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Abstract

In this expository paper, we will discuss the role played by martingales in Financial
Mathematics. More precisely, we will restrict ourselves to a mathematical formulation of the
economical concept of an arbitrage-free, complete market and the pricing of derivatives in
such models. For a clear exposition, we only consider the discrete case. We also discuss the
Cox-Ross-Rubinstein model which is still one of the most used models in Finance.

1 Introduction

Consider the following example. On a market,
shares of a certain stock 1) are traded for a price
of 10 Euro. At the end of the year the price will
have gone up to 15 Euro or down to 5 Euro.
We want to enter into the following agreement
(contract): if the price has gone down, then we
will get 5 Euro at the end of the year, if the
price has gone up we will receive no money at
the end of the year. The time at which the
money will be paid is also called the maturity
time of the contract. Assume that this con-
tract is also traded on the market. What is a
fair price for this contract?

Using classical probability theory we could
argue as follows: the expected value of the
amount of money that we will receive at the
end of the year equals 5× the probability that
the price will go down. So, if we estimate this
probability as being 0.2, the price for the con-
tract will be 1 Euro.

But assume that it is possible to borrow
money from a bank now that has to be paid
back at the end of the year and that the in-
terest rate R = 0.1. One can buy one share of
the stock and two contracts using 12 Euro, that
has been borrowed from the bank. So the total
investment now is 0. At the end of the year,

we will sell the stock, possibly get money from
the contracts and pay back our loan. What
will happen at the end of the year? If the
price has gone up, we sell the stock for 15 Euro
and we pay our loan back, so we end up with
15 − 12 × (1 + 0.1) = 1.8 Euro. On the other
hand, if the price of the stock has gone down,
we get 5 Euro for the stock and 10 Euro from
the two contracts. Paying our loan back, we
end up again with 1.8 Euro. So with an invest-
ment 0, we get always 1.8 Euro at the end of
the year. So many people will use this oppor-
tunity and, in a free market economy, the price
of the contract will rise and this opportunity
to get risk-free money will disappear. In other
words, the price of 1 Euro is not correct and is
actually too low.

To calculate the correct price, we will pro-
ceed as follows: buy a number φ1 of shares and
put an amount of φ0 Euro in the bank, the
vector Φ = (φ0, φ1) is called a portfolio. At
this point we make some assumptions. It is
possible to buy arbitrary parts of a share of
the stock, also a negative number of shares is
allowed: a negative number of shares means
shorting the stock 2). So Φ is a vector R2. By
an easy calculation, one finds that the portfolio
Φ = (75/11,−1/2) has the same value at the
end of the year as what we will receive from
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the contract. This portfolio is called a replicat-
ing portfolio for the claim, i.e. the amount of
money that an owner of the agreement earns
at maturity (the end of the year). So the price
for the contract is the money needed to set up
the replicating portfolio, i.e. 20/11 Euro. If
the price of the contract would be less than
20/11, one could sell short the replicating port-
folio and use the money for buying the contract.
The (positive) difference is put on the bank ac-
count and the contract will furnish the money
needed to return the replicating portfolio. In
the same way one constructs a strategy with
a risk-free return in the case the price of the
contract is higher than 20/11. Strategies with
initial investment 0 and a risk-free (positive) re-
turn are called arbitrage opportunities. It is an
economical principle that there exist no arbi-
trage opportunities for markets in equilibrium.
Economists call a market complete if there ex-
ists a replicating portfolio for every claim. In
their papers [1] and [2] dating from around
1980, Harrison, Kreps and Pliska showed that a
model for an economy does not allow arbitrage
opportunities if and only if their exist an equiv-
alent martingale measure. Secondly, a model
without arbitrage opportunities is complete if
and only if there is a unique equivalent mar-
tingale measure. In Section 2 we will explain
what martingales are. In Section 3 we discuss
the role of martingales in Financial Mathemat-
ics.

