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Abstract— This article presents three dynamic linear state space 

models of Modular Multilevel Converter (MMC) which are 

suitable for small-signal dynamic studies and controller design. 

The three models differ by the number of states (two, six and ten) 

and therefore are suitable for different applications based on the 

required accuracy. The 2nd and 6th order models ignore dynamics 

of the second harmonics and circulating current suppression 

control. The main challenges of dynamic analytical modelling of 

MMC are the non-linear multiplication terms in equations for 

modulating oscillating signals. The multiplication non-linear 

terms is therefore considered directly in the rotating DQ frame. 

This requires simultaneous modeling in zero sequence, 

fundamental frequency DQ and double fundamental frequency 

DQ2 frames. The proposed linear analytical models are 

implemented in state-space in MATLAB. The validity and 

accuracy of the models are verified against detailed 401 level 

MMC model in PSCAD/EMTDC in both: time and frequency 

domains. The results show very good accuracy for the 10th order 

model and decreasing accuracy for the lower order models.  

Index Terms—Power system dynamics, Power System Modeling, 

Converters, HVDC transmission, Power System Control. 

I. INTRODUCTION 

Modular Multilevel Converter (MMC) has become one of 

the preferred topologies for VSC based High Voltage Direct 

Current (HVDC) applications [1]-[3].  

The detailed non-linear dynamic models of MMC with 

different modulation techniques are presented in [2], [4]. These 

models are capable of representing cell-level dynamics and 

events. However they are discrete in nature and require a 

considerable amount of simulation time. The model complexity 

and computation burden will increase when the number of 

levels increases. In particular when transmission systems with 

multiple converters are studied, like DC grids, detailed cell-

level models are not convenient.  

The average MMC models [5], [6] are introduced to improve 

the simulation speed of MMC models. The aim of average 

modeling is to replicate the average response between 

switching instants by using mathematical equations and 

controlled voltage or current sources. These MMC average 

models are represented in static ABC frame which are not 

suitable for analytical studies. The ABC frame models use 

oscillating variables and support only trial and error studies 

with simulation in time domain. On the other hand, transferring 

the MMC ABC average model to DQ frame cannot be done 

directly because of complexity of multiplication terms caused 

by modulating signals and harmonic coupling in the dynamic 

equations. 

The dynamic phasors can be employed for MMC average 

modeling as in [7], but they will result in very high number of 

dynamic equations.  

A convenient Phasor MMC model has been developed 

recently [8], but Phasor modeling neglects all the dynamics.  

This paper aims developing an analytical dynamic MMC 

model that is convenient for small signal MMC stability 

studies, and control design. The complex HVDC systems have 

numerous control loops and require accurate small-signal 

models for multivariable analytical control design [9], [10]. DQ 

frame modeling will be chosen to enable state-space model 

form which can support eigenvalue studies. The DQ modeling 

also has advantage over ABC average modeling in terms of 

simulation speed as studied in [11]. However, the model will 

have limitations as with all small-signal models, and it cannot 

be used with control non-linearities or large signal inputs.   

The MMC state space model will be interlinked with other 

subsystems such as AC, PLL and control subsystems. A 

modular modeling approach is adopted to reduce complexity 

and enable study of subsystem interactions.  

II. MMC NONLIEAR MODEL IN ABC FRAME 

Fig.1 shows the structure of one phase leg of MMC [1],[5], 

[6]. It consists of two arms (positive and negative) per each 

phase (x). Each arm includes N sub-modules (SMs), one 

equivalent resistor Rarmx, and one inductor Larmx which is 

required to filter arm currents independently.  

An average dynamic model for MMC is developed by 

substituting the arm SMs with an equivalent controlled voltage 

source as shown in Fig.1: 
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where Carm=C/N, C is the capacitance of one SM, idiff is the 

differential current, vCP and vCN are the positive and negative 

pole voltages, CPvΣ and CNvΣ
are equivalent sum (maximal) 

voltages of positive and negative arms, iv is the converter ac 

side current, VDC and IDC are the DC bus voltage and current, 

and mP and mN are modulation indices of corresponding arms.  

Fig. 2 shows a structural diagram of MMC model connected to 

AC and DC systems, where the converter AC voltage ex and 

DC current IDC are given by [5],[6]: 
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Fig.1.  Circuit diagram of one phase (x) leg of MMC 

 

Fig. 2.  Structural diagram of the average MMC model. 
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III. MMC NONLIEAR MODEL IN DQ FRAME 

The inputs to the MMC model in rotating DQ frame are 

assumed to be: dq components of the AC current iv, DC voltage 

VDC and dq components of the control signal m. The outputs of 

the model are DC current IDC and dq components of the 

converter AC voltage e.  

