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Given a complex geospatial network with nodes distributed in
a two-dimensional region of physical space, can the locations
of the nodes be determined and their connection patterns be
uncovered based solely on data? We consider the realistic
situation where time series/signals can be collected from a
single location. A key challenge is that the signals collected are
necessarily time delayed, due to the varying physical distances
from the nodes to the data collection centre. To meet this
challenge, we develop a compressive-sensing-based approach
enabling reconstruction of the full topology of the underlying
geospatial network and more importantly, accurate estimate
of the time delays. A standard triangularization algorithm can
then be employed to find the physical locations of the nodes
in the network. We further demonstrate successful detection
of a hidden node (or a hidden source or threat), from which
no signal can be obtained, through accurate detection of all its
neighbouring nodes. As a geospatial network has the feature
that a node tends to connect with geophysically nearby nodes,
the localized region that contains the hidden node can be
identified.

1. Introduction
Complex geospatial networks with components distributed in
real geophysical space are an important part of the modern
infrastructure. Examples include large-scale sensor networks and
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Figure 1. A schematic illustration of a complex geospatial network. The connection topology, the positions of the nodes in the physical
space and nodal dynamical equations are unknown a priori, but only time series from the nodes can be collected at a single node in the
network (e.g. a data-collecting centre). The challenges are to reconstruct the dynamical network, to locate the precise position of each
node and to detect hidden nodes, all based solely on time series with inhomogeneous time delays. The green circles denote ‘normal’
nodes and the dark circles indicate hidden nodes.

various subnetworks embedded in the Internet. For such a network, often the set of active nodes depends
on time: the network can be regarded as static only on a relatively short time scale. For example, in
response to a certain breaking news event, a communication network within the Internet may emerge,
but the network will dissolve itself after the event and its impacts fade away. The connection topologies
of such networks are usually unknown but in certain applications, it is desirable to uncover the network
topology and to determine the physical locations of various nodes in the network. Suppose time series or
signals can be collected from the nodes. Due to the distributed physical locations of the nodes, the signals
are time delayed. Is it possible to uncover the network topology, estimate the time delays embedded
in the signals from different nodes, and then determine their physical locations? Another issue is the
existence of hidden nodes that cannot be directly accessed. Can the existence of a hidden node be
ascertained and its location be determined?

Figure 1 illustrates a geospatial network. Assume there is a monitoring centre that collects data from
nodes at various locations, but their precise geospatial coordinates are unknown. The normal nodes are
coloured in green. There are also hidden nodes that can potentially be the sources of threats (e.g. those
represented by dark circles). The challenging task is to determine the network topology and to locate the
hidden nodes, based on time series or data only.

Data-based reconstruction of complex networks in general is deemed to be an important problem and
has attracted continuous interest, where the goal is to uncover the full topology of the network based
on simultaneously measured time series [1–26]. For instance, methodology was proposed to estimate
the network topology controlled by feedback or delayed feedback [8,17]. Network connectivity can be
reconstructed from the collective dynamical trajectories using response dynamics [7,16]. The approach
of random phase resetting was introduced to reconstruct the details of the network structure [14]. For
neuronal systems, there was a statistical method to track the structural changes [20,22]. While many
of these previous works required complete or partial information about the intrinsic dynamics of the
nodes and their coupling functions, completely data-driven and model-free methods exist. For example,
the global climate network was reconstructed using the mutual information method, enabling global
energy and information flow in the network to be studied [25]. The sampling bias of DNA sequences in
viruses from different regions can be used to reveal the geospatial topologies of influenza networks [26].
Network structure can also be obtained by calculating the causal influences among the time series
based on the Granger causality method [5,23], the transfer entropy method [21] or the method of inner
composition alignment [15]. However, such causality-based methods are unable to reveal information

 on March 4, 2016http://rsos.royalsocietypublishing.org/Downloaded from 

http://rsos.royalsocietypublishing.org/


3

rsos.royalsocietypublishing.org
R.Soc.opensci.3:150577

................................................
about the nodal dynamical equations. In addition, there were regression-based methods [27] for systems
identification based on, for example, the least-squares approximation through the Kronecker-product
representation [28], which would require large amounts of data.

In this paper, we develop a compressive-sensing-based framework [29–32] as a potential solution
to estimating time delay and detecting hidden nodes in complex geospatial networks. To be able to
fully reconstruct dynamical systems using only time series data is possible because the dynamics
of many natural and man-made systems are determined by smooth enough functions that can be
approximated by finite series expansions. The task then becomes that of estimating the coefficients in
the series representation of the vector field governing the system dynamics. In general, the series can
contain high-order terms, and the total number of coefficients to be estimated can be quite large. This
is in general a challenging problem. However, if most coefficients are zero (or negligible), the vector
constituting all the coefficients will be sparse. The problem of sparse vector estimation can then be
solved by the paradigm of compressive sensing [29,30,32–34] that reconstructs a sparse signal from
limited observations. Since the observation requirements can be relaxed considerably as compared to
those associated with conventional signal reconstruction schemes, compressive sensing has evolved into
a powerful technique to reconstruct sparse signal from small amounts of observations that are much less
than those required in conventional approaches.