2 Martingales

Let Ω = {ω1, . . . , ωK} be a finite set and P a
probability measure on Ω such that P (ωk) >
0, k = 1, . . . , K. Let F be an algebra 3) of sub-
sets of Ω generated by the partition P, i.e. ev-
ery set in F can be written in a unique way as
a union of elements of P. Note that the parti-
tion element containing ω is equal to the in-
tersection of all sets in F containing ω. Let
P = {B1, . . . , Bn} and Y : Ω 7→ R a ran-
dom variable. The conditional expectation of
Y given that the event B has occurred is de-
fined by 4)

E(Y | B) =
∑
ω

Y (ω)P (ω | B)

=
1

P (B)
E(Y 1B). (1)

The conditional expectation of Y given the in-
formation in the algebra F is the random vari-

able E(Y | F) defined by:

E(Y | F)(ω) =
n∑

i=1

E(Y | Bi) · 1Bi
(ω). (2)

So E(Y | F) is a F-measurable random vari-
able 5).

Theorem 2.1 Let F be an algebra of sub-
sets of Ω. Then E(Y | F) is the unique, F-
measurable random variable such that for all
F ∈ F :

E [1F E(Y | F)] = E[1F Y ]. (3)

It is sufficient that (3) is satisfied for all sets
B in the partition P generating F .

Proof : First, let B ∈ P. By formula (2) and
(1) :

E[1BE(Y | F)] = E[1BE(Y | B)]
= E(Y | B)P (B)
= E[1BY ].

For arbitrary F ∈ F , (3) follows from the
linearity of the expectation, since F can be
written as a union of partition elements.

To prove the uniqueness, let X be an
F-measurable random variable such that
E[1F X] = E[1F Y ] for every F ∈ F . Let ω ∈ Ω
and let B be the partition element containing
ω. . Since X is constant on B, it follows, by
taking F = B that

X(ω)P (B) = E[1BY ],

and X(ω) = E(Y | F)(ω). ¤
It follows from Theorem (2.1) that we can

define the conditional expectation E(Y | F)
as the F-measurable random variable satisfy-
ing (3). Actually, this definition is used in the
general case where Ω is not finite. From The-
orem (2.1) we can easily derive the following
properties of conditional expectations:

• if X is an F-measurable random variable,
then

E(XY | F) = XE(Y | F).

• for any F-measurable random variable
X, we have

E[XE(Y | F)] = E[XY ].
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• (tower-property) for any two algebra’s
F1,F2, such that F1 ⊂ F2 we have

E(E(Y | F1) | F2)
= E(E(Y | F2) | F1)
= E(Y | F1).

• if Y and F are independent 6), then

E(Y | F) = EY.

Let Y0, Y1, . . . , YT be a sequence of random
variables defined on the sample space Ω. Such
a sequence is also called a stochastic process,
the indices 0, 1, . . . , T are usually interpreted
as time epochs. A filtration is an increas-
ing sequence F0 ⊂ F1 ⊂ · · · ⊂ FT of alge-
bra’s of subsets of Ω. The algebra Fi repre-
sents the information available at time i; it
contains all events of which it is known at
time i whether they happened or not. Usu-
ally we take F0 = {∅, Ω}. The stochastic pro-
cess (Yt; t = 0, 1, . . . , T ) is said to be adapted
to the filtration {Ft} (or {Ft}-adapted) if Yt is
Ft-measurable, t = 0, 1, . . . , T. So, this means
that for an adapted process Yt is known at
time t. As an example of a filtration, we de-
fine Ft as the algebra generated by the parti-
tion {Y0 = y0, Y1 = y1, . . . , Yt = yt} where ys

is a possible value for Ys. This filtration is the
smallest filtration such that the process (Yt) is
adapted and is also called the natural filtration
of the process (Yt).

A martingale with respect to the filtration
{Ft} is defined as an {Ft}-adapted process
(Mt) with the property

E(Yt | Ft−1) = Yt−1, t = 1, . . . , T.

It follows from the tower property of condi-
tional expectations that for a martingale

E(YT | Ft) = Yt, t = 1, . . . , T.

