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Abstract 

A limitation of existing walking models used for vibration serviceability assessment of 

structures carrying pedestrians is that they are typically based on direct measurements of 

single footfalls replicated at precise intervals. This assumption of  ‘perfect periodicity’ 

allows walking forces to be modelled as a Fourier series of sine waves having frequencies 

of the walking pace and its integer multiples. The true imperfection and randomness in 

walking is currently not taken into account even in more advanced dynamic loading 

codes of practice and leads to an unknown degree of conservatism. 

Having this in mind, this paper examines real continuous walking forces obtained from 

an instrumented treadmill and the effect of their random imperfection through time and 

frequency domain simulations of structural response.  

The main conclusions are that there are significant differences between responses due to 

the imperfect real walking forces and the ‘equivalent’ perfectly periodic simulation. 

These differences are most significant for higher harmonics where the simulated 

vibration response overestimates the real-life behaviour, sometimes significantly. This is 

mainly due to random imperfections in real walking. Given that a more realistic 

representation of imperfect walking is an auto-spectral density function, the random 

character naturally leads to a stochastic approach to treatment of pedestrian loading 

applied in the frequency domain. The approach can be used for single pedestrians but the 
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benefits are greater for crowd loading where correlation between pedestrians as well as 

statistics of their pacing rates can be applied directly. 

Key words: coherence, crowd loading, footbridges, gait analysis, long-span floors, 

pedestrian loading, spectral density, walking forces 

 



  4

1. Introduction 

An increasing interest in vibration serviceability of slender civil engineering structures 

has led to a requirement for better understanding of footfall forces generated by 

pedestrians. This interest of structural engineers has been preceded by many year of 

biomechanics research into ground reaction forces on the human musculo-skeletal system 

(Winter 1990). Structural engineers have begun to use data from these studies as well as 

from their own direct or indirect measurements with an aim to develop realistic models of 

human footfall forces. These are then employed in vibration serviceability assessments of 

structures occupied and dynamically excited by pedestrians, such as footbridges and long 

span floors. 

Numerous models of walking excitation have been proposed (Pavic and Reynolds 2001; 

Bachmann and Ammann 1987) and usually derived from the assumption that walking is a 

perfectly periodic activity. The simplest such model that uses a single sinusoidal function 

is found in current British (BSI 2001) and Canadian (CSA 2000) codes. This means that 

actual forces due to continuous walking can be re-created, by adding a sequence of 

identical single footfall traces, temporally displaced by integer multiples of an exact 

footfall interval. The footfall forces are obtained by walking over a ‘neutral’ force plate 

that is supposed not to affect the walking pattern. The idea is illustrated in Figure 1 where 

identical left and right foot time histories are shown separately and added, resulting in a 

synthetic walking force time history. In a time domain analysis procedure that uses a 

synthetic walking time series, the structure is assumed to be linearly elastic and, using 

modal decomposition, the response of each vibration mode can be analysed separately 
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using harmonic loads modulated by the appropriate mode shape to account for the 

moving load (Smith 1988). 

Using Fourier analysis, any perfectly periodic and continuous signal ( )x t  repeating at 

intervals T  can be represented by an infinite ( m →∞ ) sum of terms: 

 ( ) ( )0
1

sin 2
m

n n
n

x t a a n Tπ φ
=

= + ⋅ +∑  (1) 

Hence if we take a sample of duration T  [s] from a synthetic time series for walking at a 

pacing rate of 1f T=  footfalls per second [Hz] the walking forcing function can be 

decomposed, via equation (1), into: 

• a mean value 0a , equivalent to body weight, in the case when ( )x t  presents a force 

induced by a pedestrian, 

• a fundamental component  ( 1n = ) at pacing rate f , and  

• a sequence of 1m −  higher harmonics, where the value of m  depends on which 

model is used, and inclusion of the sixth harmonic is not unusual (Ellis 2000). 
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It should be noted that nφ  are phase angles which have been found to vary considerably 

between various measurements for higher harmonics (Bachmann et al. 1995) indicating 

the randomness in the process of generation of dynamic forces due to human walking. 

However, little utilisation of this important finding was made to date. The values of 

normalised coefficients 0n nG a a=  are known as ‘dynamic load factors’ (DLFs) and 

depend on walking speed and individual characteristics of a human test subject. DLFs for 

walking, running and jumping are presented by Rainer et al. (1988) for three subjects, 

while a more comprehensive study of walking has been undertaken by Kerr (1998). His 

study found wide variability of DLFs between subjects participating in the tests (inter-

subject variability) and also between different tests with the same subject (intra-subject 

variability). Hence it is appropriate to give a frequency-dependent mean and coefficient 

of variation for DLFs, as recently proposed by Young (2001) based on Kerr’s data. 

The study presented in this paper describes results of measurements performed by the 

authors using an instrumented treadmill. The walking forcing function was therefore 

measured in a continuous manner which provided an opportunity to study their 

randomness. The effects of the stochastic nature of human walking on the calculated 

structural response were considered by comparing the stochastic responses with their 

counterparts obtained by using a perfectly periodic excitation model which is nowadays 

frequently utilised in practice. The perfectly periodic model of Fourier coefficients lends 

itself to deterministic time domain analysis, while the dispersed energy seen for real 

continuous walking is more suited to the techniques of stochastic analysis in frequency 
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domain, where the walking forces are presented as auto-spectral densities (ASDs), 

(McConnell 1995).  