Compressive sensing has recently been introduced to the field of network reconstruction for
discrete time and continuous time nodal dynamics [35,36], for evolutionary game dynamics [37], for
detecting hidden nodes [38,39], for predicting and controlling synchronization dynamics [40], and for
reconstructing spreading dynamics based on binary data [41]. Differing from these existing works, the
focus of the present work is on estimating time delays of the dynamics at various nodes using time
series collected from a single location. While there were previous methods of finding time delays in
complex dynamical systems, for example, based on synchronization [42], Bayesian estimation [43] and
correlation between noisy signals [19], our compressive-sensing-based method provides an alternative
approach that has the advantages of generality, high efficiency, low data requirement and applicability
to large networks. We demonstrate that our method can yield estimates of the nodal time delays
with reasonable accuracy. After the time delays are obtained, the actual geospatial locations of various
nodes can be determined by using, for example, a standard triangular localization method [44].
We expect these results to be useful for applications such as locating sensors in wireless networks
and identifying/detecting/anticipating potential geospatial threats [45], an area of importance and
broad interest.

2. Results
Compressive sensing aims to solve the following convex optimization problem:

min ‖a‖1 subject to G · a = X, (2.1)

where a is a sparse vector to be determined, G is a (known) random projection matrix, X is a measurement
vector that can be constructed from the available data, and ‖a‖1 = ∑N

i=1 |ai| is the L1 norm of vector a.
Compressive sensing is a paradigm of high-fidelity signal reconstruction using only sparse data [29,30,
32–34], which was originally developed to solve the problem of transmitting massive datasets, such as
those collected from large-scale sensor arrays. In particular, because of the high dimensionality, direct
transmission of such datasets would require broad bandwidth. However, there are common situations
where the datasets are sparse. For example, say a dataset of N points is represented by an N × 1 vector
a, where N is a large integer. Since a is sparse, most of its entries are zero and only a small number of
k entries are non-zero, where k � N. One can use a Gaussian random matrix G of dimension M × N to
obtain an M × 1 vector X: X = G · a, where M ∼ k. Because the dimension of X is much smaller than that
of the original vector a, transmitting X would require much smaller bandwidth, provided that a can be
reconstructed at the receiver end of the communication channel.

For our problem of reconstructing complex geospatial networks with time delay, the task is to
formulate the problem into the standard compressive sensing form of equation (2.1). This can indeed
be done, for example, for oscillator networks with weighted coupling and inhomogeneous time
delays [46,47]. After obtaining the time delays, a standard triangular localization method [44] can be
employed to locate a large portion of nodes in the network, given that the locations of a small subset of
nodes are known. A hidden node can also be detected (see Methods).
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2.1. Reconstruction of geospatial networks based on compressive sensing
To be concrete, we present results for continuous-time oscillator networks with time-delayed
couplings [46–48], where for every link, the amount of delay is proportional to the physical distance
of this link. The oscillator network models have been widely used in studying neuron activity [47] and
ecology [48]. In general, such a system is described by

ẋi = Fi[xi(t)] +
N∑

j=1,j�=i

Wij[xj(t − τij) − xi(t)], (2.2)

for i = 1, . . . , N, where xi ∈ R
m is the m-dimensional state variable of node i and Fi[xi(t)] is the vector

field for its isolated nonlinear nodal dynamics. Consider a link lij connecting nodes i and j, and the
interaction weight is given by the m × m weight matrix Wij ∈ R

m×m with its element wp,q
ij representing

the coupling from the qth component of node j to the pth component of node i. For simplicity, we
assume only one component of wp,q

ij is non-zero and denote it as wij. The associated time delay is
denoted as τij. For a modern geospatial network, the speed of signal propagation is quite high in a proper
medium (e.g. optical fibre). The time delay can thus be assumed to be small and we can use the Taylor
expansion to express the delay coupling terms in the networked dynamical system to the first order, e.g.
xi(t − τji) ≈ xi(t) − τjiẋi, where ẋi is the time derivative. When the coupling function between any pair of

nodes is linear, in a suitable mathematical basis constructed from time-series data, g̃(γ )[xi(t)], the coupling
and time-delayed terms, together with the nodal dynamical equations, can be expanded into series, and
our goal is to estimate all the expansion coefficients. Using our formulation of the compressive sensing
framework (see Methods), equation (2.2) can then be written in the following compact form:

ẋi(t) =
∑
γ

α̃(γ ) · g̃(γ )[xi(t)] +
N∑

j=1,j�=i

[bijxj(t) + cijẋj(t)], (2.3)

which is a set of linear equations for data collected at different time t. The coefficients associated with the
nodal dynamical equations, the network link-weights and time delays are contained in the coefficients
{α̃(γ )}, {bij} and {cij}, respectively. The amount of data required depends on the system size and the order
of the series expansions, which can be small as compared with the dimension of the coefficient vectors
for a properly chosen mathematical base.

