. The evaluation results showed a superior performance

of the algorithm over all other methods for both polarity and subjectivity classification.

27 https://myspace.com/

https://myspace.com/
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From the above review, one can notice that adjusting lexicon-based algorithms to Twit-

ter characteristics, as well as using microblogging-based lexicons help in reducing the

negative impact of language informality in tweets, and consequently improving the de-

tection performance, as also argued by [23]. Nonetheless, building sentiment lexicons is

usually a time-consuming and labour-intensive task [89]. Moreover, similar to the tra-

ditional lexicons, the coverage of microblogging-based lexicons is also limited by the

number of words within them.

The difficulty of building sentiment lexicons for microblogs, as explained above, at-

tracted several research works that mainly focused on investigating (i) new types of opin-

ionated words and expressions found in microblogging texts, and (ii) which of these word

types are more useful to consider when constructing sentiment lexicons [106, 72, 23].

For example, Nielsen [106] studied the influence of including ill-formed expressions

(e.g., lol, gr8) and obscene terms [140] that convey sentiment when building new senti-

ment lexicons. In particular, the authors built a new lexicon of 2477 words coupled with

their sentiment strength scores (between -5 and +5). The words were collected from dif-

ferent sources including a list of obscene words [21], the Original Balanced Affective Word

List,28 a list of a slang words from the Urban dictionary,29 etc.30 Using a simple keyword

matching, the new lexicon was compared to the ANEW [21] lexicon, General Inquirer,

OpinionFinder and SentiStrength on a dataset of 1,000 tweets manually labelled with

Amazon Mechanical Turk (AMT) [15]. The evaluation results showed that the new lexicon

showed a higher correlation with the sentiment labels obtained from AMT than ANEW

and General Inquirer and OpinionFinder, but a lower correlation than SentiStrength. This

is because SentiStrength, as described earlier, applies several syntactical rules besides cov-

ering slangs and other ill-formed words and irregular expressions.

One way to overcome the limited coverage of words is by lowering the reliance on

the sentiment lexicons, and more specifically on the reliance on the prior sentiment of

words, and focus more on other sentiment indicators in tweets. For example, Hu et al

[72] exploited emotional signals, i.e., these parts in text that convey sentiment or correlated

to other parts that convey sentiment, for sentiment detection of tweets in an unsuper-

vised manner. As defined by the authors, these signals are: (i) the words’ prior sentiment,

(ii) sentiment indicators in tweets (e.g., emoticons), (iii) word-word sentiment correlation

(i.e., the correlation between opinionated and ordinary words in a given tweet), and (iv)

28 http://www.sci.sdsu.edu/CAL/wordlist/origwordlist.html

29 http://www.urbandictionary.com

30 The complete list can be found in the author’s work in [106].

http://www.sci.sdsu.edu/CAL/wordlist/origwordlist.html
http://www.urbandictionary.com
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post-post sentiment correlation, which refer to the correlation between opinionated and

ordinary posts. The authors proposed a matrix factorisation based framework [48] where

the emotional signals are used as prior knowledge to constrain the factorisation process.

Evaluation results on two Twitter datasets showed the effectiveness of the proposed ap-

proach in comparison with other conventional keyword matching methods.

In a similar vein, Brody and Diakopoulos [23] explored including lengthening words (i.e.,

words with repeated letters) as additional opinionated words to the lexicon. In particular,

the authors argued that words such as “realllly” and “niiiice” tend to have a strong associ-

ation with sentiment, but usually are not covered by typical lexicons. Using MPQA, they

found that 7% of the words in the lexicon appeared lengthened in 68% of the tweets in a

corpus of 500K tweets. Based on this finding, the authors proposed to expand the MPQA

lexicon with a subset of 720 lengthening words found in tweets. To this end, they ran a

label propagation method on a graph of the lengthening words to calculate their senti-

ment. The annotation performance of the method was compared to a human annotation

on two sets of 50 positive and 50 negative words. The overall results showed that word

lengthening is not random and does often denote sentiment in the text.

Summary

From the above review, lexicon-based methods seem like a better fit for Twitter than

machine learning methods since the former can be directly applied to tweets with no

need for feature engineering and classifier training. Nonetheless, lexicon-based methods

are limited by their lexicons. Firstly, they rely on sentiment lexicons of a fixed set of

words. Words that do not appear in the lexicon are often not considered when analysing

sentiment. Moreover, lexicon-based methods, and their underlying lexicons, offer fixed,

context-independent, word-sentiment orientations and strengths. For example, typical

lexicon-based methods assign the same sentiment strength to the word “good” in “It

is a very good phone indeed!” and in “I will leave you for good this time!”. Al-

though training algorithms have been built to optimise the terms’ sentiment score in the

lexicon, as in [159], they require frequent retraining from human-coded data, which is

labour-intensive and domain dependent.

The work in this thesis aims to address the above limitations by building a lexicon-

based approach that considers the context of words, by means of their co-occurrence

patterns in tweets, and calculates their sentiment orientation and sentiment strength ac-

cordingly. In doing so, our approach is able to find new opinionated words in tweets,
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and uses them to extend general-purpose sentiment lexicons that do not normally cover

such words, as will be discussed in Chapter 3.

2.2.1.3 The Hybrid Approach

The hybrid approach to sentiment analysis combines both, the machine learning and lexicon-

based approaches, in a way that exploits the strengths of both approaches, but avoids

some of their weaknesses. Broadly speaking, in the hybrid approach, one of the two

approaches is used to boost the performance of the other approach. For example, super-

vised classifier models make use of lexicon-based approaches to lower the dependency

on manually annotated training corpora [184]. On the other hand, the machine learning

approaches can be used to bootstrap the sentiment lexicons used in the lexicon-based

approaches [159].

A very popular form of hybridisation between both approaches is to incorporate the

prior sentiment information of words as additional features into supervised classifier

training as in [82, 1, 22, 101] (see Section 2.2.1.1). Such incorporation has been shown to

improve the overall performance of sentiment classifiers [22].

Other existing works developed more sophisticated forms of hybridisation [184, 62, 128,

133]. For example, Zhang et al.[184] devised a three-step incremental learning approach.

In the first step a lexicon-based method is applied to a collection of tweets to identify

their sentiment labels (positive and negative). In the second step, the labelled tweets

are used to identify the opinionated terms, which were not detected in the first step,

based on their co-occurrence with positive and negative tweets. The extracted terms in

this step are subsequently added to the lexicon used in the first step and used to find

more opinionated tweets. In a further step, a SVM classifier is trained from the annotated

tweets in first step and applied to classify the sentiment orientation of the named entities

in the tweets detected in the second step.

Rodriguez-Penagos et al. [133] built an ensemble approach that uses the outputs of

a lexicon-based method and two supervised classifiers to perform sentiment detection

at the expression level. In particular, the authors trained SVM and CRF classifiers from

several sets of lexicon features (e.g., prior polarity, polarity strength, subjectivity clue, etc).

They also built a lexicon-based method that uses some pre-defined heuristic rules (e.g.,

if [negation (word)] then [flip sentiment]) along with several polarity lexicons. Majority

voting and Ensemble voting (i.e., choose the output that maximise the number of correct



46 literature review

identified samples in the development corpus) strategies were used to calculate the total

sentiment from the three outputs.

Revathy and Sathiyabhama [128] proposed using three supervised models trained from

three different set of features: The first model is a random forest classifier trained based

on compositional semantic rules [39].31 The second model is a SVM classifier trained

from the senses of words extracted WordNet [98]. The third model uses our previously

proposed semantic features (e.g., “Person”, “Company”, “Person”) (see Chapter 4) to train

a Naive Bayes classifier [136]. The final sentiment of the tweet corresponds to majority

votes by the three models. The evaluation results showed that the proposed approach out-

perform other supervised classifiers trained from several combination of word n-grams

(unigrams, bigrams) and POS tags. It also outperform other models trained from the

three semantic features solely.

Gonçalves et al. [62] proposed an approach that combines between several lexicon-

based methods including SentiStrength, Emoticons (the presence of emoticons in tweets

as an indicator to their sentiment) SenticNet (Keyword matching against the SenticNet

lexicon) [28] PANAS-t [63],(A lexicon-based method built based on the psychological pos-

itive affect and negative affect scale (PANAS) [172]) SentiWordNet (Keyword matching

against the SentiWordNet lexicon), Happiness Index (Uses the ANEW lexicon to mea-

sure the happiness index (from 1 to 9) in text) [50], as well as SASA [170], a supervised

method that uses a Naive Bayes classifier trained from 17K manually annotated tweets

for subjectivity classification. The sentiment produced by the combined method is calcu-

lated as the harmonic mean of the precision and recall of all the methods. The combined

method along with each of the aforementioned methods were evaluated using the 6 social

datasets from [160]. Evaluation results showed that the combined method outperform all

the other methods in terms of coverage (i.e., the proportion of tweets that the method is

able to detect their sentiment) and agreement (i.e., the proportion of tweets that both the

method and the ground truth agreed on their sentiment).

2.2.1.4 Discussion

In the preceding sections we provided an overview of two popular approaches to senti-

ment analysis on Twitter, the machine learning approach and the lexicon-based approach.

31 A set of linguistic rules that are used to determine the sentiment of the a tweet as a composition of the the

sentiment of the expressions within the tweet.
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Both approaches have quite distinct characteristics that lead to several advantages and

disadvantages when applied to Twitter data.

In this section we briefly summarise and discuss the strengths and weaknesses of both

approaches as follows:

Supervised Machine Learning Approaches

Traditional machine learning approaches are domain-dependent, which can be a leverage

and a weaknesses at the same time. On the one hand, classifiers trained from a specific

domain tend to produce high performances when applied to data from the same domain.

This is because the training process ensures that the trained classifiers are well-adapted

to the domain, topic and context of the training data. On the other hand, classifier train-

ing requires a large amount of annotated data, which is not always available especially

in Twitter. Although the distant supervision approach to building training corpora has

been adopted in several works, its efficiency is still inconsistent, as discussed in Section

2.2.1.1. Moreover, domain-dependent classifiers usually fail to produce a satisfactory per-

formance when applied to new domains; classifier retraining is often needed in such

cases. Therefore, the efficiency of the supervised machine learning approach is usually

subject to two conditions: one is the availability of annotated corpora, another is classifier

retraining when move to corpora of different domains.

Another common characteristic of traditional machine learning approaches on Twit-

ter is that they merely rely on syntactic or linguistic features for classifier training (e.g.,

n-grams, POS tags, dictionary glosses, etc.). This is sometimes problematic on Twitter

because relying on these types of features lead to generate sparse feature vectors since

tweets are naturally sparse, as discussed earlier. Using sparse vectors to train sentiment

classifiers often lower their performance [137] due to their inability to generalise to new

terms found in the test set, which the classifiers are not trained from (or trained from

their associated feature vectors).

Lexicon-Based Approaches

Lexicon-based approaches often rely on sentiment lexicons for sentiment analysis and,

therefore, they do not require training from labelled instances or retraining when ap-

plied to Twitter corpora of different domains, which is generally counted as a strength

for some sentiment analysis applications on Twitter (e.g., analysing sentiment on Twitter

streams). However, these approaches, as reviewed previously, are limited by the senti-

ment lexicons they use. First, because sentiment lexicons are composed by a generally
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static set of words that could not cover the wide variety of new terms that constantly

emerge in Twitter. Secondly, because words in the lexicons have fixed prior sentiment ori-

entations, i.e. each term has always the same associated sentiment orientation regardless

of the context in which the term is used.

The lack of Semantics

A common limitations with both, traditional machine learning and lexicon-based ap-

proaches to Twitter sentiment analysis is their full dependence on the presence of affect

words or syntactic features that are explicitly associated with sentiment. However, it is

very likely that the sentiment in a tweet is implicitly expressed via the semantics of its

words or the semantic relations between them [24, 55, 126]. As previously explained in

Chapter 1, the sentiment of a word is often associated with its semantics in a given con-

text. Changing the context may lead to alter the word’s semantics and consequently sen-

timent. For example, the word “great” should be negative in the context of a “problem”,

and positive in the context of a “smile”. Moreover, the sentiment might be also associ-

ated with the explicit semantic concepts of words. For example, Trojan Horse is likely

to have a negative sentiment when its associated semantic concept is “Computer/Virus”.

and it is likely to have a neutral sentiment when its associated semantic concept is “Greek

Mythology”. Understanding the semantic of words, therefore, becomes crucial for senti-

ment analysis for both, words and tweets.

The role of semantics in sentiment analysis has been increasingly investigated in differ-

ent works in the last three years. We conventionally refer to this line of work as Semantic

Sentiment Analysis. In the next section we provide a review of the exiting approaches in

this line of work.
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2.3 semantic sentiment analysis

Semantic sentiment analysis aims at extracting and using the underlying semantics of

words in identifying their sentiment orientation with regards to their context in the

text. Existing works on semantic sentiment analysis could be divided into two main ap-

proaches: (i) the contextual semantic approach (aka the statistical semantic approach) and

the (ii) the conceptual semantic approach. In the following subsections, we will review key

existing works under each semantic approach, highlighting their properties, strengths

and weaknesses.

2.3.1 Contextual Semantics

Contextual semantics (aka statistical or distributional semantics) refer to the type of se-

mantics which is inferred from the co-occurrence patterns of words [177]. Contextual

semantics have been traditionally used in diverse areas of computer science including

Natural Language Processing and Information Retrieval [167]. The main principle be-

hind the notion of contextual semantics comes from the dictum-“You shall know a word by

the company it keeps!” [52]. This principle in Linguistics is also known as the Distributional

Hypothesis, which states that words that occur in the same contexts tend to have similar

meanings [65, 167, 134], which suggests that words that co-occur in a given context tend

to have a certain relation or semantic influence.

In the sentiment analysis area, the above principle has been adopted in several ap-

proaches in order to assign sentiment to words based on their co-occurrence patterns

in text. [67, 165, 166, 157, 171, 87, 88, 179]. Similar to traditional sentiment analysis

approaches, contextual semantics approaches can be divided into two main categories:

lexicon-based approaches [165, 166, 157, 87, 88] and supervised approaches [171, 179].

Sentiment Orientation by Association.32 (SOA) [165, 166, 157] is a popular approach un-

der the lexicon-based category.33 SOA assigns sentiment orientation to words based on

the sentiment orientation of their co-occurring words in a text [165, 166], in dictionary

glosses [157], or in a synonymy graph [78]. Pioneering work in this vein is by Turney and

Littman [165, 166]. In their work, the authors exploited the statistical correlation between

a given word and a balanced set of 14 positive and negative paradigm words (e.g., good,

32 Also called Semantic Orientation by Association
33 SOA is considered an unsupervised approach in some studies.
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nice, nasty, poor). The word has positive orientation if it has a stronger degree of asso-

ciation to positive words than to negative ones, and vice-versa. Two measures of word

statistical correlation were used, pointwise mutual information (PMI) [40] and Latent Seman-

tic Analysis (LSA) [86].34 The evaluation was conducted on 3596 words obtained from

General Inquirer. Although this work does not require large lexical input knowledge, its

identification speed is very limited [179] because it uses web search engines in order to

retrieve the relative co-occurrence frequencies of words.

Other forms of semantic associations can be realised at more abstract levels than the

corpus level. For example, Takamura et al. [157] measured the the sentiment orientation

of words based on their association to seed words in dictionary glosses. In particular,

they built a network of terms where two terms are connected if one appears in the gloss

set of the other. After that, a spin model [37] was applied to decide on the total sentiment

of terms in the network. All word glosses were obtained from WordNet. In a similar

vein, Kamps et al. [78] represented the semantic association between words as a graph of

WordNet synonymy relations. The sentiment of a word in their approach corresponds to

the shortest path of two possible paths, one from the word to the seed word “good”, and

another to the seed word “bad”.

Although using lexical inputs from other resources (e.g., glosses and synonyms from

WordNet) is more time-efficient than using the Web, the aforementioned approaches are

limited by their lexical resources. For example, the proposed approach in [78] assigns

sentiment only to those words that appear in WordNet.

SOA approaches, in general, are unable to assign sentiment to words with domain-

and context-specific orientations [49] due to (i) their limited choices of paradigm words,

which are usually general and out-of-context, and (ii) their use of external lexical data

sources (Web, WordNet, etc) that do not reflect, most of the time, the contextual semantics

of the words in the studied corpus. For example, SOA approaches are generally unable

to distinguish between “Heavy” as a negative word when describing mobile phone and

as a positive word when describing a wood dining table.

Wang and Wan [171] proposed a supervised approach to contextual semantics for sen-

timent analysis of online news documents. Specifically, the authors used LSA to lower

the dimensionality of passage-word semantic space and extract the statistical correlation

34 LSA is a statistical semantic technique that uses Singular Value Decomposition (SVD) to extract the latent co-

occurrence patterns of words in text. It can be thought of as a data smoothing technique that aims at reducing

the dimensionality of the data in order to decrease the distances between the vectors of semantically similar

words or documents in the semantic space.
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between words in different passages (In other words the latent semantics of the pas-

sage). After that, a sentiment lexicon was used to assign prior polarities to the words

in the smoothed space and the sentiment of documents were calculated consequently as

an average sum of the their opinionated words. In a further step, the authors trained a

SVM classifier from the labelled documents. The authors claimed that their model out-

performed another model that followed similar steps but without using SVM classifiers.

Latent Dirichlet Allocation (LDA) [19] is a probabilistic generative model, which pre-

sumes that the document is a mixture of probabilities of topics and each topic is a mixture

of probabilities of words that are more likely to co-occur together under the topic. For ex-

ample the topic “Flu” is more likely to contain words like “headache” and “fever” while

the topic “iPhone” is more likely to contain words like “display” and “battery”. Hence,

one can interpret the topics generated by LDA as the contextual semantic identities of

words since the words under each topic tend to have some sort of semantic relations

between them.

Several extensions to the original LDA model have been proposed to perform different

sentiment analysis tasks including subjectivity detection [87, 88], aspect-level sentiment

detection [186, 162], topic-based sentiment summarization and time-series sentiment anal-

ysis [70].

For example, Lin and He [87] proposed the joint sentiment-topic (JST) model, a four-

layer generative model which allows the detection of both sentiment and topic simultane-

ously from text. The generative procedure under JST boils down to three stages. First, one

chooses a sentiment label l from the per-document sentiment distribution πd. Following

that, one chooses a topic z from the topic distribution θd,l, where θd,l is conditioned on

the sampled sentiment label l. Finally, one draws a word wi from the per-corpus word

distribution φl,z conditioned on both topic z and sentiment label l. The graphical model

of JST is presented in Figure 6.35 The JST model does not require labelled documents for

training. The only supervision is word prior polarity information which can be obtained

from publicly available sentiment lexicons such as the MPQA subjectivity lexicon.

Unlike SOA approaches, LDA-based approaches derive the contextual semantics of

words from their statistical correlations to other words that co-occur with them in the

corpus being analysed. Therefore, the LDA-based models better captures the words’ spe-

cific context and consequently their contextual sentiment orientations. Having said that,

LDA-based models face several challenges. First, they tend to a have high computational

35 The figure is taken from the authors’ work in [87] with permission.
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Figure 6: JST Model [87].

complexity [151] because the MAP (maximum a posteriori) inference (i.e., P(z|w)) in these

models is an NP-hard problem. Although several approximate inference algorithms have

been proposed to increase (e.g., Gibbs sampling, Markov Chain Monte Carlo) the time-

efficiency, the performance of an LDA-based model is highly dependent on the number

of topics per documents, which is usually chosen heuristically. Secondly, LDA-based

models often rely on the bag-of-word representation of documents, where the syntacti-

cal structure of sentences/phrases is usually ignored. Hence, the sentiment prediction in

such models tends to fail in simple cases such as the presence of negation.

2.3.2 Conceptual Semantics

The conceptual semantic approach to sentiment analysis relies on external semantic

knowledge bases (e.g, ontologies and semantic networks) with NLP techniques to cap-

ture the conceptual representations of words that implicitly convey sentiment. Unlike

contextual semantic approaches, which are mainly based on the bag-of-word paradigm,

the conceptual semantic approach relies on the bag-of-concept paradigm, that is, by rep-

resenting the affective (sentiment) knowledge in text as a set of concepts coupled with

their sentiment orientations [26].

Conceptual semantic approaches are relatively new in the sentiment analysis and less

popular than contextual semantic approaches. Pioneering work in this vein is by Cam-

bria and Hussein [25], who introduced Sentic Computing,36 a new paradigm for concept-

level sentiment analysis. Sentic computing employs two knowledge-base sources of com-

36 The term is derived from the Latin sentire, which is also the root of words like sentiment and sentience.
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mon sense concepts and affective information, ConceptNet37 [68] and WordNet-Affect38

(WNA) [155] along with common sense reasoning techniques. These resources and tech-

niques are used to extract the common-sense concepts (e.g., “nice day”, “simple life”)

found in text with their associated semantics and sentics (i.e., four affective categories

derived from the Hourglass of Emotions model [32]: Pleasantness, Attention, Sensitivity

and Aptitude). In particular, the sentiment detection in the new paradigm boils down into

three main phases as shown in Figure 7. First, a semantic parser39 is used to extract com-

mon sense concepts from a given text. Secondly, the extracted concepts are passed to the

semantic extraction module. This module extracts the semantic classes of the extracted

concepts based on their relatedness to a predefined set of seed concepts in the common

sense semantic network, IsaCore [34].40 Third, the extracted concepts are also passed to

the sentic extraction module. In this module each concept is assigned a vector of four

sentic components (pleasantness, attention, sensitivity, aptitude) based on its position

in the AffectiveSpace, a multi-dimensional vector space model in which the concepts in

ConceptNet (common sense concepts) are represented/clustered by means of their affect

information in WordNet-Affect.

Figure 7: Concise paradigm of Sentic Computing. The detailed paradigm can be found in [25].

37 ConceptNet is a semantic graph representation of the common sense information in the Open Mind cor-

pus. Nodes in the graph represents concepts and edges represents the assertions of common-sense that

interconnect concepts.
38 WordNet-Affect is a linguistic resource of affective knowledge built upon WordNet.
39 http://sentic.net/parser.zip

40 IsaCore is a semantic network representation of common and common-sense knowledge, built by blending

Probase [178] and ConceptNet. IsaCore can be downloaded from http://sentic.net/isacore.zip

http://sentic.net/parser.zip
http://sentic.net/isacore.zip
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Note that AffectiveSpace is built using the blending technique over ConceptNet and

WordNet-Affect. In particular, the common sense knowledge in ConceptNet and the af-

fective lexical information in WordNet-Affect are represented as two sparse matrices.

Blending exploits the shared information between both matrices in order to merge them

into a single matrix. After that, a truncated singular value decomposition is applied in

order to lower the dimensionality of the blended matrix and captures the latent corre-

lations between concepts. As a final result, common sense concepts like such as “happy

birthday” and “birthday present” are jointly represented with their affective informa-

tion as neighbour vectors in the AffectiveSpace.

Several data types were used to evaluate the different sentic computing components.

For example, AffectNet was evaluated for emotion detection on a set of 5000 blog posts

from LiveJournal [154],41 while the ensemble of IsaCore and AffectNet was evaluated for

polarity detection on a set of 2000 tagged comments obtained from PatientOpinion,42 an

online feedback service for the National Health Services (NHS) in the UK.

As for Twitter, only the semantic component was evaluated. In particular, a corpus

of 3000 tweets from [150] was used to evaluate IsaCore. The hashtags in this dataset

were used to tag categories and topics in tweets such as companies (e.g., Apple, Mi-

crosoft, Google), cities, countries, etc. The evaluation showed that IsaCore outperform

significantly both WordNet and ConceptNet. It also outperformed Probase [178] in some

categories (e.g., electronics, cars). However, the tweets in the evaluation corpus, as ex-

plained in [25] contain formal, structured and well-written English text. Additionally, the

common sense concepts are well defined and represented in the tweets with at least one

concept in each tweet. Hence, the evaluation corpus does not reflect the typical character-

istics of Twitter data (e.g., malformed words and unstructured sentences), and therefore,

the performance of IsaCore on tweets data is yet to be measured using larger and more

realistic Twitter corpora.

It is worth noting that sentic computing as a paradigm was applied effectively in sev-

eral subsequent works by Cambria and his colleagues [27, 38, 29, 30] to build sentiment

analysis applications for different fields such social media marketing [30] and health

care services [29]. In this line of work, sentic computing has proven its effectiveness

for sentiment analysis at the concept, aspect, and document levels. Nevertheless, sentic

computing approaches face quite a few limitations. Firstly, the main component in sentic

41 LiveJournal is a social network that allows users to publish and share blogs, jorunals and diaries http:

//www.livejournal.com/

42 https://www.patientopinion.org.uk/

http://www.livejournal.com/
http://www.livejournal.com/
https://www.patientopinion.org.uk/
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computing, the AffectiveSpace, is built using the SVD reduction technique on a very large

and sparse blended matrix. Such process is computationally expensive and requires big

storage. This might become very problematic in Twitter, where the knowledge sources in

sentic computing are supposed to keep extending with the continuous evolution of new

concepts in tweets. Secondly, current sentic computing approaches rely on static common

sense knowledge sources. Therefore, the performance of such approaches is affected, to

a large extent, by the richness of these sources (i.e., the number and the diversity of the

common and common-sense concepts that the knowledge source covers).

SenticNet

One way to lower the complexity of the sentic computing paradigm, is to generate the

AffectiveSpace for once and store its common sense concepts along with their sentics in

a static lexicon. This allows to extract the sentic information of a given common sense

concept without the need for regenerating the AffectiveSpace. To this end, Cambria et al.

[28] built SenticNet,43 a concept-based lexicon for sentiment analysis. To build SenticNet,

the authors first created the AffectiveSpace from ConceptNet and WordNet-Affect as

described earlier. After that, a subset of 5700 concepts were selected from those which

have positive or negative polarity only. The sentiment polarity of a given concept c was

calculated from its 4 sentic classes scores as:

polarity(c) =
Pleasantness(c) + |Attention(c)|− |Sensitivity(c)|+Aptitude(c)

9
(2)

SenticNet was further extended in [31] by adding all the polar concepts from the Open

Mind corpus, resulting in 14k concepts coupled with their affective information.44 Both

versions of SenticNet were published in semantic web based format (RDF/XML format),

where the semantics and the sentics of a concept like “minor injury” are represented in

SenticNet as illustrated in Figure 8.

To evaluate SenticNet, the authors compared its performance against the traditional

SentiWordNet lexicon using the PatientOpinion dataset. The results showed that Sentic-

Net outperformed SentiWordNet with a significant gain of 18% in F-measure.

SenticNet has been recently used in a number of studies to perform different senti-

ment analysis tasks including aspect-level sentiment analysis of products [56], as well as,

sentence-level and opinion holder sentiment detection [55].

43 http://sentic.net/senticnet-1.0.zip

44 http://sentic.net/senticnet-2.0.zip

http://sentic.net/senticnet-1.0.zip
http://sentic.net/senticnet-2.0.zip
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Figure 8: The RDF entry of the concept minor injury in the SenticNet lexicon.

For example, Gangemi et al. [55, 126] proposed Sentilo, a frame-based semantic model

for sentence-level sentiment detection. The proposed model is able to (i) detect topics

and opinion holders (i.e., entities that hold an opinion) in sentences and (i) defines the

sentiment expressed by an opinion holder towards a given topic. To this end, the model

performs extensive syntactical, lexical and semantic analyses of sentences. Concisely, the

sentiment detection in Sentilo consists of two steps. In the first step, a sentence like “Anna

says the weather will become beautiful”, is semantically represented as a sequence

of interconnected events (e.g., the weather will become beautiful) and objects/agents

(e.g., Anna, Weather). To this end, the authors used Fred,45 a tool for semantic knowledge

extraction and representation of sentences [121]. In the second step, the semantic repre-

sentation of the sentence is used along with the SenticNet and SentiWordNet lexicons

to detect the opinionated topics, subtopics, opinion holders and their sentiment. Sentilo

was evaluated on 50 manually annotated sentences from Europarl corpus,46 with results

showing F-measures of 95%, 68%, 78% for opinion holder, topic and subtopic detection

respectively.

Conceptual Semantics on Twitter

Based on the above review, one may notice that most existing conceptual semantic ap-

proaches to sentiment analysis were mainly applied and tested on conventional text. As

for Twitter, however, very few attempts of exploiting conceptual semantics for sentiment

detection of tweets can be found [57, 62, 80, 102].

Gezici et al, [57] used SenticNet as an ordinary sentiment lexicon along with Senti-

WordNet to extract the prior sentiment of words and use them to train a supervised

regression classifier for sentiment classification of Tweets. However, no concept detection

nor semantic inferencing was performed to this end.

45 http://stlab.istc.cnr.it/stlab/FRED

46 European Parliament Proceedings Parallel Corpus: http://www.statmt.org/europarl/

http://stlab.istc.cnr.it/stlab/FRED
http://www.statmt.org/europarl/
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Kontopoulos et al. [80] proposed an ontology-based approach to sentiment detection of

product aspects on Twitter. To this end, the authors built a domain-specific ontology for

smart phones by first retrieving tweets that contain specific concepts (e.g., “#smartphone”)

in a predefined list. An ontology engineer was asked, afterwords, to manually extract the

objects (e.g., “Apple iPhone”, “Samsung Galaxy”) and their attributes (e.g., “Display”,

“Battery”) from the tweets. The evaluation was done by querying Twitter with the object-

attribute pairs in the ontology. The sentiment of tweets with regards to the attributes in

them (aspects) was calculated using OpenDover, an online commercial tool for sentiment

analysis.47 Although the proposed approach showed a relatively high recall, its main

limitation comes from the high levels of intervention by human experts when building or

validating ontologies. In practical applications on Twitter, building an ontology for each

product is unscalable and too expensive.

