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Let G be a reductive algebraic group over an algebraically closed field and
let V be a quasiprojective G-variety. We prove that the set of points v ∈ V
such that dim(Gv) is minimal and Gv is reductive is open. We also prove
some results on the existence of principal stabilisers in an appropriate sense.

1. Introduction

Let G be a reductive linear algebraic group over an algebraically closed field k and
let V be a quasiprojective G-variety. For convenience, we assume throughout the
paper that G permutes the irreducible components of V transitively (the extension
of our results to the general case is straightforward). An important question in
geometric invariant theory is the following: what can we say about generic stabilisers
for the G-action? For instance, given v ∈ V , what does the stabiliser Gv tell us
about the stabilisers Gw for w near v? Define V0 to be the set of points v ∈ V
such that the stabiliser Gv has minimal dimension. The basic theory tells us that
V0 is open (Lemma 2.1). Here is a deeper result [Bardsley and Richardson 1985,
Proposition 8.6]: if V is affine and there exists an étale slice through v for the
G-action then there exists an open neighbourhood U of v such that for all w ∈U ,
Gw is conjugate to a subgroup of Gv. In particular, if dim(Gv) is minimal in this
case then G0

w is conjugate to G0
v for all w ∈ U . The existence of an étale slice

requires, among other conditions, that V be affine and the orbit G · v be closed and
separable. If V is affine and k has characteristic 0 then every v ∈ V such that G · v
is closed admits an étale slice, but if k has positive characteristic then it can happen
that there are no étale slices at all, since, for example, orbits need not be separable.

In this paper we prove some results about properties of generic stabilisers.
Most previous work in this area has dealt with affine varieties and/or fields of
characteristic 0 only. Our results hold for quasiprojective varieties and in arbitrary

MSC2010: primary 14L30; secondary 20G15.
Keywords: Quasiprojective G-varieties, generic stabilisers, principal orbit type, G-complete

reducibility.

397

http://msp.org/pjm/
http://dx.doi.org/10.2140/pjm.2015.279-1-2
http://dx.doi.org/10.2140/pjm.2015.279.397


398 BENJAMIN MARTIN

characteristic, although in some cases we get stronger results in characteristic 0.
We need no assumptions on the existence of or properties of closed orbits, and we
allow G to be nonconnected.

Let Vred = {v ∈ V0 | Gv is reductive}. It is possible for Vred to be empty (see
Example 8.2). Our first main result implies that if Vred is nonempty then generic
stabilisers are reductive.

Theorem 1.1. Vred is an open subvariety of V .

A key ingredient in the proof is the Projective Extension Theorem (see Lemma 3.1).
We mention two related results. First, it follows from [Richardson 1972a, Corol-

lary 9.1.2] that if G is a complex linear algebraic group — not necessarily reductive —
and V is a smooth algebraic transformation space for G then Vred is open. Second,
V. Popov [1972] proved the following (cf. [Luna and Vust 1974]). Let G be
a connected linear algebraic group — not necessarily reductive, and in arbitrary
characteristic — such that G has no nontrivial characters, and let V be an irreducible
normal algebraic variety on which G acts such that the divisor class group Cl(V )
has no elements of infinite order. Then generic G-orbits on V are closed if generic
G-orbits on V are affine, and the converse also holds if V is affine.

Richardson [1977, Theorem A] proved that if G is reductive and V is an affine
G-variety then an orbit G · v is affine if and only if the stabiliser Gv is reductive.
Suppose V is affine and there exists a closed orbit G · v of maximum dimension;
then the union of the closed orbits of maximal dimension is open in V [Newstead
1978, Proposition 3.8]. It follows from Richardson’s result that there is an open
dense set of points v ∈ V such that Gv is reductive. Theorem 1.1 extends this to
the case when generic orbits are not closed, without the affineness assumption.

Richardson’s result also gives an immediate corollary to Theorem 1.1 (note that
Gv has minimal dimension if and only if the orbit G · v has maximum dimension).

Corollary 1.2. Suppose V is affine. Then the set v ∈ V such that dim(G · v) is
maximal and G · v is affine is open.

We give an application of Theorem 1.1. Nisnevič [1973] proved the following
result when char(k)= 0 and t = 1.1 He also proved that the subset A is nonempty
in this special case.

Theorem 1.3. Let M, H1, . . . , Ht be subgroups of a reductive group G such that
M is reductive. Let

A =
{
(g1, . . . , gt) ∈ G t

| M ∩ g1 H1g−1
1 ∩ · · · ∩ gt Ht g

−1
t

is reductive and has minimal dimension
}
.

Then A is open.

1In a private communication, Wallach has also given a proof in this case.
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We do not know in general whether A can be empty in positive characteristic,
not even when t = 1 and H1 = M .

If generic stabilisers are reductive, it is reasonable to try to pin down which
reductive subgroups of G actually appear as stabilisers. We say that a subgroup H
of G is a principal stabiliser for the G-variety V if there is a nonempty open subset
O of V such that Gv is conjugate to H for all v ∈ O . We then say that V has a
principal orbit type. Under our assumptions on G and V , a principal stabiliser is
unique up to conjugacy if it exists. Richardson proved that if char(k)= 0 and V is
smooth and affine then a principal stabiliser exists [1972b, Proposition 5.3].

It turns out that in positive characteristic, the condition of conjugacy of the
stabilisers is too strong: Example 8.3 below shows that even if generic stabilisers
are connected and reductive, a principal stabiliser need not exist. To obtain a
result, we need to weaken the notion of principal stabiliser. Let M ≤ G and let
P be a minimal R-parabolic subgroup of G containing M (see Section 2 for the
definition of R-parabolic subgroups), let L be an R-Levi subgroup of P and let
πL : P→ L be the canonical projection. It can be shown that up to G-conjugacy,
πL(M) does not depend on the choice of P and L (cf. [Bate et al. 2013, Proposition
5.14(i)]). We define D(M) to be the conjugacy class G ·πL(M), and we call this
the G-completely reducible degeneration of M (see Section 4 for the definition of
G-complete reducibility). Our second main result says that the D(Gv) are equal
for generic v.

Theorem 1.4. There exist a G-completely reducible subgroup H of G and a
nonempty open subset O of V such that D(Gv)= G · H for all v ∈ O.

If G is connected and every stabiliser is unipotent then D(Gv)= 1 for all v ∈ V ,
so we don’t learn much about the structure of the stabilisers. Under some extra
hypotheses, however, we can deduce the existence of a principal stabiliser.

Corollary 1.5. Suppose there is a nonempty open subset O of V such that Gv is
G-completely reducible for all v ∈ O. Then the subgroup H from Theorem 1.4 is a
principal stabiliser for V .

Corollary 1.6. Suppose char(k)= 0 and Vred is nonempty. Then the subgroup H
from Theorem 1.4 is a principal stabiliser for V .

If we restrict ourselves to the identity components of stabilisers then we get
slightly stronger results.

Theorem 1.7. Suppose Vred is nonempty. There exists a connected G-completely
reducible subgroup H of G such that D(G0

v)= G · H for all v ∈ Vred.

In fact, we prove a version of Theorem 1.7 which applies even when Vred is
empty (see Theorem 7.6).
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We briefly explain our approach to the proof of Theorems 1.4 and 1.7. We may
regard the subgroups Gv as a family of subgroups of G parametrised by V . There
is no obvious way to endow a set of subgroups of G with a geometric structure, so
instead we follow the approach of R.W. Richardson [1967; 1988] and consider the
set of tuples that generate these subgroups.

Definition 1.8. Let N ∈ N. Define

C = CN = {(v, g1, . . . , gN ) | v ∈ V, g1, . . . , gN ∈ Gv}.

We call C the stabiliser variety of V .

Our results follow from a study of the geometry of C , using the theory of
character varieties and the theory of G-complete reducibility. A major technical
problem is that C can be reducible even when G is connected and V is irreducible,
so the projection into V of a nonempty open subset of C need not be dense (see
Remarks 7.9 and 7.13, for example). The situation is better if we consider only
the identity components of stabilisers: we can work with a canonically defined
subvariety C̃ of C with nicer properties (see Lemma 7.1).

The paper is laid out as follows. Section 2 contains preliminary material. In
Section 3 we prove Theorems 1.1 and 1.3. Section 4 reviews G-complete reducibility
and Section 5 introduces a technical tool needed in Section 6, where we prove
Theorem 1.4 and Corollaries 1.5 and 1.6. We study the irreducible components of
C in Section 7 and prove Theorem 1.7. The final section contains some examples.