A well-known example of a martingale is the
fraction of black balls in Polya’s urn 7).

3 Applications in Financial
Mathematics

We will consider a finite market model that is
specified by

• a finite set {0, 1, . . . , T} of dates at which
trading or consumption is possible;

• a finite sample space Ω = {ω1, . . . , ωK}
whose elements represent the possible
states of the world;

• a probability measure P on Ω with
P(ωk) = pk > 0, k = 1, . . . ,K;

• a filtration (Ft)0≤t≤T , where Ft repre-
sents the information that is known to
the investors at time t, F0 = {∅,Ω} and
FT is the collection of all subsets of Ω;

• a bank account process B = (Bt; 0 ≤ t ≤
T ), with Bt = (1 + R)t, the value of a
savings account at time t when 1 Euro is
deposited at time 0;

• a stock with price process S = (St; 0 ≤
t ≤ T ), adapted to the filtration (Ft).

Denote, for t = 1, . . . , T, by Φ(t) =
(φ0(t), φ1(t)) the portfolio held during the time
interval [t−1, t), where φ0(t)Bt−1 is the amount
of money at the bank and φ1 the number of
shares of the stock. A trading strategy Φ =
(Φ(t); 1 ≤ t ≤ T ) is defined as a collection of
portfolio’s Φ(t) : Ω 7→ R2 such that Φ(t) is
Ft−1-measurable. This means that we set up
at time 0 the portfolio Φ(1). At time 1 we sell
the portfolio Φ(1) and buy the portfolio Φ(2)
for the prices at time 1. In general, Φ(2) will de-
pend on the state of the world as known to us at
time 1, or, in other words, Φ(2) is constant on
the elements of the partition generating F1 or,
in other words, Φ(2) is F1-measurable. And so
forth. A portfolio is self-financing if the money
that we get from selling Φ(t) at time t equals
the money that we need to buy Φ(t + 1) :

φ0(t)Bt + φ1(t)St

= φ0(t + 1)Bt + φ1(t + 1)St.

For a self-financing trading strategy Φ we de-
fine the value at time t by:

Vt(Φ) =
{

φ0(1)B0 + φ1(1)S0 if t = 0
φ0(t)Bt + φ1(t)St if t ≥ 1.

An arbitrage opportunity is a self-financing
trading strategy Φ with V0(Φ) = 0 and
VT (Φ) ≥ 0 and at least for one state ω of the
world VT (Φ)(ω) > 0. This means that an ar-
bitrage opportunity is a strategy where we can
get money from an initial investment = 0 with-
out any risk to loose money. It is an econom-
ical principle that in an equilibrium situation
arbitrage opportunities do not exist. In order
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to give a mathematical description for market
models that do not allow arbitrage opportuni-
ties, we introduce the concept of an equivalent
martingale measure.

Definition 3.1 A probability measure Q on Ω
is called an equivalent martingale measure if

(a) Q(ω) > 0 for every ω ∈ Ω, and

(b) the discounted price process (S̃t), defined by

S̃t =
St

Bt
t = 0, 1, . . . , T,

is a martingale with respect to the filtration
(Ft) and the probability measure Q.

If Q is an equivalent martingale measure,
then the discounted value process (Ṽt(Φ)) =
(Vt(Φ)/Bt) of a self-financing trading strategy
is a martingale. It is clear that the process
(Ṽt(Φ)) is {Ft}-adapted. Further

EQ(Ṽt(Φ) | Ft−1)

= EQ(φ0(t) + φ1(t)S̃t | Ft−1)

= φ0(t) + φ1(t)EQ(S̃t | Ft−1)

= φ0(t) + φ1(t)S̃t−1

= (φ0(t)Bt−1 + φ1(t)St−1)/Bt−1

where we have used that φ0(t) and φ1(t)
are Ft−1-measurable. Now, φ0(t)Bt−1 +
φ1(t)St−1 = Vt−1(Φ), since Φ is self-financing
and this implies the martingale property of the
discounted value process.