Another recent work in this vein is by Montejo-Ráez et al. [102], who conceptualised

words in tweets by means of their synsets48 in Wordnet. In particular, word sense dis-

ambiguation was performed on words in tweets using the UKB method [2] in order to

assign a unique synset to each word. After that, the authors applied a random walk pro-

cess over Wordnet to expand the original list of sunsets. Finally, The polarity of a tweet

is then calculated as an average of the polarity of all of its synsets. SentiWordNet was

used to this end. Evaluation was conducted on 359 tweets from the STS corpus [60]. Re-

sults showed that weighting the prior sentiment of words in SentiWordNet using their

extracted synsets did improve the overall performance by up to 23.12% in F1 over us-

ing SentiWordNet with most-common-sense weighting scheme. However, comparable to

other supervised sentiment analysis approaches, including [60, 16, 152, 137], the perfor-

mance of the proposed approach was 19% lower in F1, on average.

47 http://opendover.nl/

48 Sets of cognitive synonyms.

http://opendover.nl/
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2.4 summary and discussion

Sentiment analysis of Twitter is increasingly moving into the focal interests of several re-

search and commercial parties. Twitter, however, poses several challenges to conventional

sentiment analysis approaches due to its distinct characteristics. These characteristics can

be categorised with respect to two aspects, data and domain as follows:

• Data: Tweets messages are very noisy in the sense that they often contain a large

number of abbreviations, ill-formed words and irregular expressions. Moreover,

tweets are usually written in informal English and composed of poorly-structured

sentences. Such noisy characteristics often affects the performance of traditional

sentiment analysis approaches.

• Domain: Twitter is an open social environment, where there are no restrictions on

what users can tweet about. Approaches to analysing sentiment from a given Twit-

ter corpus, are therefore required to adapt to the domain and topic of the tweets

in that corpus. As discussed earlier, this is because the sentiment of words often

changes with respect to their context in tweets.

The above challenges introduce the necessity of developing sentiment analysis ap-

proaches that are more tolerant to the noisy and sparse nature of tweets and more flexible

to the dynamic and frequent emergence of new domains and topics on Twitter.

In this chapter, we reviewed existing approaches on sentiment analysis on Twitter,

highlighting their strengths and weaknesses with respect the aforementioned challenges.

We showed that these approaches can be categorised as (i) traditional (non-semantic)

approaches (Section 2.2.1), and (ii) semantic approaches (Section 2.3).

Traditional approaches are those which rely on the syntactical parts in tweet texts

that explicitly express sentiment (i.e., opinionated words, emoticons, intensifiers, etc.).

Several machine learning and lexicon-based methods, which follow this principle, have

been proposed.

Machine learning methods (Section 2.2.1.1) are usually supervised, and therefore, they

require training from large annotated corpora. They are also domain-dependent, i.e, they

require retraining for each new domain. Moreover, the data sparseness of tweets is a

challenging problem to the supervised machine learning methods and its impact on the

performance should be considered. However, the literature showed that very few works

have tried to address this issue by devising sophisticated dimentionality techniques or



2.4 summary and discussion 59

heavy feature engineering work (Section 2.2.1.1), whose applicability in the real word is

yet to be investigated.

Lexicon-based methods (Section 2.2.1.2), on the other hand, rely on sentiment lexicons

for sentiment assignment of the opinionated content in tweets. Therefore, these methods

seem to be a better fit to Twitter than machine learning methods since they do not need

training from labelled corpora. Nevertheless, we saw that the sentiment given by most

existing lexicon-based methods is often too general and does not reflect the context of

words in tweets. Also, sentiment lexicons are often composed of a fixed number of words

that do not cover the wide range of new words and expressions that constantly emerge on

Twitter. Hence, lexicon-based methods on Twitter should consider the context of words

when detecting their sentiment in tweets rather than merely relying on the prior senti-

ment provided by general-purpose sentiment lexicons. In Section 2.2.1.2 we saw that a

reasonable solution to the aforementioned limitation is by adapting sentiment lexicons to

the domain or general context of the analysed tweets. However, only one of the reviewed

methods considers updating its sentiment lexicon, and the updating method requires

training from human-coded corpus [159].

In addition to the aforementioned limitations, traditional approaches (both machine

learning and lexicon-based) are fully dependent on the presence of words or syntactical features

that explicitly reflect sentiment. However, the sentiment of a word, as discussed earlier, is

usually implicitly associated with its semantics in context. Words in general have different

semantics in different contexts and, therefore different sentiment [33].

The above limitation has led to the emergent of various sentiment analysis models that

extract the semantics of words based on their context and use it for sentiment analysis,

creating a sub-filed in sentiment analysis conventionally called semantic sentiment analysis

(Section 2.3).

Two types of approaches to semantic sentiment analysis have been described in this

chapter, contextual and conceptual approaches.

Contextual semantic approaches (Section 2.3.1) derive the semantics of words from

their co-occurrence patterns in text. They are based on the assumption that words that

co-occur in similar contexts tend to have similar semantics. Extracting the semantics of

words, therefore, often includes studying their co-occurrence patterns and consequently

detecting their contextual sentiment. Three statistical techniques have been used in this

line of work, Semantic Orientation from Association (SOA), Latent Semantic Analy-

sis (LSA) and Latent Drichlit Allocation (LDA). SOA-based methods are domain- and
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context-insensitive because they rely on the statistical correlations between words in very

general and global data sources (e.g., the web). On the other hand, LSA and LDA based

methods are corpus-based, that is, they extract the latent semantics of words form the

studied corpus. Thus, they are usually better in capturing the sentiment of words at

more specific context levels (i.e., corpus-level). Nevertheless, in addition to their compu-

tational runtime complexity, these methods usually neglect the syntactical structure of

sentences and the orders of words in them. Therefore, they are likely to fail in detecting

the sentiment in simple cases, such as the presence of negation.

Conceptual semantic approaches (Section 2.3.2), on the other hand, make use of ex-

ternal knowledge sources (ontologies and semantic networks) along with semantic rea-

soning techniques to extract the latent concepts in text with their associated sentiment

[33, 55]. Unlike contextual semantic approaches, conceptual semantic approaches require

a deep understanding of the syntactical structure of the sentence together with accurate

detection and reasoning of the words’ syntactical functions within it. On the one hand,

such extensive analysis leads to a noticeable gain in the sentiment detection performance

over the traditional and the contextual semantic approaches. It also allows for more fine-

grained sentiment analysis tasks, such as sentence-, phrase- and entity-level sentiment

analysis due to the ability of these approaches on detecting the context and semantics of

words at these levels.

On the other hand, most conceptual semantic approaches are designed to work on for-

mal text, where well-written and well-structured sentences are usually a prerequisite to

proper functioning. Tweet messages, however, lack such formality and sentence structure

as described earlier. Moreover, conceptual semantic approaches rely on heavy text pro-

cessing, dimensionality reduction, and semantic parsing and reasoning techniques. Last

but not least, these kind of approaches are limited by the external knowledge base used,

which often provides a limited number of concepts or concept-associated sentiment. In

Section 2.3.2, we have seen that the amount of work on conceptual sentiment analysis on

Twitter is still little. Therefore, without a comprehensive evaluation, the performance in

accuracy and time-efficiency of the conceptual semantic approaches on Twitter is yet to

be measured.

Overall, based on our review in this chapter, a common and serious limitation of both,

contextual and conceptual semantic approaches to sentiment analysis is that they are

not tailored to Twitter and the like. Together with the limitations of traditional or non-



2.4 summary and discussion 61

semantic approaches, these constitute the motivation behind the research work in this

thesis.

2.4.1 Discussion

In this chapter we introduced an overview of existing works on sentiment analysis on

Twitter, highlighting their properties and pointing to their strengths and weaknesses.

Based on our review and Twitter’s characteristics, one could conclude that, whether it

is a machine learning or lexicon-based, a successful Twitter sentiment analysis approach

should possess the following two main properties:

• Semantic sentiment analysis, a prerequisite for efficiently detecting the sentiment

in tweets, whether it is associated with the context of words (contextual sentiment)

or conveyed within the latent semantic concepts or semantic relations of words

(conceptual sentiment).

• Tailored to Twitter, which denotes the ability of coping with the sparsity nature of

tweets and language informality of their words, expression and sentences.

Table 1 categorises all types of approaches reviewed and analysed in this chapter with

respect to the above properties.

Traditional Approaches Semantic Approaches

Property Supervised-ML Lexicon-based Contextual Conceptual

Semantic Sentiment Analysis No No Yes Yes

Tailored to Twitter No Partly No No

Supervision Supervised Unsupervised Unsupervised Unsupervised

Domain Adaptation Not Adaptable Not Adaptable Partly Adaptable Adaptable

Runtime Complexity Vary Low High High

Table 1: Main and secondary properties of the four type of approaches to sentiment analysis on

Twitter. ML: Machine Learning.

While the above two properties are useful to acquire since due to their impact on senti-

ment analysis performance, there are other secondary properties that sentiment analysis

approaches on Twitter may or may not have, as shown in Table 1. This includes (i) the

type of sentiment classifier (unsupervised, supervised), (ii) the ability to adapt to new do-

mains or topics and (iii) the degree of complexity. These properties are secondary in the
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sense that their absence in an approach may impact its performance positively or nega-

tively based on the dataset analysed and the sentiment analysis application. For example,

supervised machine learning methods are recommended over lexicon-based methods for

polarity classification on a fixed and relatively small Twitter corpus of specific domain,

where annotated tweet samples are provided. This is because the supervised methods

can quickly adapt to the domain, topic, or context of the corpus, by training them from

the annotated samples, and therefore, provides more accurate sentiment analysis than the

lexicon-based methods. On the other hand, on a stream of tweets of diverse topics and

domains, unsupervised or lexicon-based methods are more preferable than supervised

approaches.

Based on Table 1 we can summarise the strengths and weaknesses of each approach

reviewed in this chapter as follows:

1. Traditional or non-semantic approaches do not consider the semantics of words for

sentiment analysis, but merely rely on the presence of words or syntactical features

that explicitly reflect sentiment in tweets. These approaches can be divided into

machine learning and lexicon-based approaches.

a) Supervised machine learning approaches are domain-dependent, require train-

ing from annotated corpora and often face the data sparseness problem on

Twitter.

b) Lexicon-based approaches use general-purpose sentiment lexicons that most

of the time, need to be extended and adapted to the context of words under

analysis. Few existing works handle Twitter’s noisy nature, and therefore, they

tend to be more effective for Twitter than other approaches.

2. Semantic sentiment analysis approaches rely on the latent semantics of words that

convey sentiment in text. They are generally designed to function on conventional

text, which makes them less tailored to Twitter. These approaches can be divided

into contextual and conceptual semantic approaches.

c) Contextual semantic approaches are normally based on the bag-of-word paradigm,

extract the contextual semantics from words’ co-occurrence patterns, and often

ignore cases like negation and mixed sentiment in tweets.

d) Conceptual semantic approaches are based on the bag-of-concept paradigm,

require external knowledge bases along with extensive text processing and

semantic reasoning for semantic and sentiment extraction.
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Lastly, the review and discussion conducted in this chapter suggest that sentiment anal-

ysis on Twitter still lacks the use of semantics (both, contextual and conceptual) for sen-

timent analysis on Twitter. Such lack of research works constitutes the main research

problem and motivation behind the work in this thesis. It also forms the main research

question of this thesis, as explained earlier in Chapter 1:

Could the semantics of words boost sentiment analysis performance on Twitter?

In the following chapters we introduce new approaches and solutions to addressing the

above question, along with experimental work and evaluation conducted to measure the

efficiency of our proposed approaches.





Part II

S E M A N T I C S E N T I M E N T A N A LY S I S O F T W I T T E R

All our work, our whole life is a matter of semantics, because words are the tools with

which we work, the material out of which laws are made, out of which the Constitution

was written. Everything depends on our understanding of them.

Felix Frankfurter





3
C O N T E X T U A L S E M A N T I C S F O R S E N T I M E N T A N A LY S I S O F

T W I T T E R

In this chapter we explore the use of contextual semantics in lexicon-based sentiment

analysis on Twitter. In essence, we propose a new approach for capturing the contextual

semantics and sentiment of words from tweets, and evaluate the effectiveness of the

proposed approach in three sentiment analysis tasks on Twitter. Our conclusion is that

lexicon-based methods that considers contextual semantics produce, in most cases, a

higher performance than those that merely rely on affect words for sentiment analysis.

3.1 introduction

Traditional Lexicon-based approaches to sentiment analysis on Twitter have two

main limitations as discussed in Chapter 2. Firstly, the number of words in the

sentiment lexicons is finite. This may constitute a problem when extracting sen-

timent from very dynamic environments such as Twitter, where new terms, abbreviations

and malformed words constantly emerge. Secondly and more importantly, lexicon-based

approaches assign static sentiment values to words, regardless of the contexts in which

these words are used and the semantics they convey. In many cases however, the senti-

ment of a word is implicitly associated with its semantics in a given context (aka, contex-

tual semantics) [167, 33, 139]. For example, the word “great” should be negative in the

context of a “problem”, and positive in the context of a “smile”.

In this chapter, we investigate extracting and using the contextual semantics of words

in sentiment analysis on Twitter, aiming mainly at addressing the above limitations of

traditional lexicon-based approaches and consequently improving their performances.

The research question we aim to address in this chapter is:

RQ1 Could the contextual semantics of words enhance lexicon-based sentiment analysis

performance?

67
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To this end, we propose a semantic representation model called SentiCircle, which cap-

tures the contextual semantics of words from their co-occurrence patterns in tweets and

calculates their sentiment orientation accordingly. Remember that the main principle be-

hind the notion of contextual semantics comes from the dictum-“You shall know a word

by the company it keeps!” [52]. This suggests that words that co-occur in a given context

tend to have a certain relation or semantic influence [177, 167], which we try to capture

with the SentiCircle model.

To assess whether the use of contextual semantics helps enhance the performance of

lexicon-based approaches we evaluate the SentiCircle model in three sentiment analy-

sis tasks on Twitter. Entity-level sentiment analysis (detect the sentiment of individual

named-entities on Twitter), tweet-level sentiment analysis (i.e., detect the overall senti-

ment of a tweet) and context-aware sentiment lexicon adaptation (i.e., amend the prior

sentiment of words in a given sentiment lexicon with respect to their contextual seman-

tics in the dataset under analysis). To this end, we design several lexicon-based and

rule-based methods on top of SentiCirlces for each sentiment analysis tasks.

Evaluation under each sentiment analysis task includes using multiple Twitter datasets

and sentiment lexicons.

Results show that our proposed methods, based on SentiCircles, overcome the above

two limitations that non-semantic lexicon-based approaches often face on Twitter. First,

for entity-level sentiment analysis our methods outperform all other baselines by 30-

40% for subjectivity detection, and by 2-15% for polarity detection in average F-measure.

Secondly, for tweet-level sentiment analysis results showed that SentiCircle outperforms

the state-of-the-art, SentiStrength, in accuracy by 4-5% in two datasets, and in F-measure

by 1% in one dataset. Lastly, sentiment lexicons adapted by our proposed methods, when

used for polarity detection, improve accuracy by 1-2%, and F-measure by 1-4% in two

datasets over using general lexicons with no semantic adaptation.

The rest of this chapter is organised as follows: Section 3.2 presents our proposed Senti-

Circle representation and its use for capturing the contextual sentiment of words. Section

3.3.2 demonstrates how to use SentiCircles for tweet- and entity-level sentiment analysis.

Evaluation setup and results are covered in Sections 3.3.3 and 3.3.4. Adapting sentiment

lexicons with SentiCircles is presented along with evaluation results and finding in Sec-

tion 3.4. Runtime analysis of SentiCircles is introduced in Section 3.5. Our findings are

discussed in Section 3.6. Finally, we summarise our work in this chapter in Section 3.7.
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3.2 senticircles : capturing and representing contex-

tual semantics for sentiment analysis

In this section we introduce our SentiCircle representation and its use for capturing the

contextual semantics and sentiment of words.

3.2.1 Overview

SentiCircle aims to represent the sentiment orientation of words with respect to their

contextual semantics. The main notion behind this is that the sentiment of a term is not

static, as in traditional lexicon-based approaches, but rather depends on the context in

which the term is used, i.e., it depends on its contextual semantics. For example, most

existing sentiment analysis methods fail to detect the sentiment of the tweet “#Syria.

Execution continues with smile! :( #ISIS”, since they consider the existence of the

word “smile” positive, even though it is used within the context of the negative word

“Execution”.

To capture the contextual semantics of a term, we follow the distributional semantic

hypothesis that words that occur in similar contexts tend to have similar meaning [177,

167]. Therefore, the contextual semantics of a term in our approach is computed from its

co-occurrence patterns with other terms. Note that we define context as a textual corpus

or a set of tweets.

Thus, in order to understand the semantics and the sentiment of a target word like

“ISIS”(Islamic State in Iraq and Syria), our method relies on the words that co-occur with

the target word in a given collection of tweets. These co-occurrences are mathematically

represented as a 2D geometric circle; where the target word (“ISIS”) is at the centre of the

circle and each point in the circle represents a context word that co-occur with “ISIS” in

the tweet collection (see Figure 9). The position of each context term (e.g., “Kill”) in the

circle determines its importance and sentiment toward the target term. Such a position

can be defined by an angle (representing the prior sentiment of the context term) and

a radius (representing the correlation between the context term and the target term), as

will be explained in the subsequent section.

The rationale behind using this circular representation shape, which will become clearer

later, is to benefit from the trigonometric properties it offers for estimating the sentiment

orientation, and strength, of terms. It also enables us to calculate the impact of context



70 contextual semantics for sentiment analysis of twitter

mercy 

win 
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piece 
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behead 
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blood 

terrible 
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bomb 
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Figure 9: Example SentiCircle for the word “ISIS”. Terms positioned in the upper half of the circle

have positive sentiment while terms in lower half have negative sentiment.

words on the sentiment orientation (i.e., positive, negative, neutral) and on the sentiment

strength (e.g., weak positive, strong negative, etc) of a target-word separately, which is

difficult to do with traditional vector representations.

In the rest of this section we describe our proposed pipeline for constructing the Sen-

tiCircle of a given term and how to use it to measure the term’s contextual-sentiment

orientation and strength.

3.2.2 SentiCircle Construction Pipeline

Figure 10 shows the pipeline of extracting and using SentiCircles to calculate the con-

textual semantics and sentiment of terms, which can be summarised in the following

steps:

Tweets	   Term	  Indexing	  

Sen0Circle	  Genera0on	  Context	  Vector	  
Genera0on	  Sen0ment	  

Lexicon	  

Contextual	  Sen0ment	  
Iden0fica0on	  

Figure 10: The systematic pipeline of the SentiCircle approach for contextual sentiment analysis.

• Term Indexing: This step creates an index of terms (term-index) from a collection

of tweet messages. Several text processing procedures are applied during the pro-
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cess such as: Filtering Non-English terms,1 Part-Of-Speech tagging and Negation

(Section 3.2.2.1).

• Context Vector Generation: This step represents each term m as a vector of all its

context terms (i.e., terms that occur with m in the same context) in the tweets. For

each context term, we calculate (i) its degree of correlation to the term m and (ii) a

prior (initial) sentiment score using an external sentiment lexicon. (Section 3.2.2.2).

• SentiCircle Generation: This step converts the context vector of m into a 2D geo-

metric circle, which is composed of points denoting the context terms of m. Each

context term is located in the circle based on its angle (defined by its prior senti-

ment), and its radius (defined by its degree of correlation with the term m, which

is measured as explained below) (Section 3.2.2.3).

• Contextual Sentiment Identification: Here, we calculate the contextual sentiment of

the term m using the trigonometric properties of its SentiCircle. (Section 3.2.2.4).

Word Context: As mentioned before, the SentiCircle model aims to capture the sentiment

of a word based on its context in the tweet data. The context of a word can be usually

defined at different levels, including: (i) The sentence-level: here the word’s context is ex-

tracted from the sentence in the tweet where the word occurs. (ii) The tweet-level: here the

context of the word is extracted from the tweet where the word occurs (given that a tweet

may consist of multiple sentences and/or phrases). (iii) The corpus-level: the context here

is extracted from a collection of tweets in which the word occur.

In this work we choose to extract the context of a word in the SentiCircle model at the

corpus-level, as will be explained in Section 3.2.2.2. This is because our aim here is to

extract the collective or the aggregated sentiment of the word in a given Twitter corpus.

3.2.2.1 Term Indexing

The first step in our pipeline is to index the unique terms given collection of raw tweets.

To this end, we apply the following processing steps:

• Remove all non-ASCII and non-English characters.

• Extract the part-of-speech tag (POS tag) of all terms. To this end we use the TweetNLP

POS tagger,2 which is built to work specifically on tweets data.

1 By removing non-ASCII characters.
2 http://www.ark.cs.cmu.edu/TweetNLP/
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• Find and index terms, which appear in the tweet within the vicinity of a negation,

as negated terms. The purpose of this step, as will be shown shortly, is to inverse the

sentiment of such terms when constructing SentiCircles. For example, in the tweet

“iPad is not amazing!”, the term “amazing” is preceded by a negation. Therefore,

we inverse its original sentiment from positive to negative. The negation words (e.g.,

not, don’t, can’t, etc.) are collected from the General Inquirer under the NOTLW

category.3

The output of this step is an index of unique and processed terms which we refer

to as the Term-Index.

3.2.2.2 Context Vector Generation

The SentiCircle representation is based on co-occurrences between terms in tweets and

the influence these terms have on each others. Therefore, this step aims to represent each

term as a vector of its co-occurrences with all other terms in the tweet collection. We refer

to this vector as Context Vector and it can be defined and constructed as below.

Definition (Context Vector) Given a set of tweet messages T and Term-Index D, the

context vector of a term m ∈ D is a vector c = (c1, c2, ..., cn) of terms that occur with m

in any tweet in T.

The contextual semantics ofm is determined by its semantic relation to each context term

ci ∈ c. We compute the individual semantic relation between m and a context term ci,

by assigning the following two main features to ci:

• Prior Sentiment Score: Each context term ci is assigned a prior sentiment score

based on its POS tag(s) by using one of the three external sentiment lexicons used

in this work (Section 4.2.3.3). If this term ci appears in the vicinity of a negation, its

prior sentiment score is negated

• Term Degree of Correlation (TDOC): This feature represents the degree of correla-

tion between a term m and its context term ci ∈ c (i.e., how important ci is to m).

Inspired by the TF-IDF weighting scheme, we compute the value of this feature as:

TDOC(m, ci) = f(ci,m)× log
N

Nci

(3)

where f(ci,m) is the number of times ci occurs with m in tweets, N is the total

number of terms, and Nci
is the total number of terms that occur with ci.

3 http://www.wjh.harvard.edu/~inquirer/NotLw.html

http://www.wjh.harvard.edu/~inquirer/NotLw.html
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3.2.2.3 SentiCircle Generation

Now we have for each term m a vector of its context terms c along with the two semantic

mutual features between m and each ci ∈ c. From this information, we represent the

contextual semantics of the term m as a geometric circle; SentiCircle, where the term is

situated in the centre of the circle, and each point around it represents a context term

ci. The position of ci is defined jointly by its prior sentiment and its term degree of

correlation (TDOC).

Formally, a SentiCircle in a polar coordinate system can be represented with the fol-

lowing equation:

r2 − 2rr0cos(θ−φ) + r
2
0 = a2 (4)

Where a is the radius of the circle, (r0,φ) is the polar coordinate of the center of the

circle, and (r, θ) is the polar coordinate of a context term on the circle. For simplicity, we

assume that our SentiCircles are centred at the origin (i.e, r0 = 0).

Hence, to build a SentiCircle for a term m, we only need to calculate, for each context

term ci in the a radius ri and an angle θi. To do that, we use the prior sentiment score

and the T-DOC value of the term ci as:

ri = TDOC(m, ci) (5)

θi = Prior_Sentiment(ci) ∗ π

We normalise the radii of all the terms in a SentiCircle to a scale between 0 and 1.

Hence, the radius a of any SentiCircle is equal to 1. Also, all angle values are in radians.

Ci 

ri = TDOC(Ci) 
θi = Prior_Sentiment (Ci) 

X 

Y 

ri 

θi 

xi 

yi 

m 

Positive Very Positive 

Very Negative Negative 

+1 

-1 

+1 -1 Neutral  
Region 

Figure 11: SentiCircle of a term m.
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The SentiCircle in the polar coordinate system can be divided into four sentiment quad-

rants as shown in Figure 11. Terms in the two upper quadrants have a positive sentiment

(sin θ > 0), with upper left quadrant representing stronger positive sentiment since it has

larger angle values than those in the top right quadrant. Similarly, terms in the two lower

quadrants have negative sentiment values (sin θ < 0). Although the radius of the Senti-

Circle of any term m equals to 1, points representing context terms of m in the circle

have different radii (0 6 ri 6 1), which reflect how important a context term is to m. The

larger the radius, the more important the context term to m.

We can move from the polar coordinate system to the Cartesian coordinate system by simply

using the trigonometric functions sine and cosine as:

xi = ri cos θi yi = ri sin θi (6)

Moving to the Cartesian coordinate system allows us to use the trigonometric proper-

ties of the circle to encode the contextual semantics of a term in the circle as sentiment

orientation and sentiment strength. Y-axis in the Cartesian coordinate system defines

the sentiment of the term, i.e., a positive y value denotes a positive sentiment and vice

versa. The X-axis defines the sentiment strength of the term. The smaller the x value,

the stronger the sentiment.4 Moreover, a small region called the “Neutral Region” can be

defined. This region, as shown in Figure 11, is located very close to X-axis in the “Posi-

tive” and the “Negative” quadrants only, where terms lie in this region have very weak

sentiment (i.e., |θ| ≈ 0). The “Neutral Region” has a crucial role in measuring the overall

sentiment of a given SentiCircle as will be shown in the subsequent sections.

Note that in the extreme case, where ri = 1 and θi = π we position the context term

ci in the “Very Positive” or the “Very Negative” quadrants based on the sign of its prior

sentiment score.

Figure 12 shows the SentiCircles of the entities “iPod” and “Taylor Swift”. Terms

(i.e., points) inside each circle are positioned in a way that represents their sentiment

scores and their importance (degree of correlation) to the entity. For example, “Awesome”

in the SentiCircle of “Taylor Swift” has a positive sentiment and a high importance

score, hence it is positioned in the “Very Positive” quadrant (see Figure 12(b)). The word

“Pretty”, in the same circle, also has positive sentiment, but it has lower importance

score than the word “Awesome”, hence it is positioned in the “Positive” quadrant. We also

notice that there are some words that appear in both circles, but in different positions.

For example, the word “Love” has a stronger positive sentiment strength with “Taylor

4 This is because cos θ < 0 for large angles.
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(a) iPod.

(b) Taylor Swift.

Figure 12: Example SentiCircles for “iPod” and “Taylor Swift”. We have removed points near the

origin for easy visualisation. Dots in the upper half of the circle (triangles) represent

terms bearing a positive sentiment while dots in the lower half (squares) are terms

bearing a negative sentiment.
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Swift” compared to “iPod”, although it has a positive sentiment (similar y-value) in both

circles.

As described earlier, the contribution of both quantities (prior sentiment and degree

of correlation) is calculated and represented in the SentiCircle separately by means of

the projection of the context term along X-axe (sentiment strength) and Y-axe (sentiment

orientation). Such level of granularity is crucial when we need, for example, to filter those

context words that have low contribution towards the sentiment orientations or strength

of the target word.

3.2.2.4 Senti-Median: The Overall Contextual Sentiment Value

The previous examples in Section 3.2.2.3 show that, although we use external lexicons to

assign initial sentiment scores to terms, our SentiCircle representation is able to amend

these scores according to the context in which each term is used. The last step of our

pipeline is to compute the overall contextual sentiment of the term based on its SentiCir-

cle. To this end, we use the Senti-Median metric.

Senti-Median We now have the SentiCircle of a term m which is composed by the set of

(x,y) Cartesian coordinates of all the context terms of m, where the y value represents

the sentiment and the x value represents the sentiment strength. An effective way to

approximate the overall sentiment of a given SentiCircle is by calculating the geometric

median of all its points. Formally, for a given set of n points (p1,p2, ...,pn) in a SentiCircle

Ω, the 2D geometric median g is defined as:

g = arg min
g∈R2

n∑
i=1

||pi − g||2, (7)

where the geometric median is a point g = (xk,yk) in which its Euclidean distances to

all the points pi is minimum. We call the geometric median g the Senti-Median as it

captures the sentiment (y-coordinate) and the sentiment strength (x-coordinate) of the

SentiCircle of a given term m.

Following the representation provided in Figure 11, the sentiment of the term m is

dependent on whether the Senti-Median g lies inside the neutral region, the positive

quadrants, or the negative quadrants. Formally, given a Senti-Median gm of a term m,

the term-sentiment function L works as:
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L(gm) =


negative if yg < −λ

positive if yg > +λ

neutral if |yg| 6 λ & xg > 0

(8)

where λ is the threshold that defines the Y-axis boundary of the neutral region. Section

3.3.3.4 illustrates how this threshold is computed.

3.3 senticircles for sentiment analysis

So far in this Chapter, we introduced our SentiCircle approach and described how it can

be used to capture the contextual semantics and sentiment of words in Twitter. In this

section we show how to use SentiCircles in two different sentiment analysis tasks; entity-

and tweet-level sentiment detection.