2. Preliminaries

Throughout the paper, N denotes a positive integer, G is a reductive linear algebraic
group — possibly nonconnected — over an algebraically closed field k and V is a
quasiprojective G-variety over k. The stabiliser variety CN depends on the choice of
N , but to ease notation we suppress the subscript and write just C . All subgroups of
G are assumed to be closed. If H is a linear algebraic group then we write κ(H) for
the number of connected components of H , Ru(H) for the unipotent radical of H
and αH for the canonical projection H → H/Ru(H). The irreducible components
of H N are the subsets of the form H1× · · · × HN , where each Hi is a connected
component of H . If X ′ is a subset of a variety X then we denote the closure of
X ′ in X by X ′. Below we will use the following results on fibres of morphisms
(cf. [Borel 1991, AG.10.1 Theorem]): if f : X → Y is a dominant morphism of
irreducible quasiprojective varieties then for all y ∈ Y , every irreducible component
of f −1(y) has dimension at least dim(X)− dim(Y ), and there is a nonempty open
subset U of Y such that if y ∈ U then equality holds. More generally, if Z is a
closed irreducible subset of Y and W is an irreducible component of f −1(Z) that
dominates Z then dim(W )≥ dim(Z)+ dim(X)− dim(Y ).
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The next result is Lemma 3.7 of [Newstead 1978].

Lemma 2.1. Let a linear algebraic group H act on a quasiprojective variety W .
For any t ∈ N∪ {0}, the set {w ∈W | dim(Hw)≥ t} is closed.

Our assumption that G permutes the irreducible components of V transitively
implies that these components all have the same dimension, which we denote by
n, and also that nonempty open G-stable subsets of V are dense. In particular, the
open subset V0 is dense; we denote the dimension of Gv for any v ∈ V0 by r .

The group G acts on G N by simultaneous conjugation: g · (g1, . . . , gN ) =

(gg1g−1, . . . , ggN g−1). We define φ : C→G N and η : C→ V to be the canonical
projections. We allow G to act on C in the obvious way, so that φ and η are
G-equivariant.

We recall an approach to parabolic subgroups and Levi subgroups using cochar-
acters [Springer 1998, Section 8.4; Bate et al. 2005, Lemma 2.4 and Section 6]. We
denote by Y (G) the set of cocharacters of G. The subgroup

Pλ :=
{
g ∈ G | lim

a→0
λ(a)gλ(a)−1 exists

}
is called an R-parabolic subgroup of G, and the subset Lλ := CG(λ(k∗)) is called
an R-Levi subgroup of Pλ. An R-parabolic subgroup P is parabolic in the sense that
G/P is complete, and P0 is a parabolic subgroup of G0. If G is connected then
an R-parabolic (resp. R-Levi) subgroup is a parabolic (resp. Levi) subgroup, and
every parabolic subgroup P and every Levi subgroup L of P arise in this way. The
normaliser NG(P) of a parabolic subgroup P of G0 is an R-parabolic subgroup.
The subset {g ∈ G | lima→0 λ(a)gλ(a)−1

= 1} is the unipotent radical Ru(Pλ), and
this coincides with Ru(P0

λ ). We denote the canonical projection from Pλ to Lλ
by cλ. There are only finitely many conjugacy classes of R-parabolic subgroups
[Martin 2003, Proposition 5.2(e)].

We finish with some results that are well known; we give proofs here as we
could not find any in the literature. These results are not needed in the proofs of
Theorems 1.1 and 1.3.

Lemma 2.2. Let ψ : X → Y be a morphism of quasiprojective varieties over k.
There exists d ∈ N such that any fibre of ψ has at most d irreducible components.

Proof. By noetherian induction on closed subsets of X and Y , we are free to pass
to open affine subvarieties of X and Y whenever this is convenient. So assume
that X and Y are affine and let R and S be the coordinate rings of X and Y ,
respectively. Suppose first that X and Y are irreducible and that ψ is finite and
dominant. By a simple induction argument, we can assume that R = S[ f ] for some
f ∈ R. Let m(t)= td

+ ad−1td−1
+ · · ·+ a0 be the minimal polynomial of f with

respect to the quotient field of S. Passing to open subvarieties, we can assume
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that the ai are defined on Y . Let y ∈ Y . If x ∈ X with ψ(x) = y then we have
f (x)d + ad−1(y) f (x)d−1

+ · · ·+ a0(y)= 0; it follows that there can be at most d
such values of x . Thus the fibres of ψ have cardinality at most d .

Now consider the general case. Passing to open subvarieties, we can assume
that X and Y are irreducible and affine and that ψ is dominant. We can write
R = S[ f1, . . . , ft ] for some t and some f1, . . . , ft ∈ R. After reordering the fi

if necessary, there exists s with 0 ≤ s ≤ t such that f1, . . . , fs are algebraically
independent over S and fs+1, . . . , ft are algebraic over S[ f1, . . . , fs]. The inclusion
S ⊆ S[ f1, . . . , fs] ⊆ R corresponds to a factorisation of ψ as

ψ = X
ψ ′

−→ Y ′
g
−→ Y,

where Y ′ is the affine variety with coordinate ring S[ f1, . . . , fs]. Then we have
dim(X) = dim(Y ′) and ψ ′ is dominant. By passing to open affine subvarieties,
we can assume that ψ ′ is finite and Y ′ is normal. By the special case above, the
cardinality of the fibres of ψ ′ is bounded by some d .

Suppose that for some y ∈ Y , the fibre F :=ψ−1(y) has d+1 distinct irreducible
components, say F1, . . . , Fd+1. The fibre F ′ := g−1(y) is clearly isomorphic to ks

and we have F = (ψ ′)−1(F ′). Since ψ ′ is finite and Y ′ is normal, every irreducible
component of F has dimension s and is mapped surjectively to F ′ [Humphreys
1975, 4.2 Proposition (b)]. But this means that for generic y′ ∈ F ′, (ψ ′)−1(y′) has
at least d+1 elements, a contradiction. We deduce that F has at most d irreducible
components, as required. �

Definition 2.3. Applying Lemma 2.2 to the map η : C → V , we see there is a
uniform bound on κ(Gv) as v ranges over the elements of V , since the number of
irreducible components of G N

v is κ(Gv)
N . We denote the least such bound by 2.

Lemma 2.4. Let�/k be a proper extension of algebraically closed fields. Let t ∈N

and let X be an �-defined constructible subset of �t . Let {X i | i ∈ I } be a family
of k-defined constructible subsets of �t such that X ⊆

⋃
i∈I X i . Then there exists

i ∈ I such that X ∩ X i has nonempty interior in X. Moreover, there exists a finite
subset F of I such that X ⊆

⋃
i∈F X i .

Proof. Clearly we can reduce to the case when X and each of the X i is irreducible
and locally closed in �t . The second assertion follows from the first by Noetherian
induction on closed subsets of X , so it is enough to prove the first assertion.
Let m = dim(X). It suffices to show that dim(X ∩ X i ) = m for some i ∈ I .
We use induction on m. The result is trivial if m = 0. Choose polynomials
f1, . . . , fm ∈ k[T1, . . . , Tt ] such that the restrictions of the fi to X form a subset
of the coordinate ring �[X ] that is algebraically independent over �. Define
f : �t

→�m by f (x)= ( f1(x), . . . , fm(x)); note that f is k-defined. Any proper
closed subset of X is a union of irreducible components of dimension less than m.
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By induction, we are therefore free to replace X with any nonempty open subset of
X , so we can assume that f |X gives a finite map from X onto an open subset of
�m . Then f (X)⊆

⋃
i∈I f (X i ) and each f (X i ) is k-constructible. It is enough to

prove that f (X)∩ f (X i ) has nonempty interior in f (X). Hence we can assume
without loss that t = m and X is an open subset of �m .

Let π : �m
→� be the projection onto the first coordinate. Since X is an open

and dense subset of �m , π(X) is a dense constructible subset of �, so � \π(X)
is finite. Hence there exists y ∈ π(X) such that y /∈ k. Let X̃ = X ∩ π−1(y).
Then X̃ is an �-defined locally closed subset of �m , X̃ is irreducible of dimension
m− 1 and X̃ ⊆

⋃
i∈I X i . By induction, there exists j ∈ I such that X̃ ∩ X j has an

irreducible component of dimension m− 1. Hence π−1(y)∩ X j has an irreducible
component of dimension at least m−1. Note that we retain our assumption that the
X i are irreducible. Now X j cannot be contained in π−1(y) because π−1(y) has no
k-points, so π−1(y)∩ X j is a proper closed subset of X j . Hence dim(X j )= m, as
required. �

Corollary 2.5. Let � be an uncountable algebraically closed field. Let t ∈N and
let X be an �-defined constructible subset of �t . Let {X i | i ∈ I } be a countable
family of �-constructible subsets of X such that X ⊆

⋃
i∈I X i . Then there exists

i ∈ I such that X i has nonempty interior in X. Moreover, there exists a finite subset
F of I such that X ⊆

⋃
i∈F X i .

Proof. Each of the X i is defined over a subfield of � that is finitely generated over
the algebraic closure of the prime field, so there exists a countable subfield k of �
such that each of the X i is defined over k. Since k is countable and � is not, �/k
is a proper field extension. Now apply Lemma 2.4. �

Corollary 2.6. If X is irreducible and the X i are closed in Corollary 2.5 then there
exists i ∈ I such that X ⊆ X i .