The following Theorem gives a mathemat-
ical formulation of an arbitrage-free market
model.

Theorem 3.2 A market model is free from ar-
bitrage opportunities if and only if there exists
an equivalent martingale measure.

A notion important for the pricing of deriva-
tives, is completeness. A claim is a random
variable X representing the pay-out at time T
of some contract. For example, the owner of a
European call option with strike price K and
time of maturity T has the right (not the obli-
gation) to buy a share of the stock for a price K
at time T. So, if at time T the price ST > K, he
can buy the stock for K and sell for ST giving
a pay-out ST −K. If ST ≤ K then the option
is not exercised, i.e. the owner does not use his
right to buy a stock for price K. In this case
X = max(ST −K, 0). Another example is the

Asian strike call option which is a European op-
tion with strike price equal to the average stock
price over [0, T ]. The pay-out of an Asian strike
call is X = max(ST −average stock price, 0). A
claim is attainable or can be replicated if there
exists a self-financing strategy Φ such that the
value of the strategy at time T is equal to X :
VT (Φ) = X. In this case Φ is also called a repli-
cating strategy or hedging strategy for claim
X.

If the market is arbitrage-free, there exists
an equivalent martingale measure Q by The-
orem (3.2.) If X is an attainable claim and
if Φ = (Φ(t)) is a replicating trading strategy,
then V0(Φ), the money needed to set up the
strategy Φ, is a fair price for claim X. Since
the discounted value process of a self-financing
trading strategy is a martingale, it follows that

Ṽ0(Φ) = EQ(ṼT (Φ) | F0).

Now, Ṽ0(Φ) = V0(Φ) and

EQ(ṼT (Φ) | F0)

=
1

(1 + R)T
EQ(VT (Φ) | F0)

=
1

(1 + R)T
EQ(X).

So a fair price for claim X can be represented
as

V0(Φ) =
1

(1 + R)T
EQ(X).

It follows also that for another replicating strat-
egy Ψ the fair price V0(Ψ) = V0(Φ). There
could be different fair prices if there are more
than one equivalent martingale measures.

An arbitrage-free market model is complete
if every claim is attainable. In the following
Theorem we give a mathematical formulation
of this property.

Theorem 3.3 An arbitrage-free market model
is complete if and only if there exists only one
equivalent martingale measure.

For proofs of Theorem (3.2) and (3.3) we refer
to reference [3] or [4].

We continue with an important example.

Example Consider the one period model
with trading dates 0,1 and with two states of
the world: Ω = {ω1, ω2}. The filtration is given
by F0 = {∅, Ω} and F1 = {∅, {ω1}, {ω2}, Ω}.
The price process is given by S0 = s, S1(ω1) =
us and S1(ω2) = ds, where 0 < d < u.
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An equivalent martingale measure Q has to
satisfy the equation

EQ(S̃1 | F0) = S̃0.

It follows easily that this equation is equivalent
with

uQ(ω1) + dQ(ω2) = 1 + R

with solution Q(ω1) = 1−Q(ω2) = qu, where

qu =
(1 + R)− d

u− d
.

So Q is an equivalent martingale measure if and
only if d < 1 + R < u. So, if this condition is
satisfied, the model is arbitrage-free and com-
plete. The replicating strategy for a claim X is
given by

φ0 =
1

1 + R

x2u− x1d

u− d

and
φ0 =

1
s

x1 − x2

u− d
,

where xi = X(ωi), i = 1, 2.
We finish with the Cox-Ross-Rubinstein

model. The trading dates are now 0, 1, . . . , T
and the sample space Ω = {u, d}T , the set of
all sequences ω = (ω1, . . . , ωT ) of length T con-
sisting of u’s and d’s. To make the notation
more simple we introduce the random variables
Zi, i = 1, . . . T defined by

Zi(ω) =
{

0 if ωi = d
1 if ωi = u

Let Ut = Z1 + . . . + Zt for t = 1, . . . , T. then
the price process of the stock is given by S0 = s
and

St(ω) = suUt(ωdt−Ut(ω).