3.3.1 Entity-level Sentiment Detection

In this section we explain how to use the SentiCircle representation for sentiment analysis

at the entity level, i.e., identifying the sentiment of individual named-entities in a given

tweet collection.

Given an entity, ei ∈ E, and its corresponding SentiCircle representation, the sentiment

of the entity is given by the position the Senti-Median g of the entity’s SentiCircle (see

Function 8). If the Senti-Median g lies inside the “Neutral Region”, the entity will have

a neutral sentiment. If g lies in one of the positive quadrants, the entity will have a

positive sentiment and, if g lies in the negative quadrants, the entity will have a negative

sentiment.

3.3.2 Tweet-level Sentiment Detection

There are several ways in which the SentiCircle representations of the terms that com-

pose the tweet can be used to determine the tweet’s overall sentiment. For example, the

tweet “iPhone and iPad are amazing” contains five terms. Each of these terms has an

associated SentiCircle representation. These five SentiCircles can be combined in different

ways in order to extract the sentiment associated to the tweet. In this section we propose
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three different methods that use the SentiCircle representation for tweet-level sentiment

detection.

3.3.2.1 The Median Method

This method works by representing each tweet message ti ∈ T as a vector of Senti-

Medians g = (g1,g2, ...,gn) of size n, where n is the number of terms that compose the

tweet and gj is the Senti-Median of the SentiCircle associated to term mj. Equation 7 is

then used to calculate the median point q of g, which we use to determine the overall

sentiment of tweet ti using Function 8.

3.3.2.2 The Pivot Method

This method favours some terms in a tweet over others, based on the assumption that

sentiment is often expressed towards one or more specific targets, which we refer to

as “Pivot” terms. In the tweet example above, there are two pivot terms, “iPhone” and

“iPad” since the sentiment word “amazing" is used to describe both of them. Hence, the

method works by (1) extracting all pivot terms in a tweet and; (2) accumulating, for each

sentiment label, the sentiment impact that each pivot term receives from other terms. The

overall sentiment of a tweet corresponds to the sentiment label with the highest sentiment

impact.

Opinion target identification is a challenging task and is beyond the scope of our work

in this thesis. For simplicity, we assume that the pivot terms are those having the POS

tags: {Common Noun, Proper Noun, Pronoun} in a tweet. For each candidate pivot term, we

build a SentiCircle from which the sentiment impact that a pivot term receives from all

the other terms in a tweet can be computed. Formally, the Pivot-Method seeks to find the

sentiment ŝ that receives the maximum sentiment impact within a tweet as:

ŝ = arg max
s∈S

Hs(p)

= arg max
s∈S

Np∑
i

Nw∑
j

Hs(pi,wj), (9)

where s ∈ S = {Positive,Negative,Neutral} is the sentiment label, p is a vector of all

pivot terms in a tweet, Np and Nw are the sets of the pivot terms and the remaining

terms in a tweet respectively. Hs(pi,wj) is the sentiment impact function, which returns

the sentiment impact of a term wj in the SentiCircle of a pivot term pi. The sentiment

impact of a term within a SentiCircle of a pivot term is the term’s Euclidean distance
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Figure 13: The Pivot Method. The figure shows a SentiCircle of a pivot term pj. The sentiment

strength Sj1 of word w1 with respective to the pivot term pj is the radius r1 in the

SentiCircle, and likewise for Sj2.

from the origin (i.e., the term’s radius) as shown in Figure 13. Note that the impact value

is doubled for all terms located either in the “Very Positive” or in the “Very Negative”

quadrants.

3.3.2.3 The Pivot-Hybrid Method

The Pivot Method, as described in the previous section, relies on both, the syntactic

structure of a tweet and the sentiment relations among its terms. As such, it may suffer

from the lack of pivot terms when the tweet message is too short or it contains many

ill-formed words. In such a case, we resort to the Median method, and call this the

Pivot-Hybrid method.

3.3.3 Evaluation Setup

As mentioned in Section 3.3, the contextual semantics captured by the SentiCircle repre-

sentation are based on terms co-occurrence from the corpus and an initial set of sentiment

weights from a sentiment lexicon. We propose an evaluation set up that uses three dif-

ferent corpora (collections of tweets) and three different generic sentiment lexicons. This

enables us to assess the influence of different corpora and lexicons on the performance

of our SentiCircle approach.
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3.3.3.1 Datasets

In this section, we present the three datasets used for the evaluation; OMD, HCR and

STS-Gold. We use the OMD [47] and HCR [152] datasets5 to assess the performance of

our approach at the tweet level only since they provide human annotations for tweets

but not for entities (i.e., each tweet is assigned a positive, negative or neutral sentiment

label).6

Due to the lack of gold-standard datasets for evaluating entity-level sentiment analysis

models, we have generated an additional dataset (STS-Gold) [138].7 This dataset contains

both, tweet and entity sentiment ratings and therefore, we use it to assess the performance

of SentiCircles at both the entity and the tweet levels.

Numbers of positive and negative tweets within the three datasets are summarised in

Table 2 and further described below:

Dataset Tweets Positive Negative

OMD [47] 1081 393 688

HCR [152] 1354 397 957

STS-Gold [138] 2034 632 1402

Table 2: Twitter datasets used for the evaluation.

Obama-McCain Debate Dataset (OMD)

This dataset was constructed from 3,238 tweets crawled during the first U.S. presidential

TV debate in September 2008 [47]. Sentiment ratings of these tweets were acquired using

Amazon Mechanical Turk, where each tweet was rated by one or more voter as either

positive, negative, mixed, or other. We only keep those tweets rated by at least three vot-

ers with two-third of the votes being either positive or negative to ensure their sentiment

polarity. This resulted in a set of 1,081 tweets with 393 positive and 688 negative ones.

Health Care Reform Dataset (HCR)

HCR dataset was built by crawling tweets containing the hashtag “#hcr” (health care

reform) in March 2010 [14]. A subset of this corpus was manually annotated with three

polarity labels (positive, negative, neutral) and split into training and test sets. In this

5 https://bitbucket.org/speriosu/updown

6 We refer the reader to Appendix A for details about the construction and the annotation of the HCR and

OMD datasets.
7 http://tweenator.com

https://bitbucket.org/speriosu/updown
http://tweenator.com
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work we focus on identifying positive and negative tweets and therefore we exclude neu-

tral tweets from this dataset. This resulted in a set of 1354 tweets, 397 positive and 957

negative.

Standford Sentiment Gold Standard Dataset (STS-Gold)

We constructed this dataset as a subset of the the Stanford Twitter Sentiment Corpus

(STS) [60]. It contains 2,034 tweets (632 positive and 1402 negative) and 58 entities (13

negative, 27 positive and 18 neutral entities) manually annotated by three different hu-

man evaluators. To avoid noisy or misleading data in the created dataset, the entities and

tweets selected for these dataset are those for which the three human evaluators agreed

on the same sentiment label. To our knowledge, the STS-Gold dataset is the first publicly-

available evaluation dataset that contains both, tweet and entity sentiment ratings.

In the following we describe the construction and the annotation processes of the STS-

Gold.

1. Data Acquisition

To construct this dataset, we first extracted all named entities from a collection of 180K

tweets randomly selected from the original Stanford Twitter corpus. To this end, we used

AlchemyAPI,8 an online service that allows for the extraction of entities from text along

with their associated semantic concept class (e.g., Person, Company, City). After that, we

identified the top most frequent semantic concepts and, selected under each of them, the

top 2 most frequent and 2 mid-frequent entities. For example, for the semantic concept

Person we selected the top most frequent entities (Taylor Swift and Obama) as well as

two mid frequent entities (Oprah and Lebron). This resulted in 28 different entities along

with their 7 associated concepts as shown in Table 3.

The next step was to construct and prepare a collection of tweets for sentiment anno-

tation, ensuring that each tweet in the collection contains one or more of the 28 entities

listed in Table 3. To this aim, we randomly selected 100 tweets from the remaining part

of the STS corpus for each of the 28 entities, i.e., a total of 2,800 tweets. We further added

another 200 tweets without specific reference to any entities to add up a total of 3,000

tweets. Afterwards, we applied AlchemyAPI on the selected 3,000 tweets. Apart from the

initial 28 entities the extraction tool returned 119 additional entities, providing a total of

8 www.alchemyapi.com

www.alchemyapi.com
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Concept Top 2 Entities Mid 2 Entities

Person Taylor Swift, Obama Oprah, Lebron

Company Facebook, Youtube Starbucks, McDonalds

City London, Vegas Sydney, Seattle

Country England, US Brazil, Scotland

Organisation Lakers, Cavs Nasa, UN

Technology iPhone, iPod Xbox, PSP

HealthCondition Headache, Flu Cancer, Fever

Table 3: 28 Entities, with their semantic concepts, used to build STS-Gold.

147 entities for the 3,000 selected tweets.

2. Data Annotation

We asked three graduate students to manually label each of the 3,000 tweets with one

of the five classes: (Negative, Positive, Neutral, Mixed and Other). The “Mixed” label

was assigned to tweets containing mixed sentiment and “Other” to those that were dif-

ficult to decide on a proper label. The students were also asked to annotate each entity

contained in a tweet with the same five sentiment classes. The students were provided

with a booklet explaining both the tweet-level and the entity-level annotation tasks. The

booklet also contains a list of key instructions as shown in Appendix B. It is worth noting

that the annotation was done using Tweenator,9 an online tool that we previously built

to annotate tweet messages [137].

We measured the inter-annotation agreement using the Krippendorff’s alpha metric

[85], obtaining an agreement of αt = 0.765 for the tweet-level annotation task. For the

entity-level annotation task, if we measured sentiment of entity for each individual tweet,

we only obtained αe = 0.416 which is relatively low for the annotated data to be used.

However, if we measured the aggregated sentiment for each entity, we got a very high

inter-annotator agreement of αe = 0.964.

To construct the final STS-Gold dataset we selected those tweets and entities for which

our three annotators agreed on the sentiment labels, discarding any possible noisy data

from the constructed dataset. As shown in Table 4 the STS-Gold dataset contains 13

9 http://tweenator.com

http://tweenator.com


3.3 senticircles for sentiment analysis 83

negative, 27 positive and 18 neutral entities as well as 1,402 negative, 632 positive and 77

neutral tweets. The STS-Gold dataset contains independent sentiment labels for tweets

and entities, supporting the evaluation of tweet-based as well as entity-based Twitter

sentiment analysis models.

Class Negative Positive Neutral Mixed Other

No. of Entities 13 27 18 - -

No. of Tweets 1402 632 77 90 4

Table 4: Number of tweets and entities under each class in the STS-Gold dataset.

3.3.3.2 Sentiment Lexicons

As describe in Section 3.2.2.3, initial sentiments of terms in SentiCircle are extracted from

a sentiment lexicon (prior sentiment). We evaluate our approach using three external

sentiment lexicons in order to study how the different prior sentiment scores of terms

influence the performance of the SentiCircle representation for sentiment analysis. The

aim is to investigate the ability of SentiCircles in updating these context-free prior senti-

ment scores based on the contextual semantics extracted from different tweets corpora.

We selected three state-of-art lexicons for this study: (i) the SentiWordNet lexicon [8], (ii)

the MPQA subjectivity lexicon [176] and, (iii) Thelwall-Lexicon [159, 160].

3.3.3.3 Baselines

We compare the performance of our proposed SentiCircle representation when being

used for tweet and entity sentiment analysis against the following baselines:

Lexicon Labelling Method: This method uses the MPQA and the SentiWordNet lexicons

to extract the sentiment of a given text. If a tweet contains more positive words than neg-

ative ones, it is labelled as positive, and vice versa. For entity-level sentiment detection,

the sentiment label of an entity is assigned based on the number of positive and negative

words that co-occur with the entity in its associated tweets. In our evaluation, we refer to

the method that uses the MPQA lexicon as MPQA-Method and to the method that uses

the SentiWordNet lexicon as SentiWordNet-Method.

SentiStrength: SentiStength [159, 160] is a state-of-the-art lexicon-based sentiment de-

tection approach. It assigns to each tweet two sentiment strengths: a negative strength

between -1 (not negative) to -5 (extremely negative) and a positive strength between +1
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(not positive) to +5 (extremely positive). To use SentiStrength for tweet-level sentiment

detection, a tweet is considered positive if its positive sentiment strength is 1.5 times

higher than the negative one, and negative otherwise10. For entity-level sentiment detec-

tion, the sentiment of an entity is assigned based on the total number of positive, negative

tweets in which the entity occurs. The entity is positive if it occurs with more positive

tweets than negative ones, and vice versa. The entity is neutral if it occurs in a similar

number of positive and negative tweets. It is worth noticing that SentiStrength requires

the manually-defined lexical rules, such as the existence of emoticons, intensifiers, nega-

tion and booster words (e.g, absolutely, extremely), to compute the average sentiment

strength of a tweet.

3.3.3.4 Thresholds and Parameters Tuning

When computing the sentiment of a point within a SentiCircle (Function 8) it is neces-

sary to determine beforehand the geometric boundaries of the neutral region (the region

defining the neutral terms) within the SentiCircle. While the boundaries of the neutral

region are fixed for the X-axis [0, 1] (see Section 3.2.2.3), the boundaries of the Y-axis need

to be determined. We have observed that the neutral area of a SentiCircle is defined by

a high density of terms, since the number of neutral terms in the SentiCircle is usually

larger than the number of positive and negative terms.

The limits of the neutral region vary from one SentiCircle to another. For simplicity, we

assume the same neutral region boundary for all SentiCircles emerging from the same

corpus and sentiment lexicon. To compute these thresholds we first build the SentiCircle

of the complete corpus by merging all SentiCircles of each individual term and then

we plot the density distribution of the terms within the constructed SentiCircle. The

boundaries of the neutral area delimited by an increase/decrease in the density of terms.

SentiWordNet MPQA Thelwall-Lexicon

OMD [-0.01, 0.01] [-0.01, 0.01] [-0.01, 0.01]

HCR [-0.1, 0.1] [-0.05, 0.05] [-0.05, 0.05]

STS-Gold [-0.1, 0.1] [-0.05, 0.05] [-0.001, 0.001]

Table 5: Neutral region boundaries for Y-axis.

10 http://sentistrength.wlv.ac.uk/documentation/SentiStrengthJavaManual.doc

http://sentistrength.wlv.ac.uk/documentation/SentiStrengthJavaManual.doc
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Figure 14: Density geometric distribution of terms on the OMD dataset.

Figure 21 shows the three density distribution plots for the OMD dataset with Senti-

WordNet, MPQA and Thelwall lexicons. The boundaries of the neutral area are delimited

by the density increase, falling in the [−0.01, 0.01] range. Note that the generated Senti-

Circles vary depending on the corpus and sentiment lexicon. For evaluation, we have

computed nine different neutral regions, one for each corpus and sentiment lexicon used

as shown in Table 5.

3.3.4 Evaluation Results

We report the performance of our proposed approaches in comparison with the baselines

in both the entity- and tweet-level sentiment detection tasks. For entity-level sentiment

detection, we conduct experiments on the STS-Gold dataset, while for tweet-level senti-

ment detection, we use the OMD, HCR and STS-Gold datasets.

3.3.4.1 Entity-Level Sentiment Detection

For entity-level sentiment detection, we employ our proposed Senti-Median method (see

Section 3.2.2.4 and Section 3.3.1) with SentiWordNet, MPQA and Thelwall lexicons to
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identify the overall sentiment of the SentiCircle of a given entity. We report the results

in accuracy, precision, recall and F-measure on two identification tasks: subjectivity de-

tection, which identifies whether a given entity is subjective (positive or negative) or

objective (neutral). The second task is polarity detection, which identifies whether the

entity has positive or negative sentiment. Both identification tasks are applied on 58 dif-

ferent entities (see Section 3.3.3.1).

Subjectivity Classification (Subjective vs. Objective)

Methods Accuracy
Subjective Objective Average

P R F1 P R F1 P R F1

MPQA-Method 63.79 67.27 92.50 77.89 0 0 0 33.64 46.25 38.95

SentiWordNet-Method 63.79 67.27 92.50 77.89 0 0 0 33.64 46.25 38.95

SentiStrength 62.07 64.15 91.89 75.56 40.00 9.52 15.38 52.08 50.71 51.38

Senti-Median (SentiWordNet) 81.03 90.91 78.95 84.51 68.00 85.00 75.56 79.45 81.97 80.03

Senti-Median (MPQA) 77.59 90.00 72.97 80.60 64.29 85.71 73.47 77.14 79.34 77.03

Senti-Median (Thelwall-Lexicon) 79.31 84.85 80.00 82.35 72.00 78.26 75.00 78.42 79.13 78.68

Polarity Classification (Positive vs Negative)

Methods Accuracy
Positive Negative Average

P R F1 P R F1 P R F1

MPQA-Method 72.5 80 92.31 85.71 71.43 45.45 55.56 75.71 68.88 70.63

SentiWordNet-Method 77.50 88.00 88.00 88.00 75.00 75.00 75.00 81.50 81.50 81.50

SentiStrength 85.00 95.65 81.48 88.00 70.59 92.31 80.00 83.12 86.89 84.00

Senti-Median (SentiWordNet) 87.50 89.29 92.59 90.91 83.33 76.92 80.00 86.31 84.76 85.45

Senti-Median (MPQA) 85.00 86.21 92.59 89.29 81.82 69.23 75.00 84.01 80.91 82.14

Senti-Median (Thelwall-Lexicon) 82.50 85.71 88.89 87.27 75.00 69.23 72.00 80.36 79.06 79.64

Table 6: Entity-level sentiment analysis results.

It can be observed from the upper panel of Table 6 that for subjectivity identification,

our proposed Senti-Median method outperforms all the baselines by a large margin. In

particular, merely using MPQA or SentiWordNet for sentiment labelling fails to detect

any objective (neutral) entities. SentiStrength only achieves an F-measure of 15% for ob-

jective entity detection. On the contrary, our proposed Senti-Median method gives rela-

tively balanced results on both subjective and objective identification. Senti-Median with

the word prior sentiment obtained from SentiWordNet attains the best overall result with

81% in accuracy and 80% in F-measure, which outperforms the baselines by nearly 20%

in accuracy and 30-40% in F-measure.
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The lower panel of Table 6 shows the results of binary polarity identification (positive

vs. negative) at the entity-level. SentiStrength performs better than MPQA-Method and

SentiWordNet-Method, with 85% in accuracy and 84% in F-measure. Although our Senti-

Median method with word prior sentiment obtained from either MPQA or Thelwall-

Lexicon does not seem to bring any improvement over SentiStrength, Senti-Median based

on SentiWordNet outperforms SentiStrength by 2.5% in accuracy and 1.5% in F-measure.

3.3.4.2 Tweet-Level Sentiment Detection

For tweet-level sentiment detection, we report the evaluation results using the Median

method, the Pivot method and the Pivot-Hybrid method with SentiWordNet, MPQA and

Thelwall lexicons on OMD, HCR and STS-Gold datasets. We also compare these results

with those obtained from the baselines described in Section 4.2.3.3.

Figure 15 shows the results in accuracy (left column) and average F-measure (right col-

umn) of all the methods and across all the datasets. It can be observed that all our three

methods outperform the MPQA-Method and SentiWordNet-Method baseline in both ac-

curacy and average F-measure on all the datasets. On the OMD dataset, we observe a

trend that Median < Pivot < Pivot-Hybrid. Both of our Pivot and Pivot-Hybrid methods

give an average performance gain of 3.17% in accuracy and 4.3% in F-measure over Sen-

tiStrength with word prior sentiments obtained from either MPQA or Thelwall-Lexicon.

The median method does not bring any performance gains over SentiStrength. Overall,

the best result is achieved by our Hybrid-Pivot method with word prior sentiments ob-

tained from MPQA. It outperforms SentiStrength by nearly 5% in accuracy and 6% in

F-measure.

On the HCR dataset, all our three methods gave higher accuracy than SentiStrength

with word prior sentiments obtained from either MPQA or Thelwall-Lexicon. In particu-

lar, the Median method coupled with MPQA outperforms SentiStrength by nearly 4% in

accuracy. In terms of F-measure, The median based on MPQA gives a similar result as

SentiStrength.

While the best sentiment classification accuracy on the OMD or HCR datasets is only

about 70%, we managed to achieve 80% on the STS-Gold dataset in sentiment classifica-

tion accuracy. We observe that the Pivot-Hybrid method outperforms both the Median

and the Pivot methods regardless of where the word prior sentiments are obtained from

for the STS-Gold dataset. Nevertheless, the Pivot-Hybrid method using Thelwall-Lexicon

gives 1% lower accuracy and F-measure than SentiStrength which uses the same lexicon.
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Figure 15: Tweet-level sentiment detection results (Accuracy and F-measure), where ML: MPQA-

Method, SL: SentiWordNet-Method, SS: SentiStrength, Mdn: SentiCircle with Median

method, Pvt: SentiCircle with Pivot method, Hbd: SentiCircle with Pivot-Hybrid.
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The above results show a close competition between our three SentiCircle methods and

the SentiStrength method. The average accuracy of SentiCircle and SentiStrength across

all three datasets is 72.39% and 71.7% respectively, and for F-measure it is 65.98% and

66.52%. Also, the average precision and recall for SentiCircle are 66.82% and 66.12%, and

for SentiStrength are 67.07% 66.56% respectively.

Although the potential is evident, clearly there is a need for more research to determine

the specific conditions under which SentiCircle performs better or worse. One likely

factor that influences the performance of SentiCircle is the balance of positive to negative

tweets in the dataset. For example, we notice that SentiCircle produces, on average, 2.5%

lower recall than SentiStrength on positive tweet detection. This is perhaps not surprising

since our tweet data contain more negative tweets than positive ones with the number of

the former more than double the number of the latter (see Table 2).

3.3.4.3 Impact on Words’ Sentiment

The motivation behind SentiCircle is that sentiment of words may vary with context. By

capturing the contextual semantics of these words, using the SentiCircle representation,

we aim to adapt the strength and polarity of words. We show here the average percent-

age of words in our three datasets for which SentiCircle changed their prior sentiment

orientation or strength.

SentiWordNet MPQA Thelwall-Lexicon Average

Words found in the lexicon 54.86 16.81 9.61 27.10

Hidden words 45.14 83.19 90.39 72.90

Words flipped their sentiment orientation 65.35 61.29 53.05 59.90

Words changed their sentiment strength 29.30 36.03 46.95 37.43

New opinionated words 49.03 32.89 34.88 38.93

Table 7: Average percentage of words in three datasets, which their sentiment orientation or

strength were updated by their SentiCircles.

Table 7 shows that on average 27.1% of the unique words in our datasets were covered

by the sentiment lexicons and were assigned prior sentiments accordingly. Using the Sen-

tiCircle representation, however, resulted in 59.9% of these words flipping their sentiment

orientations (e.g., from positive to negative, or to neutral) and 37.43% changing their sen-

timent strength while keeping their prior sentiment orientation. Hence only 2.67% of the

words were left with their prior sentiment orientation and strength unchanged. It is also
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worth noting that our model was able to assign sentiment to 38.93% of the hidden words

that were not covered by the sentiment lexicons.

Our evaluation results showed that our SentiCircle representation coupled with the

MPQA or Thelwall lexicons gives the highest performance amongst the other three lex-

icons. However, Table 7 shows that only 9.61% of the words in the three datasets were

covered by the Thelwall-Lexicon, and 16.81% by MPQA. Nevertheless, SentiCircle per-

formed best with these two lexicons, which suggests that it was able to cope with this

low coverage by assigning sentiment to a large proportion of the hidden words.

3.4 senticircles for adapting sentiment lexicons

In the previous section, we demonstrated the effectiveness of SentiCircles in capturing

the words’ contextual sentiment. Unlike SentiStrength, which uses a fixed sentiment score

of words obtained from Thelwall-Lexicon, SentiCircles updates the prior sentiment (ori-

entation and/or strength) of almost 50% words covered by Thelwall-Lexicon along the

the three datasets. It also assigns contextual sentiment to 21.37% of words that are not

covered by Thelwall-Lexicon. Therefore, our SentiCircle approach can be thought of as

a lexicon-adaptation approach that takes as input a Twitter dataset and a sentiment lex-

icon (e.g., Thelwall-Lexicon), capture the words’ context in tweets, and updates their

sentiment orientation and strength in the lexicon accordingly.

In this section we continue with evaluating our SentiCircle approach against Sen-

tiStrength. However, instead of applying SentiCircles to directly detect the sentiment of

entities or tweets, we propose using SentiCircles to amend the prior sentiment of words

in Thelwall-Lexicon and then study the impact of doing so on the sentiment detection

performance of SentiStrength. Remember that SentiStrength is a rule-based method that

is specifically built to work with Thelwall-Lexicon. Therefore, measuring the performance

of SentiStrength when using the adapted Thelwall-Lexicon allows us to further investi-

gate and understand the role of contextual sentiment of individual words on the overall

sentiment detection performance.

Figure 16 depicts the general two-step workflow for adapting sentiment lexicons with

SentiCircles. First, we capture the contextual semantics and sentiment of the words in

the given sentiment lexicon using SentiCircles as previously explained in Section 3.2.2.3.

Secondly, a rule-based algorithm is applied to amend the prior sentiment of terms in the
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Figure 16: The systematic workflow of adapting sentiment lexicons with SentiCircles.

lexicon based on their corresponding contextual sentiment. We designed our rules with

respect to the characteristics of Thelwall-Lexicon as will be subsequently explained.

Thelwall-Lexicon consists of 2546 terms coupled with integer values between -5 (very

negative) and +5 (very positive). Based on the terms’ prior sentiment orientations and

strengths (SOS), we group them into three subsets of 1919 negative terms (SOS∈[-2,-5]),

398 positive terms (SOS∈[2,5]) and 229 neutral terms (SOS∈{-1,1}).

Our adaptation method uses a set of antecedent-consequent rules that decides how

the prior sentiment of the terms in Thelwall-Lexicon should be updated according to the

positions of their SentiMedians (i.e., their contextual sentiment). In particular, for a term

m, the method checks (i) its prior SOS value in Thelwall-Lexicon and (ii) the SentiCircle

quadrant in which the SentiMedian of m resides. The method subsequently chooses the

best-matching rule to update the term’s prior sentiment and/or strength.

Table 8 shows the complete list of adaptation rules we use. As noted, these rules are

divided into updating rules, i.e., rules for updating the existing terms in Thelwall-Lexicon,

and expanding rules, i.e., rules for expanding the lexicon with new terms. The updating

rules are further divided into rules that deal with terms that have similar prior and con-

textual sentiment orientations (i.e., both positive or negative), and rules that deal with

terms that have different prior and contextual sentiment orientations (i.e., negative prior,

positive contextual sentiment and vice versa).

Although they look complicated, the notion behind the proposed rules is rather simple:

Check how strong the contextual sentiment is and how weak the prior sentiment is→ update the

sentiment orientation and strength accordingly. The strength of the contextual sentiment

can be determined based on the sentiment quadrant of the SentiMedian of m, i.e., the

contextual sentiment is strong if the SentiMedian resides in the “Very Positive” or “Very
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Negative” quadrants (see Figure 11). On the other hand, the prior sentiment of m (i.e.,

priorm) in Thelwall-Lexicon is weak if |priorm| 6 3 and strong otherwise.

Updating Rules (Similar Sentiment Orientations)

Id Antecedents Consequent

1 (|prior| 6 3)∧ (SentiMedian /∈ StrongQuadrant) |prior| = |prior|+ 1

2 (|prior| 6 3)∧ (SentiMedian ∈ StrongQuadrant) |prior| = |prior|+ 2

3 (|prior| > 3)∧ (SentiMedian /∈ StrongQuadrant) |prior| = |prior|+ 1

4 (|prior| > 3)∧ (SentiMedian ∈ StrongQuadrant) |prior| = |prior|+ 1

Updating Rules (Different Sentiment Orientations)

5 (|prior| 6 3)∧ (SentiMedian /∈ StrongQuadrant) |prior| = 1

6 (|prior| 6 3)∧ (SentiMedian ∈ StrongQuadrant) prior = −prior

7 (|prior| > 3)∧ (SentiMedian /∈ StrongQuadrant) |prior| = |prior|− 1

8 (|prior| > 3)∧ (SentiMedian ∈ StrongQuadrant) prior = −prior

9 (|prior| > 3)∧ (SentiMedian ∈NeutralRegion) |prior| = |prior|− 1

10 (|prior| 6 3)∧ (SentiMedian ∈NeutralRegion) |prior| = 1

Expanding Rules

11 SentiMedian ∈NeutralRegion (|contextual| = 1)∧AddTerm

12 SentiMedian /∈ StrongQuadrant (|contextual| = 3)∧AddTerm

13 SentiMedian ∈ StrongQuadrant (|contextual| = 5)∧AddTerm

Table 8: Adaptation rules for Thelwall-Lexicon, where prior: prior sentiment value,

StrongQuadrant: very negative/positive quadrant in the SentiCircle, Add: add the term

to Thelwall-Lexicon.