Proof. This is immediate from Corollary 2.5. �

3. Proof of Theorem 1.1

We now prove our first main result.

Lemma 3.1. Let X be a quasiprojective variety, let Y be a projective variety and
let Z be a closed subvariety of X × Y . Then the projection of Z onto X is a closed
variety.

Proof. Choose a covering of X by open affine subvarieties X1, . . . , Xm . A subset S
of X (resp. X × Y ) is closed if and only if its intersection with X i (resp. X i ∩ Y )
is closed for all i , so we can assume that X is affine. The result now follows
from the Projective Extension Theorem [Cox et al. 2015, Chapter 8, Section 5,
Theorem 6]. �
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Lemma 3.2. Let P be an R-parabolic subgroup of G and let W be a closed P-stable
subset of V . Then G ·W is closed in V .

Proof. Set D = {(v, g) ∈ V × G | g−1
· v ∈ W }, a closed subvariety of V × G.

We let P act on V ×G by h · (v, g)= (v, gh−1); then D is P-stable as W is. Let
πP : G → G/P be the canonical projection and define θ : V × G → V × G/P
by θ(v, g) = (v, πP(g)). Since πP is smooth, πP is flat, so (θ, V × G/P) is a
geometric quotient by [Bongartz 1998, Lemma 5.9(a)]. Then θ takes closed P-
stable subvarieties of V × G to closed subvarieties of V × G/P , so θ(D) is a
closed subvariety of V ×G/P . Note that the projection of θ(D) onto V is G ·W .
Lemma 3.1 implies that G ·W is closed in V , so we are done. �

Remark 3.3. We record one corollary (cf. [Sikora 2012, Proposition 27]). Recall
that G acts on G N by simultaneous conjugation. Let P be an R-parabolic subgroup
of G. Then G · P N is closed in G N . This follows immediately from Lemma 3.2,
taking V = G N and W = P N .

Proposition 3.4. Let P be an R-parabolic subgroup of G with unipotent radical U.
Define VP = {v ∈ V0 | dim(Pv) = r} = {v ∈ V0 | G0

v ≤ P} and, for each t ,
VP,t = {v ∈ VP | dim(Uv)≥ t}. Then G · VP,t is closed in V0 for each t.

Proof. This follows from Lemma 3.2 (applied to V0), as each VP,t is P-stable and
closed in V0 (Lemma 2.1). �

Proof of Theorem 1.1. We show that Gv is nonreductive if and only if v∈
⋃

P G·VP,1,
where the union is over a set of representatives of the conjugacy classes of R-
parabolic subgroups of G. Since there are only finitely many R-parabolic subgroups
up to conjugacy and each subset G · VP,1 is closed in V0 (Proposition 3.4), this
suffices to prove the theorem.

If v ∈G ·VP,1 — say, g ·v ∈ VP,1 — then G0
v ≤ g−1 Pg and G0

v contains a positive-
dimensional subgroup M of g−1Ug = Ru(g−1 Pg). Thus G0

v is not reductive,
as G0

v normalises the connected unipotent subgroup of g−1Ug generated by the
G0
v-conjugates of M . Hence Gv is not reductive, either. Conversely, if v ∈ V0 and

Gv has nontrivial unipotent radical H then we can pick a minimal R-parabolic
subgroup P of G containing Gv; then H ≤ Ru(P) (see the paragraph following
Lemma 4.1), so v ∈ G · VP,1. The result now follows. �

Remark 3.5. More generally, set V (t) = {v ∈ V0 | dim(Ru(Gv)) ≥ t}. A similar
argument to the one above shows that V (t)=

⋃
P G · VP,t , where the union is over

a set of representatives of the conjugacy classes of R-parabolic subgroups of G, so
V (t) is closed. In particular, define Vmin={v ∈ V0 | dim(Ru(Gv)) is minimal}; then
Vmin is a nonempty open subset of V0. Note that Vmin = Vred if Vred is nonempty.

We finish the section with the proof of Theorem 1.3. Each coset space G/Hi

is quasiprojective, and the reductive group M acts on G/Hi by left multiplication.



GENERIC STABILISERS FOR ACTIONS OF REDUCTIVE GROUPS 405

Let V = G/H1× · · ·×G/Ht , with M acting on V by the product action. For any
(g1, . . . ,gt)∈G t , the stabiliser M(g1 H1,...,gt Ht ) equals M∩g1 H1g−1

1 ∩·· ·∩gt Ht g−1
t .

Hence the set A equals the preimage of Vred under the map from G t to V that sends
(g1, . . . , gt) to (g1 H1, . . . , gt Ht). But Vred is open by Theorem 1.1, so A is open.
This completes the proof.

Remark 3.6. In the setup in the proof of Theorem 1.3, we do not know whether the
subgroups M ∩ g1 H1g−1

1 ∩· · ·∩ gt Ht g−1
t are all conjugate for generic (g1, . . . , gt).

This is the case, however, if these subgroups are G-completely reducible for generic
(g1, . . . , gt) (cf. Example 8.4).

4. G-complete reducibility and orbits of tuples

Let H be a subgroup of G. We say that H is G-completely reducible (G-cr) if
whenever H is contained in an R-parabolic subgroup P of G, there is an R-Levi
subgroup L of P such that H is contained in L . This notion is due to Serre [2005];
see [Serre 1998; 1997] for more details. In particular, we say that H is G-irreducible
(G-ir) if H is not contained in any proper R-parabolic subgroup of G at all; then
H is G-cr. A G-cr subgroup of G is reductive (cf. [Bate et al. 2005, Section 2.5
and Theorem 3.1]), and the converse holds in characteristic 0. A linearly reductive
subgroup is G-cr, while a nontrivial unipotent subgroup of G0 is never G-cr. A
normal subgroup of a G-cr subgroup is G-cr [Bate et al. 2005, Theorem 3.10]. We
denote by C(G)cr the set of conjugacy classes of G-cr subgroups of G.

Lemma 4.1. C(G)cr is countable.

Proof. Let F be the algebraic closure of the prime field. Then G has an F-structure,
by [Martin 2003, Proposition 3.2]. By [Martin 2003, Theorem 10.3] and [Bate
et al. 2005, Theorem 3.1], any G-cr subgroup of G is G-conjugate to an F-defined
subgroup. But G(F) has only countably many G(F)-conjugacy classes of G(F)-cr
subgroups since F is countable. The result follows. �

Let H be a subgroup of G. Let P = Pλ be minimal amongst the R-parabolic
subgroups of G that contain H . Then cλ(H) is an Lλ-ir subgroup of Lλ (see the
proof of [Bate et al. 2013, Proposition 5.14(i)]), so cλ(H) is G-cr. As observed in
Section 1, cλ(H) does not depend on the choice of λ up to conjugacy, and we set
D(H)=G ·cλ(H). We have D(H)=G ·H if and only if cλ(H) is conjugate to H if
and only if H is G-cr [Bate et al. 2013, Proposition 5.14(i)]. For any µ∈Y (G) such
that H ≤ Pµ, if H is G-cr then cµ(H) is conjugate to H , and if cµ(H) is G-ir then
Lµ =G, so H = cµ(H) is G-ir. Since cλ(H) is reductive, Ru(H)≤ Ru(Pλ) and H
is reductive if and only if H ∩ Ru(Pλ) is finite if and only if dim(H)= dim(cλ(H)).
Moreover, dim(CG(H))≤ dim(CG(cλ(H))), with equality if and only if H is G-cr
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[Bate et al. 2013, Theorem 5.8(ii)], and dim(cλ(H))= dim(H)− dim(Ru(H)). If
M ≤ H and αH (M)= H/Ru(H) then D(M)= D(H).

If char(k) = 0 then H has a Levi subgroup M by [Hochschild 1981, VIII,
Theorem 4.3]; that is, H has a reductive subgroup M such that H ∼= M n Ru(H).
Then cλ(H)= cλ(M) is conjugate to M , since M is G-cr, so D(H)= G ·M .

The paper [Bate et al. 2005] laid out an approach to the theory of G-complete
reducibility using geometric invariant theory; we briefly review this now. As
described in Section 1, the idea is to study subgroups of G indirectly by looking
instead at generating tuples for subgroups. Given s ∈N and g = (g1, . . . , gs) ∈ Gs ,
we denote by G(g) or G(g1, . . . , gs) the closed subgroup generated by g1, . . . , gs .
If H is of the form G(g1, . . . , gs) for some g1, . . . , gs ∈ G then we say that H is
topologically finitely generated, and we call g a generating s-tuple or generating
tuple for H . The structure of the set of generating s-tuples is complicated; for
instance, if H = k∗ and k is solid (Definition 4.2) then both {h ∈ H s

| G(h)= H}
and {h ∈ H s

| G(h) 6= H} are dense in H s , even when s = 1.
Recall that G acts on G N by simultaneous conjugation. We call the quotient

space G N/G a character variety and we denote the canonical projection from
G N to G N/G by πG . If λ ∈ Y (G) then we abuse notation and denote the map
cλ × · · · × cλ : P N

λ → L N
λ by cλ. We have πG(g) = πG(cλ(g)) and G(cλ(g)) =

cλ(G(g)) for all g ∈ P N
λ . If g ∈ P N

λ and g′ ∈ P N
λ′ such that G ·cλ(g) and G ·cλ′(g′)

are closed then πG(g)= πG(g′) if and only if cλ(g) and cλ′(g′) are conjugate (see
[Newstead 1978, Corollary 3.5.2]). In particular, if G · g′ is closed then we can
take λ′ = 0, so πG(g)= πG(g′) if and only if cλ(g) is conjugate to g′.