After obtaining the time delays, we proceed to determining the actual positions of all nodes. If time
series are collected simultaneously from all nodes at the data-collecting node, the estimated coupling
delay τij associated with the link lij is proportional to the physical distance dij = dji of the link. However,
in reality, strictly synchronous data collection is not possible. For example, if the signals are collected
at a location s outside the network with varying time delays τsi, the estimated delays associated with
various links in the network are no longer proportional to the actual distances. As we explain in
Methods, the varying delays due to asynchronous data collection can be cancelled and the distances
can still be estimated as dij = (c/2)(τij + τji), where τij is the signal delay associated with node j from the
reconstruction of node i, vice versa for τji, and c is the signal propagation speed.

When the mutual distances between nodes have been estimated, we can determine the actual locations
of the nodes, for example, by using the standard triangular localization algorithm [44]. This method
requires that the positions of NB reference nodes be known, the so-called beacon nodes. Starting from
the beacon nodes, the triangulation algorithm makes use of the distances to these reference nodes to
calculate the Cartesian coordinates of the detected nodes. The beacon node set can then be expanded
with the newly located nodes. Nodes that are connected to the new beacon set, each with more
than three links in two-dimensional space, can be located. The process continues until the locations
of all nodes have been determined, or no new nodes can be located (see Methods). The choice of
the proper initial beacon set to fully reconstruct the network depends on the network topology. For
example, for a scale-free network, we can choose nodes that were firstly added during the process of
network generation as the initial beacon set, thereby guaranteeing that all nodes can be located using
the procedure. An empirical rule is then to designate the largest degree nodes as the initial beacon
node set.

Our numerical experiments are set up as follows. We assume all nodes are distributed in a
two-dimensional square, or a three-dimensional cube of unit length. The network topology can be
either scale-free [49] or random [50], and the network size can be varied. For proof of principle,
we consider coupled nonlinear oscillator networks by placing, at each node, a nonlinear oscillator,
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Figure 2. Illustration of our method to reconstruct a complex geospatial network from time series. (a) For any node, time series of its
dynamical variables are collected atw different instants of time. (b) The corresponding derivatives are approximated using the standard
first-order Gaussian method, which are needed in constructing the compressive sensing equations. (c,d) An example of link weights and
time delays obtained from the reconstructed coefficient vectors, respectively. (e) Given the positions of four beacon nodes (marked as red
rectangles), the locations of the remaining nodes (marked as black circles) are determined using the standard triangularization method.
The blue arrows indicate the estimation errors, which point from the actual to the estimated positions. The various coupling terms are
illustrated using grey lines. There are in total 30 nodes in the network, connectingwith each other via the scale-free topology. The average
outgoing degree is five. The amount of data used is Rm = 0.5. (f ) Following the same procedure, a geospatial network of 50 nodes which
are distributed in a three-dimensional cube of unit length is reconstructed. There are 20 beacon nodes and the normalized amount of
data used is Rm = 0.55. For clarity, the links between these nodes are not shown.

e.g. the Rösseler oscillator, mathematically described by the following set of three first-order differential
equations: [ẋ, ẏ, ż] = [−y − z, x + 0.2y, 0.2x + z(x − 0.2)]. The coupling weights are asymmetric and
uniformly distributed in the interval [0.1, 0.5]. We assign a small threshold to the estimated weight
as w0 = 0.05 (somewhat arbitrary), where if the estimated weight is larger (smaller) than w0, the
corresponding link is regarded as existent (non-existent). We have dij = c · τij = c · τji and choose c to
be 100 (arbitrarily). To be specific, we choose linear coupling functions and assume that, for a pair of
connected nodes, the interaction occurs between the z-variable of one node and the x-variable of another.
The time series used to reconstruct the whole network system are acquired by integrating the coupled
delayed differential equation system [51] with step size 5 × 10−5. The vector fields of the nodal dynamics
are expanded into a power series of order lx + ly + lz ≤ 3. The derivatives required for the compressive
sensing formulation are approximated from time series by the standard first-order Gaussian method. To
quantify the data requirement, we define Rm as the ratio of the number of data points used to the total
number of unknown coefficients to be estimated. The beacon nodes are chosen to be those having the
largest degrees in the network, and their positions are assumed to be known.

Figure 2 summarizes the major steps required for reconstructing a complex geospatial network using
compressive sensing. For illustrative purpose, we first use a network of N = 30 nodes that are connected
with each other in a scale-free manner and are randomly distributed in a two-dimensional square.
Oscillatory time series are collected from each node, from which compressive sensing equations can
be obtained, as shown in figure 2a,b. The reconstructed coefficients for the nodal dynamical equations,
as explained in Methods, contain the coupling weights Bij = wij and the delay terms Cij = −wij × τij. The
links with reconstructed weights larger than the threshold w0 are regarded as actual (existent) links, for
which the time delays τij can be estimated as τij = −Cij/wij. Repeating this procedure for all nodes, we can
determine the weighted adjacency matrix (that defines the network topology) and the time delay matrix.
The estimated adjacency matrix and the time delays are displayed in figure 2c,d, respectively, which
match well with those of the actual network. We note that the reconstructed time delays are symmetric
with respect to the link directions, as shown in figure 2d, which is correct as they depend only on the
corresponding physical distances. With the estimated time delays, we choose the four largest degree
nodes, nodes 1 to 4, as the beacon nodes, so that the locations of all remaining nodes can be determined.
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The fully reconstructed geospatial network is shown in figure 2e, where the red rectangles indicate the
locations of the beacon nodes. The black circles denote the actual locations of the remaining nodes and
the heads of the blue arrows indicate their estimated positions (shorter arrows mean higher estimation
accuracy). The amount of data used is relatively small: Rm = 0.5.