For example, the word “revolution” in Thelwall-Lexicon has a weak negative senti-

ment (prior=-2) while it has a neutral contextual sentiment since its SentiMedian resides

in the neutral region (SentiMedian ∈ NeutralRegion). Therefore, rule number 10 is

applied and the term’s prior sentiment in Thelwall lexicon will be updated to neutral

(|prior| = 1). In another example, the words “Obama” and “Independence” are not cov-

ered by Thelwall-Lexicon, and therefore, they have no prior sentiment. However, their

SentiMedians reside in the “Positive” quadrant in their SentiCircles, and therefore rule

number 12 is applied and both terms will be assigned with a positive sentiment strength

of 3 and added to the lexicon consequently.
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3.4.1 Evaluating SentiStrength on the Adapted Thelwall-Lexicon

As mentioned earlier, our goal behind adapting Thelwall-Lexicon is to demonstrate the

importance of context captured by our SentiCircles model on the sentiment orientation

and strength of words, and consequently on the overall sentiment detection performance

of SentiStrength when uses the adapted lexicon.

Our evaluation starts with adapting Thelwall-Lexicon under three different settings: (i)

the update setting where we update the prior sentiment of existing terms in the lexicon,

(ii) the expand setting where we expand Thelwall-Lexicon with new opinionated terms, and

(iii) the update+expand setting where we try both settings together. After that, we use

SentiStrength with each of the adapted lexicons to perform tweet-level binary polarity

classification (positive vs. negative) on OMD, HCR and STS-Gold datasets (see Table 2).

Applying our adaptation approach to Thelwall-Lexicon results in substantial changes

in it. Table 9 shows the percentage of words in the three datasets that were found in

Thelwall-Lexicon with their sentiment changed after adaptation. One can notice that on

average 9.61% of the words in our datasets were found in the lexicon. However, updating

the lexicon with the contextual sentiment of words resulted in 33.82% of these words

flipping their sentiment orientation and 62.94% changing their sentiment strength while

keeping their prior sentiment orientation. Only 3.24% of the words in Thelwall-Lexicon

remained untouched. Moreover, 21.37% of words previously unseen in the lexicon were

assigned with contextual sentiment by our approach and added to Thelwall-Lexicon sub-

sequently.

Note that the numbers in Table 7 that reflect the impact on Thelwall-Lexicon are sightly

different to the average impact’s numbers we report in Table 9. This is because our adap-

tation rules in this study consider both, the prior and contextual sentiment of words

when adapting their sentiment in the lexicon as explained earlier. According to our rules,

words’ prior sentiment do not need to be always overridden with their contextual senti-

ment. On the other hand, in our study in Section 3.3.1 we only consider the contextual

sentiment of words, i.e., we always override the prior sentiment of words in the lexicon

with their contextual ones.

Table 10 shows the average results of binary sentiment classification performed by Sen-

tiStrength on our datasets using (i) the original Thelwall-Lexicon (Original), (ii) Thelwall-

Lexicon adapted under the update setting (Updated), and (iii) Thelwall-Lexicon adapted
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OMD HCR STS-Gold Average

Words found in the lexicon 12.43 8.33 8.09 9.61

Hidden words 87.57 91.67 91.91 90.39

Words flipped their sentiment orientation 35.02 35.61 30.83 33.82

Words changed their sentiment strength 61.83 61.95 65.05 62.94

Words remained unchanged 3.15 2.44 4.13 3.24

New opinionated words 23.94 14.30 25.87 21.37

Table 9: Average percentage of words in the three datasets that had their sentiment orientation or

strength updated by our adaptation approach.

under the update+expand setting.11 The table reports the results in accuracy and three sets

of precision (P), recall (R), and F-measure (F1), one for positive sentiment detection, one

for negative, and one for the average of the two.

From these results in Table 10, we notice that the best classification performance in

accuracy and F1 is obtained on the STS-Gold dataset regardless the lexicon being used.

We also observe that the negative sentiment detection performance is always higher than

the positive detection performance for all datasets and lexicons.

Datasets Lexicons Accuracy
Positive Sentiment Negative Sentiment Average

P R F1 P R F1 P R F1

OMD

Original 66.79 55.99 40.46 46.97 70.64 81.83 75.82 63.31 61.14 61.4

Updated 69.29 58.89 51.4 54.89 74.12 79.51 76.72 66.51 65.45 65.8

Updated+Expanded 69.2 58.38 53.18 55.66 74.55 78.34 76.4 66.47 65.76 66.03

HCR

Original 66.99 43.39 41.31 42.32 76.13 77.64 76.88 59.76 59.47 59.6

Updated 67.21 42.9 35.77 39.01 75.07 80.25 77.58 58.99 58.01 58.29

Updated+Expanded 66.99 42.56 36.02 39.02 75.05 79.83 77.37 58.8 57.93 58.19

STS-Gold

Original 81.32 68.75 73.1 70.86 87.52 85.02 86.25 78.13 79.06 78.56

Updated 81.71 69.46 73.42 71.38 87.7 85.45 86.56 78.58 79.43 78.97

Updated+Expanded 82.3 70.48 74.05 72.22 88.03 86.02 87.01 79.26 80.04 79.62

Table 10: Cross comparison results of original and the adapted lexicons.

As for different lexicons, we notice that on OMD and STS-Gold the adapted lexicons

outperform the original lexicon in both accuracy and F-measure. For example, on OMD

11 Note that in this work we do not report the results obtained under the expand setting since no improvement

was observed comparing to the other two settings.
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the adapted lexicon shows an average improvement of 2.46% and 4.51% in accuracy and

F1 respectively over the original lexicon. On STS-Gold the performance improvement is

less significant than that on OMD, but we still observe 1% improvement in accuracy and

F1 compared to using the original lexicon. As for the HCR dataset, the adapted lexicon

gives on average similar accuracy, but 1.36% lower F-measure. This performance drop

can be attributable to the poor detection performance of positive tweets. Specifically, we

notice from Table 10 a major loss in the recall on positive tweet detection using both

adapted lexicons. One possible reason is the sentiment class distribution in our datasets.

In particular, one may notice that HCR is the most imbalanced amongst the three datasets.

Moreover, by examining the numbers in Table 7, we can see that HCR presents the lowest

number of new opinionated words among the three datasets (i.e., 10.61% lower than the

average) which could be another potential reason for not observing any performance

improvement.

3.5 runtime analysis

In this section, we perform runtime analysis of the various methods and algorithms

that constitute our SentiCircle model. To this end, we apply our model to the STS-Gold

dataset using a computer with a i7 core CPU 2.3GHz and 8G memory. According to

the results reported in Table 11, building a term-index out of 2034 tweets (5035 unique

terms) takes 13.8 seconds. This is not surprising given that this task involves several

subtasks (tokenization, part-of-speech tagging, negation, Non-English text filtering). We

also construct context-term vectors and extract the terms’ contextual features during this

task as they all happen together. Although 13.8 seconds sounds relatively slow, building

a term-index for a tweet collection is a one-time task, i.e., once it is built, the term-index

can be used to perform various tasks in a relatively short time. For example, composing a

SentiCircle from the term-index takes only 47.18 milliseconds. Moreover, the term-index

can be updated with new tweets on the fly, where it takes 6.6 milliseconds to add a new

tweet to the index.

We also estimate the runtime of our sentiment detection methods at entity and tweet

levels. For entity-level, calculating Senti-Median takes 10 milliseconds per entity. For

tweet-level, the Median method takes 16.9 milliseconds per tweet while the Pivot and

Pivot-Hybrid methods take 0.01 and 4.53 milliseconds respectively.
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Task Run Time

Term-Index(Generate) 13.8 second

Term-Index(Update) 6.6 millisecond

SentiCircle 47.18 millisecond

Senti-Median Method 10 millisecond

Median Method 16.9 millisecond

Pivot Method 0.01 millisecond

Pivot-Hybrid Method 4.53 millisecond

Table 11: Runtime analysis of the SentiCircle model on the STS-Gold dataset.

3.6 discussion

We demonstrated the value of using contextual semantics in sentiment analysis on Twit-

ter. In particular, we proposed a semantic representation model called SentiCircle for

capturing words’ contextual semantics in tweets data. We studied the effectiveness of

SentiCircle in (i) lexicon-based sentiment analysis at both, entity- and tweet-level and (ii)

sentiment lexicon adaptation.

SentiCircle for Lexicon-based Sentiment Analysis: We proposed using SentiCircle to

perform lexicon-based sentiment detection at the tweet and entity levels.

At the entity level, the evaluation was done on a single dataset (STS-Gold) that we con-

structed ourselves due to the sheer lack of gold-standard datasets for evaluating entity-

level sentiment.

We have seen that merely using MPQA or SentiWordNet for sentiment labelling fails

to detect any neutral entities. This is expected since words in both lexicons are oriented

with positive and negative scores, but not with neutral ones. SentiCircle, on the other

hand, was able to amend sentiment scores of words in both lexicons based on contexts -

hence achieving a much higher performance in detecting neutral entities than all the base-

lines. The next future step in this direction would be to compare our approach against

more sophisticated methods including machine learning ones, such as those based on

the probabilistic distribution of words’ sentiment in a given Twitter corpus [12], or SVM

classifiers [77]. Another future direction is to experiment with our approach using new
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datasets of entities of different topic foci, which allows for better understanding of the

settings/conditions under which our approach produces better or worse performances.

At the tweet level, the evaluation was performed on three Twitter datasets and us-

ing three different sentiment lexicons. The results showed that our SentiCircle approach

outperforms significantly MPQA-Method and SentiWordNet-Method. Compared to Sen-

tiStrength, the results were not as conclusive, since SentiStrength slightly outperformed

SentiCircles on the STS-Gold dataset, and also yielded marginally better F-measure for

the HCR dataset. This might be due to the different topic distribution in the datasets. The

STS-Gold dataset contains random tweets, with no particular topic focus, whereas OMD

and HCR consist of tweets that discuss specific topics, and thus the contextual semantics

extracted by SentiCircle are presumably more representative in these datasets than in

STS-Gold. Other important characteristics could be the sparseness degree of data and the

positive and negative distribution of tweets. Investigating these issues and their influence

on the performance of our approach creates room for more future work.

We extracted opinion targets (Pivot terms) in the Pivot-Method by looking at their POS-

tags assuming that all pivot terms in a given tweet receive similar sentiment. Another

direction for future work is to refine the pivot extraction method to consider cases, where

the tweet contains several pivot terms of different sentiment orientations.

We proposed and tested methods that assign positive, negative or neutral sentiment

to terms and tweets based on their corresponding SentiCircle representations. However,

there could be a need for considering cases where terms with “Mixed” sentiment emerge,

when their SentiCircle representations consist of positive and negative terms only.

SentiCircles for Adapting Sentiment Lexicons: In the second part of this chapter, we

showed the potential of using contextual semantics of words for adapting general-purpose

sentiment lexicons. As a case study, we used SentiCircles to adapt the prior sentiment of

words in Thelwall-Lexicon with respect to their contextual sentiment.

The adapted Thelwall-Lexicon outperformed the original lexicon in two out of three

datasets. However, a performance drop was observed in the HCR dataset using our

adapted lexicons. Our initial observations suggest that the quality of our approach might

be dependent on the sentiment class distribution in the dataset. Therefore, a deeper in-

vestigation in this direction is required.

Our adaptation rules are specific to Thelwall-Lexicon. These rules, however, can be

generalized to other lexicons, which constitutes another future direction of this work.
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3.7 summary

Contextual semantics refer to the type of semantics that is extracted from the co-occurrences

of words in texts. In this chapter, we presented our work on using the contextual seman-

tics of words in sentiment analysis on Twitter, aiming at addressing the first research

question of this thesis: Could the contextual semantics of words enhance lexicon-based senti-

ment analysis performance?.

To this end, we first proposed a novel contextual semantic sentiment representation

of words, called SentiCircle, which is able to assign sentiment to words with respect to

their contextual semantics in tweets. After that, we tested the effectiveness of our pro-

posed representation in three sentiment analysis tasks on Twitter; entity-level sentiment

analysis, tweet-level sentiment analysis, and sentiment lexicon adaptation.

For entity- and tweet-level sentiment analysis tasks, we proposed several lexicon-based

methods, based on SentiCircles, to detect the sentiment of individual entities as well the

overall sentiment of the tweets these entities occur within. We evaluated and tested our

methods under different settings (three different sentiment lexicons and three different

datasets) and compared their performance against various lexicon baseline methods. For

entity-level sentiment detection, our results showed that our proposed method based on

SentiCircles outperforms all the other methods by a large margin in both, accuracy and in

F-measure. For tweet-level sentiment detection, our methods overtake the state-of-the-art

SentiStrength method in accuracy, but fall marginally behind in F-measure.

As for sentiment lexicon adaptation task, we proposed a rule-based approach that em-

ploys SentiCircles to amend the prior sentiment of words in a given general-purpose

sentiment lexicon with respect to their contextual one. The evaluation was done on

Thelwall-Lexicon using three Twitter datasets. Results showed that lexicons adapted by

our approach improved the sentiment classification performance over the the original

Thelwall-Lexicon, in both accuracy and F1 on two out of three Twitter datasets.
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C O N C E P T U A L S E M A N T I C S F O R S E N T I M E N T A N A LY S I S O F

T W I T T E R

After demonstrating in the previous chapter the effectiveness of contextual semantics for

computing words’ and tweets’ sentiment, in this chapter we introduce our work on con-

ceptual semantics and their use in sentiment analysis on Twitter. In essence, we propose

several methods for incorporating the semantic concepts of named entities, extracted

from tweets into both, supervised and lexicon-based sentiment analysis approaches. Our

findings suggest that conceptual semantics, when used as features, increase the perfor-

mance of tweet-level sentiment analysis in comparison with features extracted from the

syntactic, linguistic, or statistic representation of words.

4.1 introduction

As discussed earlier in this thesis, traditional sentiment analysis approaches

on Twitter are semantically weak since they do not account for the latent

semantics of words when calculating their sentiment in the tweets [33, 139].

In chapter 3 we showed that semantics extracted based on the context of words (con-

textual semantics) can be effectively used to capture words’ sentiment and consequently

improve the performance of lexicon-based sentiment analysis approaches. In this chapter,

we experiment with the use of conceptual semantics for sentiment analysis. Conceptual

semantics is often extracted from external knowledge sources, such as ontologies and

semantic networks [33].

The research question we aim to address in this chapter is:

RQ2 Could the conceptual semantics of words enhance sentiment analysis performance?

To address the above question, we propose extracting and incorporating the conceptual

semantics of words into both supervised and lexicon-based approaches to enhance their

performances in tweet-level sentiment analysis. For the supervised machine approach,

we investigate three methods of incorporating conceptual semantics as features to train

99
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supervised sentiment classifiers. For the lexicon-based approach, we consider augment-

ing conceptual semantics into our previously proposed model, SentiCircle (see Chapter

3) and study the impact of such incorporation on the overall sentiment detection perfor-

mance.

Our evaluation is conducted by analysing the performance of various sentiment anal-

ysis methods in tweet-level sentiment analysis, after incorporating conceptual semantics.

To this end, we use three different Twitter datasets and compare against several state-of-

the-art baselines.

Results show that, when incorporating conceptual semantics in machine learning ap-

proaches, the performance improves up to 4% in F1-measure on average over models

trained from syntactic features solely.

For lexicon-based sentiment analysis, enriching SentiCircle with conceptual semantics

improves the performance our lexicon-based approach, by 0.39% in average F1-measure,

but gives 0.19% lower accuracy, in comparison with using SentiCircle with no semantic

enrichment.

Lastly, our results show that the advantage of using conceptual semantics over other

techniques is mostly restricted to negative sentiment identification, in large topically-

diverse datasets.

The rest of this chapter is organised as follows. Section 4.2 introduces our approach

of extracting and using conceptual semantics with supervised sentiment analysis ap-

proaches. Section 4.3 demonstrates how to enrich SentiCircles with conceptual semantics

to perform lexicon-based sentiment sentiment analysis. Discussion is delivered in Section

4.4. Finally, we summarise our work and findings in this chapter in Section 4.5.



4.2 conceptual semantics for supervised sentiment analysis 101

4.2 conceptual semantics for supervised sentiment anal-

ysis

In this section, we describe our approach of extracting and exploiting conceptual seman-

tics as features for sentiment classifier training in order to improve the overall sentiment

classification performance.

We have seen earlier in Chapter 2 that the sparsity of Twitter data affects, to a large

extent, the performance of supervised sentiment classifiers [137]. Due to sparsity, many

terms in the test set of a classifier do not occur in its training set, preventing therefore, the

classifier from detecting their sentiment. To address this problem, the semantic concepts

of entities extracted from tweets can be used to measure the overall correlation of a

group of entities (e.g. all Apple products) with a given sentiment polarity. Hence adding

semantic concepts as features to the analysis could help identify the sentiment of tweets

that contain any of the entities that such concepts represent, even if those entities never

appeared in the training set (e.g. a new gadget from Apple).1

Figure 17: Measuring correlation of semantic concepts with negative/positive sentiment. These

semantic concepts are then incorporated in sentiment classification.

An example showing the usefulness of using semantic concepts as features for senti-

ment classifier training is depicted in Figure 17, where the left box lists entities appearing

in the training set, together with their occurrence probabilities in positive and negative

tweets. For example, the entities “iPad”, “iPod” and “Mac Book Pro” appear more often

1 Assuming of course that the entity extractor successfully identify the new entities as sub-types of

concepts already correlated with negative or positive sentiment.
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in tweets of positive polarity and they are all mapped to the semantic concept Produc-

t/Apple. As a result, the tweet from the test set “Finally, I got my iPhone. What a product!”

is more likely to have a positive polarity because it contains the entity “iPhone” which

does not occur in the training set, but is mapped to the concept Product/Apple.

Based on the above description, our proposed pipeline of adding semantic concepts

into supervised sentiment classification methods breaks down into two main steps, as

depicted in Figure 18:

• Extraction: this step aims to detect named-entities in a given tweet corpora and to

extract their associated semantic concepts using third-party entity extraction tools

(Section 4.2.1).

• Incorporation: The extracted semantic concepts are incorporated as features into

the feature space of a given supervised machine learning classifier. To this end, we

propose three different incorporation methods; by replacement, by augmentation,

and by interpolation (Section 4.2.2). The output of this step is a semantic sentiment

classifier which can be used to infer the sentiment of a given collection of unlabelled

tweets (Section 4.2.4).

Labeled 
Tweets 

 Conceptual Semantic 
Extraction 

Conceptual Semantic 
Incorporation 

Semantic  
Concepts 

Unlabeled 
Tweets 

Machine 
Learning 
Classifier 

Semantic 
Sentiment 
Classifier 

Figure 18: Systematic workflow for exploiting conceptual semantics in supervised sentiment clas-

sification on Twitter.

4.2.1 Extracting Conceptual Semantics

There are several open APIs that provide entity extraction services for online textual

data. Rizzo and Troncy [132] evaluated the use of five popular entity extraction tools on

a dataset of news articles, including AlchemyAPI,2 DBPedia Spotlight,3 Extractiv,4 Ze-

2 www.alchemyapi.com

3 http://dbpedia.org/spotlight/

4 http://wiki.extractiv.com/w/page/29179775/Entity-Extraction

www.alchemyapi.com
http://dbpedia.org/spotlight/
http://wiki.extractiv.com/w/page/29179775/Entity-Extraction


4.2 conceptual semantics for supervised sentiment analysis 103

manta,5 and OpenCalais.6 Their experimental results showed that AlchemyAPI performs

best for entity extraction and semantic concept mapping. Our datasets consist of infor-

mal tweets, and hence are intrinsically different from those used in [132]. Therefore we

conducted our own evaluation, and randomly selected 500 tweets from the STS corpus

[60] and asked 3 evaluators to assess the semantic concept extraction outputs generated

from AlchemyAPI, OpenCalais and Zemanta.

No. of Concepts Entity-Concept Mapping Accuracy (%)

Extraction Tool Extracted Evaluator 1 Evaluator 2 Evaluator 3

AlchemyAPI 108 73.97 73.8 72.8

Zemanta 70 71 71.8 70.4

OpenCalais 65 68 69.1 68.7

Table 12: Evaluation results of AlchemyAPI, Zemanta and OpenCalais.

The assessment of the outputs was based on (1) the correctness of the extracted entities

(i.e., is the retrieved entity is a real-world entity or not?); and (2) the correctness of the

entity-concept mappings (i.e., is the extracted entity correctly mapped to its right concept

or not?). The evaluation results presented in Table 12 show that AlchemyAPI extracted

the most number of concepts and it also has the highest entity-concept mapping accuracy

compared to OpenCalais and Zemanta. As such, we chose AlchemyAPI to extract the

semantic concepts from the Twitter datasets we use in our experiments.

4.2.2 Conceptual Semantics Incorporation

In this section we describe how to use conceptual semantic features to train supervised

machine learning classifiers. In particular, we propose three different methods to incorpo-

rate semantic features into Naive Bayes (NB) classifier training. We start by an overview

of the NB followed by our proposed incorporation methods. Our choice of using Naive

Bayes as a case study in this work is due to its common and effective use as a sentiment

classifier in the literature on Twitter sentiment analysis (see Chapter 2). Moreover, Naive

Bayes provides a simple, yet efficient language model that is easy to train, extend and

implement [18].

5 www.zemanta.com

6 www.opencalais.com

www.zemanta.com
www.opencalais.com
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NB is a probabilistic classifier, where the assignment of a sentiment class c (positive or

negative) to a given tweet w can be computed as:

ĉ = arg max
c∈C

P(c|w)

= arg max
c∈C

P(c)
∏

16i6Nw

P(wi|c), (10)

where Nw is the total number of words in tweet w, P(c) is the prior probability of a

tweet appearing in class c, P(wi|c) is the conditional probability of word wi occurring in

a tweet of class c.

In multinomial NB, P(c) can be estimated by P(c) = Nc/N Where Nc is the number

of tweets in class c and N is the total number of tweets. P(wi|c) can be estimated using

maximum likelihood [142] with Laplace smoothing [95]:

P(w|c) =
N(w, c) + 1∑

w ′∈V N(w ′|c) + |V |
(11)

where N(w, c) is the occurrence frequency of word w in all training tweets of class c

and |V | is the number of words in the vocabulary.

To incorporate semantic concepts into NB learning, we propose three different methods

as described below.

Semantic Replacement: In this method, we replace all entities in tweets with their cor-

responding semantic concepts (e.g., “Headache” will be replaced in all tweets by its asso-

ciated concept “Health Condition”). This leads to the reduction of the vocabulary size,

where the new size is determined by:

|V ′| = |V |− |Wentity|+ |S| (12)

where |V ′| is the new vocabulary size, |V | is the original vocabulary size, |Wentity| is the

total number of unique entity words that have been replaced by the semantic concepts,

and |S| is the the total number of semantic concepts associated to the previously identified

entities.

Semantic Augmentation: This method augments the original feature space with the se-

mantic concepts as additional features for the classifier training (e.g., “Headache” and its

concept “Health Condition” will appear together in the feature space). The size of the

vocabulary in this case is enlarged by the semantic concepts introduced:

|V ′| = |V |+ |S| (13)
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Semantic Interpolation: In this method, we interpolate the unigram language model in

NB with the generative model of words given semantic concepts. We propose a general

interpolation method below which is able to interpolate an arbitrary type of features such

as semantic concepts, POS sequences, sentiment-topics, etc.

Thus, the new language model with interpolation has the following formula:

Pf(W|C) = α Pu(W|C) +
∑
i

βiP(W, Fi,C) (14)

Where Pf(W|C) is the new language model with interpolation, Pu(W|C) is the original

unigram class model and can be calculated using the maximum likelihood estimation,

P(W, Fi,C) is the interpolation component, and Fi is a feature vector of type i (e.g.,

semantic concepts). The coefficients α and βi are used to control the influence of the

interpolated features in the new language model where:

α+
∑
i

βi = 1

By setting α to 1 the class model becomes a unigram language model without any feature

interpolation. On the other hand, setting α to 0 reduces the class model to a feature

mapping model. In this work, values of these coefficients have been set by conducting a

sensitivity test on three Twitter corpora as will be discuss in Section 4.2.4.1.

The interpolation component in the equation 14 can be decomposed as follows:

P(W, Fi,C) =
∑
j

P(W|fij)P(fij|C) (15)

Where fij is the j-th feature of type i, P(fij|C) is the distribution of features fij in the train-

ing data given the class C and P(W|fij) is the distribution of words in the training data

given the feature fij. Both distributions can be computed via the maximum likelihood

estimation.

4.2.3 Evaluation Setup

Our proposed approach, as shown in the previous sections, extracts conceptual semantics

from Twitter data and uses them as features to train NB classifiers using three different

methods. We assess the performance our approach for tweet-level sentiment analysis

using three different Twitter datasets and compare against models trained from other

three types of features, as will be explained subsequently.
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4.2.3.1 Datasets

We assess the use of conceptual semantics in supervised sentiment classification using

three different Twitter datasets: STS-Expand, HCR and OMD. The statistics of the datasets

are shown in Table 13. Note that the OMD and the HCR datasets contain tweets about

specific topics: the US Health Care Reform bill in the HCR dataset, and the Obama

McCain debate in the OMD dataset. On the other hand, the STS-Expand consists of

general tweets with no topic focus. We refer the reader to the body of Appendix A for a

full description of the construction and annotation of these datasets.

Dataset Type No. of Tweets Positive Negative

STS-Expand [137]
Train 60K 30K 30K

Test 1,000 470 530

HCR [152]
Train 655 234 421

Test 699 163 536

OMD [47] n-fold cross validation 1,081 393 688

Table 13: Statistics of the three Twitter datasets used in this paper.

4.2.3.2 Semantic Concepts Extraction

As mentioned in Section 4.2.1, we use AlchemyAPI to extract the semantic concepts from

our three datasets. Figure 19 shows the top ten high-level extracted concepts from the

three datasets with the number of entities associated with each of concept. It can be ob-

served that the most frequent semantic concept is Person across all the three corpora. The

next two most frequent concepts are Company and City for STS-Expand, Organisation

and Country for HCR, and Country and Company for OMD. The level of specificity of

these concepts (i.e., high-level vs. low-level concepts) is determined by AlchemyAPI. Ta-

ble 14 lists the total number of entities extracted and the number of semantic concepts

mapped against them for each dataset.

4.2.3.3 Baselines

We compare the performance of our semantic sentiment analysis approach against the

baselines described below.
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(a) STS-Expand.

(b) HCR.

(c) OMD.
Figure 19: Top 10 frequent concepts extracted with the number of entities associated with them.
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STS-Expand HCR OMD

No. of Entities 15139 1392 1194

No. of Concepts 29 19 14

Table 14: Entity/concept extraction statistics of STS-Expand, OMD and HCR using AlchemyAPI.

Unigrams Features: Word unigrams are among the simplest types of features used for

sentiment analysis of Twitter data. Models trained from word unigrams were shown to

outperform random classifiers by a decent margin of 20% [1]. In this work we use NB

classifiers trained from word unigrams as our first baseline model. Table 15 lists, for

each dataset, the total number of the extracted unigram features that are used for the

classification training.

Dataset No. of Unigrams

STS-Expand 37054

HCR 2060

OMD 2364

Table 15: Total number of unigram features extracted from each dataset.

Part-of-Speech Features: POS features are common features that have been widely used

in the literature for the task of Twitter sentiment analysis. In this work, we build various

NB classifiers trained using a combination of word unigrams and POS features and use

them as baseline models. We extract the POS features using the TweetNLP POS tagger

[109],7 which is trained specifically from tweets. This differs from the previous work [110,

1], which relies on POS taggers trained from treebanks in the newswire domain for POS

tagging. It was shown that the TweetNLP tagger outperforms the Stanford tagger8 with

a relative error reduction of 25% when evaluated on 500 manually annotated tweets [59].

Moreover, the tagger offers additional recognition capabilities for abbreviated phrases,

emoticons and interjections (e.g. “lol", “omg").

Sentiment-Topic Features: The sentiment-topic features (JST features) denote the latent

topics (aka groups or patterns) and the topic-associated sentiment in texts. They are

7 http://www.ark.cs.cmu.edu/TweetNLP/

8 http://nlp.stanford.edu/software/tagger.shtml

http://www.ark.cs.cmu.edu/TweetNLP/
http://nlp.stanford.edu/software/tagger.shtml
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extracted from tweets using the weakly-supervised joint sentiment-topic (JST) model [87].

JST is a four-layer generative model, which allows the detection of both, sentiment and

topic simultaneously, from text based on the statistical similaries (contextual semantic

similarities) between words (see Chapter 2).

To extract JST features, we trained the JST model on the training set with tweet senti-

ment labels discarded. The resulting model assigns each word in tweets with a sentiment

label and a topic label. Hence JST essentially groups different words that share similar

sentiment and topic.

We list some of the topic words extracted by this model from the STS-Expand and

OMD corpora in Table 16. Words in each cell are grouped under one topic. The upper

half of the table shows topic words bearing positive sentiment while the lower half shows

topic words bearing negative sentiment. For example, Topic 2 under positive sentiment is

about the movie “Twilight”, while Topic 5 under negative sentiment is about a complaint

of feeling sick, possibly due to cold and headache. The rational behind this model is that

grouping words under the same topic and bearing similar sentiment could reduce data

sparseness in Twitter sentiment classification and improve accuracy.

Algorithm 1 shows how to perform NB training with sentiment-topics extracted from

JST. The training set consists of labeled tweets, Dtrain = {(wn; cn) ∈ W× C : 1 6 n 6

Ntrain}, where W is the input space and C is a finite set of class labels. The test set

contains tweets without labels, Dtest = {wt
n ∈ W : 1 6 n 6 Ntest}. A JST model is

first learned from the training set and then a topic and a sentiment are inferred for each

tweet in the test set. The original tweets are augmented with those sentiment-topics, as

shown in Step 4 of Algorithm 1, where li_zi denotes a combination of sentiment label li

and topic zi for word wi in a tweet wn. Finally, an optional feature selection step can be

performed according to Information Gain (IG) and a classifier is then trained from the

training set with the new feature representation.