A. Assumptions 

The standard MMC average modeling assumptions are:  

• Control modulation index m(t), is a fundamental sine 
signal (Md, Mq) with additional second harmonic (Md2, 
Mq2) which is studied in section IV.A, 

• AC current iv(t), is a fundamental sine signal,  

• Differential current idiff(t), is DC plus second harmonic,  

• Sum capacitor voltages ( ), ( )CP CNv t v tΣ Σ
, are DC, 

fundamental component and second harmonic.  

These signals are represented as follows: 
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where subscripts d,q denote the two components in the 

coordinate frame rotating at fundamental frequency ω0=2πf, 

while subscripts d2,q2 denote the two components in the 

coordinate frame rotating at second harmonic 2ω0, and 

subscript 0 denotes zero sequence component. 

B. Basic frequency and zero sequence dynamics in DQ frame 

The sum capacitor voltages and differential current of (1) 

can be represented as: 

Px Vx

Px diffx
CPx CPx

Σ Σ

CNx CNx Nx Vx

Nx diffx

Σ Σ

diffx diffx DC Px CPx Nx CNx

0 0 1 2

0 0

2

1
2

4

arm

arm

arm arm

m i
m i

v vd

dt Cv v m i
m i

Rd
i i V m v m v

dt L L

Σ Σ

 
− −       = +           − +  

 
   = − + − + +    

 

       (8) 

 

Transferring equation       (8) to DQ0 frame results: 
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where ,F k  are the dq0 components of nonlinear terms in       

(8). 

Page 2 of 8IEEE PES Transactions on Power Delivery

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Assumption     (5) implies that the circulating current has no 

basic frequency dq components, therefore Idiffd=Idiffq= 0. 

The non-linear terms ,F k  are products of oscillating signals 

and it is required to obtain their dq components. This is 

mathematically represented for a generic signals as shown in 

Appendix I. By expanding every product using expression (31) 

in Appendix I, the matrices F and k will become: 
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Similarly, the output equations         (2) in DQ frame are 
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C. Second harmonic dynamics for sum capacitor voltages  

Equation (11) implies that the second harmonics will 

influence fundamental MMC AC voltages and therefore 

appropriate expressions for second harmonic sum capacitor 

voltages are needed. Equation       (8) applies also to the second 

harmonic, and therefore the second harmonic sum capacitor 

voltages
CPd2 CPq2

,V V
Σ Σ

 are similar to (9): 
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From        (9), (10)and (12), it is concluded that: 
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D. 6
th

 order nonlinear dynamic MMC model  

By combining         (9), (11) and (12), the nonlinear dynamic 

6
th
 order model of MMC in DQ frame is: 
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where: 
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This model includes second harmonic voltages but does not 

include second harmonic current or harmonic suppression 

control dynamics. It can be used under the assumption that 

circulating current suppression control totally eliminates 

current harmonics without any side-impact on power flow. As 

it will be shown, this model can be used for MMC dynamic 

modeling but with limited accuracy.   

IV. NONLINEAR MODEL WITH CCSC 

A. Circuating current second harmonic model 

The dynamics of second harmonic circulating current can be 

derived using (8) in DQ2 frame rotating at 2ω0 as: 
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This expression is expanded considering (31) as:  
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B. CCSC (Circulating Current Suppression Control) model 

The control signals Md2 and Mq2 are the outputs of PI control 

loops to suppress Idiffd2 and Idiffq2 as shown in Fig. 3 [12]. From 

Fig. 3, the dynamic equations of Md2 and Mq2 are: 

 

2 2 2

2 2 2

d diffd diffd

I P

q diffq diffq

M I Id d
K K

M I Idt dt

     
=− −     

     
          (18) 

 

By substituting (17) in (18): 
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Fig. 3. CCSC (PI control loops for suppressing Idiffd2 and Idiffq2) 

C. 10
th

 order nonlinear dynamic model  

The proposed 10
th

 order MMC model consists of the 6
th
 

order model (14) and the four states of (17), (19). However, the 

6
th

 order model needs to be revised by considering the second 

harmonic terms of circulating current and modulation indices. 