We further test our method in three dimensions. Using the same conditions for all nodes that are
randomly distributed in a three-dimensional cube of unit length, we perform reconstruction on a scale-
free network with 50 nodes, as shown in figure 2f. We follow the same method to estimate the connection
weights and time delays for connected pairs, and then use triangulation localization to locate all nodes
in the three-dimensional space. We employ 20 beacon nodes and use Rm = 0.55, because a higher
dimensional system usually requires more reference nodes and larger data amount.

2.2. Performance analysis with respect to weight and time delay estimates
The performance of our compressive-sensing-based approach to reconstructing geospatial networks can
be assessed by calculating the errors in the estimated weights and time delays. We define two types of
errors: those associated with non-zero terms (existing links, denoted as Wnz and Dnz for weight and time
delay, respectively), and those associated with zero terms (non-existing links, Wz and Dz). In particular,
Wnz is the error between the estimated and the true weight for an existent link, normalized by the latter,
while Wz is the average absolute error associated with the original zero terms in the coefficients. Similar
meanings hold for Dnz and Dz.

We first study the estimation errors with respect to varying data amount, Rm. Representative
results are shown in figure 3 for Rm = 0.3 and Rm = 0.5, where figure 3a,b are for errors in the weight
and time delay estimation, respectively. For small data amount (left column), the gaps between the
weights for existent and non-existent links are not well defined, especially for nodes of large degrees.
As Rm is increased, the two kinds of weights can be unequivocally distinguished, making possible
identification of the existent links (right column). Ensemble-averaged errors in the estimated weights
and time delays versus Rm are shown in figure 3c,d, respectively. Note that, in figure 3d, the terms
associated with non-zero coefficients Cij are adjusted by the corresponding weights Bij to compensate
the actual coupling delays and the absolute errors associated with the zero coefficients, as shown in
the inset, the averages of the corresponding absolute values of the cij terms. A general observation
is that the various errors decrease rapidly as the data amount is increased, a prominent feature of
compressive sensing.

In our mathematical formulation of the compressive-sensing-based method, the terms containing
the time delays are expanded to first order only. The methodology, as it stands now, thus applies to
systems with small time delays. To determine an upper bound of the time delay, below which the
whole system including various time delays can be reconstructed faithfully, it is necessary to assess the
dependence of the estimation errors on the amount of the time delay. Figure 4a,b show, for the special
case of uniform time delay, errors Wnz and Dnz versus τ , respectively. We see that the weight errors
increase monotonically with τ , especially for τ > 10−2. However, the time delay errors reach minimum
for τ ≈ 10−2 and begin to increase as τ is increased further. For relatively large time delays, the first-
order Taylor expansion becomes less accurate, leading to large errors in the weight and time delay
estimation. For small delays, the error in Dnz is due to the finite step size used in integrating the delay
differential equations.

How does the performance depend on the network size and other characteristics such as the link
density? Figure 5 shows, for random networks of varying size N and average connection probability P,
the errors Wnz and Dnz. Specifically, for each pair of nodes in the network, their connection probability is
given by pij ∼ p0/d2

ij, where dij is the distance between them, and p0 is a normalization constant used
to fix the average connection probability as P. In this type of ‘normalized’ networks, nodes have a
larger tendency to connect to the nearby nodes, as in a real geospatial network. In figure 5a,b, the
network size varies from N = 30 to N = 100, while the connection density remains fixed at P = 0.04.
The errors are illustrated using different colours. When the data amount Rm is increased, the errors
decrease rapidly and approach a small constant value when Rm exceeds a certain critical value. We
find that optimal reconstruction performance can be achieved for smaller values of Rm for networks
of larger size than those of smaller size, indicating that accurate reconstruction of a larger network
requires relatively smaller ratio of measurements to the number of unknown coefficients, although the
absolute data amounts are larger than those for smaller networks. This is so because, as N is increased,
the density of non-zero terms in the dynamical equations and coupling functions decreases for fixed
connection density.
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Figure 3. Error analysis of network reconstruction and delay time estimation. (a) Predicted incoming coupling strengths for all nodes
for Rm = 0.3 and Rm = 0.5 on a logarithmic scale. The green and orange dots represent the weights of existent and non-existent links,
respectively. (b) Predicted coefficients for the non-zero delay coupling terms Cij , marked as green dots, in comparison with the estimated
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to calculate the results in panels (a) and (b).

As the connection probability P is increased, for example, from 0.02 to 0.2, for a fixed network size
(e.g. N = 30), larger data amount is required for reliable reconstruction, as shown in figure 5c,d. This is
consistent with previous results on reconstruction of complex networks without time delays [35,36], a
feature of the compressive-sensing-based method.

