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Approximate solution for frequency synchronization in a finite-size Kuramoto model
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Scientists have been considering the Kuramoto model to understand the mechanism behind the appearance of
collective behavior, such as frequency synchronization (FS) as a paradigm, in real-world networks with a finite
number of oscillators. A major current challenge is to obtain an analytical solution for the phase angles. Here,
we provide an approximate analytical solution for this problem by deriving a master solution for the finite-size
Kuramoto model, with arbitrary finite-variance distribution of the natural frequencies of the oscillators. The master
solution embodies all particular solutions of the finite-size Kuramoto model for any frequency distribution and
coupling strength larger than the critical one. Furthermore, we present a criterion to determine the stability of the
FS solution. This allows one to analytically infer the relationship between the physical parameters and the stable
behavior of networks.
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I. INTRODUCTION

Networks of coupled oscillators provide a pragmatic model
to describe basic behavior of natural and technological
systems, such as biological networks [1,2], social networks [3],
computer networks [4,5], and power grids [6,7]. A significant
phenomenon emerging from coupled oscillators is the syn-
chronization of the oscillators’ rhythms [8–11]. Since 1958,
when Norbert Wiener [12] suggested the presence of collective
behavior of neurons in the brain, finding the mechanism and the
conditions for the appearance of synchronization in complex
networks has attracted the attention of many scientists.
Kuramoto [13–15] proposed a mathematically tractable model
by considering a network of phase oscillators coupled with an
all-to-all topology through a sine function, with each oscillator
possessing a constant natural frequency. Recently, scientists
devoted great effort to understand the collective behavior and
synchronization of the Kuramoto model and its connections to
natural systems [16–21].

However, most of the existing analytical results have
considered networks with an infinite number of oscillators
and have imposed restrictions on the distributions of natural
frequencies of oscillators. To the best of our knowledge,
no analytical work has been proposed that allows one to
determine the synchronous solution of the phase angles for
the finite-size Kuramoto model without restriction on natural
frequencies with finite-variance distribution. Although the
conditions for the set of natural frequencies that provides
stable synchronization is obtained in [22], the solution for the
phase angles is not given. But, solving the phase angles is of
fundamental significance in real-world systems. For example,
in power grids [6,7], which can be described by a Kuramoto-
like model [23], one is not only interested in understanding
under which conditions the frequency synchronization (FS)
among oscillators emerges, but also in knowing the phase
angles after synchronization. The phase angles are important
variables for monitoring generators and developing control
strategies for the power grid. Similarly, in the research of
Josephson junctions [24,25], a Kuramoto-type model has been
widely considered [26–30] to explain the synchronization
phenomenon in the junctions, and the phase angles of a syn-

chronous state contain the information of the wave-function
phase difference across every Josephson junction.

In this work, we present an analytical method to approxi-
mately calculate the phase angles for the finite-size Kuramoto
model when the frequencies are synchronized. Compared to
other works, our method does not require any restriction on
the distribution of the natural frequencies of oscillators. Our
solution, shown in Eq. (24), directly links the FS solution
and the physical parameters of the network. Remarkably,
the solution is independent of the network size, and only
depends on the natural frequencies and the coupling strength.
In addition, we provide an approximate criterion, shown in
Eq. (26), to analytically predict whether a finite number of
oscillators are able to emerge into a stable FS, even without
knowing the FS solution explicitly.

II. THE FINITE-SIZE KURAMOTO MODEL

We use �1N (�0N ) to denote the N × 1 vector with all elements
equal to 1 (0), IN to indicate the index set {1,2, . . . ,N}, and R
to represent the set of real numbers. Given a vector �α with N

elements, we use 〈α〉 = 1
N

∑N
i=1 αi to denote the mean value

of �α.
The finite-size Kuramoto model, describing the dynamical

behavior of N phase oscillators in an all-to-all network, is
given by the equation

�̇i = �i + K

N

N∑
j=1

sin(�j − �i), ∀i ∈ IN, (1)

where N is a finite positive integer number, K is the coupling
strength, and the N × 1 vectors, �� = [�1,�2, . . . ,�N ]T

and �� = [�1,�2, . . . ,�N ]T , denote the natural frequencies
and instantaneous phases of the oscillators, respectively. We
rewrite Eq. (1) in a rotating frame by letting �θ ≡ �� − �1N 〈�〉t
and �ω ≡ �� − �1N 〈�〉, such that 〈ω〉 = 1