When applied with the Gaussian form of probability distribution of mean pacing rates, 

application of ASDs leads to a framework for more realistic frequency domain 

representation for large numbers of pedestrians. Additionally, the consideration of 

correlation between pedestrians at different locations on a structure suggests an approach 

similar to estimating dynamic response of structures to turbulent buffeting by wind. 

Finally, an example of bridge response to large numbers of pedestrians is presented as 

evidence to support the proposed analytical framework. 

2. Frequency domain modelling of walking forces 

The significance of imperfect periodicity in dynamic loads induced by pedestrians on 

footbridges has been shown, for example, by Rainer et al. (1988). The sinusoidal steady-

state SDOF response models they used for footbridge vibration serviceability assessment 

were based on walking harmonics exciting the first mode resonance. These analytical 

models predicted peak accelerations which were almost twice as high as experimental 

values produced by even the best attempts to excite resonance with perfectly timed 

walking. 

A relatively small number of studies (Eriksson 1994; Mouring and Ellingwood 1994) 

have considered predicting response using frequency domain models. For example, 

Mouring and Ellingwood (1994) generated ‘random’ time domain histories of crowd 
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loading ( )p t  from simulations of different arrival times of individual walkers and their 

pace rates. These were then converted into generalised modal forces ( )p t′  via a known 

mode shape and further transformed, via the single-sided discrete Fourier transform 

(DFT), into Fourier (amplitude) spectra ( )P f′  having spectral line spacing df , where f  

[Hz] is frequency. The ASD ( )PS f′ of modal loading could be obtained from such single 

sided Fourier spectra via the following formula: 

 ( ) ( ) ( )2 2PS f P f df′ ′=  (2) 

Note that when plotted on linear axes, ASDs are often shown in square root form 

( )PS f′ , which is defined here as ‘root ASD’. 

Given the system frequency response function ( )H f  for the mode, the variance of 

modal response ( )X f  in a given frequency band 1 2f f−  around a specific vibration 

mode could be obtained via (Newland 1993): 

 ( ) ( )2

1 2
1

2
2

,

f

X f f Pf
S f H f dfσ − ′= ∫ . (3) 
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As the individual forcing time histories in Mouring and Ellingwood’s study were 

assumed to be perfectly periodic sums of sinusoids, the approach considered only one 

aspect of randomness of walking. The fundamental issue of imperfect individual forcing 

functions was not accounted for. 

3. Measurement and analysis of real continuous walking forces 

Forces generated during walking on a structure are ideally determined by direct 

measurement of the contact force while walking on the structure itself, as account must 

be taken of the surface conditions and of the response of the structure, which may modify 

the footfall forces (Dallard et al. 2001). While force plate measurements on a structure 

during jumping are a practical means to measure directly the applied loading as a 

sequence of footfalls, measurement of continuous walking forces requires a sensor that 

moves with the walker, a fully instrumented walkway, or a treadmill.  

Instrumentation for measuring contact forces during continuous walking 

Matsumoto et al. (1978) appear to have made an early attempt to recover continuous 

forces through measurements of acceleration at the waist of pedestrians walking across a 

stiff floor. However, an erroneous assumption that human frame behaves as a rigid body 

was required. Some improvement on this approach could be obtained using movies or 

video recordings of human motion (Winter 1990; Forner Cordero et al. 2002). Devices 

for direct measurement of forces during walking have been developed, for example, in 

the form of in-sole pressure sensors (Woodburn and Helliwell 1996; Barnett et al. 2001; 

Razian and Pepper 1998). 
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A rare study using an instrumented laboratory-based walkway (Ebrahimpour et al. 1996) 

has provided valuable information about continuous pacing footfall forces and probably 

the most relevant guidance on the effect of multiple pedestrians, but alas there was an 

inevitable limit to the length of the walkway.  

Treadmills capable of measuring three orthogonal components of footfall force are now 

available (Belli et al. 2001), but those measuring only the vertical component are more 

common. The Biomechanics Laboratory at the National Institute of Education (NIE) in 

Singapore has a ‘Gaitway’ (Rao et al. 2002), shown in Figure 2. This is a conventional 

exercise treadmill equipped with a pair of force plates under the belt fore and aft of the 

mid position that should also be the optimal location of the test subject. A reflective 

marker attached to the near foot of a test subject (Figure 2) is used as a trigger to help 

software retrieve left and right foot force time series from the fore and aft force plate 

signals.  

Test sequence and continuous walking statistics for three test subjects 

A series of measurements were made using the NIE Gaitway to characterise walking 

forces for three test subjects walking at a range of speeds: Subject P is a 65 kg male 

researcher, Subject K is a 62 kg male student and Subject Y is a 46 kg female student. All 

were asked to walk with a comfortable range of walking speeds from 2.5 km/h to 

7.5 km/h (note: 3.6  km/h = 1 m/s). 
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Each test comprised a sequence of measurements of approximately one minute of steady 

walking with a fixed treadmill speed. It should be stressed here that the pacing was not 

prompted by any device such as a metronome, and pacing rate was determined only from 

subsequent analysis of the signals.  

It could be argued that when walking as a crowd or small group, pedestrians will often be 

forced to maintain their speed at a certain level to stay with the flow. Hence, these data 

may help provide quite realistic representations of walking under such circumstances of 

controlled walking speed. 