2.3. Error analysis of triangulation algorithm for node positioning in geophysical space
To locate all nodes in a two-dimensional space requires knowledge of the positions of at least three
nodes (minimally four nodes in a three-dimensional space). Due to noise, the required number of
beacon nodes will generally be larger. Since node positioning is based on time delays estimated from
compressive sensing, which contain errors, the number of required beacon nodes is larger than three
even in two dimensions. To quantify the positioning accuracy, we use the normalized error Mr, defined
as the medium distance error between the estimated and actual locations for all nodes (except the beacon
nodes), normalized by the distributed length L. Figure 6 shows Mr versus the fraction RB of the beacon
nodes. The reconstruction parameters are chosen such that the errors in the time delay estimation is
Dnz ≈ 0.12. For small values of RB, the positioning errors are large. Reasonable positioning errors are
obtained when RB exceeds, say, 0.2.

 on March 4, 2016http://rsos.royalsocietypublishing.org/Downloaded from 

http://rsos.royalsocietypublishing.org/


8

rsos.royalsocietypublishing.org
R.Soc.opensci.3:150577

................................................

10−3 10−2

t t
10−1 10−3 10−2 10−1

0

0.04

0.08

0.12
W

nz
Rm = 0.25

Rm = 0.30

Rm = 0.35

0

0.1

0.2

0.3

D
nz

(a) (b)

Rm = 0.25

Rm = 0.30

Rm = 0.35

Figure 4. Effect of the amount of time delay on reconstruction performance. For networks with uniform time delays, errors of predicted
weights (a) and delays (b) versus the length of the actual time delay in the network. Shown in (a) are the normalized errors associated
with the non-zero terms in theweights, for several values of Rm. In (b), the errors are associatedwith the time delays of the existent links.
Random networks of size N = 100 and connection probability of P = 0.04 are used. The results are from three different time-series
segments, as marked with different symbols. Each data point is the result of averaging over 10 network realizations.

N
20 40 60 80 100

0.2

0.4

0.6

0.05

0.1

0.2

0.5

1

2

P

Rm

0.04 0.08 0.12 0.16 0.20

0.2

0.4

0.6

0.01

0.02

0.05

0.1

0.2

0.5

Rm

N

Wnz

20 40 60 80 100

0.2

0.4

0.6

0.001

0.005
0.01

0.05
0.1

0.5

P
0.04 0.08 0.12 0.16 0.20

0.2

0.4

0.6

0.1

0.2

0.5

1

2

Dnz
(a) (b)

(c) (d)

Figure 5. Effect of network size on reconstruction performance. (a,b) Errors associated with non-zero terms of weights Wnz and time
delays Dnz, respectively, as the network size N is increased (left to right), for increasing data amount (bottom to top). The networks are
randomwith fixed link probability p= 0.04. Cold colours represent small errors. (c,d) Errors in the weights (c) and delays (d) versus the
connection probability p for fixed N = 30. All results are obtained by averaging over 20 independent network realizations.

2.4. Locating a hidden node in a geospatial network
To demonstrate that our compressive-sensing-based approach can be used to ascertain the existence
of a hidden node and to estimate its physical location in a geospatial network, we use the model
random network in figure 5. A node is regarded as ‘hidden’ when no time series or other type of direct
information can be obtained from it. To detect a hidden node, it is necessary to identify its neighbouring
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Figure 6. Positioning errors. Normalized positioning errorMr , defined as the medium absolute estimated distance error normalized by
the distributed length L, as a function of the fraction RB of the beacon nodes. The networks have the scale-free topologywith the average
outgoing degree k = 5. Two values of the network size are used: N = 30 and N = 60. The beacon nodes are chosen as those having the
largest degrees. The time delays are estimated using the data amount Rm = 0.5, for which the average error is Dnz ≈ 0.12. The results
are obtained by averaging over 10 independent network realizations.

nodes [38]. For an externally accessible node, if there is a hidden node in its neighbourhood, the
corresponding entry in the reconstructed adjacency matrix will exhibit an abnormally dense pattern
or contain meaningless values. In addition, the estimated coefficients for the dynamical and coupling
functions of such an abnormal node typically exhibit much larger variations when different data
segments are used, in comparison with those associated with normal nodes that do not have hidden
nodes in their neighbourhoods. The mathematical formulation of our method to uncover a hidden node
can be found in Methods. Initially, there are only 29 time series, one from each of the normal nodes, and
it is not known a priori that there would be a hidden node in the network. We proceed to reconstruct
the network to obtain the estimated weights and time delays, as shown in figure 7a. From the results,
we find that the connection patterns of some nodes are relatively dense and the values of the weights
and time delays are meaningless (e.g. negative values), giving the first clue that these nodes may be the
neighbouring nodes of a hidden node. To confirm that this is indeed the case, we divide the available
time series into a number of segments under the criterion that the data requirement for reconstruction
is satisfied for each segment. As shown in figure 7b, we observe extraordinarily large variances in the
estimated coefficients associated with the abnormal nodes. Combining results from figure 7a,b, we can
claim with confidence that the four nodes are indeed in the immediate neighbourhood of a hidden node,
ascertaining its existence in the network. Our method also works if there are more than one hidden node,
given that they do not share common neighbouring nodes.