N

∑N
i=1(�i − 〈�〉) =

0. Therefore, if g(�) represents a function of an arbitrary
distribution with finite variance for the natural frequencies in
Eq. (1), with a mean value 〈�〉 which is not necessarily equal
to zero, then the distribution g(ω) in the rotating frame always
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has a mean value 〈ω〉 = 0. We can change Eq. (1) into the
rotating frame without losing its properties, namely,

θ̇i = ωi + K

N

N∑
j=1

sin(θj − θi), ∀i ∈ IN. (2)

The order parameter r ∈ [0,1] is defined by [13,14]

reiψ = 1

N

N∑
j=1

eiθj , ∀j ∈ IN, (3)

where r and ψ are calculated by equating the real and
imaginary parts in Eq. (3), namely,

r =

√√√√√
⎛
⎝ 1

N

N∑
j=1

sin θj

⎞
⎠

2

+
⎛
⎝ 1

N

N∑
j=1

cos θj

⎞
⎠

2

(4)

and

ψ = arctan

( ∑N
j=1 sin θj∑N
j=1 cos θj

)
, (5)

where we exclude the case that
∑N

j=1 cos θj = 0. We note that
ψ is not the average phase in a network with finite oscillators
(i.e., ψ �= 〈θ〉). This is different from the situation with infinite
number of oscillators [31], where ψ = 〈θ〉 is the global mean
field.

Multiplying e−iθi to both sides of Eq. (3) and equating the
imaginary part, we have

r sin (ψ − θi) = 1

N

N∑
j=1

sin (θj − θi), (6)

which results in

θ̇i = ωi + Kr sin(ψ − θi), ∀i ∈ IN . (7)

The oscillators described by Eq. (2) emerge into FS if [32]

θ̇i − θ̇j = 0 as t → ∞, ∀i,j ∈ IN. (8)

We have, from Eq. (2), that
∑N

i=1 θ̇i = ∑N
i=1 ωi = N〈ω〉.

Since 〈ω〉 = 0, to satisfy Eq. (8) we require that �̇θ = �1N 〈ω〉 =
�0N . Thus, in the rotating framework, to solve the finite-size
Kuramoto model in FS is to solve

θ̇i = ωi + K

N

N∑
j=1

sin(θj − θi),

(9)
subject to: θ̇i = 0, ∀i ∈ IN .

In general, the finite-size Kuramoto model reaches FS if the
coupling strength is larger than a critical value, KC [21].
Verwoerd and Mason [8] provided an algorithm to exactly
calculate KC from

KC = u

1
N

∑N
j=1

√
1 − (ωj

u

)2
, (10)

where u is calculated from 2
∑N

j=1

√
1 − (ωj/u)2 = ∑N

j=1 1/√
1 − (ωj/u)2.

III. SOLUTION OF THE FINITE-SIZE
KURAMOTO MODEL

The stability of the FS solution of the finite-size Kuramoto
model can be studied by the Lyapunov function,

E = 1
2
�̇θ T �̇θ, (11)

where the time derivative of E along the trajectories of
Eq. (2) is Ė = −K

N

∑N
1�i<j�N cos(θi − θj )(θ̇i − θ̇j )2. A suf-

ficient condition for the stability of the FS solution is that
Ė < 0, implying cos(θi − θj ) > 0, ∀i,j ∈ IN . This means
that |θi − θj | < π

2 , ∀i,j ∈ IN . We denote the stable critical
coupling strength of the finite-size Kuramoto model by KS

defined as

KS := min

{
K : K � KC,|θi − θj |< π

2
,∀i,j ∈ IN

}
. (12)

Thus, as t → ∞, the oscillators are attracted to the stable FS
if K � KS . We define KS � KC , since K = KC only ensures
the existence of the FS solution [8], but K � KS provides a
condition for its stability based on the Lyapunov function. The
existence of KS has been studied in [9,32], and [21].

Given K = K∗ � KS , assume �θs is a stable solution of the
finite-size Kuramoto model in FS. Then, �θξ = �θs + �1Nξ, ∀ξ ∈
R is also a stable solution corresponding to K = K∗, since
the phase differences are independent of ξ . This means
that there are an infinite number of stable solutions for the
finite-size Kuramoto model in a certain FS state. We use S∞

K∗ ,
corresponding to K = K∗, to denote the infinite-dimensional
stable solution space. Actually, �θ = �1Nξ, ∀ξ ∈ R, is the
homogeneous solution of Eq. (9), obtained by setting the
nonhomogeneous terms to be zero, i.e., �ω = �0N . �θs and �θξ

are particular solutions of the non-homogeneous Eq. (9). Our
goal is to find one of the particular solutions, which can
be analytically expressed, such that Eq. (9) is analytically
solvable.