We need a condition on the field to ensure that reductive groups are topologically
finitely generated.

Definition 4.2. An algebraically closed field is solid if either it has characteristic 0
or it has characteristic p > 0 and is transcendental over Fp.

The next result allows us to understand subgroups of G by studying generating
tuples; several of the results stated above for subgroups have equivalent formulations
given for tuples below.

Proposition 4.3 [Martin 2003, Lemma 9.2]. Suppose k is solid. Let H be a reduc-
tive algebraic group and suppose that N ≥ κ(H)+ 1. Then there exists h ∈ H N

such that G(h)= H.

Proposition 4.3 fails if k = Fp, for then any topologically finitely generated
subgroup of G is finite. This is the reason for some of the technical complexity in
what follows. We can, however, formulate the results of this section for arbitrary k,
for example by using the notion of a “generic tuple” [Bate et al. 2013, Definition
5.4]. Even when k is solid, nonreductive subgroups need not be topologically
finitely generated (for example, a topologically finitely generated subgroup of a
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unipotent group in positive characteristic is finite). This is why we need to work
with H/Ru(H) rather than just H in Definition 5.1.

The next result is [Bate et al. 2005, Corollary 3.7].

Theorem 4.4. Let g ∈G N. Then the orbit G ·g is closed if and only if G(g) is G-cr.

Let H be a reductive subgroup of G. The inclusion of H N in G N gives rise to
a morphism 9G

H : H N/H → G N/G, given by 9G
H (πH (h)) = πG(h) for h ∈ H N.

The next result is Theorem 1.1 of [Martin 2003].

Theorem 4.5. The morphism 9G
H is finite. In particular, 9G

H (H
N/H) is closed in

G N/G.

Remark 4.6. (i) The set (G N )ir := {g∈G N
|G(g) is G-ir} is open; this was proved

in [Martin 2003, Corollary 8.4] but it also follows from Remark 3.3.

(ii) Suppose V is irreducible, N ≥ 2 and there exists v ∈ V0 such that G0
v is

G-ir. Then φ−1((G N )ir) is a nonempty open G-stable subset of C by (i), and it
follows from arguments in Section 7 that η(φ−1((G N )ir)) is a dense subset of V
(cf. Remark 7.9). This means that generic stabilisers are “large” in the sense of not
being contained in any proper R-parabolic subgroup of G. On the other hand, we
can interpret Lemma 2.1 as saying that generic stabilisers are “small”. This special
case illustrates the tension between largeness and smallness, from which several of
our results spring.

5. The partial order �

In this section we introduce a technical tool which we need for the proof of
Theorem 1.4. For simplicity, we assume throughout the section that k is solid; see
Remark 5.14 for a discussion of arbitrary k.

Definition 5.1. Let H,M be subgroups of G. We define G ·H �G ·M if there exist
s ∈N, h ∈ H s and m ∈ M s such that αH (G(h))= H/Ru(H) and πG(m)= πG(h).
(It is clear that this does not depend on the choice of subgroup in the conjugacy
classes G ·H and G ·M .) We define G ·H ≺G ·M if G ·H �G ·M and G ·H 6=G ·M .

Lemma 5.2. Let H,M ≤ G. Then G · H � G ·M if and only if D(H)� D(M).

Proof. Pick λ,µ ∈ Y (G) such that H ≤ Pλ, cλ(H) is G-cr, M ≤ Pµ and cµ(M) is
G-cr. Since D(H)= G · cλ(H) and D(M)= G · cµ(M), it is enough to show that
G · H � G ·M if and only if G · cλ(H)� G · cµ(M).

So suppose G · H � G · M . There exist s ∈ N, m = (m1, . . . ,ms) ∈ M s and
h = (h1, . . . , hs) ∈ H s such that αH (G(h)) = H/Ru(H) and πG(m) = πG(h).
Then cµ(m) ∈ cµ(M)s and πG(cµ(m))= πG(cλ(h)). Now cλ(H) is reductive, so
cλ(Ru(H)) = 1. It follows that G(cλ(h)) = cλ(G(h)) = cλ(H). This shows that
G · cλ(H)� G · cµ(M).
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Conversely, suppose that G · cλ(H) � G · cµ(M). Then there exist s ∈ N and
y= (y1, . . . , ys) ∈ cµ(M)s and x = (x1, . . . , xs) ∈ cλ(H)s such that G(x)= cλ(H)
and πG( y) = πG(x). The maps cλ : H s

→ cλ(H)s and cµ : M s
→ cµ(M)s are

surjective, so there exist h = (h1, . . . , hs) ∈ H s and m = (m1, . . . ,ms) ∈ M s such
that cλ(h)= x and cµ(m)= y.

As cλ(H) is reductive, Ru(H)≤ Ru(Pλ). As (Ru(Pλ)∩H)0 is a connected normal
unipotent subgroup of H , we must have (Ru(Pλ)∩ H)0 ≤ Ru(H), and it follows
that (Ru(Pλ)∩ H)0 = Ru(H). Choose hs+1, . . . , hs+t ∈ Ru(Pλ)∩ H such that the
αH (hi ) for s+ 1≤ i ≤ s+ t generate the finite group (Ru(Pλ)∩ H)/Ru(H). Set

h′ = (h1, . . . , hs, hs+1, . . . , hs+t) ∈ H s+t ,

x′ = (x1, . . . , xs, 1, . . . , 1) ∈ cλ(H)s+t ,

m′ = (m1, . . . ,ms, 1, . . . , 1) ∈ M s+t ,

y′ = (y1, . . . , ys, 1, . . . , 1) ∈ cµ(M)s+t .

Then cλ(h′)= x′ and cµ(m′)= y′; moreover, αH (G(h′))= H/Ru(H) by construc-
tion.

To finish, it is enough to show that πG(x′) = πG( y′). As πG(x) = πG( y) and
G(x) = cλ(H) is G-cr, there exists ν ∈ Y (G) such that G( y) ≤ Pν and cν( y) is
conjugate to x. It is then immediate that G( y′)≤ Pν and cν( y′) is conjugate to x′.
Hence πG(x′)= πG( y′), as required. �

Lemma 5.3. Let H,M ≤ G. Suppose that H is G-cr. Then G · H � D(M) if and
only if G · H � G ·M if and only if there exist λ ∈ Y (G) and M1 ≤ Pλ ∩M such
that cλ(M1) is conjugate to H.

Proof. The first equivalence follows from Lemma 5.2. We prove the second
equivalence. As H is G-cr, H is reductive. Suppose G · H � G · M . There
exist s ∈ N, h ∈ H s and m ∈ M s such that G(h) = H and πG(m) = πG(h). Set
M1 = G(m). As H = G(h) is G-cr, there exist λ ∈ Y (G) and g ∈ G such that
M1 ≤ Pλ and cλ(m)= g · h. Then

cλ(M1)= cλ(G(m))= G(cλ(m))= G(g · h)= gG(h)g−1
= gHg−1,

as required.
Conversely, suppose there exist λ ∈ Y (G) and M1 ≤ Pλ ∩M such that cλ(M1)

is conjugate to H . Pick s ≥ κ(H)+ 1. By Proposition 4.3, there exists h ∈ H s

such that G(h)= H . We can pick m ∈ M s
1 such that cλ(m) is conjugate to h. Then

πG(m)= πG(cλ(m))= πG(h), so G · H � G ·M , and we are done. �

Lemma 5.4. Let H,M, K ≤ G. If G · H � G · M and G · M � G · K then
G · H � G · K .
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Proof. Suppose G · H � G ·M and G ·M � G · K . By Lemma 5.2, we can assume
H , M and K are G-cr. By Lemma 5.3, there exist λ ∈ Y (G) and K1 ≤ Pλ ∩ K
such that cλ(K1) is conjugate to M . Replacing (K , λ) with a conjugate of (K , λ)
if necessary, we can assume that cλ(K1) = M . Pick s ∈ N, h ∈ H s and m ∈ M s

such that G(h)= H and πG(h)= πG(m). There exists k ∈ K s
1 such that cλ(k)=m.