While the results from figure 7a,b confirm the existence of a hidden node in the network, its
geophysical location is still unknown. Note that each of the neighbouring nodes of the hidden node is
connected to a number of ‘normal’ nodes in the network. We can then use the standard triangularization
procedure to determine the locations of all the ‘abnormal’ nodes. Since a geospatial random network
has the property that nodes tend to connect with physically nearby nodes, we can deduce that the
hidden node must be in the geographical vicinity of the abnormal nodes. In the example in figure 7,
the hidden node (30, represented by red square) must then stay near its neighbouring nodes (nodes 2,
15, 20 and 27, represented by red crosses), as shown in figure 7c, where the normal nodes that are not in
the neighbourhood of the hidden node are denoted by green circles.

3. Discussion
Given that data are available from a large number of components of a complex networked system which
are distributed in a geophysical space, can the network structure be reconstructed, the locations of all
nodes be determined and hidden nodes be detected and ascertained? We address these related issues
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Figure 7. Detection of hidden nodes in geospatial networks. For a random network of N = 30 nodes, illustration of detecting a hidden
node (30). (a) Reconstructed time delays using time series from 29 externally accessible nodes. (b) Average variance in the reconstructed
incoming coupling delays calculated from different segments of the available time series. (c) Estimated positions of all accessible nodes
in comparison with the respective actual positions, and the location of the hidden node. The triangles denote the beacon nodes, whose
positions are known a priori. The green circles denote ‘normal’ nodeswithout any hidden node in their immediate neighbourhoods, while
the crosses are direct neighbours of the hidden node. The actual position of the hidden node 30 is marked as a dashed square.

by developing a compressive-sensing-based approach. In particular, assume that time series or signals
from nodes in the network are collected at a single location. Our approach enables not only the network
topology to be reconstructed, but also the various time delays of the signals from distinct nodes to be
estimated. A standard triangularization procedure can then be used to determine the locations of the
nodes in the geospatial network, in two-dimensional or three-dimensional space, based on the time
delay estimates. We also demonstrate that the existence of a hidden node, from which no signal or time
series is externally accessible, can be inferred and ascertained by identifying all nodes in its immediate
neighbourhood. The location of the hidden node can then be estimated, as nodes in a geospatial network
tend to be locally connected.

We stress that, for data-based reconstruction of complex geospatial networks, a significant challenge is
that the available time series are time delayed, due to the finite speed of the physical signals. One unique
contribution of this work, which goes beyond those of previous works on compressive-sensing-based
reconstruction of complex networks [35–39,41], is a demonstration that inhomogeneous time delays in a
complex network can be estimated reliably using compressive sensing. The information about the time
delays allows us to determine the geophysical locations of the nodes. Our approach sheds new light
into the general problem of network reconstruction and has potential applications in understanding and
exploiting geographically embedded networks.

While we used continuous-time, oscillatory dynamics on networks as a prototypical model, our
compressive-sensing-based framework for reconstruction of geospatial networks can be generalized
to other types of network dynamical processes. For example, previous works demonstrated that both
discrete time maps [35] and evolutionary game dynamics [37] can be formulated as an optimization
problem that can be solved by compressive sensing. To include time delays for discrete time maps is
straightforward. For evolutionary game dynamics, one can take into account time delays by using a
delayed vector for each agent, the entries of which correspond to the time delays between this agent
and all other agents in the network. For large networks, the required computation may be demanding.
A more serious difficulty may arise when the delays among the agents are substantial, leading to the
violation of the sparsity condition required for compressive sensing. To accurately estimate the time
delays for complex networks hosting evolutionary game dynamics is thus an open problem at present.

There are still many challenges to apply our method to more general systems. For example, for the
linear coupling scheme, we used the Taylor expansion to approximate the delayed coupling functions to
the first order in the time delays so that its values can be estimated directly. However, if the coupling
function is nonlinear, applying the Taylor expansion will result in complicated terms that involve
high orders of the time delays, making extrapolating their values difficult (if not impossible). How to
treat nonlinear coupling functions that contain time delays remains to be an open problem. Also, our
method can locate nodes only in the Cartesian space, as the distances are inferred from the time delays
information through a triangulation algorithm that is specifically designed to deal with the Cartesian
space. Extending the methodology to curved space is an interesting issue but it is open at present.
Another difficulty is that high-dimensional nodal dynamical equations may not be sparsely expressed
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through a Taylor expansion. In this case, we can either choose alternative expansion techniques, such as
Fourier series, or test alternative observation variables to obtain suitable response functions. For example,
in the particular case of reconstructing stochastic evolutionary game networks [37,38], the dynamical
processes are not described by nonlinear differential equations but are defined in terms of a set of
stochastic game rules. At every time step, each agent chooses its strategy in a random manner. A
workable set of observation variables can be the pay-offs of all the agents. It was demonstrated [37,38]
that the network structure under stochastic game rules can still be constructed with high accuracy, based
on compressive sensing.