We define the master solution of Eq. (9) as

�φ∗ = �θξ − �1Nψξ ∈ S∞
K∗ , (13)

where ψξ is calculated from Eq. (5) as �θ = �θξ . There are
three characteristics for which we call �φ∗ the master solution:
(i) �φ∗ is analytically expressible; (ii) �φ∗ is identical ∀ξ ∈ R,
i.e., �φ∗ is independent of ξ ; and (iii) ψ∗ ≡ 0, where ψ∗ is
calculated from Eq. (5) as �θ = �φ∗. Next, we will prove the
three characteristics of �φ∗.

Considering Eq. (6), Eq. (9) can be transformed into

ωi = K∗r∗ sin φ∗
i , ∀i ∈ IN, (14)

where r∗ is calculated by multiplying e−iψξ

on both sides of
Eq. (3), namely,

r∗ = 1

N

N∑
j=1

cos
(
θ

ξ

j − ψξ
) = 1

N

N∑
j=1

cos(φ∗
j ). (15)

We define ϒ �φ∗ = [φ∗
min,φ

∗
max], where φ∗

min (φ∗
max) is the

minimum (maximum) φ∗. We have two observations about
ϒ �φ∗ : first, its length |ϒ �φ∗ | < π

2 due to �φ∗ ∈ S∞
K∗ ; secondly,

0 ∈ ϒ �φ∗ , because 〈ω〉 = 0 implies ωmin � 0 and ωmax � 0,
resulting in φ∗

min � 0 and φ∗
max � 0 from Eq. (14). These two
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characteristics of ϒ �φ∗ restrict ϒ �φ∗ ⊂ [−π
2 , π

2 ]. Thus, we get the

analytical expression of the master solution ( �φ∗) from Eq. (14),

φ∗
i = arcsin

ωi

K∗r∗ , ∀i ∈ IN, (16)

which is independent of ξ , thus (i) and (ii) follows. From
Eq. (14) we have

∑N
i=1 sin φ∗

i = 1
K∗r∗

∑N
i=1 ωi = 0. Substitut-

ing this into Eq. (5), we have ψ∗ ≡ 0, which proves (iii).
Our goal is to find the master solution ( �φ∗) as

K = K∗ � KS for the finite-size Kuramoto model. We
know ϒ �φ∗ ⊂ [−π

2 , π
2 ], implying cos φj � 0, ∀j ∈ IN . Thus,

the order parameter in Eq. (15) is calculated as r∗ =
1
N

∑N
j=1

√
1 − sin(φ∗

j )2. Considering sin φ∗
j = ωj/(K∗r∗) ob-

tained from Eq. (14), r∗ can be expressed by a transcendental
equation, namely,

r∗ = 1

N

N∑
j=1

√
1 −

(
ωj

K∗r∗

)2

. (17)

In order to obtain an approximate solution for r∗, we
construct a new model for the original system. We relabel
�ω such that ω1 � ω2 � · · · � ωN , and split ω into two groups.
One group is ω′ = [ω1,ω2, . . . ,ωN ′ ]T , where N ′ = N

2 (N ′ =
N−1

2 ) if N is even (odd), and the other group is ω′′ =
[ωN ′+1,ωN ′+2, . . . ,ωN ]T . We note that, since

∑N ′
j=1 ωj +∑N

j=N ′+1 ωj = ∑N
j=1 ωj = 0, 〈ω′〉 = −〈ω′′〉 � 0 when N is

even, and 〈ω′〉 ≈ −〈ω′′〉 � 0 when N is odd. For simplicity,
we indistinctly denote 〈ω′〉 ≈ −〈ω′′〉 for both cases.

When all of the oscillators emerge into stable FS, our model
treats the whole system as two oscillators in stable FS. The
natural frequencies of the two oscillators are 〈ω′〉 and 〈ω′′〉. The
two oscillators also follow the original FS Kuramoto model
equations, namely,

〈ω′〉 = K∗r∗′ sin φ′, (18)

〈ω′′〉 = K∗r∗′ sin φ′′, (19)

where r∗′ is the order parameter for the two oscilla-
tors. The two oscillators are in stable FS, thus we have
φ′,φ′′ ∈ [−π

2 , π
2 ], which is obtained from the analysis of

the Lyapunov function [Eq. (11)] for the two oscillators.
Then the order parameter is r∗′ = 1/2(cos φ′ + cos φ′′) =
1/2