The 6
th
 order equations(14) and (15) are revised as: 
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Where the input terms are: 
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By combining (17),(19) and (20), the 10
th
 order nonlinear 

model in DQ frame is derived: 
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Fig. 4 illustrates the nonlinear dynamic 10
th

 order MMC 

model (22) and (23) in the block diagram format. The static 

equations related to the products of dq terms can be expanded 

using the formulae in the appendix. The model’s inputs, control 

inputs, and outputs are also shown in the figure.  

Comparing with 6
th

 order model, this 10
th
 order model 

includes impact of Md2 and Mq2 on the fundamental equations 

in (20) and (21). In order to represent the magnitude of control 

effort Md2 and Mq2, the four dynamic equations (17) and (19) 

must be included despite the fact that second harmonic 

differential currents are zero in steady-state.    

V. 2
ND 

ORDER DYNAMIC MODEL WITH SERIES CAPACITANCE 

A. Steady-state analysis of MMC  

The steady-state static model of MMC (phasor model) can 

be derived from either the equations (14) or (22) by equating 

the dynamic terms to zero. In steady-state, Idiffd2 and Idiffq2 are 

zero (because of CCSC) and Md2 and Mq2 are very small 

values. Therefore, the steady-state equations from either the 6
th
 

order or 10
th
 order dynamic equations give similar results.  

Starting from (14) and equating the dynamic terms to zero: 

 

6 6
,ss ss ssA x B u y C x= =           (24) 

Where y and x6 are given in (14) and (15), and the new 

matrices are: 
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Fig. 4.  MMC 10th order dynamic DQ model 
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The MMC AC voltages, Ed and Eq, can be expressed by 

substituting (25) and (26) into the sum capacitor voltages (11). 

If the converter resistance in (25) is also neglected, i.e. Rarm=0, 

then the MMC AC voltage can be represented as follows: 

2
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d
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ω
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          (27) 

 

where the fictitious capacitance CMMC is same as in [8]:  

 

( )( )2 264 / 8 3arm

MMC d qC C M M= − +          (28) 

 

If the MMC reactance XMMC=1/(ωCMMC) is introduced then 

the phasor model from [8] is obtained.  

B. 2
nd

 order nonlinear dynamic model  

Considering the convenient and simple model in (27) it is 

possible to derive the 2
nd

 order dynamic model of MMC: 

 

0 1

0

0.5

0.5

0.75 0.75

d d Vd

q q VqMMC

d d d DC

q q q DC

dc d vd q vq

x x Id

x x Idt C

e x M V

y e x M V

I M I M I

ω
ω

      
= +      −      

 + 
  = = +  
   +   

        (29) 

 

where xd and xq represent the voltage drop across the CMMC in 

DQ frame. The 2
nd

 order model shows that MMC responds like 

a 2-level VSC behind a series capacitance CMMC on the AC 

side, as shown in Fig. 5. This is much different dynamic 

topology from the modeling of 2-level VSC, where the 

converter capacitance is in parallel on the DC side. 

 

 
Fig. 5. Simplified 2nd order dynamic MMC model connected to the AC grid. 

VI. MODEL VERIFICATION 

A. Linearized dynamic DQ MMC model  

The 2
nd

, 6
th

 and 10
th 

order nonlinear models are linearized 

around steady-state operating point, and interlinked with the 

corresponding models of AC and PLL sub-systems. The 

dynamic of PLL is represented by a second order state-space 

equation as in [13]. The final linearised models of 10
th

, 14
th

 

and 18
th

 order are implemented in MATLAB, and their 

accuracy is tested against detailed PSCAD Benchmark model. 

B. PSCAD benchmark model  

The PSCAD benchmark model consists of a MMC converter 

represented as given in [4], which is connected to an AC 

system and a DC source with a series resistance. The MMC is a 

401-level 1000MVA converter with CSM=10mF, Rarm=1.2Ω, 

and Larm=0.08H. The AC grid is given by VAC=370KV, 

SCR=8.5, X/R=10, Xt=8%, while DC side parameters are 

VDC=640KV with series resistance of RDC=0.5Ω. The CCSC 

controller gains are KP=0.5 and KI=50. 

C. Verification of the models in time domain 

The 10
th
 order linearized model is compared against the 

benchmark PSCAD model for a 5% step up on control input 

Md as shown in Fig. 6. The matching is excellent for all AC, 

DC and control variables, and verifies accuracy of the model.  

 

 
Fig. 6. Comparison of the 10th order linearized MMC model against PSCAD 

benchmark model for 5% step up on Md 

The accuracy of the two lower order models is also tested 
for the same step input as shown in Fig. 7. As it can be seen the 
lower order models show less accuracy as expected, but might 
be able to capture dominant MMC oscillatory mode. 