The relationship between pacing rate and walking speed is known to vary between 

subjects. For example, Subject K’s long stride allowed him to reach speeds that Subject P 

could not achieve without running. This inter-subject variation contributes to the 

Gaussian distribution of walking pedestrian rates reported, for example, by Matsumoto et 

al. (1978), but the intra-subject variations for a single pedestrian are of greater interest 

here.  

The Gaitway system is normally used to provide a series of statistics or ‘gait parameters’, 

describing footfalls. Gait analysis is a well established research area (Rao et al. 2002) for 

studying dynamics of the human body and, more recently, via pattern recognition, as a 

tool for identifying individuals by the way they walk (Stevenage et al. 1998). Even so, 

data relevant for structural analysis concerning intra-subject variations in timing of the 
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individual footfalls (i.e. the variations of the footfall interval, as annotated in Figure 1) 

and their impulses (top of Figure 1), are not readily available from the literature.  

For Subjects K, P and Y, Figure 3 shows mean values of footfall (i.e. pulse) width and of 

normalised impulse, both as functions of the mean pace rate. The normalised impulse is 

defined as the footfall impulse divided by test subject body weight. The obvious trend for 

footfall width and normalized impulse to reduce with increasing pacing rate is logical, but 

the low scatter between subjects was not expected. Nevertheless, the coefficients of 

variation (COVs) of these two gait parameters established by analysing one-minute 

blocks of measured data were used to quantify the imperfection of walking. COV ρ  is 

defined as: 

 σρ
µ

=  (4) 

where σ  is the standard deviation and µ  is average value of a gait parameter, each 

obtained using the same one-minute walking sample with mean pacing frequency f . 

Analysis of data from all three test subjects established that at each mean pacing 

frequency, COVs for pulse width and normalized impulse are typically close to 2%, 

while for the interval between footfalls the COV is closer to 3%. There seems to be no 

trend with these COV values, which also show no minimum value that would indicate an 

optimal comfortable walking pattern. These small variations show that walking has an 

inherent degree of randomness, whose effect could be studied using a frequency domain 
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approach, as used in random vibration analysis. The effect of these small variations is 

illustrated through numerical examples in the next section, after which an analytical 

framework is proposed for the development of more realistic and less conservative 

procedures to estimate structural vibration response to walking.  

4. Quantification of structural response to real walking  

For structures experiencing continuous walking forces due to a crowd of individual 

pedestrians who arrive on and eventually leave the structure according to a Poisson 

distribution (Matsumoto et al. 1978), each individual contributes a transient build up and 

decay of the structural dynamic response. In this process it is assumed that a kind of 

random but stationary, state is achieved. Alternatively, we can examine the quasi steady-

state structural response to a single imperfect pedestrian after the initial transient build 

up. In either circumstance, where stationarity (Newland 1993) of the structural response 

can be achieved, equation (3) can be applied. Firstly, the case of the single pedestrian is 

examined. 

Figure 4a shows the measured force time series for Subject P walking at 4.4 km/h at a 

mean pace rate of 1.91 Hzf =  and Figures 4c-f show response to this force for 1000 kg 

oscillators with 1% damping and natural frequencies f  of 1.91 Hz, 3.82 Hz, 5.73 Hz and 

7.64 Hz. These frequencies correspond exactly to the fundamental and higher harmonics 

of the walking excitation. 
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The real force time history of Figure 4 represents a segment of 30 paces extracted from 

one 60 s walking force time history. An average footfall was obtained from the full trace, 

by averaging amplitudes of all footfalls using a time base with a trigger point at the 

beginning of the initial steep rise of each footfall. A synthetic and perfectly periodic time 

history was then generated by replicating this average footfall, in the manner presented in 

Figure 1.  Figure 4b shows the resulting 30-pace time history. The envelopes of maxima 

and minima of response of the same set of four 1000 kg oscillators to this time series are 

superimposed on the response to real walking shown in Figures 4c-f for comparison. 

There is little to choose between the two responses for the oscillator when its natural 

frequency exactly equals the mean pacing rate ( f f= ), which explains why it is often 

possible to build up to a significant percentage of resonant response to the fundamental 

component of the walking force even with imperfect walking. Although the duration is 

not long enough to detect any difference in the ‘steady state’ response, the maximum 

response is only a little less for the real walking.  

However, it should be noted that when the pacing of a pedestrian becomes out of phase 

with the vibration of a footbridge structure excited close to resonance, energy is extracted 

from the structure and the human exciter becomes an active damper. Pimentel et al. 

(2001) noted this phenomenon with pedestrians exciting very lively footbridges in 

antisymmetric vertical modes. 
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For the second, third and fourth harmonics, the difference is much clearer, particularly for 

the second harmonic which is somewhat surprising. After the transient build up to a 

significant proportion of resonant maximum amplitude, the response fades. For these 

harmonics, on average, the SDOF systems have greater response under the excitation of a 

perfect ‘averaged’ walking.  However, it is worthwhile noticing that occasionally the 

response due to real imperfect excitation exceeds its synthetic counterpart. 

In the literature on vibration serviceability there are two common measures of the 

structural response signals: the signal absolute peak value and some form of the signal 

‘average’ amplitude. The former is self explanatory, the latter involves determining the 

variance of the signal, which is the mean square of a signal ( )a t  with the mean value 

(also known as the DC component) removed. This variance 2
aσ  can be computed from 

either ( )a t  or its ASD ( )'
AS f . The root mean square (RMS) of a signal is another 

common measure based on the mean square of the signal but including the DC 

component. Where the DC component is zero, as for example in acceleration signals, we 

have ( ) aRMS a σ= . 