√
1 − [〈ω′〉/(K∗r∗)]2 + 1/2

√
1 − [〈ω′′〉/(K∗r∗)]2 . Fur-

ther considering |〈ω′〉| ≈ |〈ω′′〉| we have

r∗′ ≈
√

1 −
( 〈ω′〉

K∗r∗

)2

, (20)

whose solution is

r∗
1

′ ≈ λ1 =
√

2

2

√
1 +

√
1 − 4〈ω′〉2

K∗2
, K∗ � 2|〈ω′〉|, (21)

r∗
2

′ ≈ λ2 =
√

2

2

√
1 −

√
1 − 4〈ω′〉2

K∗2
, K∗ � 2|〈ω′〉|, (22)

where we have λ1λ2 = −〈ω′〉
K∗ ≈ 〈ω′′〉

K∗ . Substituting this condi-
tion into Eqs. (18) and (19), we get −λ1λ2 = r∗′ sin φ′ and
λ1λ2 = r∗′ sin φ′′. If r∗′ ≈ λ2, we have φ′ ≈ − arcsin(λ1) and

φ′′ ≈ arcsin(λ1). Because
√

2
2 � λ1 � 1, we approximately

have −π
2 � φ′ � −π

4 and π
4 � φ′′ � π

2 . This means |φ′ −
φ′′| � π

2 , and λ1 grows larger as K increases from KS resulting
in a growth of |φ′ − φ′′|. However, |φ′ − φ′′| � π

2 implies
instability of the FS solution of the two oscillators, which can
be understood by the Lyapunov function in Eq. (11) for the two
oscillators. This means that r∗′ ≈ λ2 describes an unstable FS
solution. On the other hand, r∗′ ≈ λ1 ensures the stability of the
FS solution. Thus, we let r∗ ≈ r∗′ ≈ λ1 be the approximation
for the order parameter in Eq. (17), then the approximation
( �φ∗∗) for the master solution ( �φ∗) in Eq. (16) is

φ∗∗
i = arcsin

ωi

K∗λ1
, ∀i ∈ IN. (23)

Consequently, the approximate stable solution of the finite-size
Kuramoto model in FS is

θi ≈ arcsin
ωi

K∗λ1
+ ξ, ∀i ∈ IN, ∀ξ ∈ R. (24)

We use �ε with element εi = |φ∗∗
i − φ∗

i |, ∀i ∈ IN , to denote
the absolute error between the approximate master solution
[ �φ∗∗ in Eq. (23)] and the numerical one [ �φ∗ in Eq. (16)],
and σ to denote the standard deviation of �ε, defined as

σ =
√

1
N

∑N
i=1(εi − 〈ε〉)2. To demonstrate the effectiveness

of our method for a network with four oscillators, we show
numerical results in Fig. 1. εi is large ∀i ∈ IN , when K < KS
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FIG. 1. (Color online) Results for a network of four oscillators
with the vector of natural frequency given by �� = [−2, − 1,1,2]T . (a)
K < KS ; the blue triangles and red circles indicate the approximate
master solution ( �φ∗∗) in Eq. (23) and the numerical one ( �φ∗) in
Eq. (16), respectively. (b) K = KS ; �φ∗∗ indicated by blue triangles
is close to �φ∗ indicated by red circles. (c) The change of the order
parameter and its approximation with respect to K . The red solid line
indicates the numerical result of the order parameter in Eq. (17) (an
average value of results from 2000 simulations with different initial
phases). The blue solid line with circles indicates the change of λ1

in Eq. (21), and the green solid line with triangles represents λ2 in
Eq. (22), as K � 2|〈ω′〉|, where 2|〈ω′〉| is the lowest bound of K in
Eqs. (21) and (22). The dash-dotted magenta line, dashed cyan line,
and dotted black line represent 2|〈ω′〉|, KC , and KS , respectively. (d)
The change of the average of the absolute error (red solid line) and
standard deviation of the absolute error (blue solid line with circles)
between �φ∗∗ and �φ∗ as a function of K when K � 2|〈ω′〉|.
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FIG. 2. (Color online) Study of the average absolute error 〈ε〉 in
(a), and the standard deviation σ in (b) between the approximate
master solution ( �φ∗∗) and the numerical one ( �φ∗) at K = KS . N

increases from 3 to 200. The red line, green line with circles, and black
line with triangles correspond to the normal distribution, uniform
distribution, and exponential distribution of ��, respectively. Results
are based on the average value of results from 100 simulations for
each distribution.