4.2.4 Evaluation Results

In this section we evaluate the use of the sentiment features discussed in 4.2 and present

the sentiment identification results on the STS-Expand, HCR and OMD datasets. We then

compare these results with those obtained from using the baseline features described in

Section 4.2.3.3.
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Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

Po
si

ti
ve

win twilight make tomorrow today

final movie mccain weekend nice

watch award debate school Sunday

game moon good start enjoy

luck tonight point plan weather

today watch interest fun love

week mtv right yai walk

hope excited answer wait sunny

N
eg

at
iv

e

iphone dog obama miss feel

internet sad question far sick

download death understand travel bad

apple accident doesn’t mum hurt

store today answer away pain

slow car comment dad flu

issue awful back love sore

crash cry debate country horrible

Table 16: Extracted sentiment-topic words by the sentiment-topic model (JST) [87].

Algorithm 1 NB training with sentiment-topics extracted from JST.

Input: The training set Dtrain and test set Dtest

Output: NB sentiment classifier

1: Train a JST model on Dtrain with the tweet sentiment labels discarded

2: Infer sentiment-topic for Dtest

3: for each tweet wn = (w1,w2, ...,wm) ∈ {Dtrain,Dtest} do

4: Augment tweet with sentiment-topics generated from JST,

w ′n = (w1,w2, ...,wm, l1_z1, l2_z2, ..., lm_zm)

5: end for

6: Create a new training set Dtrain ′ = {(w ′n; cn) : 1 6 n 6 Ntrain}

7: Create a new test set Dtest ′ = {w ′n : 1 6 n 6 Ntest}

8: Perform feature selection using IG on Dtrain ′

9: Return NB trained on Dtrain ′
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We use NB trained from word unigrams as the starting-point baseline model. The

features are incorporated into NB by either, the interpolation approach described in Sec-

tion 4.2.2, or by simply augmenting the original bag-of-words feature space. For evalu-

ation on STS-Expand and HCR, we use the training and testing sets shown in Table 13.

For OMD, we perform 5-fold cross validation and report the results averaged over 10

runs. This is because unlike STS-Expand and HCR, the OMD dataset is published as one

unpartitioned collection of tweets.

The raw tweets data can be very noisy, and hence some pre-processing was necessary,

such as replacing all hyperlinks with “URL”, converting some words with apostrophe,

such as “hate’n”, to their complete form “hating”, removing repeated letters (e.g. “loovee”

becomes “love”), and removing words that have less than 3 letters.

4.2.4.1 Results on Incorporating Semantic Features

Semantic features can be incorporated into NB training in three different ways, replace-

ment, augmentation, and interpolation (Section 4.2.2). Table 17 shows the F measures pro-

duced when using each of these feature incorporation methods. With semantic replacement,

where all entities in tweets are replaced with their corresponding semantic concepts, the

feature space shrunk substantially by nearly 15-20%, and produced an average F mea-

sure of 68.9%. However, this accuracy is 3.5% and 10.2% less than when using semantic

augmentation and interpolation respectively. The performance degradation is due to the

information loss caused by this term replacement, which subsequently reduces NB per-

formance.

Augmenting the original feature space with semantic concepts (semantic augmentation)

performs slightly better than sentiment replacement, though it still performs 6.5% worse

than interpolation. With Semantic interpolation, semantic concepts are incorporated into

NB training taking into account the generative probability of words given concepts. This

method produces the highest performance amongst all three incorporation methods, with

an average F1-measure of 75.95%.

The contribution of semantic features in the interpolation model is controlled by the

interpolation coefficients in Equation 14. We conducted a sensitivity test to evaluate the

impact of the interpolation coefficients on sentiment classification accuracy by varying β

between 0 and 1. Figure 20 shows that accuracy reaches its peak with β set between 0.3

and 0.5. In our evaluation, we used β = 0.4 for STS-Expand dataset, and β = 0.3 for the

other two.
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Method STS-Expand HCR OMD Average

Semantic replacement 74.10 61.35 71.25 68.90

Semantic augmentation 77.65 63.65 72.70 71.33

Semantic interpolation 83.90 66.10 77.85 75.95

Table 17: Average sentiment classification performance (%) using different methods for incorpo-

rating the semantic features. Performance here is the average harmonic mean (F mea-

sure) obtained from identifying positive and negative sentiment.
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Figure 20: Sensitivity test of the interpolation coefficient for semantic interpolation.

4.2.4.2 Comparison of Results

In this section we will compare the Precision, Recall, and F measure of our conceptual

semantic sentiment analysis against the baselines described in Section 4.2.3.3. We report

the semantic classification results for identifying positive and negative sentiment sep-

arately to allow for deeper analysis of results. This is especially important given how

some analysis methods perform better in one sentiment polarity than in the other.

Table 18 shows the results of our sentiment classification using Unigrams, POS, Sentiment-

Topic, and Conceptual Semantic features, applied over the STS-Expand, HCR, and OMD

datasets. The table reports three sets of P, R, and F1, one for positive sentiment identifi-

cation, one for negative sentiment identification, and the third shows the averages of the

two.

According to these results in Table 18, the Semantic approach outperforms the Uni-

grams and POS baselines in all categories and for all three datasets. However, for the

HCR and OMD datasets, the sentiment-topic analysis approach seems to outperform the
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Dataset Feature
Positive Sentiment Negative Sentiment Average

P R F1 P R F1 P R F1

STS-Expand

Unigrams 82.20 75.20 78.50 79.30 85.30 82.20 80.75 80.25 80.35

POS 83.70 75.00 79.10 79.50 86.90 83.00 81.60 80.95 81.05

Sentiment-Topic 80.70 82.20 81.40 83.70 82.30 83.00 82.20 82.25 82.20

Conceptual Semantics 85.80 79.40 82.50 82.70 88.20 85.30 84.25 83.80 83.90

HCR

Unigrams 39.00 36.10 37.50 81.00 82.80 81.90 60.00 59.45 59.70

POS 56.20 22.00 31.70 80.00 94.70 86.70 68.10 58.35 59.20

Sentiment-Topic 53.80 47.20 50.30 84.50 87.60 86.00 69.15 67.40 68.15

Conceptual Semantics 53.60 40.40 46.10 83.10 89.30 86.10 68.35 64.85 66.10

OMD

Unigrams 64.20 70.90 67.10 83.30 78.60 80.80 73.75 74.75 73.95

POS 69.50 68.30 68.70 83.10 83.90 83.40 76.30 76.10 76.05

Sentiment-Topic 68.20 75.60 71.70 87.10 82.40 84.70 77.65 79.00 78.20

Conceptual Semantics 75.00 66.60 70.30 82.90 88.10 85.40 78.95 77.35 77.85

Table 18: Cross comparison results of all the four features.

semantic approach by a small margin. For example, the semantic approach produced

higher P, R, and F1 for the STS-Expand dataset, with F1 4.4% higher than Unigrams, 3.5%

higher than POS, and 2.1% higher than the sentiment-topic features. In HCR, F1 from the

semantic features were 8.9% and 11.7% higher than Unigrams and POS, but 3% lower

than F1 from sentiment-topic features. For OMD, semantic features also outperformed

the Unigrams and POS baselines, with 5.2% and 2.4% higher F1 respectively. However, in

the OMD dataset, F1 from semantic features was 0.4% lower than from the topic model,

although Precision was actually higher by 1.7%.

As mentioned in Section 4.2.3.1 and detailed in Table 13, the STS-Expand dataset con-

sists of a large collection of general tweets with no particular topic focus. Unlike STS-

Expand, the other two datasets are much smaller in size and their tweets discuss very

specific topics; the US Health Care Reform bill in the HCR dataset, and the Obama Mc-

Cain debate in the OMD dataset. Using conceptual semantic features seem to perform

best in the large and general dataset, whereas the sentiment-topic features seem to take

the lead in small, topic-focused datasets. The reason is likely to be that classifying with

sentiment-topic features group words into a number of topics. In our experiments, we

found that for the STS-Expand dataset, increasing the number of topics leads to the in-

crease of classification performance with the peak value of 82.2% in F1-measure reached

at topic number 50. Further increasing topic numbers degrades the classifier performance.

However, for HCR and OMD, the best performance was obtained with only one topic (F1
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= 68.15% for HCR and F1 = 78.20% for OMD). The classification performance drops

significantly by any further increment. This could be explained by the nature of these

three datasets. HCR was collected using the hashtag “#hcr” (health care reform) while

OMD consists of tweets about the Obama-McCain debate. Hence these two datasets are

topic-specific. On the contrary, STS was collected using more general queries and thus it

contains a potentially large number of topics.

Hence the benefits of using the sentiment-topic features seem to be reduced in compar-

ison to semantic features when the training set is of general content as in the STS tweets

dataset.

The average results across all three datasets are shown in Table 19. Here we can see

that conceptual semantic features do better than sentiment-topic features and the other

baselines when identifying negative sentiment. However, sentiment-topic features seem to

perform better for positive sentiment. For positive sentiment, using the semantic approach

produces precision levels that are better than the ones obtained with Unigrams, POS, and

sentiment-topic by 15.6%, 2.4%, and 5.8% respectively. However, the Recall produced by

the semantic approach when identifying positive sentiment is 2.3% and 12.8% higher

than in Unigrams and POS, but 9% lower than Recall from the sentiment-topic approach.

Overall, F1 for positive sentiment from semantic features is 2.2% lower than when using

sentiment-topic features. It is worth emphasising that the average Precision from identi-

fying both positive and negative sentiment is the highest at 77.18% when using semantic

features. When analysing large amounts of continuously flowing data as with social me-

dia resources, Precision could well be regarded as much more important than Recall.

Features
Positive Sentiment Negative Sentiment Average

P R F1 P R F1 P R F1

Unigrams 61.80 60.73 61.03 81.20 82.23 81.63 71.50 71.48 71.33

POS 69.80 55.10 59.83 80.87 88.50 84.37 75.53 72.23 72.48

Sentiment-Topic 67.57 68.33 67.80 85.10 84.10 84.57 77.02 76.73 76.75

Semantics 71.47 62.13 66.30 82.90 88.53 85.60 77.18 75.33 75.95

Table 19: Averages of Precision, Recall, and F measures across all three datasets.
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4.3 conceptual semantics for lexicon-based sentiment

analysis

So far in this chapter, we presented our approach of extracting and exploiting concep-

tual semantics as features for sentiment analysis using a supervised machine learning

approach.

In this section, we continue investigating with conceptual semantics by using them

for lexicon-based sentiment analysis. To this end, we propose incorporating our concep-

tual semantic features into our previously proposed model; SentiCircles (see Chapter 3).

Remember that SentiCircles is a lexicon-based sentiment detection model that uses the

contextual semantics of words in order to capture their sentiment in tweets. Therefore,

by enriching SentiCircles with conceptual semantics, we aim to: (i) study the usefulness

of conceptual semantics when used for lexicon-based sentiment analysis, and (ii) investi-

gate the impact of combining contextual and conceptual semantics of words together on

the overall sentiment detection performance of the SentiCircles model.

4.3.1 Enriching SentiCircles with Conceptual Semantics

We add conceptual semantics into the SentiCircle representation using the Semantic Aug-

mentation method (Section 4.2.2), i.e., we add the semantic concepts of named-entities to

the original tweet before extracting our SentiCircle representation (e.g., “headache” and

its concept “Health Condition” will appear together in the SentiCircle of “headache”,

since by applying semantic augmentation, these terms now co-occur within the aug-

mented tweets). Also note that each extracted concept is represented by a SentiCircle

in order to compute its overall sentiment.

The rational behind augmenting semantic concepts into SentiCirlces is that certain en-

tities and concepts tend to have a more consistent correlation to terms of positive or

negative sentiment. This can help determine the sentiment of semantically relevant or

similar entities which do not explicitly express sentiment. In the example in Figure 21,

“Wind” and “Humidity” have negative SentiCircles as they tend to appear with negative

terms in tweets. Hence their concept “Weather Condition” will have a stronger nega-

tive sentiment. The tweet “Cycling under a heavy rain.. What a #luck!” is likely to

have a negative sentiment due to the presence of the word “rain” which is mapped to

the negative concept “Weather Condition”. Moreover, the word heavy in this context is
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more likely to have a negative sentiment due to its correlation with “rain” and “Weather

Condition”.

Figure 21: Mapping semantic concepts to detect sentiment.

4.3.2 Evaluation Results

Here, we report the results when enriching the SentiCircle representation with conceptual

semantics by using the augmentation method. In particular, we perform binary sentiment

detection at the tweet-level using the three SentiCircle detection methods, Median, Pivot-

Method, and Pivot-Hybrid on the OMD, HCR and STS-Gold datasets (see Section 3.3.2).

The number of entities and concepts extracted for HCR and OMD is the one reported in

Table 14. For the STS-Gold dataset, 2735 entities and 23 distinct concepts were extracted

using AlchemyAPI.

We perform 10-fold cross validation on all datasets and report the win/loss in accuracy

and F-measure when adding the conceptual semantics to the SentiCircle model with re-

spect to the original results reported in Chapter 3 (Figure 15) when applying SentiCircles

without semantic augmentation. Note that here we used Thelwall-Lexicon [160] to obtain

the word prior sentiments in our three sentiment detection methods. As mentioned in

Chapters 2 and 3, Thelwall-Lexicon is designed to specifically work on social data.

The results, as depicted in Figure 22, show that the impact of conceptual semantics on

the performance of SentiCircles varies across datasets. On the HCR dataset, a 1.21% gain

in F-measure is obtained using the Median method. On the STS-Gold dataset, the Me-

dian and the Pivot methods improve the performance by 0.49% and 0.12% in F-measure,

respectively. On the other hand, a small drop in both accuracy and F-measure is observed

on the OMD dataset when using conceptual semantics with either method.
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Figure 22: Average Win/Loss in Accuracy and F-measure of incorporating conceptual semantics

into SentiCircles using the Median, Pivot and Pivot-Hybrid methods on all datasets.

It is also worth noting that the Median method is more affected by conceptual semantic

incorporation than the Pivot method, where a much clearer shift in performance can be

observed across datasets. This can be explained as the Median method considers all

the incorporated concepts in the SentiCircle, whereas the Pivot method focus more on

concepts that are associated to target terms in tweets (Section 3.3.2).

Overall, the average results across the three datasets show that, using conceptual se-

mantics with the Median method, always improve the sentiment detection performance

by 0.39%, on average. On the other hand, both the Pivot and Pivot-Hybrid methods lower

the overall performance by 0.09% and 0.28% in F-measure respectively. Also, it seems that

conceptual semantics with the Pivot-Hybrid method, does not bring much improvement

to the performance on either dataset.

Lastly, the number of entities extracted for the STS-Gold dataset is almost twice as for

HCR or OMD. Nonetheless, the average results show that semantic incorporation seems

to have a better impact on the STS-Gold dataset than on the OMD and HCR datasets.

This might be due to the topical-focus of each dataset. As discussed earlier, the OMD

and HCR are both composed of a smaller number of tweets about specific topics (the US

Health Care Reform bill and the Obama-McCain debate), the STS-Gold dataset contains

a larger number of tweets with no particular topical focus.

4.4 discussion

In this chapter we demonstrated the value of using conceptual semantics as features for

the classification of positive and negative sentiment in Tweets. We aimed at addressing
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the question of whether incorporating conceptual semantics into supervised and lexicon-

based methods increases their sentiment classification performance or not.

Our methodology of using conceptual semantics for sentiment analysis consists mainly

of two steps: conceptual semantics extraction and conceptual semantics incorporation.

Conceptual Semantic Extraction: We tested several off-the-shelf semantic entity extrac-

tors and decided on using AlchemyAPI due to its better performance in terms of cover-

age and accuracy. However, in our evaluation of AlchemyAPI, Zemanta, and OpenCalais,

we observed that some of them perform better than others for specific type of entities.

For example, Zemanta produced more accurate and specific concepts to describe entities

related to music tracks and bands. It might be possible to implement a more selective

approach, where certain semantic extractors and concept identifiers are used, or trusted

more, for certain type of entities.

Conceptual Semantic Incorporation: We proposed adding semantic concepts as features

into: (i) the training phase of NB supervised classifier and (ii) the semantic representation

phase of our SentiCircle lexicon-based model. For both models all semantic concepts

extracted from the tweets were added to the analysis. However, it might be the case that

semantic features improve sentiment analysis accuracy for some types of concepts (e.g.

cities, music) but reduce accuracy for some other concept types (e.g. people, companies).

Therefore, a potential future direction of this work is to investigate the impact of each

group of concepts on our analysis accuracy, to determine their individual contribution

and impact on sentiment analysis. We can also assign weights to each concept type to

represent its correlation with positive or negative sentiment.

We experimented with multiple datasets of varying sizes and topical-focus. Our results

showed that accuracy can be sensitive to the size of the datasets and their topical-focus.

For example, our evaluation, on both supervised and lexicon-based settings, showed that

the semantic approach excels when the dataset is large and of diverse topic coverage. An

area for a future work will be to apply these approaches on larger datasets to examine

the consistency of their performance patterns. Another possible future work is to explore

various feature selection strategies to improve the sentiment classification performance.
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4.5 summary

Conceptual semantics refer to those semantically hidden concepts of named entities ex-

tracted from tweets. In this chapter, we proposed the use of conceptual semantics in

Twitter sentiment analysis. We aimed at addressing the research question: Could the con-

ceptual semantics of words enhance sentiment analysis performance?. To this end, we proposed

using semantic concepts as features into two widely used sentiment analysis approaches

on the Twitter sentiment analysis literature; the supervised machine learning approach

and the lexicon-based approach.

For supervised sentiment classification, we explored three different methods for incor-

porating conceptual semantics into the analysis; with replacement, augmentation, and

interpolation. We found that best results were achieved when interpolating the genera-

tive model of words given semantic concepts into the unigram language model of the

NB classifier. We experimented with three Twitter datasets and compared the semantic

features with the the Unigrams and POS features as well as with the sentiment-topic fea-

tures. Our results show that the semantic feature model outperforms the Unigram and

POS baseline for identifying both negative and positive sentiment. We demonstrated that

adding semantic features produces higher Recall and F1 score, but lower Precision, than

sentiment-topic features when classifying negative sentiment. We also showed that using

semantic features outperforms the sentiment-topic features for positive sentiment classifi-

cation in terms of Precision, but not in terms of Recall and F1. One average, the semantic

features appeared to be the most precise amongst the four other feature selections we

experimented with.

For lexicon-based sentiment analysis, we enriched our SentiCircle representation with

conceptual semantics using the augmentation method. Results on three Twitter datasets

showed that adding concepts to SentiCircle has a good potential over using SentiCircles

solely.

Overall, our results suggest that the semantic approach is more appropriate when the

datasets being analysed are large and cover a wide range of topics, whereas the sentiment-

topic approach was most suitable for relatively small datasets with specific topical foci.





5
S E M A N T I C PAT T E R N S F O R S E N T I M E N T A N A LY S I S O F T W I T T E R

In previous chapters we explored the value of the contextual and conceptual semantics of

words in sentiment analysis on Twitter. In this chapter, we move a step further; instead of

using semantics associated with individual words as indicators to sentiment, we propose

extracting patterns from the contextual semantics and sentiment similarities between

words in tweets. After that, we investigate how the extracted patterns can be used to

enhance sentiment classification performance on Twitter.

Our findings suggest that contextual semantic and sentiment similarities of words do

exist in tweets, by means of certain patterns. These patterns, when used as features to

train sentiment classifiers, consistently outperform other types of features extracted from

the syntactic, contextual or conceptual semantic representations of words.

5.1 introduction

Chapters 3 and 4 showed that merely relying on the individual words does

not always lead to satisfactory sentiment detection results since sentiment is

often context-dependent. In this chapter we propose extracting and using the

semantics of individual words to detect their sentiment as well as the overall sentiment of

the tweet they occur within.

By doing this research, we observed that some words had similar contextual semantics

in different tweets (i.e., similar co-occurrence patterns and contextual term distributions).

For example, similar contextual semantics are likely to be used when expressing positive

sentiment towards “Beatles” and “Katy Perry”. On the other hand, the contextual se-

mantics for “iPod” and “Taylor Swift” are likely to be different even though they both

receive positive sentiment as discussed in Chapter 3. Such semantic similarities between

words can be used to form clusters that represent different patterns of semantics and

sentiment. These patterns, when identified and extracted from tweets, can be used to

enhance the overall sentiment classification performance of tweets as well as named en-

tities. Knowing the semantic pattern that is used to express a certain sentiment enables

121
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the identification of the sentiment of other words or entities following the same pattern.

We refer to these patterns as semantic sentiment patters or shortly as SS-Patterns.

The research question we aim to address in this chapter is:

RQ3 Could semantic sentiment patterns boost sentiment analysis performance?

To address the above question, we propose a new approach for automatically extracting

patterns based on the contextual semantic and sentiment similarities between words in a

given Twitter corpus.

We apply our approach to 9 different Twitter datasets, and validate the extracted pat-

terns by using them as classification features in entity- and tweet-level sentiment analysis

tasks. To this end, we train several supervised classifiers from SS-Patterns and compare

the sentiment classification performance against models trained from 6 state-of-the-art

sets of features derived from both the syntactic and semantic representations of words.

Our results show that SS-Patterns consistently outperform all the baseline feature sets,

on all 9 datasets, in both tweet-level and entity-level sentiment classification tasks. At the

tweet level, SS-Patterns improve the classification performance by 1.94% in accuracy and

2.19% in F-measure on average. Also, at the entity level, our patterns produce 2.88% and

2.64% higher accuracy and F-measure than all other features respectively.

We also conduct quantitative and qualitative analyses on a sample of the patterns ex-

tracted by our approach and show that the effectiveness of using SS-Patterns as additional

features for classifier training is attributed to their ability to capture words with similar

contextual semantics and sentiment. We also show that our extraction approach is able

to detect patterns of controversial sentiment (strong opposing sentiment) expressed by

people towards certain entities.

The rest of this chapter is organised as follows: Background about using linguistic

and semantic patterns in sentiment analysis is presented in Section 5.2. The proposed

approach for extracting semantic sentiment patterns is presented in Section 5.3. Evalu-

ation setup and results are presented in Sections 5.4 and 5.5 respectively. Our pattern

analysis study is described in Section 5.6. Discussion is covered in Section 5.7. Finally, we

summarise our work and findings in this chapter in Section 5.8.
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5.2 related work

Sentiment in text is often conveyed through relations and dependencies between words,

which often formulate sentiment [130]. These relations are usually compiled as a set

of syntactic patterns (i.e., Part-of-Speech patterns) [165, 130, 161] or semantic and com-

mon sense concepts [55, 25]. For example, the adjective word “mean” when preceded

by a verb, constitutes a pattern of negative sentiment as in: “she said mean things”.

Also, the word “destroy” formulates a positive pattern when occurs with the concept

“invading germs”. However, both syntactic and semantic approaches to extracting senti-

ment patterns are usually not tailored to Twitter due to its noisy nature. Also they both

function with external knowledge sources. Most syntactic approaches rely on fixed and

pre-defined sets of syntactic templates for pattern extraction. On the other hand, seman-

tic approaches rely on external ontologies and common sense knowledge bases. Such

resources, although useful, tend to be focused on particular domains, and therefore pro-

vide limited coverage, which is especially problematic when processing general Twitter

streams, with their rapid semiotic evolution and language deformations, as discussed in

Chapter 4.

In order to overcome the aforementioned limitations and to address the third research

question of this thesis, we design our sentiment pattern extraction approach in a way

that captures patterns based on the contextual semantic and sentiment similarities be-

tween words in a Twitter corpus. Our approach does not rely on the syntactic structures

in tweets, nor requires using pre-defined syntactic template sets or external semantic

knowledge sources.

5.3 semantic sentiment patterns of words

We define semantic sentiment patterns as clusters of words which have similar contextual

semantics and sentiment in text. Based on this definition, the problem of capturing these

patterns in tweets data breaks down into three phases as illustrated in Figure 23. In the

first phase, tweets in a given data collection are syntactically processed in order to reduce

the amount of noise and language informality in them (Section 5.3.1). In the second phase

we apply our SentiCircle representation model (see Chapter 3) on the processed tweets

to capture the contextual semantics and sentiment of words (Section 5.3.2). In the third
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phase the semantic sentiment patterns are formed by clustering words that share similar

semantics and sentiment (i.e., similar SentiCircles) (Section 5.3.3).

Tweets 

Syntactic Preprocessing 

Bag of  
SentiCircles 

Sentiment Lexicon 

 Capturing Contextual 
Semantics and Sentiment 

Extracting Semantic 
Sentiment Patterns 

Bag of  
SS-Patterns 

Figure 23: The systematic workflow of capturing semantic sentiment patterns from Twitter data.

In the subsequent sections we describe each of the aforementioned phases in more detail:

5.3.1 Syntactical Preprocessing

Tweets are usually composed of incomplete, noisy and poorly structured sentences due

to the frequent presence of abbreviations, irregular expressions, ill-formed words and

non-dictionary terms. Such noisy nature of tweets has been shown to indirectly affect the

sentiment classification performance [137]. Therefore, this phase applies the following

pre-processing steps to reduce the amount of noise in the tweets and consequently reduce

its possible negative impact on the extraction of SS-Patterns:

• Replace all URL links in the Twitter corpus with the term “URL”.

• Remove all non-ASCII and non-English characters.

• Revert words that contain repeated letters to their original English form. For exam-

ple, the word “maaadddd” will be converted to “mad” after processing.

• Process contraction and possessive forms. For example, change “he’s” and “friend’s”

to “he” and “friend”.

Note that we do not remove stopwords from the data since they tend to carry sentiment

information as will be shown in Chapter 6.

5.3.2 Capturing Contextual Semantics and Sentiment of Words

SS-patterns are formed from the contextual semantic similarities among words. Therefore,

a key step in our pipeline is to capture the words’ contextual semantics in tweets. To this

end, we use our semantic representation model, SentiCircle (Chapter 3).
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Remember that the SentiCircle model extracts the contextual semantics of a word from

(i) its co-occurrences with other words in a given tweet corpus and (ii) its prior sentiment

obtained from an external sentiment lexicon. Therefore, this phase takes as input a col-

lection of preprocessed tweets and a sentiment lexicon, and returns a bag of SentiCircles

that represent each unique word in the tweet collection.

Also, remember that the overall contextual semantics and sentiment of a given word

can be computed by extracting the SentiMedian of the word’s SentiCircle, as described

in Section 3.2.2.4.

5.3.3 Extracting Patterns from SentiCircles

At this stage all the unique words in the tweet collection have their contextual semantics

and sentiment extracted and represented by means of their SentiCircles. It is very likely to

find words in text that share similar contextual semantics and sentiment. In other words,

finding words with similar SentiCircles. Therefore, this phase seeks to find such potential

semantic similarities in tweets by building clusters of similar SentiCircles. The output of

this phase is a set of clusters of words, which we refer to as the semantic sentiment patterns

of words (SS-Patterns).

SentiCircles Clustering: We can capture patterns that emerge from the similarity of

word’s sentiment and contextual semantics by clustering the SentiCircles of those words.

In particular, we perform a clustering task fed by dimensions that are provided by Sen-

tiCircles; density, dispersion, and geometry. Density and dispersion usually characterise

terms and entities that receive controversial sentiment in tweets as will be further ex-

plained and validated in Section 5.6. Geometry, on the other hand, preserves the contex-

tual sentiment orientation and strength of terms. Once we extract the vectors that repre-

sent these three dimensions for all the terms’ SentiCircles, we feed them into a common

clustering method; k-means.

In the following, we describe the three dimensions we extract from each term’s Senti-

Circle Ω along with the components they consist of:

• Geometry: includes the X- and Y-component of the SentiMedian g(xg,yg) ∈ Ω

• Density: includes the total density of points in the SentiCircle Ω and its computed

as: density(Ω) = N/M, where N is the total number of points in the SentiCircle

and M is the total number of points in the SentiCircles of all terms.
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We also compute five density components, representing the density of each sen-

timent quadrant in the SentiCircle (i.e., positive, very positive, negative and very

negative quadrants) along with the density of its neutral region. Each of these com-

ponents is computed as density(Q) = P/N where P is the total number of points

in the sentiment quadrant Q.

• Dispersion: the total dispersion of a SentiCircle refers to how scattered, or condensed,

the points (context terms) in the circle are. To calculate the value of this component

we use the median absolute deviation measure (MAD) [169], which computes the dis-

persion ofΩ as the median of the absolute deviations from the SentiCircle’s median

point (i.e., the SentiMedian gm) as:

mad(Ω) = (

n∑
i=1

|pi − gm|)/N (16)

where pi represents the coordinates of the point i within the SentiCircle, and N is

the total number of points within the SentiCircle.

Similarly, using the above equation, we calculate the dispersion of each sentiment

quadrant and the neutral region in the SentiCircle. We also calculate the dispersion

of the active region in SentiCircle (i.e., The SentiCircle after excluding points in the

neutral region)

The last step in our pipeline is to apply k-means on all SentiCircles (represented by

their associated vectors capturing the above three mentioned dimensions). This results in

a set of clusters K = (k1,k2, ...,kc) where each cluster consists of words that have similar

contextual semantics and sentiment. We call K the set of clusters (or patterns) and ki ∈ K

the semantic sentiment pattern.

In the subsequent section, we describe how to determine the number of patterns (clus-

ters) in the data and how to validate the extracted patterns by using them as features in

two sentiment classification tasks.