Then πG(k)= πG(cλ(k))= πG(m)= πG(h), so G · H � G · K . �

If H and M are subgroups of G and H is conjugate to a subgroup of M then
G ·H �G ·M (and so D(H)�D(M) by Lemma 5.2); in particular, G ·H �G ·H .
For without loss we can assume that H ≤ M , and if we take s ≥ κ(H/Ru(H))+ 1
then by Proposition 4.3 we can choose m = h ∈ H s such that αH (h) generates the
reductive group H/Ru(H). The following example shows that the converse is false,
even when H and M are G-cr.

Example 5.5. Let char(k)= 2, let G = SL8(k) and let M be PGL3(k) embedded
in G via the adjoint representation on Lie(M) ∼= k8. Since Lie(M) is a simple
M-module, M is G-cr (in fact, G-ir). It follows from elementary representation-
theoretic arguments that M contains exactly two subgroups of type A1 up to M-
conjugacy: the derived group H1 of a Levi subgroup of a rank 1 parabolic subgroup
of M , and the image H2 of SL2(k) under the map SL2(k)→ SL3(k)→ M , where
the first arrow is the adjoint representation of SL2(k) and the second is the canonical
projection. It is easily checked that H1 is M-cr but H2 is not; in fact, there exists
λ ∈ Y (M) such that cλ(H2)= H1.

Now H1 is not G-cr because Lie(H1) is an H1-stable submodule of Lie(M) and
H1 does not act completely reducibly on Lie(H1). Choose µ ∈ Y (G) such that
H1 ≤ Pµ and H := cµ(H1) is G-cr. We have G · H1 � G · M as H1 ≤ M , so
G · H � G ·M by Lemma 5.2. We claim that H is not G-conjugate to a subgroup
of M . First, H is not G-conjugate to H1 because H is G-cr but H1 is not. If H is
G-conjugate to H2 then H2 is G-cr, so H1 = cλ(H2) is G-conjugate to H2; but then
H is G-conjugate to H1, a contradiction. This proves the claim.

We do, however, have the following result.

Lemma 5.6. Let H,M≤G. If G ·H �G ·M and G ·M�G ·H then D(H)=D(M).
In particular, if H and M are G-cr then G · H = G ·M.

Proof. By Lemma 5.2, we can assume H and M are G-cr; in particular, H and
M are reductive. By Lemma 5.3, there exist λ ∈ Y (G) and M1 ≤ Pλ ∩ M such
that cλ(M1) is conjugate to H . Replacing (M, λ) with a conjugate of (M, λ) if
necessary, we can assume that cλ(M1)= H . We have

dim(H)= dim(cλ(M1))≤ dim(M1)≤ dim(M).
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By symmetry, dim(M)≤ dim(H), so

dim(H)= dim(cλ(M1))= dim(M1)= dim(M).

It now follows that

κ(H)= κ(cλ(M1))≤ κ(M1)≤ κ(M).

By symmetry, κ(M)≤ κ(H), so

κ(H)= κ(cλ(M1))= κ(M1)= κ(M).

This implies that M1 = M since M1 ≤ M , so H = cλ(M). But M is G-cr, so M is
conjugate to H . This completes the proof. �

The next result follows immediately from Lemmas 5.4 and 5.6.

Corollary 5.7. The relation � is a partial order on C(G)cr.

Remark 5.8. The proof of Lemma 5.6 shows that if H and M are G-cr subgroups
of G and G ·H ≺ G ·M then either dim(H) < dim(M), or dim(H)= dim(M) and
κ(H) < κ(M). It follows that C(G)cr satisfies the descending chain condition with
respect to �.

Given a reductive subgroup H of G, set S(H)={g∈G N
|πG(g)∈9G

H (H
N/H)}.

Theorem 4.5 implies that S(H) is closed.

Lemma 5.9. Let g ∈ G N and let H ≤ G be reductive. Then g ∈ S(H) if and only
if G ·G(g)� G · H if and only if D(G(g))� D(H).

Proof. We prove the first equivalence. If g ∈ S(H) then there exists h ∈ H N such
that πG(h)=πG(g), so G ·G(g)�G ·H as g generates G(g). Conversely, suppose
G ·G(g) � G · H . Set M = G(g). Then D(M) � D(H) by Lemma 5.2. Choose
µ∈Y (G) such that H ≤ Pµ and cµ(H) is G-cr. Choose ν ∈Y (G) such that M ≤ Pν
and cν(M) is G-cr. Then D(H)=G ·cµ(H) and D(M)=G ·cν(M). By Lemma 5.3,
there exist K ≤ cµ(H) and λ ∈ Y (G) such that G ·cλ(K )=G ·cν(M). There exists
k ∈ K N such that G · cλ(k)= G · cν(g). There exists h ∈ H N such that cµ(h)= k.
We have πG(h) = πG(cµ(h)) = πG(k) = πG(cλ(k)) = πG(cν(g)) = πG(g), so
g ∈ S(H), as required.

The second equivalence follows from Lemma 5.2. �

To prove our results in Section 6, we need to investigate the behaviour of the
relation � under field extensions. We assume for the rest of the section that
N ≥2+ 1. Fix a G-cr subgroup H of G such that N ≥ κ(H)+ 1.

Definition 5.10. Define BH = {v ∈ V | D(Gv)= G · H}.
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Let v ∈ V . For all g ∈ G N
v , we have G(g) ≤ Gv, and so D(G(g)) � D(Gv).

Moreover, since N ≥2+1≥ κ(Gv)+1≥ κ(Gv/Ru(Gv))+1, there exists g′ ∈G N

such that αGv
(G(g′)) = Gv/Ru(Gv) by Proposition 4.3, so D(G(g′)) = D(Gv).

Lemma 5.4 now implies that D(Gv) � G · H if and only if D(G(g)) � D(H) for
all g ∈ G N

v if and only if πG(g) ∈ S(H) for all g ∈ G N
v , where the last equivalence

follows from Lemma 5.9. This is the case if and only if the following formula
holds:

(5.11) (∀g ∈ G N
v )(∃h ∈ H N ) πG(h)= πG(g).

Conversely, G · H � D(Gv) if and only if there exist M1 ≤ Gv and λ ∈ Y (G) such
that M1 ≤ Pλ and cλ(M1) is conjugate to H (Lemma 5.3). This is the case if and
only if the following formula holds:

(5.12) (∃g ∈ G N
v )(∃g ∈ G) πG(g)= g · h0,

where h0 is a fixed element of H N such that G(h0)= H . For, given g ∈ G N
v and

g ∈G such that πG(g)= g ·h0, we set M1 = G(g); conversely, given M1 ≤Gv and
λ ∈ Y (G) such that M1 ≤ Pλ and g ∈ G such that cλ(M1) = gHg−1, we choose
g ∈ M N

1 such that cλ(g)= g · h0.
We summarise the above argument as follows.

Lemma 5.13. Let H be a G-cr subgroup of G such that N ≥ κ(H)+ 1. Then
BH ⊆ V is the set of solutions to the formulas (5.11) and (5.12). In particular, BH

is constructible.

Remark 5.14. It can be shown that Lemma 5.13 holds for arbitrary k, where we
take h to be a generic tuple for H in the sense of [Bate et al. 2013, Definition 5.4].
To do this, one replaces generating tuples with generic tuples in the definition of �
and makes the obvious modifications to the arguments of this section.

6. Proof of Theorem 1.4

We assume throughout this section that N ≥2+ 1.

Proof of Theorem 1.4. We will show that there is a G-cr subgroup H of G such that
N ≥κ(H)+1 and BH has nonempty interior. By Lemma 5.13 and Remark 5.14, it is
enough to prove this after extending the ground field to an uncountable algebraically
closed field � (recall from the proof of Lemma 4.1 that any G(�)-cr subgroup
of G(�) is G(�)-conjugate to a k-defined G-cr subgroup). Thus we can assume
without loss that k is uncountable (and hence solid).

Let D1, . . . , Dt be the irreducible components of C such that η(G · D j )= V for
1 ≤ j ≤ t — it follows from Lemma 7.1(b) below that there is at least one such
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component — and let D′1, . . . , D′t ′ be the other irreducible components of C . Let

V ′ = V \
⋃ t ′

j=1 η(G · D
′

j ).

For 1≤ j ≤ t , set E j = {(v, g) ∈ D j | αGv
(G(g))= Gv/Ru(Gv)}; note that E j is

neither closed nor open in general, and if (v, g) ∈ E j then D(G(g))= D(Gv). For
any v ∈ V ′, N ≥2+ 1≥ κ(Gv)+ 1≥ κ(Gv/Ru(Gv))+ 1, so by Proposition 4.3
there exists g ∈ G N such that αGv

(G(g)) = Gv/Ru(Gv). Then (v, g) ∈ D j for
some 1 ≤ j ≤ t , so (v, g) ∈ E j . Hence

⋃
1≤ j≤t η(G · E j ) ⊇ V ′. As G permutes

the irreducible components of V transitively, η(G · Em) is dense in V for some
1≤ m ≤ t .