[ �φ∗∗ �= �φ∗ in Fig. 1(a)], and small when K = KS [ �φ∗∗ ≈ �φ∗ in
Fig. 1(b)]. The approximate order parameter, λ1, is close to the
numerical one as K � KS [Fig. 1(c)]. The average absolute
error and standard deviation of the absolute error are small
(〈ε〉 < 10−1,σ < 10−1) when K � KS , and decreases rapidly
as K is increased [Fig. 1(d)]. This means that our method can
calculate the master solution almost exactly in an analytical
way for this network.

Figure 2 indicates that our method works well for net-
works with different �� distributions (uniform, normal, and
exponential) and different number of oscillators (N increasing
from 3 to 200). We obtain a uniform distribution g(�) by
generating random numbers between −3 and 3, a normal
distribution by generating numbers following the probability
density function g(�) = 1

�
√

2π
e−(�−μ)2/(2�2) with the mean of

the distribution μ = 0 and the standard deviation � = 3, and
an exponential distribution by generating numbers following
the probability density function g(�) = 1

β
e−�/β , if � � 0 and

g(�) = 0, if � < 0, with the mean of the distribution β = 2.
We observe that 〈ε〉 and σ are larger when N is smaller, but
they decrease quickly as N increases. Furthermore, 〈ε〉 and
σ in Fig. 2 are obtained at K = KS , meaning that they are
the largest value obtained for each simulation. In other words,
smaller 〈ε〉 and σ can be obtained if we increase K for any
given N and any �� distribution, since larger K implies smaller
absolute error between the approximate order parameter and
the numerical one as shown in Fig. 1(c), which further implies
smaller absolute error between �φ∗∗ and �φ∗.

IV. STABILITY OF THE SOLUTION

A sufficient condition to ensure the stability of the FS
solution was proposed by [9] as

K > KP , where KP =
√

2|ωi |
r

, ∀i ∈ IN . (25)

Taking λ1 in Eq. (21) as the approximation of r , we get a
sufficient condition for the stability of the FS solution, namely,

K > KA, where KA =
√

2|ωi |
λ1

, ∀i ∈ IN. (26)
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FIG. 3. (Color online) The stable critical coupling strength of the
finite-size Kuramoto model. N increases from 3 to 200. KS (black
line with circles) is calculated by Eq. (12), KP (blue line) by Eq. (25),
and KA (red line with triangles) by Eq. (26). (a) �� follows a normal
distribution. (b) �� follows a uniform distribution. (c) �� follows an
exponential distribution. The figures are drawn based on average
results of 30 simulations for each distribution.

Equation (26) is useful to forecast whether the system is able
to get into a stable FS state in an analytical way, without
solving the differential equations. In other words, it reveals the
relationship between the physical parameters (average natural
frequency and coupling strength) and the stable behavior
of oscillator networks described by the finite-size Kuramoto
model explicitly.

Figure 3 shows the effectiveness of our condition to gauge
the stability for the FS solution of the finite-size Kuramoto
model, considering different �� distributions and different
number of oscillators. If �� obeys a normal or exponential
distribution [Figs. 3(a) and 3(c), respectively], KA in Eq. (26)
coincides remarkably with KP in Eq. (25), and KA > KS . If
�� obeys a uniform distribution [Fig. 3(b)], KA in Eq. (26) is
close to KS in Eq. (12). This means Eq. (26) is effective to
approximately determine the stability for the FS solution of
the finite-size Kuramoto model.

V. CONCLUSION

In this paper, we studied the finite-size Kuramoto model
[Eq. (2)], including its analytical solution for FS and its stable
behavior. Our approximate frequency synchronization (FS)
solution takes a simple form [Eq. (24)], which, surprisingly,
is independent of the network size. These significant results
are a consequence of a mathematical insight expressed in
Eq. (16) and a physical insight in the model leading to Eqs. (18)
and (19). Among an infinite number of FS solutions, we have
understood that there is a particular one, the master solution
in Eq. (16), which allows one to calculate all of the others. We
have also understood that the FS in the finite-size Kuramoto
model is approximately characterized by two clusters of oscil-
lators that can be effectively described as two coupled oscilla-
tors in Eqs. (18) and (19). Furthermore, we developed a condi-
tion to approximately predict the stability for the FS solution
of the finite-size Kuramoto model in an analytical way. This
condition allows one to easily infer the relationship between
the physical parameters and the stable behavior of networks.
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