4. Methods
4.1. Mathematical framework for reconstructing coupled oscillator networks with time delay
As proof of principle, we present our reconstruction framework using continuous time oscillator
networks. There are N oscillators in the network, and the dynamical process on each node is described by
a set of coupled ordinary differential equations. (A similar framework can be formulated for other types
of dynamical processes, such as evolutionary games [37].) The m-dimensional state variable of node i is
written as equation (2.2). To derive equation (2.3), we assume linear coupling functions and causality so
that all τij (i, j = 1, . . . , N) are positive (for simplicity). We regroup all terms directly associated with node
i into F′

i[xi(t)], where

F′
i[xi(t)] ≡ Fi[xi(t)] − xi(t) ·

N∑
j=1,j�=i

Wij, (4.1)

and we expand F′
i[xi(t)] into the following series form:

F′
i[xi(t)] =

∑
γ

α̃(γ ) · g̃(γ )[xi(t)], (4.2)

where g̃(γ )[xi(t)] represents a suitably chosen set of orthogonal and complete base functions such that the
coefficients α̃(γ ) are sparse. To proceed, we approximate xj(t − τij) as

xj(t − τij) ≈ xj(t) − τijẋj(t), (4.3)

so all the coupling terms with inhomogeneous time delays associated with node i can be written as

⎡
⎣

N∑
j=1,j�=i

Wijxj(t − τij)

⎤
⎦

p

≡
N∑

j=1,j�=i

[bijxj(t) + cijẋj(t)], (4.4)

where bij = Wij and cij = −Wijτij. Equation (2.2) can then be written in the compact form as equation (2.3),
which is a set of linear equations, where α̃(γ ), bij and cij are to be determined. If the unknown coefficient
vectors can be reconstructed accurately, we will have complete information about the nodal dynamics as
represented by F′[x(t)], the topology and interacting weights of the underlying network as represented
by Wij, as well as the time delays associated with the non-zero links because of the relations Wij = bij and
τij = −cij/bij. However, if the coupling form is nonlinear, the relationship between the delay term cij and
the time delays τij would be hard to interpret, especially when the exact coupling form is not known.

As an illustrative example, we consider the case where each individual nodal dynamical system is
three-dimensional with variables x, y and z. For the first component xi of node i, we have the following
series expansion at time t:

ẋi = (ãi)000 · x0
i y0

i z0
i + · · · + (ãi)333 · x3

i y3
i z3

i + (bi1)1x1 + (bi1)2y1 + (bi1)3z1 + · · · + (biN)1xN

+ (biN)2yN + (biN)3zN + (ci1)1ẋ1 + (ci1)2ẏ1 + (ci1)3ż1 + · · · + (ciN)1ẋN + (ciN)2ẏN + (ciN)3żN , (4.5)

where bii and cii are excluded. The formula contains three parts: the power series of isolated nodal
dynamics with coefficients ãi, terms of all other coupled nodes’ variables with coefficients bij, and terms
of derivatives of the coupled nodes as represented by cij. Assuming that measurements xi(t), yi(t) and
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zi(t) at a set of time instants t1, t2, . . . , tw are available, we write

Ai(t) = [xi(t)
0yi(t)

0zi(t)
0, . . . , xi(t)

3yi(t)
3zi(t)

3], (4.6)

Bi(t) = [x1(t), . . . , xN(t), y1(t), . . . , yN(t), z1(t) . . . , zN(t)] (4.7)

and Ci(t) = [ẋ1(t), . . . , ẋN(t), ẏ1(t), . . . , ẏN(t), ż1(t) . . . , żN(t)] (4.8)

to obtain a compact expression
X = G · ai + ξ , (4.9)

where

X =

⎛
⎜⎜⎜⎜⎝

ẋi(t1)
ẋi(t2)

...
ẋi(tw)

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎝

Ai(t1) Bi(t1) Ci(t1)
Ai(t2) Bi(t2) Ci(t2)

...
...

...
Ai(tw) Bi(tw) Ci(tw)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎝

ãi
bi
ci

⎞
⎟⎠ + ξ , (4.10)

and ξ represents the error introduced by the series approximation.
In general, the connection pattern of a complex network is far sparser than the all-to-all coupling

configuration, so typically most elements of [ãi, bi, ci]T are zero. In addition, the error ξ is small and can
be regarded as a noise term.

4.2. Compressive sensing algorithm in the presence of noise
The compressive sensing algorithm can be used to solve a sparse vector a from the ill-conditioned linear
equation under noise: X = G · a + ξ , where ξ is a random process. Reliable recovery of the sparse vector
a can be achieved [29,30,33] by solving the following l1 regularization problem:

min ‖a‖l1 , subject to ‖G · a − X ‖l2 ≤ ε, (4.11)

where the l1 norm for a vector x is defined as ‖x‖l1 = ∑n
i=1 |xi| (its l2 norm is ‖x‖l2 = ∑n

i=1 |x2
i |) and ε is

a threshold value determined by the noise amplitude. The reconstructed vector ā lies within the range:
‖ā − a‖ ≤ C · ε, where C is a constant.