Choose G-cr subgroups Hi such that H := {Hi | i ∈ I } is a set of representatives
for the conjugacy classes in C(G)cr; Lemma 4.1 implies that I is countable. Let
3= {Hi | G ·Dm ⊆ φ

−1(S(Hi ))}. Then G ∈3, so 3 is nonempty. By Remark 5.8,
we can pick H ∈ 3 such that H is minimal with respect to �. We claim that
G · D j ⊆ φ

−1(S(H)) for all 1 ≤ j ≤ t . To prove this, let (v, g) ∈ D j such that
v ∈ η(Em). There exists g′ ∈G N

v such that (v, g′)∈ Em . Then (v, g′)∈φ−1(S(H)),
so g′ ∈ S(H). Now G(g) ≤ Gv, so D(G(g)) � D(Gv) = D(G(g′)) � G · H by
Lemma 5.9. Hence (v, g) ∈ φ−1(S(H)) by Lemma 5.9. As S(H) is G-stable, it
now follows that if (v, g) ∈ D j and v ∈ η(G · Em) then (v, g) ∈ φ−1(S(H)). But
η−1(η(G ·Em))∩D j is dense in D j as η(G ·Em) is dense in V , so D j ⊆φ

−1(S(H)).
As S(H) is G-stable, G ·D j ⊆ φ

−1(S(H)), as claimed. It follows from Lemma 5.9
that D(G(g))�G ·H for all 1≤ j ≤ t and all (v, g) ∈G ·D j . In particular, for any
v ∈ V ′, there exist j and g′ ∈G N such that (v, g′)∈ E j , so D(Gv)=D(g′)�G ·H .

To finish, we show that BH has nonempty interior in V . Suppose otherwise. As
BH is constructible (Lemma 5.13), BH is a proper closed subset of V , so V \ BH

is a G-stable subset with nonempty interior. Now η
(
φ−1(S(H))

)
is dense in V

as it contains η(G · Dm). Hence there is a nonempty open G-stable subset O of
η
(
φ−1(S(H))

)
∩V ′ such that BH ∩O is empty. Let v ∈ O and let g ∈G N such that

(v, g)∈ Dm . Then D(G(g))�D(Gv)�G ·H ; but v /∈ BH , so D(Gv) 6=G ·H , and
it follows from Corollary 5.7 that D(G(g))≺ G · H . Hence D(G(g))= G · Hi for
some i ∈ I such that G · Hi ≺ G · H . Lemma 5.9 now implies that η−1(O)∩ Dm ⊆⋃

i∈I ′ φ
−1(S(Hi )), where I ′ := {i ∈ I |G ·Hi ≺G ·H}. By Corollary 2.6, there exists

i ∈ I ′ such that η−1(O)∩ Dm ⊆ φ
−1(S(Hi )). Since η−1(O)∩ Dm is a nonempty

open subset of Dm and φ−1(S(Hi )) is closed and G-stable, G · Dm ⊆ φ
−1(S(Hi )).

But G · Hi ≺ G · H , which contradicts the minimality of H . We conclude that BH

has nonempty interior in V after all. Finally, since G · H =D(Gv) for some v ∈ V ,
we have κ(H)≤ κ(Gv)≤2, so N ≥ κ(H)+ 1. This completes the proof. �

Proof of Corollaries 1.5 and 1.6. We can assume O is G-stable. By Theorem 1.4,
there is a nonempty open G-stable subset O ′ of V and a G-cr subgroup H of G
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such that D(Gv)= G · H for all v ∈ O ′. Now O ∩O ′ is a nonempty open G-stable
subset of V , and for all v ∈O∩O ′, D(Gv)=G ·H . Since Gv is G-cr for v ∈O∩O ′,
Gv is conjugate to H . It follows that V has a principal stabiliser.

In particular, the hypotheses of Corollary 1.5 are satisfied if char(k) = 0 and
Vred is nonempty, since then Vred is open by Theorem 1.1 and for all v ∈ Vred, Gv —
being reductive — is G-cr. This proves Corollary 1.6. �

Remark 6.1. Here is a generalisation of Corollary 1.6. If char(k)= 0 and O is as
in Theorem 1.4 then G ·Mv =D(Gv)= G · H for all v ∈ O , where Mv is any Levi
subgroup of Gv.

7. Irreducible components of the stabiliser variety

In this section we study the irreducible components of the stabiliser variety C . We
use the information we obtain to prove results analogous to those in Section 6, but
for the subgroups G0

v rather than the subgroups Gv. We assume throughout the
section that N ≥ 3.

Lemma 7.1. (a) Let D be an irreducible component of C such that η(G · D) is
dense in V . Then dim(D)= n+ Nr and for all v ∈ V0, the fibre (η|D)−1(v) either
is empty or has dimension Nr and is isomorphic (via φ) to a union of irreducible
components of G N

v .

(b) There is a unique closed subset C̃ of C such that C̃ contains V × {1}, C̃ is a
union of irreducible components of C and G permutes these irreducible components
transitively. The variety C̃ is the closure of the set {(v, g) | v ∈ V0, g ∈ (G0

v)
N
}, and

each irreducible component of C̃ has dimension n+ Nr.

Proof. Clearly it is enough to prove the result when G is connected and V is
irreducible, so we assume this.

(a) Define f : V ×G N
→ V × V N by

f (v, g)= (v, g1 · v, . . . , gN · v).

Let Y be the closure of the image of f . Let 1 be the diagonal in V × V N ; then
C = f −1(1). The variety Y is irreducible because G and V are irreducible. Let
v ∈ V and let g ∈ G N . Then f −1(v, g1 ·v, . . . , gN ·v)= {v}× g1Gv× · · ·×gN Gv .
Hence irreducible components of generic fibres of f over Y have dimension Nr . It
follows that

dim(Y )= dim(V ×G N )− Nr = n+ Ndim(G)− Nr = n+ N (dim(G)− r).

As η(D) is dense in V , f (D) is dense in 1, so dim(D)≥ dim(1)+ Nr = n+ Nr .
If v ∈ η(D)∩V0 and Z is an irreducible component of (η|D)−1(v), then we have

dim(Z) ≥ dim(D)− dim(V ) ≥ n + Nr − n = Nr . But φ(η−1(v)) is a subset of
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G N
v and the irreducible components of G N

v all have dimension dim(G N
v ) = Nr .

This forces Z to be isomorphic (via φ) to an irreducible component of G N
v . Hence

irreducible components of generic fibres of η|D have dimension Nr , which implies
that dim(D)= n+ Nr . Part (a) now follows.

(b) Since V × {1} is irreducible, there is some irreducible component C̃ of C
such that C̃ contains V ×{1}. For any v ∈ V0, let Z be an irreducible component
of the fibre (η|C̃)

−1(v) such that (v, 1) ∈ Z . By part (a), dim(Z) = Nr , so Z is
isomorphic via φ to an irreducible component of G N

v . But the only component of
G N
v that contains 1 is (G0

v)
N , so {v}× (G0

v)
N
⊆ Z . Hence C̃ contains the closure

of {(v, g) | v ∈ V0, g ∈ (G0
v)

N
}— call this closure C ′.

Let A1, . . . , Am be the irreducible components of C ′ such that η(A j )= V (there
is at least one, since η(C ′)= V ). Let si = dim(Ai ) for 1≤ i ≤m and let ηi : Ai→ V
be the restriction of η. There is a nonempty open subset U of V such that for all
v ∈ U , η−1(v) ⊆ A1 ∪ · · · ∪ Am and every irreducible component of η−1

i (v) has
dimension si −n. Since {v}× (G0

v)
N
⊆C ′ for all v ∈ V0, if v ∈U ∩V0 then η−1

j (v)

must contain {v} × (G0
v)

N for some 1 ≤ j ≤ m, which forces s j ≥ n + Nr . But
dim(C̃) = n + Nr by part (a), so A j must be the whole of C̃ , so C ′ = C̃ . This
completes the proof. �

Remark 7.2. The dimension inequality in Lemma 7.1(a) can fail if η(G · D)
is not dense in V (Example 8.2). Moreover, C̃ need not contain the whole of
{(v, g) | v ∈ V, g ∈ (G0

v)
N
}: see Examples 8.1(a) and 8.2.

Remark 7.3. If G is connected and V is irreducible then C̃ is irreducible and
G-stable. More generally, any irreducible component of C is G-stable in this case.

Definition 7.4. We call C̃ the connected-stabiliser variety of V .

Corollary 7.5. If r = 0 then C̃ = V ×{1}.