The relationship between peak value â and the variance 2
aσ  is given by the ‘crest factor’ 

(CF) defined as (McConnell 1995): 

 
ˆ

a

aCF
σ

=  (5) 
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The crest factor for a steady state sine is exactly 2 while for random signals it typically 

ranges from 3 to 5. In wind engineering (Simiu and Scanlan 1996) a crest factor of 3.7 is 

used typically to obtain peak gust speeds from mean RMS wind speeds. 

The shapes of acceleration responses in Figure 4 show that the RMS of real walking 

responses is usually lower compared with the synthetic counterparts. However, the crest 

factors are apparently higher for real walking, with the clear possibility that the 

corresponding peak values may be larger compared with responses to synthetic walking. 

This is a standard feature of random vibrations and emphasises the stochastic character of 

real walking. 

The different levels of response due to real and synthetic walking can be studied in a 

more systematic way by computing the RMS, aσ  and maximum peak of response for 

SDOF oscillators corresponding to each harmonic during the ‘steady state’ part of the 

response after the initial build up. Longer data sets of 90 paces are used to obtain more 

reliable RMS values and show the significance of crest factor. It should be noted that 90 

paces of the slowest walking lasts just over one minute. 

To allow for the possibility that the RMS and maximum peak response values for each 

harmonic do not occur at frequencies which are exact multiples of f , a response 

spectrum approach is used. Figure 5 (upper) shows plots of loci of peak values of 

acceleration for low-damped ( 1%ζ = ) oscillators having natural frequencies in the 
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narrow range of frequencies centred on f . Figure 5 (lower) shows the corresponding 

RMS values. The thick and thin lines, respectively, indicate the spectra for real and 

synthetic walking, and the differences in Figure 4 are more clearly apparent in Figure 5. 

Figures 4 and 5 apply to a single walking sample. Similar simulations were performed 

using measured forcing functions from other tests and the results are best summarised by 

taking, for each time series, the maximum value around each walking harmonic (see 

Figure 5), and plotting them against f  for measured and synthetic continuous walking. 

Figure 6 shows these maximum RMS values for each harmonic and Figure 7 shows the 

maximum peak values. With very few exceptions, for every harmonic at every pacing 

rate, RMS response is less for the real walking, with the difference being most significant 

for the second harmonic. This confirms the previous observation made when visually 

examining and comparing the sample represented by Figure 4d. 

For the fundamental harmonic component, the peak response values corresponding to real 

forcing function are similar to their synthetic counterparts, but for higher harmonics they 

are generally higher for real walking. Lower RMS values but higher peak values 

correspond to higher crest factors, whose average values for each harmonic are given in 

Figure 6 as CF(r) for the real and CF(s) for the synthetic walking force inputs. For the 

fundamental harmonic, CF(r) is close to the crest factor corresponding to steady state sine 

value while for real walking in higher harmonics the crest factors approach values used in 

random data analysis. The same trend was observed to differing degrees for all three test 
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subjects. However, further parametric studies demonstrated that the differences reduce 

with increase in damping of the SDOF systems studied. 

This inaccuracy of the conventional time domain approach using DLFs has been 

commented on in the published literature (Pavic and Reynolds 2002), and the remainder 

of the paper is focused on providing and validating a more realistic and less conservative 

approach. 

5. Frequency domain modelling of imperfect real walking 

In the context of vibration serviceability, it is nowadays usual to use RMS values of 

structural vibration response (typically accelerations) rather than peak values as criteria 

for assessment (Gordon 1991; BSI 1992). With the exercise just described in mind, this 

has two consequences. Firstly, it can be seen that computation of response based on 

assumed perfect walking will be conservative, especially for higher harmonics. Secondly, 

by virtue of equation (3) it is clear that the effective reduction of the RMS response could 

be modelled by a more realistic shaping of the ASD of the walking forcing function 

( )'
PS f . 

For example, a SDOF oscillator with 1% damping excited at resonant frequency by a 

sinusoidal forcing function with amplitude 2  [N] will have RMS response 50 times the 

static displacement x . Where the input signal is not a perfect sine but ‘leaks’ energy into 

adjacent frequencies on either side of the resonance, the RMS of response obtained in the 

manner of equation (3) will then be less than 50 x . This ‘leaking’ of the excitation energy 
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is a key reason for overestimation of RMS levels due to real walking when synthetic 

walking forcing functions are used (Figure 6). 

Fourier spectra of continuous walking 

Figure 8 shows the discrete Fourier line spectra of exactly 64 paces of a measured 

continuous walking force time series. To avoid leakage during the digital signal analysis, 

the duration of the whole data block was fixed at 64 times the mean interval T  between 

footfalls where 1T f= . The amplitudes of the lines do not represent spectral densities, 

but simply amplitudes of the elements of the Fourier series at successive discrete spectral 

lines spaced at intervals of 64f . Likewise Figure 9 shows the same analysis applied to 

the synthetic continuous walking. 