D. Verification of the models in frequency domain 

For the purpose of accurate verification, the models are also 

tested in frequency domain. PSCAD has no frequency domain 

analysis capability, and the results are obtained manually, by 

injecting a single frequency component at a time. 

Fig. 8 shows the frequency response comparison of the 10
th
 

order and benchmark models in frequency range 1-150Hz. 

Very good matching is seen across the entire frequency range. 

 

Fig. 9 shows the frequency response of 2
nd

 and 6
th

 order 

models against the benchmark model in the same frequency 

range. It can be seen that the 6
th

 order model shows acceptable 

matching especially in the frequency range below 20Hz. 

Page 6 of 8IEEE PES Transactions on Power Delivery

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

Fig. 7. Comparison of the 2nd and 6th order linearized MMC models against 

PSCAD benchmark model for 5% step up on Md 

 
Fig. 8. Frequency response comparison for 10th order model 

 

Fig. 9. Frequency response for 2th and 6th order models 

E. Dynamic study of influence of PLL gains 

The proposed models are suitable for wide range of MMC 

small-signal dynamic studies. As an example, Fig. 10 shows 

the effect of increasing the PLL (Phase locked loop) gains by a 

factor of 10, and Table I shows the set of dominant eigenvalues 

(out of 18 eigenvalues). High PLL gains might be desired for 

good post fault synchronisation, however it is seen that the 

system suffers from new lightly damped oscillatory mode 

around 50Hz when PLL gains are increased.  

 

Table I. Set of dominant eigenvalues for different PLL and CCSC gains. 

Original system 

Kp_PLL=30, Ki_PLL=500 

KPccsc=0.5 and KIccsc=50 

Increased PLL gains 

(Kp_PLL=300, 

Ki_PLL=5000) 

Increased CCSC 

gains 

KPccsc=10, KIccsc=50 

-14.56 ± j313.2 

-17.82± j129.5 

-6.98 ± j317.0 

-33.74± j101.3 

-13.63 ± j314.7 

-9.48± j133.9 

 
Fig. 10. 10h order model verification with higher PLL gains.  

F. Dynamic study of influence of CCSC gains 

The dynamics system with different CCSC gains is also 

tested, and the linearized model shows very good matching, as 

seen in Fig. 11. Here, the proportional CCSC gain is increased 

20 times which reduces damping of the mode at around 20Hz, 

as shown in Table I.  

 

Fig. 11. 10th order model verification with higher CCSC gains. 
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VII. CONCLUSION 

A 10
th

 order dynamic linearized small-signal model for 

MMC is proposed. It is concluded that non-linear 

multiplication terms can be represented directly in DQ frame, 

and D2Q2 frame rotating at double the fundamental frequency 

based on the special expressions for DQ frame algebra.  

A 6
th

 order dynamic linearized model is proposed as a 

reduced order model by considering the effect of CCSC on 

MMC but ignoring the second harmonic modulation indices 

and circulating current. A further reduced 2
nd

 order model is 

also proposed by introducing an equivalent series capacitance, 

CMMC, on the converter AC side. 

The accuracy of the 3 models is verified against a detailed 

benchmark model in PSCAD in both: time and frequency 

domains. The tests show excellent accuracy for the 10
th
 order 

and a reduced accuracy for the 6
th
 order model. The 2

nd
 order 

model shows lowest accuracy but it has advantage in 

simplicity.   

APPENDIX I. DQ FRAME SIGNAL MULTIPLICATION 

Starting with time domain expression for two generic signals 

X(t) and Y(t), each consisting of zero sequence, fundamental 

component and second harmonic: 

 

0 2 2

0 2 2

( ) cos sin cos 2 sin 2

( ) cos sin cos 2 sin 2

D Q D Q

D Q D Q

X t X X t X t X t X t

Y t Y Y t Y t Y t Y t

ω ω ω ω

ω ω ω ω

= + + + +

= + + + +
(30) 

By expanding the ABC frame expression for product 

Z(t)=X(t)xY(t) and analyzing each term (neglecting 3
rd

 and 4
th
 

harmonics)  the following is obtained: 

0

2 2Q QD D 2 2
0 0

D 0 0 2 2 2 2

Q 0 0 2 2 2 2
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2 2 2 2

1 1 1 1
cos

2 2 2 2

1 1 1 1

2 2 2 2
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D D D Q Q D D Q Q
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Q D Q Q D D Q Q D
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 + + + + + 
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