Proof. The irreducible components of V × {1} are isomorphic via η to the irre-
ducible components of V , so they are permuted transitively by G and each has
dimension n. It follows from the dimension formula in Lemma 7.1(a) that these
irreducible components are irreducible components of C . The result now follows
from Lemma 7.1(b). �

We denote by φ̃ : C̃ → G N and η̃ : C̃ → V the restrictions to C̃ of φ and
η, respectively, and if v ∈ V then we denote φ̃

(
η̃−1(v)

)
by Fv. If v ∈ V0 then

(G0
v)

N
⊆ Fv; we do not know whether equality holds for all v ∈ V0, or even for

generic v ∈ V0.
We now give a counterpart to Theorem 1.4. In the connected case, we obtain

slightly more information: we can describe D(G0
v) for all v ∈ Vmin (recall the

definition of Vmin from Remark 3.5).
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Theorem 7.6. There exists a connected G-completely reducible subgroup H of G
such that:

(a) For all v ∈ Vmin, D(G0
v)= G · H.

(b) C̃ ⊆ φ̃−1(S(H)).

In particular, if Vred is nonempty then D(G0
v)= G · H for all v ∈ Vred.

Proof. By Theorem 1.4, there exist a G-cr subgroup H ′ of G and a G-stable
open subset O of V such that D(Gv) = G · H ′ for all v ∈ O . Set H = (H ′)0;
then H is G-cr as H E H ′. Let t be the minimal dimension of dim(Ru(Gv)) for
v ∈ V0. The G-stable open sets O and Vmin have nonempty intersection, so there
exists v ∈ Vmin ∩ O such that D(Gv)= G · H ′ and dim(Ru(Gv))= t . This yields
dim(H ′)= dim(Gv)− dim(Ru(Gv))= r − t .

By the proof of Theorem 1.4, C̃⊆ φ̃−1(S(H ′)). Let v∈Vmin and choose λ∈Y (G)
such that D(Gv)= cλ(Gv). Then cλ(Gv) is G-cr and cλ(G0

v)= cλ(Gv)
0 is a normal

subgroup of cλ(Gv), so cλ(G0
v) is G-cr. It follows that D(G0

v) = G · cλ(G0
v). We

want to prove that cλ(G0
v) is conjugate to H ; that is, we want to prove that

(∃m ∈ G)[(∀g ∈ G0
v) cλ(g) ∈ m Hm−1

∧ (∀h ∈ H)(∃g ∈ G0
v) cλ(g)= mhm−1

].

Since this is a first-order formula, this is a constructible condition. Hence it is
enough to prove that it holds after extending k to any larger algebraically closed
field. So without loss of generality we assume k is solid.

By Proposition 4.3, we can choose g′∈(G0
v)

N such that αG0
v
(G(g′))=G0

v/Ru(G0
v).

There exists h∈ (H ′)N such that πG(h)=πG(g′). Let K =G(h). Now cλ(G(g′))=
cλ(G0

v) is G-cr, so there exists µ ∈ Y (G) such that cµ(h) is conjugate to cλ(g′).
Then cλ(G(g′)) is conjugate to cµ(G(h)). But

(7.7) dim
(
cλ(G(g′))

)
= dim

(
cλ(G0

v)
)
= dim(H)

≥ dim(K )≥ dim
(
cµ(K )

)
= dim

(
cµ(G(h))

)
,

which forces dim(K ) to equal dim(H). Hence K ⊇ H . Now cµ(K ) is conjugate to
cλ(G0

v), which is connected, so cµ(K )= cµ(H). But cµ(H) is conjugate to H since
H is G-cr, so we deduce that cλ(G0

v) is conjugate to H . Hence D(G0
v)=G ·H . This

proves part (a). Moreover, if g ∈ (G0
v)

N then cλ(G(g)) = G(cλ(g)) is conjugate
to a subgroup of H , so there exists h ∈ H N such that cλ(g) is conjugate to h;
hence (v, g) ∈ φ̃−1(S(H)). As {(v, g) | v ∈ Vmin, g ∈ (G0

v)
N
} is dense in C̃ by

Lemma 7.1(b) and Remark 3.5, C̃ ⊆ φ̃−1(S(H)). This proves part (b). �

The next result is the counterpart to Corollaries 1.5 and 1.6. We omit the proof,
which is similar.

Corollary 7.8. Suppose there is a nonempty open subset O of V such that G0
v is

G-cr for all v ∈ O (in particular, this condition holds if char(k) = 0 and Vred is
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nonempty). Let H be the connected G-cr subgroup from Theorem 7.6. Then G0
v is

conjugate to H for all v ∈ Vred.

Remark 7.9. Suppose there exists v ∈ V0 such that G0
v is G-ir. Then Gv is G-cr, so

v ∈ Vred, so Vred is nonempty. We have D(G0
v)= G · H by Theorem 7.6(a). As G0

v

is G-cr, G ·G0
v = G · H . It follows that H is G-ir and G0

w is conjugate to H for all
w ∈ Vred; in particular, G0

w is G-ir for all w ∈ Vred. The analogous result for the full
stabiliser Gv is false (cf. Remarks 7.13 and 4.6(ii), and Examples 8.1(c) and 8.2).
However, if O is as in Theorem 1.4 and there exists v ∈ O such that Gv is G-ir
then an argument like the one above shows that V has a G-ir principal stabiliser.

Theorem 7.6 gives rise to the following counterpart to Remark 6.1 for G0
v; the

proof is similar.

Corollary 7.10. Suppose char(k)= 0. Then H is conjugate to a Levi subgroup of
G0
v for all v ∈ Vmin.

We give a criterion to ensure that the fibres of η̃ are irreducible. Define C̃min =

η̃−1(Vmin).

Proposition 7.11. Suppose char(k)= 0 and N ≥2+ 1. Then

C̃min =
{
(v, g) | v ∈ Vmin, g ∈ (G0

v)
N}.

Proof. Let H be as in Theorem 7.6. Let v ∈ Vmin, and suppose Fv properly
contains (G0

v)
N . Then Fv contains an irreducible component D 6= (G0

v)
N of G N

v

by Lemma 7.1(a). Set K = Gv, set M = K/Ru(K ) and let αK : K → M be the
canonical projection. Let K1 be the subgroup of K generated by K 0 together with
the components of each of the tuples in D; then K1 properly contains K 0. As
Ru(Gv) is connected, M1 := αK (K1) properly contains M0. In particular, M1 is
reductive. By [Martin 2003, Lemma 9.2], there exists g ∈ D such that αK (g)
generates M1. Hence G · K1 � G · G(g). Now g ∈ C̃ , so G · G(g) � G · H
(Theorem 7.6(b)). It follows from Lemma 5.4 that G · K1 � G · H .

We have G · H =D(K 0) by choice of v and Theorem 7.6, so G · H � G · K 0 by
Lemma 5.2. Now G · K 0

� G · K1 as K 0
≤ K1, so G · H � G · K1 by Lemma 5.4.

It follows from Lemmas 5.2 and 5.6 that G · H =D(K1). Now D(K1)= G ·M1 as
M1 is reductive and char(k)= 0, so G · H = G ·M1. But this is impossible as H is
connected and M1 is not. We conclude that Fv = (G0

v)
N after all. The result now

follows. �

We have seen that we obtain stronger results if we know that generic stabilisers
(or their identity components) are G-cr. Reductive subgroups are always G-cr in
characteristic 0, but things are more complicated in positive characteristic. Our
next result shows that if this G-complete reducibility condition fails for connected
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stabilisers then it fails badly: we prove that if there exists v ∈ V0 such that G0
v is

reductive but not G-cr then generic elements of V have the same property.

Proposition 7.12. Let H be as in Theorem 7.6. Let

B̃ ′H = {v ∈ Vmin | G0
v is not G-cr}.

If B̃ ′H is nonempty then B̃ ′H has nonempty interior.

Proof. Note that D(G0
v) = G · H for all v ∈ B̃ ′H , by Theorem 7.6. The argument

below shows that B̃ ′H = Vmin ∩ η̃(φ̃
−1(U )), where U is the open set defined below,

so B̃ ′H is constructible. It follows as in the proof of Theorem 7.6 that we can extend
the ground field k; hence we can assume k is solid.

Suppose B̃ ′H is nonempty. Let v ∈ B̃ ′H . By Proposition 4.3 we can choose
g ∈ (G0

v)
N such that αG0

v
(G(g)) = G0

v/Ru(G0
v) and such that 1 6= gN ∈ Ru(G0

v)

if G0
v is nonreductive. This ensures that G(g) is not G-cr. Since H is G-cr and

D(G0
v)= G · H , there exists λ ∈ Y (G) such that G0

v ≤ Pλ and cλ(G0
v) is conjugate

to H . Then cλ(G(g))= cλ(G0
v) is conjugate to H , so

dim(G g)= dim
(
CG(G(g))

)
< dim(CG(H)),

since G(g) is not conjugate to H (as G(g) is not G-cr). Consider G N regarded as
a G-variety. Let U be the set of all m ∈ G N such that dim(Gm) < dim(CG(H));
then U is an open neighbourhood of g, by Lemma 2.1.