In both graphs the amplitude values have been normalised with respect to body weight W, 

so in Figure 9 the amplitude of lines are in fact DLFs, as previously defined. Figure 9 

illustrates how the perfect walking forcing function can be approximated with its first m 

( 10m =  in Figure 9) components as: 

 ( ) ( )
1

1 sin 2
m

n n
n

f t W G nfπ φ
=

= + ⋅ +∑  (6) 

The above series can also be used to represent a range of human-induced excitation, such 

as running or jumping, and the values of nG  are given in different forms in different 
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research papers, codes of practice and design guides. For example, Young (2001) 

proposed to calculate the DLF corresponding to the fundamental harmonic of walking as: 

 ( )1 0.37 0.95G f= −  (7) 

having in mind that, due to observed variability of the test data, there was a 17% 

coefficient of variation associated with this DLF. This COV is greater than observed in 

the tests on Subjects K, P and Y and it should be mentioned that Young’s data were based 

on a much wider pool of tests and test subjects involving more than 800 single-footfall 

force measurements. 

 ‘Leakage’ of DLFs for real walking 

Comparison of Figures 8 and 9 shows a ‘leaking’ of energy from the perfectly periodic 

signal (Figure 9) to adjacent spectral lines in real walking (Figure 8), the effect being 

more pronounced for higher harmonics. The effect appears to vary more or less randomly 

between samples of the measured walking forcing function, reflecting the observations 

that COVs of stride width, interval and impulse are relatively insensitive to pace rate. 

To observe the leakage effect across all pacing rates, the lines in the real walking spectra 

have first been normalised with respect to values of nG  ( 1,2,...,6n = ) obtained from 

corresponding synthetic spectra such as the one in Figure 9. This leads to the real walking 

spectra of the kind shown in Figure 8 corresponding to the frequency range where most 
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of the energy is concentrated in each harmonic (assumed to be in the frequency range 

from 0.95nf  to 1.05nf ). As the frequency spacing is proportional to f , Fourier spectra 

for different pacing rates f  have peaks at integer values n on a normalised frequency 

axis f nf . Next, an RMS average over all pacing rates and all test subjects may be taken 

by averaging over the squared ordinates around each harmonic. Figure 10 shows the 

resulting values of DLF ( )nG f f′  for which a good fit is obtained using the function:  

 ( ) 1
exp

C

n

f f
G f f A B

D

 − − ′ = +
 
 

 (8) 

The curve-fitting parameters A, B C and D depend on the harmonic being approximated 

and are given in Table 1. As each ordinate in Figure 10 represents a Fourier amplitude, 

equation (2) can be used to obtain the corresponding ASD (given that 64df f= ), as 

follows: 

 ( ) ( )2 2
nG nS f f G f f df′ ′=  (9) 

The leakage depends on the harmonic centre frequency – the higher the centre frequency 

– the greater the ‘spread’ of excitation energy. This is illustrated in Figure 11 where the 

frequency axis is expanded using f f  instead of f nf . 
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6. Models for frequency domain estimation of structural response to walking 

Procedures, or models, can now be established for the following two principal cases: a 

single ‘imperfect’ pedestrian, and a group of ‘imperfect’ pedestrians with a varying 

degree of correlation (from none to perfect) or synchronisation. For both cases there is 

currently considerable uncertainty and minimal guidance in design codes.  

Single ‘imperfect’ pedestrians 

For a single person walking at a mean pace rate corresponding to the natural frequency of 

a floor or footbridge, in the first few cycles of vibration the imperfect pacing results in 

negligible reduction in the achieved response with respect to the perfect synthetic 

walking. However, as already shown, there is a difference when the walking lasts long 

enough to be treated as a (very) narrow band random process with root ASD following 

the shape of Figure 11 for each harmonic. Hence for an individual pedestrian the 

approach of equation (3) to determine the ASD and hence narrow band RMS of response 

can be applied. The peak response values, if needed, can be determined from the 

calculated RMS values via established crest factors (Figure 7). 

Groups of unsynchronised ‘imperfect’ pedestrians 

The distribution of f for a group of pedestrians could be assumed to be normal 

(Bachmann and Amman 1987) and modelled by a probability density function ( )fφ  

with a mean fµ  and variance 2
fσ : 
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 ( ) ( )2

2

1
22

exp f

ff

f
f

µ
φ

σπσ

 − = −  
 

 (10) 

If individuals are assumed to walk with perfect periodicity, equation (10) gives the scaled 

shape of the ASD of walking forces for a crowd. 

For each individual i with mean pacing rate if  the ASD of loading is itself described via 

a (spectral density) distribution obtained from equations (8) and (9), bearing in mind 

equation (2). The total or aggregate ASD of the force due to a crowd of imperfect 

pedestrians can then be found using a joint distribution function (Newland 1993). 

Firstly, two uncorrelated random walking force signals ( )1p t  and ( )2p t  from two 

pedestrians are considered. The mean square of the sum of the two signals is given by: 

 
( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2
1 2 1 2 1 2

2 2
1 2 1 2

2

2

E p t p t E p t p t p t p t

E p t E p t E p t p t

   + = + +  
   = + +      

. (11) 

and, since ( )1p t  and ( )2p t  are assumed to be uncorrelated, ( ) ( )1 2 0E p t p t =   . Hence, 

the mean square of the sum of the two signals is the sum of the mean square of each 

signal. Also, by extension, the total mean square of N uncorrelated signals of equal mean 

square is N times the mean square of a single signal and, naturally, the RMS will then be 
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proportional to N . Consequently, if we consider ( )ip t  to be narrow band random 

signals, it follows that the total ASD of uncorrelated signals ( 1,2,...,i N= ) also goes with 

N . 