In order to apply the compressive sensing algorithm to solve equation (4.10), it is necessary to
normalize each column of the matrix G by the L2 norm of that column: (G′)ij = (G)ij/L2(j) with L2(j) =√∑M

i=1 [(G)ij]2. We thus have X = G′ · u′ with u′ = uL2. After u′ is determined through some standard
compressive sensing algorithm, the coefficients u are given by u′/L2. Substituting ai, bij and cij back into
equation (2.3), we obtain the nodal dynamics, coupling weights and the delays associated with the first
dynamical variable of node i. For the remaining two variables for this node and all variables for other
nodes in the network, a similar procedure can be followed.

4.3. Triangle localization method
Given the positions of k reference nodes (or beacon nodes) (xk, yk), and their distances di,1, di,2, . . . di,k to
the target node i, we can calculate the position of node i using the triangular localization method [44],
for k larger than the space dimension. In general, we will need to solve the least-squares optimization
problem H · xi = b, where xi = [xi, yi]T is the position of node i, and H = [x1, x2, . . . , xk]T is the position
vector corresponding to the set of beacon nodes, where b = 0.5 × [D1, D2, . . . , Dk]T and Dk = d2

ik − y2
k + x2

k .
To locate the positions of all nodes in the network, we start with a small set of beacon nodes whose

actual positions are known and the distances associated with all links in the network. Initially, we can
locate the nodes that are connected to at least three nodes in the set of beacon nodes, insofar as the three
reference nodes are not located on a straight line. When this is done, the newly located nodes can be
added into the set of reference nodes and the neighbouring nodes can be located through the new set of
beacon nodes. We iterate this process until the positions of all nodes are determined or no more qualified
neighbouring nodes can be found. For a general network, such initial beacon sets may not be easily
found. A special case is scale-free networks, for which the initial beacon set can be chosen as the nodes
with the largest degrees. For a random network, we can also choose the nodes of the largest degree as
the initial beacon node set and use a larger beacon set to locate most of the nodes in the network. For an
arbitrary topology, we offer the following simple method to select the set of beacon nodes: we estimate
the distances from one node to all other unconnected nodes using the weighted shortest distance and
then proceed with the triangular localization algorithm. There are alternative localization algorithms
based on given distances, for example, the multidimensional scaling method [52,53].
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4.4. Asynchronous data collection
In real applications, the requirement to collect time series simultaneously will usually not be met.
Consider the typical situation where the data are collected from a fixed external node, denoted by s,
which has varying distances to the signal sources. The signals that arrive at the external node at time t
were actually sent out by the sources at time t − τis, where τis is the varying transmission delay associated
with the distances from node i to s. In general, τis is unknown a priori because the location of node i needs
to be determined.

In the reconstruction of the dynamical process and connections associated with node i, the time series
substituted into equation (2.3) are in fact xi(t − τis) and xj(t − τjs), for j = 1, 2, . . . , N and j �= i. The delay
coupling terms can approximated as

xj(t − τis − τij) = xj(t − τjs − τis − τij + τjs) ≈ xj(t − τjs) − τ ′
ijẋj(t − τjs), (4.12)

where τij is the actual delay and τ ′
ij is the estimated delay. From Taylor expansion, we have τ ′

ij =
τis − τjs + τij. Similarly, for node j, the estimated delay is τ ′

ji = τjs − τis + τji. Because τij = τji, we can
eliminate the effect of τis and τjs by averaging the two estimated delays, as τij = τji = (τ ′

ij + τ ′
ji)/2. After

we obtain the time-delay matrix {τ ′
ij}, we can convert its elements into the actual elements so as to obtain

the corresponding distances {dij}.

4.5. Locating a hidden node in a random geospatial network
We first reconstruct the network using our compressive sensing framework, treating the system as if
there was no hidden node. As demonstrated in figure 7, the neighbouring nodes of the hidden node tend
to exhibit abnormally dense connection patterns. We then use multiple time-series segments to calculate
the variance in the reconstructed coefficient vectors for all nodes. In particular, the variance σi associated
with node i is defined as

σi =
√√√√ 1

T

T∑
t=1

1
N

N∑
k=1

(wik − w̃ik)2, (4.13)

where T is the number of data segments used, N the network size and w̃ij the average weights over
T realizations. The variance associated with the time delays can be calculated in a similar way. The
neighbouring nodes of the hidden node are those with abnormally dense connection patterns and
significantly larger variances than others.

If there are more than one hidden node but they are not directly linked, i.e. they do not share
any neighbouring nodes, we can use the cancellation method developed in our previous work [39] to
ascertain the number of hidden nodes. The first step is to identify all neighbouring nodes. The second
step is to check if the neighbouring nodes are connected to the same hidden node by calculating the
cancellation factor for any pair of neighbouring nodes. If they are connected to the same hidden node,
the cancellation factor is the ratio of their coupling strength to the common hidden node, which is
typically non-zero; otherwise they are connected to different hidden nodes. The third step is to repeat this
process for all possible pairs of the identified neighbouring nodes. This procedure allows us to classify
the neighbouring nodes into different groups, each containing a hidden node.
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