5.4 evaluation setup

Our proposed approach, as shown in the previous section, extracts patterns of words

of similar contextual semantics and sentiment. We evaluate the extracted SS-patterns by

using them as classification features to train supervised classifiers for two sentiment anal-

ysis tasks, tweet- and entity-level sentiment classification. To this end, we use 9 publicly
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and widely used datasets in Twitter sentiment analysis literature [138]. Nine of them

will be used for tweet-level evaluation and one for entity-level evaluation. As for evalua-

tion baselines, we use 6 types of classification features and compare the performance of

classifiers trained from our SS-patterns against those trained from these baseline features.

5.4.1 Tweet-Level Evaluation Setup

The first validation test we conduct on our SS-patterns is to measure their effectiveness

as features for binary sentiment analysis of tweets, i.e., classifying the individual tweets

as positive or negative. To this end, we use SS-patterns extracted from a given Twitter

dataset to train two supervised classifiers popularly used for tweet-level sentiment analy-

sis, Maximum Entropy (MaxEnt) and Naïve Bayes (NB) from Mallet.1 We use 9 different

Twitter datasets in our validation in order to avoid any bias that a single dataset can in-

troduce. Numbers of positive and negative tweets within these datasets are summarised

in Table 20, and detailed in Appendix A.

Dataset Tweets #Negative #Positive #Unigrams

Stanford Twitter Test Set (STS-Test) [60] 359 177 182 1562

Sanders Dataset (Sanders) [138] 1224 654 570 3201

Obama McCain Debate (OMD) [47] 1906 1196 710 3964

Health Care Reform (HCR) [152] 1922 1381 541 5140

Stanford Gold Standard (STS-Gold) [138] 2034 632 1402 4694

Sentiment Strength Twitter Dataset (SSTD) [160] 2289 1037 1252 6849

The Dialogue Earth Weather Dataset (WAB) [5] 5495 2580 2915 7485

The Dialogue Earth Gas Prices Dataset (GASP) [5] 6285 5235 1050 8128

Semeval Dataset (Semeval) [104] 7535 2186 5349 15851

Table 20: Twitter datasets used for tweet-level sentiment analysis evaluation.

5.4.2 Entity-Level Evaluation Setup

In the second validation test, we evaluate the usefulness of SS-Patterns as features for

entity-level sentiment analysis, i.e., detecting sentiment towards a particular entity. To

this end, we perform a 3-way sentiment classification (negative, positive, neutral) on a

dataset of 58 named entities extracted from the STS-Gold dataset [138] and manually

1 http://mallet.cs.umass.edu/

http://mallet.cs.umass.edu/
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labelled with their sentiment class. Numbers of negative, positive and neutral entities

in this dataset are listed in Table 21 along with five examples of entities under each

sentiment class. Details of the extraction and the annotation of these entities can be found

in Chapter 3.

Negative Entities Positive Entities Neutral Entities

Total Number 13 29 16

Examples

Cancer Lakers Obama

Lebron James Katy Perry Sydney

Flu Omaha iPhone

Wii Taylor Swift Youtube

Dominique Wilkins Jasmine Tea Vegas

Table 21: Numbers of negative, positive and neutral entities in the STS-Gold Entity dataset along

with examples of 5 entities under each sentiment class.

The entity sentiment classifier we use in our evaluation is based on maximum like-

lihood estimation (MLE). Specifically, we use tweets in the STS-Gold dataset to esti-

mate the conditional probability P(c|e) of an entity e assigned with a sentiment class

c ∈ {Positive,Negative} as:

P(c|e) = N(e, c)/N(e) (17)

where N(e, c) is the frequency of an entity e in tweets assigned with a sentiment class c

and N(e) is the frequency of the entity e in the whole corpus.

We incorporate our SS-Pattern features and other baseline features (Section 5.4.3) into

the sentiment class estimation of e by using the following back-off strategy:

ĉ =

 P(c|e) if N(e, c) 6= 0

P(c|f) if N(e, c) = 0
(18)

where f is the incorporated feature (e.g., the SS-Pattern of e) and P(c|f) is the conditional

probability of the feature f assigned with a sentiment class c and it can be also estimated

using MLE. The rationale behind the above back-off strategy is that some entities might

not occur in tweets of certain sentiment class, leading therefore, to zero probabilities. In

such cases we resort to the sentiment of the latent features associated with these entities

in the dataset.
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To extract the sentiment of e we first calculate the following ratio:

Re = P(c = Positive|e)/P(c = Negative|e) (19)

In particular, the sentiment is neutral if Re is close enough to 1, i.e., Re ∈ [1− λ, 1+ δ],

otherwise the sentiment is negative if Re < 1− λ or positive if Re > 1+ δ. We determine

the value of λ and δ by plotting the ratio Re for all the 58 entities and check the upper and

lower cut-offs between which the plot converges. In our case, λ ≈ 0.7 and delta ≈ 0.3, as

shown in Figure 24.
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Figure 24: Positive to negative sentiment ratio for each of the 58 entities in the STS-Gold dataset.

Note that in the case where P(c = Negative|e) or P(c = Negative|e) is zero when

computing Re (Equation 19), we resort to using the conditional probability of the entity-

associated feature with the given sentiment class c (i.e., P(c = Negative|f) or P(c =

Positive|f)).

5.4.3 Evaluation Baselines

The baseline model in our evaluation is a sentiment classifier trained from word unigram

features. Table 20 shows the number of unique unigram features extracted from our

datasets.

In addition to unigrams, we propose comparing our SS-Pattern features against the be-

low described five state-of-the-art types of features in sentiment analysis. Amongst them,

two sets of features are derived from the syntactical characteristics of words in tweets

(POS features, and Twitter features), one is based on the prior sentiment orientation of

words (Lexicon features) and two are obtained from the semantic representation of words

in tweets (Semantic Concept features and LDA-Topic features):
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Twitter Features: refer to tokens and characters that are popularly used in tweet mes-

sages such as hashtags (e.g., “#smartphone”), user mentions (e.g, “@obama”), the tweet

reply token (“RT”) and emoticons (e.g., “:) :D <3 o_O”).

Part-of-Speech Features: refer to the part-of-speech tags of words in tweets (e.g., verbs,

adjectives, adverbs, etc). We extract these features using the TweetNLP POS tagger.2

Lexicon Features: these features are formed from the opinionated words in tweets along

with their prior sentiment labels (e.g., “excellent_positive”, “bad_negative”, “good_positive”,

etc.). We assign words with their prior sentiments using both Thelwall [160] and MPQA

[176] sentiment lexicons.

Semantic Concept Features: refer to our conceptual semantic features presented in

Chapter 4, i.e., the semantic concepts (e.g., “person”, “company”, “city”) that represent

entities (e.g., “Obama”, “Motorola”, “Vegas”) appearing in tweets. To extract the entities

and their associated concepts in our datasets we use AlchemyAPI.3 An assessment of the

semantic extraction performance of AlchemyAPI on Twitter data is presented in Chapter

4. The number of extracted concepts in each dataset is listed in Table 22.

Dataset No. of Semantic Concepts

STS-Test 299

Sanders 1407

OMD 2191

HCR 1626

STS-Gold 1490

SSTD 699

WAB 1497

GASP 3614

Semeval 2875

Table 22: Numbers of the semantic concepts extracted from all datasets.

LDA-Topic Features: these features denote the latent topics extracted from tweets using

the probabilistic generative model, LDA [19]. LDA assumes that a document is a mixture

of topics and each topic is a mixture of probabilities of words that are more likely to

2 http://www.ark.cs.cmu.edu/TweetNLP/

3 http://www.alchemyapi.com

http://www.ark.cs.cmu.edu/TweetNLP/
http://www.alchemyapi.com
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co-occur together under the topic (see Chapter 2). For example the topic “iPhone” is

likely to be associated with words like “display” and “battery”. Therefore, LDA-Topics

represent groups of words that are semantically related. To extract these latent topics

from our datasets we use an implementation of LDA provided by Mallet. LDA requires

defining the number of topics to extract before applying it on the data. To this end, we

ran LDA with different number of topics (e.g., 1 topic, 10 topics, 20 topics, 30 topics, etc).

Among all choices, 10 topics was the number that gave the highest sentiment classification

performance when the topics were incorporated into the feature space.

Note that all the above sets of features are combined with the original unigram features

when training the baseline sentiment classifiers for both entity- and tweet-levels.

5.4.4 Number of SS-Patterns in Data

As described earlier, extracting SS-patterns is a clustering problem that requires determin-

ing beforehand the number of clusters (patterns) to extract. To this end, we run k-means

multiple times with k varying between 1 and 100. We then plot the within-cluster sum

of squares for all the outputs generated by k-means. The optimum number of clusters is

found where an “elbow” appears in the plot [99]. For example, Figure 25 shows that the

optimum number of clusters for the GASP dataset is 17, which in other words, represents

the number of SS-Patterns features that our sentiment classifiers should be trained from.

Table 23 shows the number of SS-Patterns extracted by our model for each dataset.
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Figure 25: Within-cluster sum of squares for different numbers of clusters (SS-Patterns) in the

GASP dataset.
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Dataset No. of SS-Patterns

STS-Test 18

Sanders 20

OMD 23

HCR 22

STS-Gold 26

SSTD 24

WAB 17

GASP 17

Semeval 19

Table 23: Numbers of SS-Patterns extracted from all datasets.

5.5 evaluation results

In this section, we report the results from using our proposed SS-Patterns as features

for tweet- and entity-level sentiment classification tasks and compare them against the

baselines described in Section 5.4.3. All experiments in both evaluation tasks are done

using 10-fold cross validation.

5.5.1 Results of Tweet-Level Sentiment Classification

The first task in our evaluation aims to asses the usefulness of SS-Patterns as features for

binary sentiment classification of tweets (positive vs. negative).4 We use NB and MaxEnt

classifiers trained from word unigrams as the starting baseline models (unigram models).

We then compare the performance of classifiers trained from other types of features

against these unigram models.

Table 24 shows the results in accuracy and average F1 measure of both unigram models

across all datasets. The highest accuracy, 90.49%, is achieved on the GASP dataset using

MaxEnt, while the highest average F-measure, 84.08%, is obtained on the WAB dataset.

On the other hand, the lowest performance in accuracy, 72.36%, is obtained using NB

4 Unlike entity-level, we do not perform 3-way classification (positive, negative, netrual) in this task since not

all the 9 datasets contain tweets of neutral sentiment.
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on the SSTD dataset. Also, NB produces the lowest F1, 66.69%, on the HCR dataset. On

average, MaxEnt outperforms NB by 1.04% and 1.35% in accuracy and F1 respectively.

Hence, we use MaxEnt only to continue our evaluation in this task.

Dataset STS-Test Sanders OMD HCR STS-Gold SSTD WAB GASP SemEval Average

MaxEnt
Acc 77.82 83.62 82.90 77.02 86.02 72.84 84.12 90.49 82.11 81.88

F1 77.94 83.58 81.34 69.10 83.10 72.27 84.08 81.81 77.03 78.91

NB
Acc 81.06 82.66 81.57 74.27 84.22 72.36 82.79 88.16 80.44 80.84

F1 81.07 82.52 79.93 66.69 80.46 72.20 82.74 78.15 74.35 77.57

Table 24: Average classification accuracy (acc) and average harmonic mean measure (F1) obtained

from identifying positive and negative sentiment using unigram features.

Table 25 shows the results of MaxEnt classifiers trained from the 5 baseline sets of

features (see Section 5.4.3) as well as MaxtEnt trained from our proposed SS-patterns,

applied over all datasets. The table reports the average results in three sets of minimum,

maximum, and average win/loss in accuracy and F-measure relating to the results of the

unigram model in Table 24. For simplicity, we refer to MaxEnt classifiers trained from any

syntactic feature set as syntactic models and we refer to those trained from any semantic

feature set as semantic models.

It can be observed from these results in Table 25 that all syntactic and semantic models

outperform on average the unigram model in both accuracy and F-measure. However,

MaxEnt trained from our SS-Patterns significantly outperforms those models trained

from any other set of features. In particular, our SS-Patterns produce on average 3.05%

and 3.76 % higher accuracy and F1 than the unigram model. This is 2% higher perfor-

mance than the average performance gain of all syntactic and semantic models. More-

over, we get a maximum improvement in accuracy and F-measure of 9.87% and 9.78%

respectively over the unigram model when using our SS-Patterns for training. This is at

least 3.54% and 3.61% higher than any other model. It is also worth noting that on the

GASP dataset, where the minimum performance gain is obtained, MaxEnt trained from

SS-Patterns gives a minimum improvement of 0.70%, while all other models suffer an

average performance loss of -0.45%.

Finally, we notice that syntactic features, and more specifically the lexicon ones, are

highly competitive in comparison to the semantic features. For example, lexicon features

slightly outperform concept and LDA-Topic features. However, from the average per-

formance in Table 25 of both, syntactic and semantic types of features, we can see that
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Features

MaxEnt Classifier

Accuracy F1

Minimum Maximum Average Minimum Maximum Average

Syntactic

Twitter Features -0.23 3.91 1.24 -0.25 4.53 1.62

POS -0.89 2.92 0.79 -0.91 5.67 1.25

Lexicon -0.44 4.23 1.30 -0.38 5.81 1.83

Average-Syntactic -0.52 3.69 1.11 -0.52 5.33 1.57

Semantic

Concepts -0.22 2.76 1.20 -0.40 4.80 1.51

LDA-Topics -0.47 3.37 1.20 -0.68 6.05 1.68

SS-Patterns 0.70 9.87 3.05 1.23 9.78 3.76

Average-Semantic 0.00 5.33 1.82 0.05 6.88 2.32

Table 25: Win/Loss in Accuracy and F1 of using different features for sentiment classification on

all nine datasets.

semantic models are still surpassing syntactic models in both accuracy and F-measure by

0.71% and 0.75% on average respectively.

5.5.2 Results of Entity-Level Sentiment Classification

In this section, we report the evaluation results of using our SS-Patterns for entity-level

sentiment classification on the STS-Gold Entity dataset using the entity sentiment classi-

fier described in Section 5.4.2. Note that STS-Gold is the only dataset among the other

9 that provides named entities manually annotated with their sentiment labels (posi-

tive, negative, neutral). Therefore, our evaluation in this task is done using the STS-Gold

dataset only.

Features Accuracy
Positive Sentiment Negative Sentiment Neutral Sentiment Average

P R F1 P R F1 P R F1 P R F1

Unigrams 74.14 88.46 79.31 83.64 63.16 92.31 75 61.54 50 55.17 71.05 73.87 71.27

LDA-Topics 74.14 100 72.41 84 66.67 76.92 71.43 54.55 75 63.16 73.74 74.78 72.86

Semantic Concepts 75.86 80 82.76 81.36 75 69.23 72 68.75 68.75 68.75 74.58 73.58 74.04

SS-Patterns 77.59 100 79.31 88.46 61.11 84.62 70.97 64.71 68.75 66.67 75.27 77.56 75.37

Table 26: Accuracy and averages of Precision, Recall, and F1 measures of entity-level sentiment

classification using different features.

Table 26 reports the results in accuracy, precision (P), recall (R) and F1 of positive, neg-

ative and neutral sentiment classification performances from using unigrams, semantic
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concepts, LDA-Topics and SS-Patterns features. Generally, our SS-Patterns outperform all

other features including word unigrams in all measures, on average. In particular, merely

using word unigrams for classification gives the lowest performance, 74.14% in accuracy

and 71.27% in average F1. However, augmenting the feature space with SS-Patterns im-

proves the performance by 3.45% in accuracy and 4.1% in average F1. Our SS-Patterns

also outperform LDA-Topics and semantic concepts features by at least 1.73% and 1.33%

in accuracy and average F1 respectively.

As for per-class sentiment classification, we observe that all features produce high per-

formance on detecting positive entities in comparison with detecting negative or neutral

ones. For example, the average F1 for detecting negative entities is 72.35%, which is 12%

lower than the average F1 for detecting positive entities. Also, we notice that the perfor-

mance for detecting neutral entities is the lowest with 63.43% in F1, which is 8.9% and

20.9% lower than F1 for detecting negative and positive entities respectively.

Such varying performance might be due to the uneven sentiment class distribution in

the entity dataset. As can be noted from Table 21, positive entities constitute 50% of the

total number of entities while the neutral and negative entities form together the other

50%.

5.6 within-pattern sentiment consistency

Our approach, by definition, seeks to find SS-Patterns of terms of similar contextual

semantics and sentiment. Therefore, SS-Patterns are more informative when they are

consistent with the sentiment of their terms, that is, they consist mostly of terms of

similar contextual sentiment orientations. In this section, we further study the sentiment

consistency of our patterns on a set of 14 SS-Patterns extracted from the 58 annotated

entities in the STS-Gold dataset. The number of patterns was determined based on the

elbow method, as explained in Section 5.4.4.

Table 27 shows four of the extracted patterns along with their top 5 associated entities

and the true sentiment of these entities, available within the STSGold dataset. Patterns 3,

12 and 11 are strongly consistent since all entities within them have the same sentiment.

On the other hand, Pattern 5 has low sentiment consistency as it contains entities of

mixed sentiment orientations.

We systematically calculate the sentiment consistency of a given SS-Pattern ki as:
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consistency(ki) = arg max
s∈S

Es

E ′
(20)

where s ∈ S = {Positive,Negative,Neutral} is the sentiment label, Es is the number of

entities of sentiment s and E ′ is the total number of entities within Ki.
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Figure 26: Within-Cluster sentiment consistencies in the STS-Gold Entity dataset.

Figure 26 depicts the sentiment consistency of the 14 SS-Patterns. 9 patterns out of 14

are perfectly consistent with the sentiment of their entities while two patterns have a

consistency higher than 77%. Only patterns 2, 5 and 6 have a consistency lower than 70%.

Overall, the average consistency value across the 14 patterns reaches 88%.

Pattern.3 (Neutral) Pattern.12 (Positive) Pattern.5 (Mixed) Pattern.11 (Positive)

Entity True Sentiment Entity True Sentiment Entity True Sentiment Entity True Sentiment

Brazil Neutral Kardashian Positive Cancer Negative Amy Adams Positive

Facebook Neutral Katy Perry Positive Fever Negative Dallas Positive

Oprah Neutral Beatles Positive Headache Negative Riyadh Positive

Sydney Neutral Usher Positive McDonald Neutral Sam Positive

Seattle Neutral Pandora Positive Xbox Neutral Miley Cyrus Positive

Table 27: Example of three strongly consistent SS-Patterns (Patterns 3, 11, and 12) and one incon-

sistent SS-Pattern (Pattern 5), extracted from the STS-Gold Entity dataset.

5.6.1 Sentiment Consistency vs. Sentiment Dispersion

From the above, we observed that patterns 2, 5 and 6 have low sentiment consistency.

Looking at the characteristics of entities in these patterns, we notice that the average

dispersion of their SentiCircles is 0.18 on average. This is twice higher than the disper-

sion of the entities within the other 11 strongly consistent patterns. Overall, we found



5.7 discussion 137

a negative correlation of -0.42 between the sentiment consistency of SS-Patterns and the

dispersion of their entities’ SentiCircles. This indicates that SS-Patterns that contain en-

tities of highly dispersed SentiCircles are more likely to have low sentiment consistency.

Based on the SentiCircle model (Section 5.3), these high dispersed entities either occur

very infrequently or occur in different contexts of different sentiment in the tweet corpus.
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Figure 27: Number of times that entities in Patterns 2, 5 and 6 receive negative, positive and

neutral sentiment in the STS-Gold dataset.

To validate our above observation, we analyse the human sentiment votes on the 58

entities in STS-Gold dataset.5 Figure 27 shows entities under patterns 2, 5 and 6 along

with the number of times they receive negative, positive and neutral sentiment in tweets

according to the three human annotators. We observe that entities in patterns 2 and 6

occur very infrequently in tweets, yet with consistent sentiment. On the other hand, most

entities in Pattern 5 occur more frequently in tweets. However, they receive controversial

sentiment (i.e., opposite sentiment). For example, the entity “McDonald’s” occurs 3, 4 and

8 times with negative, positive and neutral sentiment respectively.

The above analysis shows the potential of our approach for generating patterns of

entities that indicate sentiment disagreement or controversy in tweets.

5.7 discussion

In this chapter we showed the value of our proposed approach in extracting semantic

sentiment patterns of words and using them for sentiment analysis on Twitter. We aimed

to address the question of whether incorporating SS-Patterns as features into supervised

5 Human votes on each entity are available to download with the STS-Gold dataset under http://tweenator.

com

http://tweenator.com
http://tweenator.com
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classifier training improves the sentiment classification performance at tweet and entity

levels.

Our patterns, by definition, are based on words’ similarities in a given context in tweets,

which makes them relevant to that specific context. This means that they might need up-

dating more frequently than context-independent patterns, i.e., patterns derived based

on pre-defined syntactic templates [130] or common-sense knowledge bases [25]. Hence,

a potential gain in performance may be obtained by combining context-independent pat-

terns with our patterns, which introduces a future direction to this work.

For tweet-level sentiment classification, SS-Patterns were evaluated on 9 Twitter datasets

with different results. For example, our SS-Patterns produced the highest performance

improvement on the STS-Test dataset (+9.78% over the baseline) while the lowest improve-

ment was obtained on the GASP dataset (+1.23%). Different factors might be behind such

variance. For example, our datasets differ in their sizes, sparsity degrees and sentiment

class distributions. A future direction of this work is to study the influence of these factors

on (i) the quality of the extracted patterns and (ii) their usefulness in sentiment analysis.

Analysing such influence potentially allows for adapting our extraction approach to the

characteristics of the Twitter dataset analysed, enabling better and more accurate pattern

extraction.

For entity-level sentiment classification, the evaluation was performed on one dataset

and by using a single classifier. We noticed that detecting positive entities was easier than

detecting neutral or negative entities. This might be due to: (i) the choice of the classifier

we used, or (ii) the imbalanced sentiment class distribution in the dataset. As mentioned

earlier, the number of positive entities is twice larger than the number of negative or

neutral ones in the evaluation dataset. Also, our classifier is based on using the back-

off strategy, which makes the incorporation of our patterns in sentiment classification

limited only to those cases where entities do not occur in tweets of a certain sentiment

class. Additional experimental work may help assess the effect of using balanced entity

datasets and different types of entity sentiment classifiers on the performance of our

patterns.

We showed that our approach was able to discover patterns of entities that could in-

dicate sentiment disagreement or controversy in tweets. Those patterns have shown low

consistency with the sentiment of entities within them. Thus, one may expect terms under

these patterns to negatively impact sentiment classifiers, and therefore, removing them
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from the feature space for sentiment classification might help improve the classification

performance. This creates a room for more research in this direction.

5.8 summary

Sentiment is often expressed via latent semantic relations, patterns and dependencies

among words in tweets. In this chapter we aimed to address the third research question

of this thesis: Could semantic sentiment patterns boost sentiment analysis performance? To

this end, we propose a novel approach that automatically captures patterns of words of

similar contextual semantics and sentiment in tweets. Unlike previous work on sentiment

pattern extraction, our proposed approach does not rely on external and fixed sets of

syntactical templates/patterns, nor requires deep analyses of the syntactic structure of

sentences in tweets.

We assessed the performance of our approach by first extracting SS-Patterns from sev-

eral Twitter datasets. After that, we validated the extracted patterns by using them as

classification features in both, tweet- and entity-level sentiment analysis tasks.

For tweet-level sentiment analysis we trained MaxEnt and NB classifiers from SS-

Patterns using 9 different Twitter datasets. For entity-level sentiment analysis we de-

signed our own sentiment classifier based on maximum likelihood estimation. The entity

sentiment classifier was evaluated on a single dataset of 58 manually annotated named-

entities.

Evaluation results showed that classifiers trained from our SS-Pattern in both sentiment

analysis tasks and on all datasets produce a consistent and superior performance over

classifiers trained from 6 state-of-the-art sets of features derived from both, the syntactic

and semantic representations of words.

We conducted an analysis of our SS-Patterns and showed that the efficiency of our pat-

terns in sentiment analysis is due to their strong consistency with the sentiment of terms

within them. Also, the analysis showed that our approach was able to derive patterns of

entities of controversial sentiment in tweets.





Part III

A N A LY S I S S T U D Y

“We must think things not words, or at least we must constantly translate our words

into the facts for which they stand, if we are to keep to the real and the true.”

Oliver Wendell Holmes Jr





6
S T O P W O R D R E M O VA L F O R T W I T T E R S E N T I M E N T A N A LY S I S

In previous chapters, we chose not to remove stopwords in our preprocessing of Twitter

data since stopwords tend to carry sentiment information as suggested by several works

on Twitter sentiment analysis.

However, the impact of removing stopwords on the performance of Twitter sentiment

classifiers remains debatable. Some works argue that stopword removal reduces the tex-

tual noise in tweets and consequently improves the sentiment classification performance.

In this chapter we study the impact of removing stopwords in the sentiment analy-

sis task on Twitter. In particular, we investigate whether removing stopwords helps or

hampers the effectiveness of Twitter sentiment classification methods. To this end, we

apply six different stopword identification methods to Twitter data from six different

datasets and observe how removing stopwords affects two well-known supervised senti-

ment classification methods. We assess the impact of removing stopwords by observing

fluctuations on the level of data sparsity, the size of the classifier’s feature space and its

classification performance.

Our conclusion is that stopwords, in most cases, do carry sentiment information and

removing them from tweets has a negative impact on the sentiment classification perfor-

mance.

6.1 introduction

The discussion brought in Chapters 1 and 2 showed that one of the key challenges

that Twitter sentiment analysis methods have to confront is the noisy nature

of Twitter generated data. Twitter allows only for 140 characters in each post,

which influences the use of abbreviations, irregular expressions and infrequent words.

This phenomena increases the level of data sparsity, affecting the performance of Twitter

sentiment classifiers [137].

A well known method to reduce the noise of textual data is the removal of stopwords.

This method is based on the idea that discarding non-discriminative words reduces the

143
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feature space of the classifiers and helps them to produce more accurate results [145].

This pre-processing method, widely used in the literature of document classification and

retrieval, has been applied to Twitter in the context of sentiment analysis obtaining con-

tradictory results. While some works support their removal [10, 110, 185, 152, 61, 82, 5]

others claim that stopwords indeed carry sentiment information and removing them

harms the performance of Twitter sentiment classifiers [136, 73, 96, 72].

In addition, most of the works that have applied stopword removal for Twitter senti-

ment classification use general stopwords lists, such as the Van stoplist [129], the Brown sto-

plist [54], etc. However, these stoplists have been criticised for: (i) being outdated [92, 149]

(a phenomena that may affect specially Twitter data, where new information and terms

are continuously emerging) and, (ii) for not accounting for the specificities of the domain

under analysis [7, 182], since non-discriminative words in one domain or corpus may

have discriminative power in different domain.

Aiming to solve the aforementioned limitations, several approaches have emerged in

the areas of document retrieval and classification that aim to dynamically build stopword

lists from the corpus under analysis. These approaches measure the discriminative power

of terms by using different methods including: the analysis of terms’ frequencies [163, 92],

the term entropy measure [149, 148], the Kullback-Leibler (KL) divergence measure [92],

and the Maximum Likelihood Estimation [7]. While these techniques have been widely

applied in the areas of text classification and retrieval, their impact in Twitter sentiment

analysis has not been deeply investigated.

In this chapter we aim to fill the above gap, by investigating the impact of stopword re-

moval in the sentiment analysis task on Twitter and whether removing stopwords affects

the performance of Twitter sentiment classifiers.

The research question we aim to address in this Chapter is:

RQ4 What effect does stopword removal have on sentiment classification performance?

To address the above question, we apply six stopword removal methods over Twitter

data from six different datasets (obtained from the literature of Twitter sentiment clas-

sification) and observe how removing stopwords affects polarity classification of tweets

(positive vs. negative). To this end, we use two well-known supervised sentiment clas-

sification methods, Maximum Entropy (MaxEnt) and Naive Bayes (NB). We assess the

impact of removing stopwords by observing fluctuations on: (i) the level of data sparsity,

(ii) the size of the classifier’s feature space and (iii), the classifier’s performance in terms

of accuracy and F-measure.
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Our results show that general stopword lists (classic stoplists) indeed hamper the per-

formance of Twitter sentiment classifiers. Regarding the use of dynamic methods, sto-

plists generated by mutual information produce the highest increase in the classifier’s

performance compared to not removing stopwords (1.78% and 2.54% average increase in

accuracy and F-measure respectively) but a moderate reduction on the feature space and

with no impact on the data sparsity. On the other hand, removing singleton words (those

words appearing only once in the corpus) maintain a high classification performance

while shrinking the feature space by 65% and reducing the dataset sparsity by 0.37% on

average. Our results also show that while the different stopword removal methods af-

fect sentiment classifiers similarly, Naive Bayes classifiers are more sensitive to stopword

removal than the Maximum Entropy ones.

The rest of the Chapter is organized as follows. Our analysis set up is presented in

Section 6.2. Results obtained from our analysis are presented in Section 6.3. Discussion is

covered in Section 6.4. Finally, we summarise our work in in this chapter in Section 6.5.

6.2 stopword analysis set-up

As mentioned in the previous section, our aim is to assess how different stopword re-

moval methods affect the performance of Twitter sentiment classifiers. To this end, we

assess the influence of six stopword removal methods over six Twitter corpora, using two

sentiment classifiers. These components are detailed in the following subsections.