Let E = {(w, g) ∈ C̃ ∩ φ̃−1(U )∩ η̃−1(Vmin) | g ∈ (G0
w)

N
}. By Lemma 7.1(b),

E is dense in C̃ , so η̃(E) is dense in V . To complete the proof, it is enough to
show that η̃(E)⊆ B̃ ′H , for then B̃ ′H , being constructible and dense, has nonempty
interior. So let w ∈ η̃(E). Pick m such that (w,m) ∈ E . Then m ∈ (G0

w)
N
∩U , so

dim(CG(m)) < dim(CG(H)), so dim(CG(G0
w)) < dim(CG(H)) also. It follows by

running the argument above for G0
v in reverse that G0

w is not G-cr. Hence w ∈ B̃ ′H ,
as required. �

Remark 7.13. A similar argument establishes the following. Let H be as in
Theorem 1.4. If there exists (v, g) ∈ C such that v ∈ V0, D(Gv)= G · H and Gv

is not G-cr then there is an open neighbourhood U of (v, g) ∈ C such that for all
(w, g′)∈U , Gw is not G-cr. But this does not yield an analogue of Proposition 7.12
for Gv (see Example 8.1(b)) — the problem is that η(U ) need not be dense in V .

8. Examples

In this section we present some examples that show the limits of our results and
illustrate some of the phenomena that can occur. We assume N ≥2+ 1.

Example 8.1. We consider a special case of the setup from the proof of Theorem 1.3.
Let G = PGL2(k), let M ≤ G and let V be the quasiprojective variety G/M with
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G acting by left multiplication. We assume that M ∩ gMg−1
= 1 for generic g ∈ G

(this will hold in all the cases we consider). Then Gw = 1 for generic w ∈ V , so the
subset H from Theorem 1.4 is 1, and C̃ = V ×{1} by Corollary 7.5. In particular,
Fw = {1} for all w ∈ V . Let v = M ∈ G/M ; then Gv = M .

(a) Let M be a maximal torus of G. Then Fv is properly contained in M N , so we
see that Fv need not contain all of (G0

v)
N when v /∈ V0 (cf. Remark 7.2). The subset

BH is dense but not closed in V , as D(Gv)= G ·M .

(b) Let M =〈x〉, where x ∈G is a nontrivial unipotent element. Then V =V0=Vred

and Gw is unipotent for all w ∈ V , so D(Gv)= {1} for all w ∈ V (where 1 denotes
the trivial subgroup). Now Gw = 1 is G-cr for generic w ∈ V but Gv is not G-cr.
Hence the set {w ∈ Vred |D(Gw)= G · H and Gv is not G-cr} is nonempty but not
dense in V (cf. Remark 7.13). The irreducible components of C apart from C̃ do
not dominate V .

(c) Let M = PGL2(q), where q is a power of the characteristic p. We have
V = V0 = Vred. Now M is G-ir, so the set {w ∈ Vred | Gw is G-ir} is nonempty but
not dense in V . Moreover, the set O from Theorem 1.4 does not contain the whole
of Vred.

Example 8.2. Suppose G is connected and not a torus. Let m ∈N and let V be the
variety of m-tuples of unipotent elements of G, with G acting on V by simultaneous
conjugation. We claim that {(1, . . . , 1)}×G N is an irreducible component of C . To
see this, let D be an irreducible component of C such that {(1, . . . , 1)}×G N

⊆ D.
Consider the element (1, . . . , 1, g) ∈ D, where the components of g ∈ G N are all
regular semisimple elements of G. There is an open neighbourhood O of g in G N

consisting of tuples of regular semisimple elements. If (v1, . . . , vm, g′) ∈ φ−1(O)
then each component of g′ is a regular semisimple element of g centralising the
unipotent elements v1, . . . , vm of G. But this forces v1, . . . , vm to be 1. It follows
that D= {(1, . . . , 1)}×G N , as claimed. Hence η(D)= {(1, . . . , 1)} and η(D)∩V0

is empty (note also that if m is large enough then the dimension inequality from
Lemma 7.1(a) is violated). We see that the set {w ∈ V | G0

w is G-ir} is nonempty
but not dense in V .

It is not hard to show that F(1,...,1) ⊆ {g · g | g ∈ U N
}, where U is a maximal

unipotent subgroup of G; in particular, we see as in Example 8.1(a) that Fv need not
contain all of (G0

v)
N when v 6∈ V0. Moreover, since the centraliser of a nontrivial

unipotent subgroup of a connected group can never be reductive, the only reductive
stabiliser is G(1,...,1), so Vred is empty.

Example 8.3. Let X be an affine variety and M a reductive linear algebraic group.
Suppose we have a morphism f : X×M→ X×G of the form f (x,m)= (x, fx(m)),
and suppose further that each fx : M→ G is a homomorphism of algebraic groups.
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Set Kx = im( fx). Define actions of G and M on X ×G by g · (x, g′) = (x, gg′)
and m · (x, g′)= (x, g′ fx(m)−1). These actions commute with each other, so we
get an action of G on the quotient space V := (X ×G)/M .

Now suppose moreover that dim(Kx) is independent of x . Then the M-orbits on
X×G all have the same dimension, so they are all closed. This means the canonical
projection ϕ from X×G to V is a geometric quotient, so its fibres are precisely the
M-orbits [Newstead 1978, Corollary 3.5.3]. A straightforward calculation shows
that for any (x, g) ∈ X ×G, the stabiliser Gϕ(x,g) is precisely gKx g−1. It follows
that if X is infinite and the subgroups Kx are pairwise nonconjugate as x runs over
the elements of a dense subset of X then V has no principal stabiliser.

Here is a simple example. Let G = SL2(k), let X = k and let

M = C p×C p = 〈γ1, γ2 | γ
p

1 = γ
p

2 = [γ1, γ2] = 1〉.

Define f : X ×M→ X ×G by f (x,m)= (x, fx(m)), where

fx(γ
m1
1 γ

m2
2 ) :=

( 1 m1x +m2x2

0 1

)
.

It is easily checked that f has the desired properties, so V := (X ×M)/G has no
principal stabiliser. Note also that generic stabilisers are nontrivial finite unipotent
groups, but the element v = ϕ(0, 1) has trivial stabiliser.

Here is an example where the stabilisers are connected. Daniel Lond [Lond 2013,
Section 6.5] produced a family, parametrised by X := k, of homomorphisms from
M := SL2(k) to G := B4 in characteristic 2 with pairwise nonconjugate images.
Using this one can construct a morphism f : X × M → X ×G with the desired
properties, giving rise to a G-variety V := (X×M)/G having no principal stabiliser
and with all stabilisers connected and reductive. Results of David Stewart [2010,
Section 5.4.3] give rise to a similar construction for G = F4 in characteristic 2.

Example 8.4. We now give an example where there is a point with trivial stabiliser
but generic stabilisers are finite and linearly reductive, using another special case
of the setup from the proof of Theorem 1.3. We describe a recipe for producing
such examples, given in [Burness et al. 2015, Corollary 3.10]. Take a simple
algebraic group G of rank s in characteristic not 2 and set M = CG(τ ), where τ
is an involution that inverts a maximal torus of G. Then the affine variety G/M ,
with M acting by left multiplication, has precisely one orbit that consists of points
with trivial stabiliser. Let V = G/M ×G/M with the product action of G. Then
generic stabilisers of points in V are 2-groups of order 2s , but V contains points
with trivial stabiliser. Thus V = V0 = Vred and C̃ = V × {1}. Since 2-groups are
linearly reductive — and hence G-cr — in characteristic not 2, the G-cr subgroup
H from Theorem 1.4 must be a 2-group of order 2s , and moreover, H is a principal
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stabiliser for V by Corollary 1.5. The set {v ∈ Vred | D(Gv) = G · H} does not
contain the whole of Vred (cf. Theorem 7.6).

We claim that there is at least one irreducible component D of C such that
η(D) = V but η(D) 6= V . Let D1, . . . , Dt be the irreducible components of V
apart from C . Then

⋃t
i=1 η(Di )= V , so η(D j ) is dense in V for some 1≤ j ≤ t .

There are only finitely many conjugacy classes of nontrivial elements of G of order
dividing 2s , and each such conjugacy class is closed because in characteristic not 2,
elements of order a power of 2 are semisimple. Hence there are regular functions
f1, . . . , fm : G→ k for some m such that for all g ∈ G, g is a nontrivial element of
order dividing 2s if and only if f1(g)= · · · = fm(g)= 0. For 1≤ l ≤ N , let Zl be
the closed subset {(v, g1, . . . , gN ) ∈ C | f1(gl) = · · · = fm(gl) = 0} of C and let
Z = Z1∪· · ·∪ Z N . If (v, g) ∈ D j \ (D j ∩ C̃) then g 6= 1, so some component of g
is a nontrivial element of G of order dividing 2s , so (v, g) ∈ Z . Hence the open
dense subset D j \ (D j ∩ C̃) of D j is contained in Z , and it follows that D j ⊆ Z .
This implies that if v ∈ V and Gv = 1 then v /∈ η(D j ).
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