For an individual i  with weight W  and mean pacing rate if , the ASD of footfall forces 

for the nth harmonic can be obtained as: 

 ( ) ( ) ( )2

, nF n n i G iS f WG f S f f′ =    (12) 

For a crowd of N  pedestrians, the broadband contribution ( ),P ndS f  to mean square of 

loading in the nth harmonic due to the proportion ( )N f dfφ  of pedestrians with pacing 

rates in the narrow range 2f df±  will then be: 

 ( ) ( ) ( ) ( ) ( ) ( )( )2

, , nP n F n n GdS f N f S f df N WG f S f f f n dfφ φ′ = = ⋅ ⋅ ⋅  . (13) 

It should be noticed that in equation (13) the division by n compensates for the 

broadening of ( )fφ  when applied to 1n > , since ( )fφ scales to a larger number of 

spectral lines of ASD. The total ASD, ( ),P nS f , of loading at the nth harmonic due to a 
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crowd of N  imperfect and unsynchronised pedestrians with mean weight W  and whose 

mean pacing rates range from 1f  to 2f  will then be given by: 

 ( ) ( ) ( ) ( ) ( )2

1

2

, /
n

f

P n n Gf
S f N n WG f S f f f dfφ′ = ⋅ ⋅ ∫  (14) 

Because of the way  it is normalised, the area under the ASD function ( )/
nGS f f′  must 

be exactly 0.5 for each harmonic even if it collapses to a single spectral line. Therefore, 

equation (14) reduces to: 

 ( ) ( ) ( ) ( )2 2
, 2P n nS f N n W f G fφ= ⋅  (15) 

if each pedestrian walks perfectly at his/her own pacing frequency.   

Figure 12 shows the aggregate root ASD ( ),P nS f  for 6 harmonics of walking obtained 

via equation (15) by assuming the following statistics for walking paces for groups of 

pedestrians: 2 Hzfµ =  and coefficient of variation of the mean pacing rate 

( )COV f =0.1. The values are in line with data provided by Matsumoto et al. (1978) and 

Murray et al. (1964). The difference obtained by applying equation (14) instead of 

equation (15) turns out to be small unless the COV is much reduced, hence it is proposed 

to use equation (15) for crowd loading. 
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The ASD presented in Figure 12 is normalised by total weight of pedestrians. The values 

used are based on the test data described in this paper for the three test subjects for which 

it was established that: 1 0.37 0.42G f= − , 2 0.053G = , 3 0.042G = , 

4 0.041G = , 5 0.027G =  and 6 0.018G = . These values, and any frequency dependence, 

are in line with reported values (Young, 2001), except that 2G  is found to be significantly 

smaller, while 1G  is larger in this study. 

7. Coherency of loading and effect of mode shape 

The above analysis has not taken into account the vibration mode shape and correlation 

(i.e. synchronisation) between pedestrians. To account for mode shape, the frequency 

domain approach applied to analysis of vertical vibrations of the Millennium Bridge in 

London (Dallard et al. 2001) used a factor on ASD involving squared mode shape. A 

more thorough approach would adopt a procedure similar to that used to study dynamic 

effects of turbulent winds on linear structures (Simiu and Scanlan 1996) which will be 

outlined here. 

For two random loads ( )1p t  and ( )2p t  applied along a linear structure at degrees of 

freedom (DOFs) 1z  and 2z  having modal shape ordinates 
1z

ψ and 
2zψ  and having ASDs 

( )
1PS f  and ( )

2PS f , the ASD of response at a third DOF z is given by (Simiu and 

Scanlan 1996): 
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( ) ( ) ( ) ( )

( )( ) ( ) ( )
1 1 2 2

1 2 1 2

2 2

2

( )

2

X z z P z z P

z z z z P P

S f H f S f H f S f

H f S f

ψ ψ ψ ψ

ψ ψ ψ ψ

= +

+
 (16) 

where, in mode r with modal mass rm , natural frequency rf  and modal damping ratio 

rζ , the frequency response function  for acceleration response is the product of  inverse 

of modal mass and dimensionless  dynamic amplification factor : 

 ( ) ( )
2

2 2 2

1
1 2r r r r r

fH f
m f f f i f fζ

−
= ×

− +
 (17) 

The cross-spectral density ( )
1 2P PS f is related to ASD of the separate signals via the 

coherence function ( )coh f  (McConnell 1995) which expresses correlation ( )coh f  

between two signals as a function of frequency which satisfies: 

 ( ) ( ) ( ) ( )
1 2 1 2

2

P P P PS f coh f S f S f= ⋅  (18) 

For two perfectly correlated loads ( ) 1coh f = , and assuming the signals have the same 

statistical properties so that ( ) ( )
1 2P PS f S f= , the ASD of the corresponding response is: 

 ( ) ( ) ( ){ }1 1 2 1 2

2 2 2 2( ) 2X z P z z z zS f H f S fψ ψ ψ ψ ψ= + + . (19) 
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For completely uncorrelated loads where ( ) ( )
1 2P PS f S f=  still applies, ( ) 0coh f =  so: 

 ( ) ( ) ( ){ }1 1 2

2 2 2 2( )X z P z zS f H f S fψ ψ ψ= + . (20) 

In the former case, if 
1 2z zψ ψ=  the ASD of response ( )XS f  is four times its counterpart 

for a single load, but where 
1 2z zψ ψ= − the effects cancel. In the latter case of zero 

correlation the ASD is doubled if 
1 2z zψ ψ= , but also if 

1 2z zψ ψ= − . 