6.2.1 Datasets

Stopwords may have different impact in different contexts. Words that do not provide

any discriminative power in one context may carry some semantic information in another

context. In this chapter we study the effect of stopword removal in six different Twitter

datasets obtained from the literature of Twitter sentiment classification:

• The Obama-McCain Debate dataset (OMD) [144].

• The Health Care Reform data (HCR) [152].

• The STS-Gold dataset [138].

• Two datasets from the Dialogue Earth project (GAS, WAB) [5].



146 stopword removal for twitter sentiment analysis

• The SemEval dataset [104].

Table 28 shows the total number of tweets and the vocabulary size (i.e., number of

unique word unigrams) within each dataset. Note that we only consider the subsets

of positive and negative tweets from these datasets since we perform binary sentiment

classification (positive vs. negative) in our analysis.1

Dataset No. of Tweets Vocabulary Size

OMD 1,081 3,040

HCR 1,354 5,631

STS-Gold 2,034 5,780

SemEval 5,387 16,501

WAB 5,495 10,920

GASP 6,285 12,828

Table 28: Statistics of the six datasets used in evaluation.

6.2.2 Stopword removal methods

The Baseline method for this analysis is the non removal of stopwords. In the following

subsections we introduce the stopword removal methods we use in our study.

6.2.2.1 The Classic Method

This method is based on removing stopwords obtained from general lists. Multiple lists

exist in the literature [129, 54]. But for the purpose of this work we have selected the

classic Van stoplist [129].

6.2.2.2 Methods based on Zipf’s Law (Z-Methods)

In addition to the classic stoplist, we use three stopword generation methods inspired

by Zipf’s law2 [188] including: removing most frequent words (TF-High) [92, 163] and re-

1 Details about the construction and the annotations of these datasets are provided in Appendix A
2 Zipf’s law [188] states that in a data collection the frequency of a given word is inversely proportional to its

rank.
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moving words that occur once, i.e. singleton words (TF1) [93]. We also consider removing

words with low inverse document frequency (IDF) [53, 92].

To choose the number of words in the stoplists generated by the aforementioned meth-

ods, we first rank the terms in each dataset based on their frequencies (or the inverse

document frequencies in the IDF method). Secondly, we plot the rank-frequency distri-

bution of the ranked terms. The size of the stoplist corresponds to where an “elbow”

appears in the plot. For example, Figure 28 shows the rank-frequency distribution of

terms in the GASP dataset with the upper and lower cut-offs of the elbow in the distri-

bution plot. From this Figure, the TF-High stoplist is supposed to contain all the terms

above the upper cut-off (50 terms approximately). On the other hand, the TF1 stoplist

should contain all the terms below the lower cut-off, which occur only once in tweets.
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Figure 28: Rank-Frequency distribution of the top 500 terms in the GASP dataset. We removed all

other terms from the plot to ease visualisation.

Figure 29 shows the rank-frequency distribution of terms for all datasets in a log-log

scale. Although our datasets differ in the number of terms they contain, one can notice

that the rank-frequency distribution in all the six datasets fits well the Zipf distribution.

6.2.2.3 Term Based Random Sampling (TBRS)

This method was first proposed by Lo et al. [92] to automatically detect stopwords from

web documents. The method works by iterating over separate chunks of data randomly

selected. It then ranks terms in each chunk based on their informativeness values using

the Kullback-Leibler divergence measure [41] as shown in Equation 21.
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Figure 29: Frequency-Rank distribution of terms in all the datasets in a log-log scale.

dx(t) = Px(t).log2
Px(t)

P(t)
(21)

where Px(t) is the normalised term frequency of a term t within a chunk x, and P(t)

is the normalised term frequency of t in the whole collection.

The final stoplist is then constructed by taking the least informative terms in all chunks,

removing all possible duplications.

6.2.2.4 The Mutual Information Method (MI)

Stopwords removal can be thought of as a feature selection routine, where features that

do not contribute toward making correct classification decisions are considered stop-

words and got removed from the feature space. The mutual information method (MI)

[41] is a supervised method that works by computing the mutual information between

a given term and a document class (e.g., positive, negative), providing an indication of

how much information the term can tell about a given class. Low mutual information

suggests that the term has low discrimination power and hence it should be removed.

Formally, the mutual information between two random variables representing a term

t and a class c is calculated as [180]:

I(T ;C) =
∑
t∈T

∑
c∈C

p(t, c)log
(
p(t, c)
p(t).p(c)

)
(22)

Where I(T ;C) denotes the mutual information between T and C and T = {0, 1} is the

set in which a term t occurs (T = {1}) or does not occur (T = {0}) in a given document.
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C = {0, 1} represents the class set of the document. If the document belongs to class c

then C = {1}, otherwise C = {0}.

Note that the size of the stoplists generated by both the MI and the TBRS methods is

determined using the elbow approach as in the case of Z-Methods, i.e., ordering terms

with respect to their informativeness values and search for where the elbow appears in

the rank-informativeness plot.

6.2.3 Twitter Sentiment Classifiers

To assess the effect of stopwords in sentiment classification we use two of the most popu-

lar supervised classifiers used in the literature of sentiment analysis, Maximum Entropy

(MaxEnt) and Naive Bayes (NB) from Mallet.3 We report the performance of both classi-

fiers in accuracy and average F-measure using a 10-fold cross validation. Also, note that

we use unigram features to train both classifiers in our experiments.

6.3 evaluation results

To study the effect of stopword removal in Twitter sentiment classification we apply the

previously described stopword removal methods and assess how they affect sentiment

polarity classification (positive / negative classification of tweets). We assess the impact

of removing stopwords by observing fluctuations (increases and decreases) on three dif-

ferent aspects of the sentiment classification task: the classification performance, measured

in terms of accuracy and F1-measure (F1), the size of the classifier’s feature space and the

level of data sparsity. Our baseline for comparison is not removing stopwords.

Figure 30 shows the baseline classification performance in accuracy (a) and F-measure

(b) for the MaxEnt and NB classifiers across all the datasets. As we can see, when no

stopwords are removed, the MaxEnt classifier always outperforms the NB classifier in

accuracy and F1 measure on all datasets.

3 http://mallet.cs.umass.edu/

http://mallet.cs.umass.edu/
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(b) Average F-measure.

Figure 30: The baseline classification performance in Accuracy and F1 of MaxEnt and NB classi-

fiers across all datasets.

6.3.1 Classification Performance

The first aspect that we study is how removing stopwords affects the classification perfor-

mance. Figure 31 shows the average performances across all datasets in accuracy (Figure

31:a) and F1 (Figure 31:b) obtained from the MaxEnt and NB classifiers by using the

previously described stopword removal methods. A similar performance trend can be

observed for both classifiers. For example, a significant loss in accuracy and in F1 is en-

countered when using the IDF stoplist, while the highest performance is always obtained

when using the MI stoplist. It also worth noting that using the classic stoplist gives lower

performance than the baseline with an average loss of 1.04% and 1.24% in accuracy and
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F-measure respectively. Removing singleton words (the TF1 stoplist) improves accuracy

by 1.15% and F1 by 2.65% compared to the classic stoplist. However, we notice that the

TF1 stoplist gives 1.41% and 1.39% lower accuracy and F1 than the MI stoplist respec-

tively. Nonetheless, generating TF1 stoplists is a lower cost process than generating MI

stoplists, since, no training from labelled data is required.
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Figure 31: Average Accuracy and F-measure of MaxEnt and NB classifiers using different sto-

plists.

It can be also shown that removing the most frequent words (TF-Hight) hinders the

average performance for both classifiers by 1.83% in accuracy and 2.12% in F-measure

compared to the baseline. The TBRS stoplist seems to outperform the classic stoplist, but

it just gives a similar performance to the baseline.
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Finally, it seems that NB is more sensitive to removing stopwords than MaxEnt. NB

faces more dramatic changes in accuracy than MaxEnt across the different stoplists. For

example, compared with the baseline, the drop in accuracy in NB is 9.8% higher than in

MaxEnt when using the IDF stoplist.

6.3.2 Feature Space

The second aspect we study is the average reduction rate on the classifier’s feature space

caused by each of the studied stopword removal methods. Note that the size of the

classifier’s feature space is equivalent to the vocabulary size for the purpose of this study.

As shown in Figure 32, removing singleton words reduces the feature space substantially

by 65.24%. MI comes next with a reduction rate of 19.34%. On the other hand, removing

the most frequent words (TF-High) has no actual effect on the feature space (a marginal

0.82%). All other stoplists reduce the number of features by less than 12%.
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65.24	  

0.82	  

11.22	  
6.06	  

19.34	  

Baseline	   Classic	   TF1	   TF-‐High	   IDF	   TBRS	   MI	  

Figure 32: Reduction rate on the feature space of the various stoplists.

Two-To-One Ratio

As we have observed, removing singleton words reduces the feature space up to 65%

on average. To understand what causes such a high reduction we analysed the number

of singleton words in each dataset individually. As we can see in Figure 33 singleton

words constitute two-thirds of the vocabulary size of all datasets. In other words, the

ratio of singleton words to non singleton words is two to one for all datasets. This two-to-
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one ratio explains the large reduction rate in the feature space when removing singleton

words.
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Figure 33: The number of singleton words to the number non singleton words in each dataset.

6.3.3 Data Sparsity

Dataset sparsity is an important factor that affects the overall performance of a typical

machine learning classifier [119]. In our previous work [137], we showed that Twitter data

are sparser than other types of data (e.g., movie review data) due to the large number of

infrequent words present within tweets. Therefore, an important effect of a stoplist for

Twitter sentiment analysis is to help reduce the sparsity degree of the data.

To calculate the sparsity degree of a given dataset, we first construct the term-tweet

matrix G ∈ Rm×n, where m and n are the number of the unique terms (i.e., vocabulary

size) and tweets in the dataset respectively. The value of an element ei,j ∈ G can be

either 0 (i.e., the term i does not occur in tweet j) or 1 (i.e., the term i occurs in tweet j).

According to the sparse nature of tweets data, matrix G will be mostly populated by zero

elements.

The sparsity degree of G corresponds to the ratio between the number of the zero

elements and total number of all elements [93] as follows:

Sd =

∑n
j Nj

n×m
(23)

Where Nj is the number of zero elements in column j (i.e., tweet j). Here Sd ∈ [0, 1],

where high Sd values refer to a high sparsity degree.
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Figure 34: Stoplist impact on the sparsity degree of all datasets.

Figure 34 illustrates the impact of the various stopword removal methods on the spar-

sity degree across the six datasets. We notice that our Twitter datasets are very sparse

indeed, where the average sparsity degree of the baseline is 0.997.

Compared to the baseline, using the TF1 method lowers the sparsity degree on all

datasets by 0.37% on average. On the other hand, the effect of the TBRS stoplists is

barely noticeable (less than 0.01% of reduction). It is also worth highlighting that all other

stopword removal methods increase the sparsity effect with different degrees, including

the classic, TF-High, IDF and MI.

From the above we notice that the reduction on the data sparsity caused by the TF1

method is moderate, although the reduction rate on the feature space is 65.24%, as shown

in the previous section. This is because removing singleton words reduces the number

of zero elements in G as well as the total number of elements (i.e., m×n) at very similar

rates of 66.47% and 66.38% respectively, as shown in Table 29. Therefore, the ratio in

Equation 23 improves marginally, producing a small decrement in the sparsity degree.

6.3.4 The Ideal Stoplist

The ideal stopword removal method is the one which helps maintaining a high classi-

fication performance, leads to shrinking the classifier’s feature space and effectively re-

ducing the data sparseness. Moreover, since Twitter operates in a streaming fashion (i.e.,

millions of tweets are generated, sent and discarded instantly), the ideal stoplist method

is required to have low runtime and storage complexity and to cope with the continuous
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Method Reduction(Zero-Elm) Reduction(All-Elm)

Calssic 3.398 3.452

TF1 66.469 66.382

TF-High 0.280 0.334

IDF 0.116 0.117

TBRS 3.427 3.424

MI 27.810 27.825

Table 29: Average reduction rate on zero elements (Zero-Elm) and all elements (All-Elm) of the six

stoplist methods.

shift in the sentiment class distribution in tweets. Lastly and most importantly, the hu-

man supervision factor (e.g., threshold setup, data annotation, manual validation, etc.) in

the method’s workflow should be minimal.

Table 30 sums up the evaluation results reported in the three previous subsections. In

particular, it lists the average performances of the evaluated stoplist methods in terms

of: (i) the sentiment classification accuracy and F1-measure, (ii) the reduction on the

feature space and the data sparseness, (iii) and the type of the human supervision re-

quired. According to these results, the MI and the TF1 methods show very competitive

performances comparing to other methods; the MI method comes first in accuracy and

F1 while the TF1 method outperforms all other methods in terms of feature space and

data sparseness reduction.

Recalling Twitter’s special streaming nature and looking at the human supervision

factor, the TF1 method seems a simpler and more effective choice than the MI method.

First, because the notion behind TF1 is rather simple - “stopwords are those which occur

once in tweets”, and hence, the computational complexity of generating TF1 stoplists is

generally low. Secondly, the TF1 method is fully unsupervised while the MI method

needs human supervision, including: (i) deciding on the size of the generated stoplists,

which is usually done empirically (see Section 6.2.2.4), and (ii) manually annotating tweet

messages with their sentiment class label in order to calculate the informativeness values

of terms as described in Equation 22.

Hence, in practical sentiment analysis applications on Twitter, where a large number

of tweets is required to be classified at high speed, a marginal loss in classification per-
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Stoplist Accuracy F1 R-Rate Data Sparsity Human Supervision

Classic 83.09 78.46 5.50 0.08 Unsupervised

TF1 84.50 80.85 65.24 -0.37 Unsupervised

TF-High 82.31 77.58 0.82 0.1 Threshold Setup

IDF 67.85 57.07 11.22 0.182 Threshold Setup

TBRS 84.02 79.60 6.06 -0.017 Threshold Setup

MI 85.91 82.23 19.34 0.037

Threshold Setup &

Data Annotation

Table 30: Average accuracy, F1, reduction rate on feature space (R-Rate) and data sparsity of the

six stoplist methods. Positive sparsity values refer to an increase in the sparsity degree

while negative values refer to a decrease in the sparsity degree. Human Supervision

refers to the type of supervision required by the stoplist method.

formance could be traded with simplicity, efficiency and low computational complexity.

Therefore, the TF1 method is recommended for this type of application. On the other

hand, in applications where the data corpus consists of a small number of tweets in a

specific domain or topic, any gain in the classification performance is maybe favoured

over the other factors.

6.4 discussion

We evaluated the effectiveness of using several of-the-shelf stopword removal methods

for polarity classification of tweets data. Our evaluation involved 6 Twitter datasets and

investigated the impact the stopword removal methods have on the level of data sparsity

of these datasets, the size of the classifier’s feature space, and the sentiment classification

performance.

One factor that may affect our results is the choice of the sentiment classifier and the

features used for classifier training. In this study we used MaxEnt and NB classifiers

trained from word unigrams. Therefore, the use other machine learning classifiers (e.g.,

support vector machines and regression classifiers) as well as new sets of features (e.g.,

word n-grams, part-of-speech tags, microblogging features) creates room for further in-

vestigation.
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Our study revealed that the ratio of singleton words to non singleton words is two to

one for all the six datasets. As described earlier, this ratio explains the high reduction

rate on the feature space when removing singleton words. However, further analysis

on whether the two-to-one ratio can be generalised to any Twitter dataset is yet to be

conducted. Such analysis can be done by randomly sampling a large amount of tweets

over different periods of time and studying the consistency of our ratio along all data

samples.

We showed the value of the TF1 method over other stopword removal methods. Nev-

ertheless, this method as well as the classic method or other frequency-based methods,

ignores the context of words when detecting their informative value in tweets. However,

the informative value of words, in many cases, relies on their semantics and context,

where words with low informative values in some context or corpus, may have discrimi-

nation power in a different context. For example, the word “like”, generally considered

as stopword, has an important sentiment discrimination power in the sentence “I like

you”. Thus, one may expect that methods, which consider words’ semantics when gener-

ating stopword lists, are likely to outperform those who rely only on frequency measures.

Thus, investigating the impact of semantics on stopword extraction and removal for sen-

timent analysis on Twitter introduces a direction for future research.

6.5 summary

In this chapter we investigated the issue of removing stopwords in Twitter sentiment

analysis, aiming at addressing the fourth question of this thesis: What effect does stopword

removal have on sentiment classification performance?. To this end, we studied how six differ-

ent stopword removal methods affect the sentiment polarity classification on Twitter.

Our results suggested that, despite its popular use in Twitter sentiment analysis, the

use of general (classic) stoplist has a negative impact on the classification performance.

We also observed that, although the MI stopword generation method obtains the best

classification performance, it has a low impact on both the size of the feature space and

the dataset sparsity degree.

A relevant conclusion of this study is that the TF1 stopword removal method is the

one that obtains the best trade-off, reducing the feature space by nearly 65%, decreasing

the data sparsity degree up to 0.37%, and maintaining a high classification performance.

In practical applications for Twitter sentiment analysis, removing singleton words is the
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simplest, yet most effective practice, which keeps a good trade-off between good perfor-

mance and low processing time.

Finally, results showed that while the different stopword removal methods affect senti-

ment classifiers similarly, Naive Bayes classifiers are more sensitive to stopword removal

than the Maximum Entropy ones.



Part IV

C O N C L U S I O N

It is difficult to be rigorous about whether a machine really ‘knows’, ‘thinks’, etc.,

because we are hard put to define these things. We understand human mental pro-

cesses only slightly better than a fish understands swimming.

John McCarthy





7
D I S C U S S I O N A N D F U T U R E W O R K

In this thesis we investigated the extraction and use of words’ semantics to enhance

sentiment analysis performance on Twitter. The research methodology that we fol-

lowed in our research investigation, as discussed in Chapter 1, consisted of the

following three steps:

1. Semantic Extraction: In this step, we extracted the conceptual and contextual seman-

tics of words from tweets. While we used existing tools to extract words’ concep-

tual semantics (Section 4.2.1), we proposed a new semantic representation model

for capturing words’ contextual semantics (Section 3.2).

2. Semantic Incorporation: here, we proposed methods and models for incorporating

and using both, the contextual and conceptual semantics of words in sentiment anal-

ysis (Section 3.3 and Section 4.2.2). We also proposed an approach for generating

semantic patterns of words and using them to train sentiment classifiers (Section

5.3).

3. Assessment: in this step we tested the performance of our proposed methods in

several sentiment analysis tasks on Twitter, we used multiple evaluation datasets,

and we compared our models against several state-of-the-art sentiment analysis

baselines (Sections 3.3.4, 4.2.4 and 5.5).

Results in most of the evaluation scenarios we experimented with demonstrated the

effectiveness of using our proposed semantic approaches for sentiment analysis, in com-

parison with other non-semantic or traditional approaches. Nevertheless, semantic ex-

traction and incorporation was not as trivial; we witnessed several issues and challenges

to our proposed approaches that may have had some impact on their performance.

In this chapter we discuss the main challenges that our approaches faced under each

of the above steps and present future work directions to tackle them.

161
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7.1 discussion

7.1.1 Extracting Words’ Semantics

The first task of our work in this thesis was extracting and capturing the semantics of

words from Twitter data. To this end, we followed two research directions. The first one

assumes that the semantics of words can be derived from words’ co-occurrence patterns

in tweets (aka, contextual semantics). The other direction suggests that the meaning of

words is directly associated with their explicit semantic concepts (aka, conceptual seman-

tics), which can be obtained from external knowledge sources, such as ontologies and

semantic networks.

We proposed several approaches for extracting both type of semantics from tweets.

Each comes with several opportunities for improvements, as will be discussed subse-

quently.

7.1.1.1 Extracting Contextual Semantics

Motivated by the distributional hypothesis; that words that occur in the same context

tend to have similar meanings, we proposed an approach called SentiCircles that captures

the contextual (or distributional) semantics of a word from its co-occurrence patterns in

a given context (Chapter 3).

One thing that may affect the performance of our approach is the granularity or the

level of the context, in which the semantics are extracted. In our case, the SentiCircle ap-

proach defines the context as a Twitter corpus or a collection of tweets. This means that

our approach aims to extract the semantics of a word at the corpus level (e.g., Trojan

Horse refers to Computer Virus in one corpus and refers to Greek mythology in another

corpus), but not at the tweet or sentence level. However, there are cases where the se-

mantics of a word changes from one tweet to another even in the same Twitter corpus.

These cases are more likely to happen when the corpus under analysis is too generic and

reflects multiple topics. Extracting fine-grained contextual semantics of a word in such

corpora requires capturing the context by SentiCircles at the tweet and even the sentence

level. One solution for this is to apply the SentiCircle approach to each tweet, where

the word occurs, separately. This means building a SentiCircle for each occurrence of

the word in each tweet. This solution may allow (i) distinguishing between the different

contexts the word has in different tweets, and (ii) calculating the semantics of the word
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with respect to each of these contexts independently. However, building multiple Senti-

Circles for each word in the corpus may increase the runtime complexity of our approach.

Moreover, some of these SentiCircles may not carry enough semantic information due the

lack of context in some tweets or due to their sparseness. Including these SentiCircles in

the analysis may affect the performance of our approach. A fix to this issue could be

by enriching words’ SentiCircles with features extracted from the syntactic, linguistic or

semantic representation of the terms within them (e.g., POS tags, Twitter features, LDA

topics, etc.). Exploring these solutions and their impact on our approach creates room for

future work.

7.1.1.2 Extracting Conceptual Semantics

The second type of semantics we investigated in this thesis is conceptual semantics, i.e.,

the semantic concepts (e.g., Virus/Disease) of named entities (e.g, Ebola) found in tweets

(Chapter 4).

To extract this type of semantics we used several off-the-shelf semantic entity extractors

including Zemanta,1 OpenCalais2 and AlchemyAPI3 (see Section 4.2.1).

Unlike SentiCircle, which functions at corpus level, we ran these extractors on each

tweet in our Twitter corpora individually, in order to extract the semantic concepts in

each given tweet.

However, one thing that may impact the effectiveness of using this approach is the

abstraction level of the semantic concepts retrieved. In many cases, these concepts were

too abstract (e.g. Person) which were equally used for mentions of ordinary people, as

well as for famous musicians or politicians (see Section 4.2.3.2). For the tweet “i wish i

could go to france and meet president Obama haha”, AlchemyAPI provided the con-

cept Person to represent “president Obama”, whereas Zemanta identified him with the

concept /government/politician which is more specific. Increasing the specificity of such

concepts, perhaps with the aid of DBpedia, or using multiple entity extractors, might

lead to better semantic incorporation and consequently to increasing the sentiment anal-

ysis performance.

1 http://www.zemanta.com/

2 http://www.opencalais.com/

3 http://www.alchemyapi.com/

http://www.zemanta.com/
http://www.opencalais.com/
http://www.alchemyapi.com/
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7.1.1.3 Extracting Stopwords

Another aspect of improving the performance of sentiment classifiers on Twitter, is to find

words that have a low informativeness value, which are also known as stopwords, and

remove them from the analysis in order to reduce the noise of tweets and consequently

improve sentiment analysis performance.

In Chapter 6, we investigated the problem of extracting and removing stopwords from

tweets and its impact on sentiment analysis performance. Results showed that stopword

removal, based on general stoplists, tends to hinder the performance of Twitter sentiment

classifiers (see Section 6.3.1). Therefore, in this thesis we chose not to remove stopwords

from our Twitter datasets.

However, our analysis in Chapter 6 showed that sentiment analysis may benefit from

removing stopwords under specific conditions. For example, removing words with low

mutual information (Section 6.2.2.4) or with low KL divergence values (Section 6.2.2.3)

from tweets improved the classification performance by up to 2.8% over using general

stopword lists. Investigating the impact of these stopword removal methods on the per-

formance of our semantic approaches introduces a direction for future research.

7.1.2 Incorporating Words’ Semantics in Sentiment Analysis

In the second task of our work, we proposed several methods for using both, the con-

textual and conceptual semantics of words with lexicon-based and supervised machine

learning sentiment analysis approaches in order to enhance their performance (check

Sections 3.3, 4.2.2 and 5.4), as will be discussed subsequently.

7.1.2.1 Incorporating Semantics into Lexicon-based Approaches

1. Incorporating Contextual Semantics: We proposed several lexicon-based methods, based

on SentiCircle, for entity- and tweet-level sentiment analysis, as described in Section 3.3.

Since SentiCircle functions at the corpus level, the sentiment assigned by the Median

method (see Section 3.3.1) to an entity represents its aggregated sentiment score in the

whole corpus. Hence, our method is not tuned to identifying the sentiment of an entity

within a specific tweet in the corpus analysed. As discussed earlier in Section 7.1.1.1, a

resolution for this issue is to consider applying the SentiCircle approach to the specific
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tweet where the entity occurs. This in turn may allow our proposed methods to capture

the sentiment of entities at the tweet level rather than at the corpus level.

To calculate the overall sentiment of a tweet, our approach updates the sentiment ori-

entation and strength of all words in the tweet (Section 3.3.2). However, it might be the

case, where the sentiment of some terms in different tweets is often stable and does

not need to be changed by changing context. For example, both occurrences of the

word “excellent” in the tweet “excellent overview: The State of #JavaScript in

2015..”, and the tweet “good friends. excellent food - High End fashion show...”

have positive sentiment regardless of the different contexts of this word in both tweets. A

future work could be studying which type of terms change their sentiment, and which

ones are more stable. This might help enhance the runtime performance of our approach

by filtering out stable terms from the analysis. One way in which we may be able to iden-

tify a stable term is, for example, by looking at its sense(s) in WordNet since the term’s

associated sentiment might be related to its sense in a certain text. For example, the word

“excellent” has one sense only in WordNet, and as such, its associated sentiment should

be stable. On the other hand, the word “great” has 7 senses (e.g., “large”, “outstanding”,

“heavy”), which often results in different sentiments due to these different senses.

2. Incorporating Conceptual Semantics: To incorporate conceptual semantics into lexicon-

based sentiment analysis we investigated adding conceptual semantics to the SentiCircle

representation and studying their impact on the overall sentiment detection performance

(Section 4.3.1). In general, the detection performance in F-measure increased over using

the raw SentiCircle representation. However, a marginal loss in accuracy was observed

in two out the three datasets we experimented with. This might be due to the generality

of some of the extracted concepts (e.g.,“Person”, “Company”), which were applied to

many terms of opposite sentiment. These concepts were regarded as normal terms in

tweets, and had their own SentiCircles, which might have had a negative impact on the

extraction of sentiment. A future direction might be to extract more specific concepts,

using other concept extraction methods, as described in Section 7.1.1.2.

7.1.2.2 Incorporating Semantics into Machine Learning Approaches

We incorporated both, the contextual and conceptual semantics of words by using them

as features to train different supervised classifiers. Incorporating conceptual semantics

was realised by means of the semantic concepts of named entities in tweets (see Chapter
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4). On the other hand, we incorporated the contextual semantics of words by using the

patterns (semantic patterns) they belong to as training features (see Chapter 5).

The choice of the sentiment classifier is one factor that affects our analysis. In this thesis,

we chose to incorporate our features into two machine learning classifiers; Naive Bayes

and Maximum Entropy. Our choice was based on the efficiency, usability and popularity

of these classifiers in previous works on sentiment analysis. However, machine learning

classifiers are not limited to these two only, as shown in Chapter 2. For example, senti-

ment classification, based on support vector machines (SVM), have shown to outperform

both, NB and MaxEnt classifiers in some previous works (Section 2.2.1.1). Testing our

features against these classifiers creates room for future research.

Another factor that impacts our analysis is the incorporation method used. In Section

4.2.2 we proposed incorporating conceptual semantics into NB classifier using three meth-

ods; by replacement, augmentation and interpolation. The interpolation method proved

its efficiency over all other methods. However, in Chapter 5 we used the augmentation

method instead of the interpolation method for incorporating contextual semantic pat-

terns. This is because the interpolation method is designed to work with Bayesian mod-

els, and in our experiments in Chapter 5 we used MaxEnt classifier since it showed to

outperform NB classifier, when trained from contextual semantic features.

In all incorporation methods, all extracted semantic features were added to the anal-

ysis. However, it is likely that the contribution of each feature towards predicting the

correct sentiment of a tweet or a word differs from other features. As such, identifying

and filtering those features of low contribution (by using the information gain criterion,

for example) might help shrink the feature space of classifiers besides improving the

sentiment classification performance.

7.1.2.3 Words’ Semantics for Adapting Sentiment Lexicons

In Chapter 3 we investigated the use of contextual semantics to adapt general-purpose

sentiment lexicons. To this end, we proposed a rule-based method, based on SentiCir-

cle, to amend the prior sentiment of words in Thelwall-Lexicon with their contextual

sentiment, as explained in Section 3.4.

The evaluation of our adaptation method was done by analysing the performance of

the adapted lexicon against the original one in tweet-level polarity classification (positive

vs. negative), as explained in Section 3.4.1. However, our proposed method can assign
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neutral sentiment to words. Therefore, a future direction might be to evaluate the adapted

lexicon in subjectivity classification (subjective vs. neutral).

We performed a quantitative analysis on the adapted lexicon and showed that 96% of

the words in Thelwall-Lexicon were affected by our adaptation method, i.e., these words

were assigned new sentiment orientations and/or new sentiment strength (see Section

3.4.1, Table 9). A direction for future research is to conduct a qualitative analysis in order

to check the percentage of these words that were correctly assigned contextual sentiment

to those that were not.