A more realistic representation of groups of pedestrians is as distributed loads with 

limited correlation (i.e. 1 20 ( , , ) 1coh f z z< < ). For example it has been observed that 

small groups of pedestrians often start walking approximately in step. The correlation and 

distribution of such loading is analogous to turbulent buffeting wind loads on a linear 

structure where cross-spectral density for two loads applied at two spatially separated 

points is assumed to diminish exponentially with increasing separation via a coherence 

function ( )1 2, ,coh f z z . 

If a total weight NW of N  perfect pedestrians is distributed over length L then the ASD 

per unit length for the fundamental harmonic of walking loads is: 

 ( ) ( ) ( ) ( )2 2
,1 1 2PS f NW L f G fφ= ⋅  (21) 
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and the total response will be: 

 ( ) ( ) ( ) ( )
1 2

22
,1 1 2 1 20 0

, ,
L L

X z P z zS f H f S f coh f z z dz dzψ ψ ψ= ∫ ∫  (22) 

For computational reasons and also because each pedestrian can be modelled as a discrete 

vertical point load, the integral of equation (22) would be better evaluated as a discrete 

sum, with 1 2z z L N∆ = ∆ =  as the average length occupied by a single pedestrian in 

which case, for zero coherence and a sinusoidal mode shape, the value of the integral is 

2 2L N . 

The discussion of equations (16)-(20) shows that for perfectly correlated pedestrians 

occupying a linear structure and exciting a symmetric mode, ASD of response is 

proportional to 2N  whereas for uncorrelated walking it is proportional to N . Depending 

of the value of ( )1 2, ,coh f z z  the true result will lie somewhere between the two 

extremes. 

Although some studies on coherency, which concerns relative phase angles between 

pedestrians, were done in the past (Ebrahimpour and Fitts 1996), the exact nature of the 

walking coherence function ( )1 2, ,coh f z z  with respect to frequency and separation is 

still unknown and requires further research. 
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8. Validation of proposed analysis framework 

By its very nature, it is a challenge to provide a clear and comprehensive experimental 

proof for the analytical procedure proposed. However, a limited verification of the crowd 

loading model is based on data from a controlled crowd loading test on a footbridge in 

Singapore. The bridge has a fundamental mode at 1.64 Hz with a modal mass of 

approximately 150x103 kg corresponding to the unity scaled mode shape and modal 

damping ratio of approximately 0.7% when occupied by a crowd of moving pedestrians. 

The dynamic testing of the bridge was performed in a manner similar to the testing of the 

Millennium Bridge in London (Dallard et al. 2001) where pedestrians numbers were 

gradually increased while measuring continuously acceleration response. 

Figure 13 shows the peak RMS acceleration response levels, having an observable 

dependence on pedestrian numbers. Equation (22) can be used to estimate the RMS 

response for N=150 pedestrians as follows, and as illustrated in Figure 14. Assuming zero 

coherence (i.e. no synchronisation between pedestrians), a normal distribution of pacing 

rates ( )fφ  with 2 Hzfµ =  and 0.2 Hzfσ = , as described in equation (10), and 

assuming mean pedestrian weight of 735 N, while accounting for mode shape, leads to 

estimated RMS acceleration of 0.024 m/sec2. This figure is a little lower than the 

maximum response (0.033 m/sec2 RMS) achieved with maximum number of pedestrians, 

N=150, indicating a very low level of synchronisation between pedestrians, matching 

visual observations made during the test. 
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For comparison, the maximum simulated response for the BD37/01 (BSI 2001) ‘perfect 

pedestrian’ generating a perfect 180 N amplitude sinusoidal force at 1.64 Hz and walking 

at 1.48 m/sec would generate peak response of 0.07 m/sec2, equivalent to 0.05 m/sec2 

RMS , even larger than observed for 150 real pedestrians. 

The zero correlation for vertical walking forces is consistent with observations from 

Millennium Bridge in London (Dallard et al. 2001). It is notable that up to a certain and 

quite large number of pedestrians, the response due to their normal walking (i.e. random 

loading) is no more than for the single perfect pedestrian, an observation made many 

years ago by Wheeler (1982) and others. 

9. Conclusions 

A frequency domain approach has been developed for modelling response of long 

flexible structures, such as footbridges and long-span floors, to loads induced by one or 

more pedestrians. Explicit modelling of the effect of groups of pedestrians currently does 

not feature in the UK or Canadian footbridge design codes of practice, which are 

probably amongst the most advanced in the world. Therefore, the approach presented in 

this paper can serve as a framework for a more thorough and realistic treatment of 

vertical forces induced by groups of normally walking pedestrians which could be 

adopted in the design practice. 

The first refinement of design procedures would account for the imperfection of 

individual walking excitation. This excitation is conventionally assumed in the design 
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guidelines to be perfectly periodic and represented as a truncated Fourier series. While 

the fundamental harmonic of such loading is apparently hardly affected, for higher 

harmonics coinciding with frequencies of vibration modes, the ‘leaking’ of energy into 

adjacent frequencies generally results in reduced response compared with the prediction 

using a ‘perfect pedestrian’ model. 

The second refinement follows principles used in the spectral approach to wind loading, 

accommodating any correlation between pedestrians as well as the statistical distribution 

of pacing rates in a walking crowd. The resulting response predictions are necessarily 

given as RMS rather than peak values, and this is consistent with commonly used 

vibration acceptance criteria. 