7.1.3 Assessment and Results

In the experiments conducted throughout this thesis, we tested our proposed approaches

in three popular sentiment analysis tasks on Twitter, we used several Twitter datasets

and sentiment lexicons, and compared against several state-of-the-art methods. Below

we discuss the main issues we faced in our assessment.

Evaluation Datasets: Evaluation at the tweet-level was done on multiple datasets of vary-

ing sizes, and topical-focus. Overall, results showed that our semantic approaches im-

proved sentiment analysis performance upon other baseline methods we experimented

with. However, the results in some parts were not as conclusive (see Sections 3.3.4 and

4.2.4). This is probably due to the characteristics of the dataset used, combined with the

type of the semantics extracted. For example, our evaluation in Chapter 3 suggested that

extracting and using contextual semantics in sentiment analysis is more efficient and ac-

curate when the dataset analysed is of a specific topic focus. This is not surprising since

our extraction approach, as mentioned earlier, looks at the general context (topic), which

the dataset represents, when extracting words’ contextual semantics and sentiment. On

the other hand, our conceptual semantic approach (Chapter 4) seems to perform better on

datasets of larger sizes and general diverse topic coverage. These observations are yet to

be empirically confirmed by, for example, applying our approaches to more datasets and

examine the consistency of their performance patterns against the datasets’ properties.

The sentiment class distribution of the dataset also seems to impact the performance of

our approaches, especially when extracting the sentiment of individual words and named

entities. Specifically, results in Chapters 3, 4 and 5 showed that sentiment classification

performance tends to be better with instances (i.e., tweets and entities) of sentiment labels
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belonging to the dominant sentiment class in the dataset analysed. This is not surprising

given that the sentiment class distribution in all our datasets is imbalanced. However, we

believe that the evaluation of our approaches on the datasets used in this thesis gives a

good impression of the performance we would expect by using our approaches in real

life scenarios. This is because in a microblogging platform like Twitter, sentiment analy-

sis approaches are likely to face chunks of tweets of skewed sentiment class distribution

rather than balanced ones. Moreover, baselines in all our experiments were also evaluated

on the same imbalanced datasets used to evaluate our approaches. In most cases, our ap-

proaches were found to outperform these baselines, which also denotes the effectiveness

of our approaches over other baselines on such datasets.

A room for future work is to evaluate the proposed approaches in this thesis with more

balanced datasets in order to assess their performance.

Analysis of Neutral Sentiment: In Chapter 3, our analysis at entity-level focused on

polarity (i.e., positive vs. negative) and subjectivity (polar vs. neutral) detections. The

sentiment of an entity in our work is considered neutral if the entity occurs either with

no polar words in tweets, or with approximately an equal number of positive and nega-

tive words. Although the convention of neutral sentiment is typically defined based on

these two cases, few applications and research works in the literature use the latter case

as an indication of words/entities that reflect sentiment disagreement or controversy in

tweets. Therefore, room for future work is to assess the performance of our approach on

each case separately.

Baseline Methods: Cross-comparison in our evaluation was mostly done against non-

semantic sentiment analysis baselines that are widely used on Twitter. Evaluation against

semantic baselines was limited to those that rely on contextual semantics (e.g., LDA base-

lines). We did not compare against existing conceptual semantic baseline methods (e.g.,

Sentilo [126], Sentic Computing [25]) since these methods are not tailored to Twitter data

(see Chapter 2), and therefore, evaluation results would have been biased toward our

semantic approaches.
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7.2 future work

Based on the discussion presented in the preceding section, we summarise our plan for

future work by introducing the following research questions:

• Does using more fine-grained semantics enhance sentiment analysis performance

further?

As mentioned before, our semantic extractors in this thesis work at a very generic

level, i.e., contextual semantics were extracted at the corpus level, and conceptual

semantics were too abstract (person, company, etc.). Hence, the first question to

be addressed beyond the work of this thesis is whether extracting and incorporat-

ing more specific and fine-grained semantics in our sentiment analysis approaches

leads to increases in their performance.

To answer this question, one would first improve the performance of the semantic

extractors used in this thesis. For example, a future version SentiCircle should allow

for contextual semantic extraction at tweet- and sentence-level. As explained in

Section 7.1.1.1, this can be done by applying the SentiCircle approach on individual

tweets rather than on the whole corpus. Also, enriching SentiCircle with words’

syntactic or semantic features (e.g., POS tags, word synonymous, topic features,

etc.), considering words’ order in tweets, and looking at social context (e.g., the

demographic and location information about the tweet’s poster, the number of the

poster’s followers/followee, etc.), may all help capturing the specific semantics and

sentiment of words in a given tweet or sentence.

Also, new tools for extracting specific semantic concepts should be used or even

developed rather than using third-party commercial tools that provide extracting

generic and abstract concepts only. Named-entity recognition (NER) on Twitter,

based on topic modelling, such as [131], or based on machine learning classifiers,

such as [168], can be used to this end. As for named-entity linking (i.e., mapping

entities to their proper semantic concepts in a given knowledge base), recent state-

of-the-art approaches, such as YODIE [43],4 can be used for this task.

• How to use semantics in more-fine grained sentiment analysis subtasks and lev-

els?

4 https://gate.ac.uk/applications/yodie.html

https://gate.ac.uk/applications/yodie.html
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Sentiment analysis is not limited to polarity and subjectivity detections, nor func-

tions at tweet- and entity-level only, but also breaks down into more fine-grained

subtasks and levels, such as detecting emotional states in text (e.g, “anger”, “joy”,

“excitement”, etc.), and sentiment of aspects (i.e., detecting the sentiment of prod-

ucts’ aspects) (see Section 2.1). However, most existing approaches to these prob-

lems, as discussed in Chapter 2, are still non-semantic.

A room for future work is to investigate new techniques for updating our seman-

tic approaches to perform emotion and aspect-level sentiment analysis tasks. For

emotion detection, external emotion lexicons, such as [100], can be used to detect

the type and intensity of emotions expressed via words in tweets. This information

can be used in our approaches in different ways. For example, the prior sentiment

of words in our SentiCircle representation (Section 3.2.2.2) can be replaced with

the words’ prior emotion score. Also, for our supervised sentiment classification

approaches (Section 4.2.2), emotion information can be used as features together

with semantic concepts to train sentiment classifiers.

As for aspect-level sentiment detection, detecting the sentiment of an aspect in a

tweet requires applying several text processing, and semantic representation and

reasoning techniques (e.g., representing the tweet using semantic networks or con-

ceptual graphs) in order to define the syntactic and semantic roles of the words in

that tweet (e.g., who is the opinion holder? what is the targeted object or aspect?

what is the sentiment expressed towards that aspect?).

• Do our semantic sentiment approaches generalise to other Mircoblogging plat-

forms?

In this thesis, we experiment with Twitter data as a case study of microblogging

data. Our approaches should be theoretically tailorable to data from other mi-

croblogging platforms and social networks (e.g., Facebook, Tumblr, etc), since they

all share similar characteristics (e.g., the heavy use abbreviations, malformed words

and emotions, lack of sentence structures, etc.). However, a proper experimental

work is yet to be conducted in order to empirically check the applicability, and per-

formance of our approaches when using data from these platforms in comparison

to Twitter.

A prerequisite for such investigation is the availability of gold-standard microblog-

ging corpora required for evaluation. Currently, the number of such corpora in the
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literature is quite limited. This is because the sentiment analysis problem on non-

Twitter microblogging platforms (e.g., Facebook) is far less popular than the prob-

lem of sentiment analysis on Twitter. Building and annotating such gold-standards,

although challenging, might be therefore required.

Posts generated on different microblogging platforms often have different character

limits. For example, unlike the 140-character limit on Twitter, Facebook allows to

share status updates up to 63,206 characters long.5 Long status updates may contain

multiple paragraphs, sentences or phrases of probably different sentiment orienta-

tions. Therefore, our approaches might need updating before being applied to such

cases. One method to extract the overall sentiment of a long post in general is by

dividing it into set of sentences, detecting the sentiment of each sentence solely, and

averaging after that the sentiment of all these sentences.

• Could our semantic approaches be used for stream-based sentiment analysis?

Our approaches were designed and tested to work in off-line mode, that is, by ex-

tracting sentiment from Twitter corpora of fixed sizes and limited number of tweets.

In the real word, however, Twitter works in streaming fashion, where tweets are

generated, posted and discarded in real time. This might be challenging to our

approaches since they need to be constantly fed with new tweets to keep track of

potential sentiment drifts in Twitter streams and provide up-to-date sentiment anal-

ysis. Hence, another potential future direction is to adapt our approaches to work in

streaming mode. This requires certain alteration and optimization in order reduce

their time-complexity and improve their scalability. For our SentiCircle approach,

the size of the Term-Index used for building SentiCircles (see Section 3.2.2) should

be kept small. This can be done by keeping only trending terms in the stream and

removing fading ones. Also, words’ SentiCircles need to be updated directly with

new terms rather than re-computing them.

For our machine learning models (Chapters 4 and 5), classifier learning should be

done incrementally over data, meaning that, our classifiers must be constantly re-

trained with the continuous arrival of new data. In order to lower the reliance large

labelled tweets for classifier retraining, we can start with a small training dataset

and then continuously augment new labelled tweets in the training dataset. New

5 http://mashable.com/2011/11/30/facebook-status-63206-characters/

http://mashable.com/2011/11/30/facebook-status-63206-characters/
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labelled tweets, in turn, can be obtained in different ways, such as using association

rules [3, 146] or distant supervision [60] (see Chapter 2).

• How to improve evaluation of our approaches?

Several issues, as discussed in the previous section, may impact our evaluation such

as the choice of evaluation datasets, the type of sentiment analysis approach and

evaluation baselines. Although a rigours evaluation was performed in this thesis,

room for improving the assessment of our approaches would be by considering the

following evaluation settings:

– use new datasets of large size and balance sentiment class distribution.

– design and experiment with our semantics using hybrid or ensemble classifiers

that use multiple learning algorithms for sentiment analysis.

– compare against more semantic sentiment analysis baselines.



8
C O N C L U S I O N

The main goal of this thesis was to enhance sentiment analysis performance of

microblogs. To achieve this goal we chose Twitter as a representative case study

of microblogging platforms and investigated the role of words’ semantics on

the performance of multiple approaches to sentiment analysis on Twitter. To this end, we

investigated the following four research questions:

RQ1 Could the contextual semantics of words enhance lexicon-based sentiment analysis

performance?

RQ2 Could the conceptual semantics of words enhance sentiment analysis performance?

RQ3 Could semantic sentiment patterns boost sentiment analysis performance?

RQ4 What effect does stopword removal have on sentiment classification performance?

Our main intuition/motivation behind all our research work in this thesis is that tra-

ditional approaches to sentiment analysis on Twitter are semantically weak, since they

do not account for the semantics of words when calculating their sentiment. This usu-

ally limits sentiment analysis performance, given that the sentiment of words is often

associated with their semantics within the context they occur, as described in Chapter 2.

In the first part of this thesis (Chapters 3, 4, 5) we investigated different approaches

for extracting and incorporating contextual and conceptual semantics into both machine

learning and lexicon-based sentiment analysis approaches. We experimented with our

approaches in three sentiment analysis tasks on Twitter; tweet-level sentiment analysis;

entity-level sentiment analysis and context-aware sentiment lexicon adaptation. To this

end, we used multiple Twitter datasets (check Appendix A) and sentiment lexicons, and

compared the performance of our approaches against several state-of-the-art baselines. In

the second part (Chapter 6) we turned our attention towards studying the effectiveness of

several stopword removal methods for sentiment analysis of tweets and explored whether

removing those words of weak semantics or low informativeness values (stopwords) in a

given context influences the performance of Twitter sentiment classifiers.

173
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Our main conclusion in this thesis is that the semantics of words should be considered

when calculating their sentiment or the sentiment of tweets they belong to. Approaches

that extract and use words’ semantics for sentiment analysis surpass those that merely

rely on affect words, or syntactic or linguistic structures that unambiguously reflect sen-

timent in tweets.

In this Chapter we summarise our main conclusions, contributions and findings with

regards to our work under each of the above four research questions.

8.1 contextual semantics for sentiment analysis of twit-

ter

In Chapter 3, we explored extracting and using the contextual semantics of words in

lexicon-based sentiment analysis on Twitter. We aimed to answer the first research ques-

tion of this thesis:

RQ1 Could the contextual semantics of words enhance lexicon-based sentiment analysis

performance?

To this end, we proposed SentiCircle, a semantic representation model that automat-

ically captures the contextual semantics of a word from its co-occurrence patterns in a

given Twitter corpus, and updates its sentiment orientation and sentiment strength re-

spectively.

Based on SentiCircles, we built a lexicon-based approach to detect the sentiment at

both, entity- and tweet-level. We evaluated our approach using 3 Twitter datasets and

3 sentiment lexicons, and compared its performance against three baseline methods in

both tasks. Results showed that our approach at the entity-level outperformed all other

baselines by 30-40% for subjectivity detection, and by 2-15% for polarity detection in

average F-measure.

For tweet-level sentiment detection, results were competitive but inconclusive when

comparing to state-of-art SentiStrength, and varied from one dataset to another. SentiCir-

cle outperformed SentiStrength in accuracy by 4-5% in two datasets, and in F-measure

by 1% in one dataset only.

We also proposed a rule-based approach, based on SentiCircles to amend the prior sen-

timent orientations and strengths of words in general-purpose sentiment lexicons with

respect to the words’ contextual sentiment. Evaluation was done on a single sentiment
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lexicon using three Twitter datasets. Results showed that the adapted lexicons, when

used for polarity classification of tweets, improved accuracy by 1-2%, and F-measure by

1-4% in two datasets over using the original lexicon. In the third dataset, our adapted

lexicons gave similar accuracy, but 1.36% lower F-measure than the original lexicon.

Our main conclusion behind this line of work is that the contextual semantics of words,

when extracted from tweets and incorporated into lexicon-based approaches, tend to

improve sentiment analysis performance over traditional, non-semantic approaches on

Twitter.

8.2 conceptual semantics for sentiment analysis of twit-

ter

In Chapter 4 we investigated the second research question of this thesis:

RQ2 Could the conceptual semantics of words enhance sentiment analysis performance?

To this end, we proposed several methods for extracting and using the semantic con-

cepts (e.g. person, company, city), which represent the entities (e.g. Steve Jobs, Vodafone,

London) extracted from tweets, as features in both supervised and lexicon-based ap-

proaches to increase their performance in tweet-level sentiment analysis.

For supervised sentiment classification, we used Naive Bayes as a case study of super-

vised classifiers and investigated three methods of incorporating our proposed semantic

features into this classifier: by replacement, by augmentation, and by interpolation. We

experimented with three Twitter datasets and compared the performance of semantic fea-

tures against two type of features extracted from the syntactic representation of words.

We also compared against sentiment-topic features. Results showed that the semantic

features outperformed, on average, both types of syntactic features in positive and neg-

ative classification of tweets by 5-6% and 1-4% in F-measure, respectively. Compared to

sentiment-topic features, our semantic features improved performance on negative senti-

ment classification by around 1%, but gave 1.5% lower performance on positive sentiment

classification.

For lexicon-based sentiment analysis, we enriched the SentiCircle representation with

conceptual semantics using the augmentation method and performed sentiment analysis

at tweet-level using the lexicon-based approach built on top of SentiCircle. Our average
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evaluation results across three Twitter datasets showed performance improvement of

0.39% in F-measure, compared to using SentiCircle with no semantic enrichment.

Overall, our findings in this line of work demonstrated the high potential of incorpo-

rating conceptual semantics as features in Twitter sentiment analysis. Our experimental

results suggested that conceptual semantic features outperforms other types of features

when the datasets being analysed are large and cover a wide range of topics.

8.3 semantic patterns for sentiment analysis of twit-

ter

While in Chapters 3 and 4 we investigated using the contextual and conceptual semantics

of individual words in sentiment analysis, in Chapter 5 we proposed an approach for

extracting patterns of words of similar contextual semantics and sentiment in tweets (SS-

Patterns) and using these patterns to improve sentiment analysis performance. Our aim

behind this work was to address the third research question of this thesis:

RQ3 Could semantic sentiment patterns boost sentiment analysis performance?

We experimented with our approach on 9 Twitter datasets and validated the extracted

patterns by using them as classification features in entity- and tweet-level sentiment anal-

ysis tasks. To this end, we trained several supervised classifiers from our patterns and

compared their performance against models trained from 6 state-of-the-art syntactic and

semantic type of features. Evaluation results showed that our patterns consistently out-

performed all other sets of features in both, entity- and tweet-level sentiment analysis

tasks. At the tweet level, SS-Patterns improved the classification performance by 1.94%

in accuracy and 2.19% in F-measure on average. Also, at the entity level, our patterns

produced 2.88% and 2.64% higher accuracy and F-measure than all other features respec-

tively.

We also conducted a quantitative and qualitative analysis on a sample of our extracted

patterns, and showed that our patterns are strongly consistent with the sentiment of

words within them. Also, our analysis showed that our approach was able to find patterns

of entities indicating sentiment controversy or disagreement in tweets.

Our findings in Chapter 5 suggest that contextual semantic and sentiment similarities

of words tend to exist in tweets, by means of certain patterns. These patterns, when used
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as features to train sentiment classifiers, outperform other types of features extracted

from the syntactic or semantic representations of words.

8.4 analysis on stopword removal methods for senti-

ment analysis of twitter

In Chapter 6 we investigated the fourth and last research question of this thesis:

RQ4 What effect does stopword removal have on sentiment classification performance?

Our goal from addressing the above question was to explore how words of low infor-

mativeness values or weak semantics (aka stopwords) in a given Twitter corpus impact

sentiment analysis performance. To achieve this goal, we applied six stopword removal

methods to tweets from six Twitter datasets and analysed how removing stopwords af-

fects two supervised sentiment classification methods, Maximum Entropy (MaxEnt) and

Naive Bayes (NB). We assessed the impact of removing stopwords by observing fluctua-

tions on: (i) the level of data sparsity, (ii) the size of the classifier’s feature space and (iii),

the classifier’s performance in terms of accuracy and F-measure.

Our results indicated that removing stopwords based on using general stopword lists

lowered the sentiment classification performance by 1.04% in accuracy, and 1.24% in and

F-measure. Nevertheless, our literature survey showed that this removal method was

widely used in previous works (see Section 6.1).

On the other hand, our results showed that identifying and removing stopwords based

on supervised learning methods produced the highest sentiment classification perfor-

mance, but gave a moderate reduction on the feature space and had no impact on the

data sparsity. Lastly, our results showed that removing singleton words is the method

that obtains the best trade-off, reducing the feature space and data sparsity degree sub-

stantially, while maintaining a high classification performance.
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E VA L U AT I O N D ATA S E T S F O R T W I T T E R S E N T I M E N T A N A LY S I S

We present 9 Twitter datasets that we have used in different parts of this thesis. Our

choice of using these specific datasets in our analysis was because they are: (i) publicly

available to the research community, (ii) manually annotated, providing a reliable set

of judgements over the tweets and, (iii) used to evaluate several sentiment sentiment

analysis models. Tweets in these datasets have been annotated with different sentiment

labels including: Negative, Neutral, Positive, Mixed, Other and Irrelevant. Table 31 displays

the distribution of tweets in the eight selected datasets according to these sentiment

labels.

Variations of the evaluation datasets are due to the particularities of the different sen-

timent analysis tasks. Sentiment analysis on Twitter, as discussed in Chapter 2, spans

multiple tasks, such as polarity detection (positive vs. negative), subjectivity detection

(polar vs. neutral) or sentiment strength detection. These tasks can also be performed

either at tweet level or at target (entity) level. In the following subsections, we provide an

overview of the available evaluation datasets and the different sentiment tasks for which

they are used.

Dataset No. of Tweets #Negative #Neutral #Positive #Mixed #Other #Irrelevant

STS-Test 498 177 139 182 - - -

STS-Expand 1000 527 - 473 - - -

HCR 2,516 1,381 470 541 - 45 79

OMD 3,238 1,196 - 710 245 1,087 -

SS-Twitter 4,242 1,037 1,953 1,252 - - -

Sanders 5,513 654 2,503 570 - - 1,786

GASP 12,771 5,235 6,268 1,050 - 218 -

WAB 13,340 2,580 3,707 2,915 - 420 3,718

SemEval 13,975 2,186 6,440 5,349 - - -

Table 31: Total number of tweets and the tweet sentiment distribution in all datasets.
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Stanford Twitter Sentiment Test Set (STS-Test)

The Stanford Twitter sentiment corpus (http://help.sentiment140.com/), introduced

by Go et al. [60] consists of two different sets, training and test. The training set contains

1.6 million tweets automatically labelled as positive or negative based on emotions. For

example, a tweet is labelled as positive if it contains :), :-), : ), :D, or =) and is labelled as

negative if it contains :(, :-(, or : (.

The test set (STS-Test), on the other hand, is manually annotated and contains 177

negative, 182 positive and 139 neutrals tweets. These tweets were collected by searching

Twitter API with specific queries including names of products, companies and people.

Although the STS-Test dataset is relatively small, it has been widely used in the literature

in different evaluation tasks. For example, Go et al. [60], Saif et al. [135, 137], Speriosu et

al. [152], and Bakliwal et al. [10] use it to evaluate their models for polarity classification

(positive vs. negative). In addition to polarity classification, Marquez et al. [22] use this

dataset for evaluating subjectivity classification (neutral vs. polar).

Stanford Extended Dataset (STS-Expand)

We built and used this dataset in our evaluation in Chapter 4. It consists of training

and test sets. The training set contains 60,000 tweets randomly selected from the original

Stanford Twitter Sentiment corpus (STS) [60]. Half of the tweets in this dataset contains

positive emoticons, such as :), :-), : ), :D, and =), and the other half contains negative

emoticons such as :(, :-(, or : (.

Due to the relatively small size of the STS-Test dataset, as shown in the previous section,

we proposed extending it by adding 641 tweets randomly selected from the original STS

corpus, and annotated manually by 12 users (researchers in our lab), where each tweet

was annotated by one user.

The final STS-Expand test set, as shown in Table 31, consists of 527 negatively, and 473

positively annotated tweets.

Health Care Reform (HCR)

The Health Care Reform (HCR) dataset was built by crawling tweets containing the

hashtag “#hcr" (health care reform) in March 2010 [152]. A subset of this corpus was

manually annotated by the authors with 5 labels (positive, negative, neutral, irrelevant, un-

sure(other)) and split into training (839 tweets), development (838 tweets) and test (839

tweets) sets. The authors also assigned sentiment labels to 8 different targets extracted

http://help.sentiment140.com/
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from all the three sets (Health Care Reform, Obama, Democrats, Republicans, Tea Party, Con-

servatives, Liberals, and Stupak). However, both the tweet and the targets within it, were

assigned the same sentiment label, as can be found in the published version of this

dataset (https://bitbucket.org/speriosu/updown). Altogether, the three subsets (train-

ing, development and test), as shown in Table 31, consist of 2,516 tweets including 1,381

negative, 470 neutral and 541 positive tweets.

The HCR dataset has been used to evaluate polarity classification [152, 136] but can

also be used to evaluate subjectivity classification since it identifies neutral tweets.

Obama-McCain Debate (OMD)

The Obama-McCain Debate (OMD) dataset was constructed from 3,238 tweets crawled

during the first U.S. presidential TV debate in September 2008 [144]. Sentiment labels

were acquired for these tweets using Amazon Mechanical Turk, where each tweet was

rated by at least three annotators as either positive, negative, mixed, or other. The authors in

[47] reported an inter-annotator agreement of 0.655, which shows a relatively good agree-

ment between annotators. The dataset is provided at https://bitbucket.org/speriosu/

updown along with the annotators’ votes on each tweet. We considered those sentiment

labels, which more than half of the voters agree on, as final labels of the tweets. This

resulted in a set of 1,196 negative, 710 positive and 245 mixed tweets.

The OMD dataset is a popular dataset, which has been used to evaluate various super-

vised learning methods [73, 152, 136], as well as unsupervised methods [72] for polarity

classification of tweets. Tweets’ sentiments in this dataset were also used to characterize

the Obama-McCain debate event in 2008 [47].

Sentiment Strength Twitter Dataset (SS-Tweet)

This dataset consists of 4,242 tweets manually labelled with their positive and negative

sentiment strengths. i.e., a negative strength is a number between -1 (not negative) and

-5 (extremely negative). Similarly, a positive strength is a number between 1 (not positive)

and 5 (extremely positive). The dataset was constructed by [160] to evaluate SentiStrenth

(http://sentistrength.wlv.ac.uk/), a lexicon-based method for sentiment strength de-

tection.

In our work in Chapter 5, we re-annotated tweets in this dataset with sentiment labels

(negative, positive, neutral) rather than sentiment strengths, which will allow using this

dataset for subjectivity classification. To this end, we assign a single sentiment label to

https://bitbucket.org/speriosu/updown
https://bitbucket.org/speriosu/updown
https://bitbucket.org/speriosu/updown
http://sentistrength.wlv.ac.uk/
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each tweet based on the following two rules inspired by the way SentiStrength works:1

(i) a tweet is considered neutral if the absolute value of the tweet’s negative to positive

strength ratio is equals to 1, (ii) a tweet is positive if its positive sentiment strength is 1.5

times higher than the negative one, and negative otherwise. The final dataset, as shown

in table 31, consists of 1,037 negative, 1,953 neutral and 1,252 positive tweets.

The original dataset is publicly available at http://sentistrength.wlv.ac.uk/documentation/

along with other 5 datasets from different social media platforms including MySpace,

Digg, BBC forum, Runners World forum, and YouTube.

Sanders Twitter Dataset

The Sanders dataset consists of 5,512 tweets on four different topics (Apple, Google,

Microsoft, Twitter). Each tweet was manually labelled by one annotator as either positive,

negative, neutral, or irrelevant with respect to the topic. The annotation process resulted in

654 negative, 2,503 neutral, 570 positive and 1,786 irrelevant tweets.

The dataset has been used in [22, 91, 46] for polarity and subjectivity classification of

tweets.

The Sanders dataset is available at http://www.sananalytics.com/lab

The Dialogue Earth Twitter Corpus

The Dialogue Earth Twitter corpus consists of three subsets of tweets. The first two sets

(WA, WB) contain 4,490 and 8,850 tweets respectively about the weather, while the third

set (GASP) contains 12,770 tweets about gas prices. These datasets were constructed as

a part of the Dialogue Earth Project2 (www.dialogueearth.org) and were hand labelled

by several annotators with five labels: positive, negative, neutral, not related and can’t tell

(other). In this thesis we merged the two sets about the weather in one dataset (WAB) for

our analysis study in Chapter 5. This resulted in 13,340 tweets with 2,580 negative, 3,707

neutral, and 2,915 positive tweets. The GASP dataset on the other hand consists of 5,235

negative, 6,268 neutral and 1,050 positive tweets.

The WAB and the GASP datasets have been used to evaluate several machine learning

classifiers (e.g., Naive Bayes, SVM, KNN) for polarity classification of tweets [5].

1 http://sentistrength.wlv.ac.uk/documentation/SentiStrengthJavaManual.doc

2 Dialogue Earth, is former program of the Institute on the Environment at the University of Minnesota.

http://sentistrength.wlv.ac.uk/documentation/
http://www.sananalytics.com/lab
www.dialogueearth.org
http://sentistrength.wlv.ac.uk/ documentation/SentiStrengthJavaManual.doc


evaluation datasets for twitter sentiment analysis 185

SemEval-2013 Dataset (SemEval)

This dataset was constructed for the Twitter sentiment analysis task (Task 2) [104] in the

Semantic Evaluation of Systems challenge (SemEval-2013).3 The original SemEval dataset

consists of 20K tweets split into training, development and test sets. All the tweets were

manually annotated by 5 Amazon Mechanical Turk workers with negative, positive and

neutral labels. The turkers were also asked to annotate expressions within the tweets

as subjective or objective. Using a list of the dataset’s tweet ids provided by [104], we

managed to retrieve 13,975 tweets with 2,186 negative, 6,440 neutrals and 5,349 positives

tweets.

Participants in the SemEval-2013 Task 2 used this dataset to evaluate their systems for

expression-level subjectivity detection[101, 36], as well as tweet-level sentiment detection[96,

127].

3 http://www.cs.york.ac.uk/semeval-2013/task2/

http://www.cs.york.ac.uk/semeval-2013/task2/




B
A N N O TAT I O N B O O K L E T F O R T H E S T S - G O L D D ATA S E T

We need to manually annotate 3000 tweets with their sentiment label (Negative, Positive,

Neutral, Mixed) using the online annotation tool “Tweenator.com”. The task consists of

two subtasks:

Task A. Tweet-Level Sentiment Annotation Given a tweet message, decide weather it has

a positive, negative, neutral or mixed sentiment.

Task B. Entity-Level Sentiment Annotation Given a tweet message and a named entity,

decided weather the entity received a negative, positive or neutral sentiment. The named

entities to annotate are highlighted in yellow within the tweets.

Please note that:

• A Tweet could have a different sentiment from an entity within it. For example, the

tweet “iPhone 5 is very nice phone, but I can’t upgrade :(” has a negative

sentiment. However, the entity “iPhone 5” receives a positive sentiment.

• “Mixed” label refers to a tweet that has mixed sentiment. For example, the “Kobe

is the best in the world not Lebron” has a mixed sentiment.

• Some tweets might have emoticons such as :), :-), :(, or :-(. Please give less attention

to the emoticons and focus more on the content of the tweets. Emoticons can be

very misleading indicators sometimes.

• Try to be objective with your judgement and feel free to take a break whenever you

feel tired or bored.
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