One case study implies that for normal walking, the degree of correlation of vertical 

walking forces between pedestrians approaches zero and that existing code provisions 

using a single perfect pedestrian can account for the effect of large, but not excessively 

large, crowds. In the case where a more realistic assessment of the effect of low level 

pedestrian traffic is needed, the proposed walking excitation model could be used. 

Finally, if this framework, which has been demonstrated to be feasible and reasonable, is 

to be adopted and further developed, more research work is required to verify it against 

results from experiments on real full-scale structures, and to determine the likely values 
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of coherence function ( )1 2, ,coh f z z  as a measure of synchronisation between 

pedestrians. 
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Tables 

Table 1 Parameters fitting equation (8) to Fourier spectra of walking forces, for 

64df f=  

Harmonic A B C D 

1 0.014 0.845 0.647 0.0490 

2 0.119 0.615 1.213 0.0034 

3 0.083 0.418 1.126 0.0056 

4 0.064 0.431 1.172 0.0054 

5 0.083 0.427 1.309 0.0032 

6 0.115 0.364 1.674 0.0007 
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Figure captions 

Figure 1: Reconstruction of walking time series by replicating footfall force 

Figure 2: Measurements using Gaitway instrumented treadmill. A fluorescent 

marker is visible on the right foot of the test subject. 

Figure 3: Variation of footfall width and area (impulse, normalised with respect to 

weight) vs. average footfall (pacing) rate for three test subjects. 

Figure 4: Comparison of real and synthetic force time series for 30 paces of walking 

at mean pacing rate 1.91f Hz= , and response of 103 kg oscillator with 1% damping and 

natural frequencies of , 2 , 3 , 4f f f f . Envelop of responses corresponds to synthetic 

walking. 

Figure 5: Response spectra corresponding to Figures 4,5 for peak and RMS 

responses resulting from synthetic (thin) and real walking loads (bold). Oscillator 

frequencies f [Hz] range within 0.9 1.1f f f< <  where 1.91f Hz= . 

Figure 6: Maximum harmonic RMS response for simulated and real time series of 

90 paces at a range of pacing rates f  for 1% damping. Values at each f  are obtained 

from plots such as Figure 4. Crest factors (CF) are given for input around each harmonic. 

Figure 7: Maximum harmonic peak response for range of pacing rates f  for real 

and simulated time series. Values at each f  are obtained from plots such as Figure 4. 
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Figure 8: Fourier amplitude (line) spectrum of real forces for 1.911Hzω = . Frequency 

spacing is 64f . 

Figure 9: Fourier amplitude spectrum simulated for 1.91 Hzf = . Frequency 

spacing is 64f . 

Figure 10: Superimposed averaged harmonic Fourier amplitudes ( )nG f f′ , 

normalised with respect to simulated values. 

Figure 11: Averaged harmonic Fourier amplitudes ( )nG f f′ , normalised with 

respect to simulated values and fitted to equation (8). 

Figure 12: Aggregate square root ASD of multi-pedestrian loading for mean pace rate 

2 Hzfµ =  and 2 0.2 Hzfσ =  obtained from equation. 

Figure 13: RMS response of footbridge in first torsional mode at 1.64 Hz with modal 

mass 150x103 kg due to up to 150 pedestrians. 

Figure 14: Response of bridge mode at 1.64 Hz to first harmonic of walking with 

mean pacing rate 2 Hz computed using equations (15) and (22). RMS of total response is 

0.024m/sec2. 
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Figure 1: Reconstruction of walking time series by replicating footfall force 
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Figure 2: Measurements using Gaitway instrumented treadmill. A fluorescent 
marker is visible on the right foot of the test subject. 
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Figure 3: Variation of footfall width and area (impulse, normalised with respect to 
weight) vs. average footfall (pacing) rate for three test subjects. 
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at mean pacing rate 1.91f Hz= , and response of 103 kg oscillator with 1% 
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corresponds to synthetic walking. 
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Figure 5: Response spectra corresponding to Figures 4,5 for peak and RMS 

responses resulting from synthetic (thin) and real walking loads (bold). 
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Figure 6: Maximum harmonic RMS response for simulated and real time series of  
90 paces at a range of pacing rates f  for 1% damping. Values at each f  
are obtained from plots such as Figure 4. Crest factors (CF) are given for 
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Figure 8: Fourier amplitude (line) spectrum of real forces for 1.911f Hz= . Frequency 
spacing is 64f . 
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Figure 9: Fourier amplitude spectrum simulated for 1.91 Hzf = . Frequency 
spacing is 64f . 
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Figure 10: Superimposed averaged harmonic Fourier amplitudes ( )nG f f′ , 
normalised with respect to simulated values. 
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Figure 11: Averaged harmonic Fourier amplitudes ( )nG f f′ , normalised with 
respect to simulated values and fitted to equation (8). 



  53

0 2 4 6 8 10 12 14
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
aggregate ASD/weight

frequency /Hz

fundamental
harmonic 2 
harmonic 3 
harmonic 4 
harmonic 5 
harmonic 6 

Figure 12: Aggregate square root ASD of multi-pedestrian loading for mean pace rate 
2 Hzfµ =  and 2 0.2 Hzfσ =  obtained from equation (15) 
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Figure 14: Response of bridge mode at 1.64 Hz to first harmonic of walking with 
mean pacing rate 2 Hz computed using equations (15) and (22). RMS of 
total response is 0.024m/sec2. 

  

 