Note that

St+1 = Stu
Zt+1d1−Zt+1 .

The algebra’s Ft are generated by the par-
titions {Z1 = a1, . . . , Zt = at} where
(a1, . . . , at) ∈ {0, 1}t. Note that the price pro-
cess is adapted to this filtration, it is even the
natural filtration of the price process.

A necessary condition for an equivalent
martingale measure Q is that

EQ(S̃t+1 | Ft) = S̃t.

We have

EQ(S̃t+1 | Ft) = EQ(
St+1

Bt+1
| Ft)

=
1

1 + R
S̃tEQ(uZt+1d1−Zt+1 | Ft).

It follows that a necessary condition is given by

EQ(uZt+1d1−Zt+1 | Ft) = 1 + R, (4)

hence, taking expectations:

EQ(uZt+1d1−Zt+1)
= uQ(Zt+1 = 1) + dQ(Zt+1 = 0)
= 1 + R.

We get

Q(Zt+1 = 1) = 1−Q(Zt+1 = 0) = qu,

where qu is defined as in the Example. But
actually more can concluded from formula (4).
The conditional expectation EQ(uZt+1d1−Zt+1 |
Ft) is equal to 1 + R on each partition element
{Zt = at, . . . , Z1 = a1}, so

kEQ(uZt+1d1−Zt+1 | Zt = at, . . . , Z1 = a1)
= uQ(Zt+1 = 1 | Zt = at, . . . , Z1 = a1)
+uQ(Zt+1 = 0 | Zt = at, . . . , Z1 = a1)

= 1 + R,

and it follows that

Q(Zt+1 = 1 | Zt = at, . . . , Z1 = a1)
= 1−Q(Zt+1 = 0 | Zt = at, . . . , Z1 = a1)
= qu.

Hence

Q(Zt+1 = 1, Zt = at, . . . , Z1 = a1)
= Q(Zt+1 = at+1)Q(Zt = at, . . . , Z1 = a1),

and by induction we see that the random vari-
ables Z1, . . . , ZT are necessarily independent
under Q. Summing up, a necessary condition
for the existence of an equivalent martingale
measure Q is that 0 < d < 1 + R < u and
the random variables Z1, . . . , ZT are iid, with
distribution Q(Zi = 1) = 1 − Q(Zi = 0) = qu.
This condition determines a unique probability
Q :

Q(ω) = qUT (ω)
u (1− qu)T−UT (ω).

It is left to the reader to check that this condi-
tion is also sufficient. So for 0 < d < 1+R < u
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there exists a unique martingale measure and
we may conclude that the Cox-Ross-Rubinstein
model is in this case an arbitrage-free, complete
market model. Note that the price St has a bi-
nomial distribution:

Q(St = sukdt−k) =
(

t

k

)
qk
u(1− qu)t−k,

k = 0, . . . , t.
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Notes

1) Each share of a stock normally represents
a proportional ownership interest in a com-
pany.

2) Shorting a stock means selling shares that
one does not own, but instead has temporar-
ily borrowed. So one borrows the value of

the stock now and pays back the price of the
stock at a later time point, that has been
agreed on. the interest that has to be paid
will therefore depend on the development of
the price of the stock. See [5] for more in-
formation about financial markets.

3) A collection F of subsets of Ω is an alge-
bra if: (i) Ω ∈ F , (ii) if A ∈ F , then
Ac = Ω \ A ∈ F , (iii) if A,B ∈ F , then
A ∪ B ∈ F . In the case of infinite sam-
ple spaces, one has to consider σ-algebra’s.
A collection of events is an σ-algebra if
it is an algebra satisfying property iii’: if
A1, A2, . . . is a sequence of events in F , then⋃

n An ∈ F .

4) Remember that P (A | B) = P (A∩B)/P (B)
and that 1B denotes the indicator of the set
B, i.e. 1B(ω) = 1 if ω ∈ B, = 0 otherwise.

5) A random variable X is F-measurable if the
sets {X ≤ a}, a ∈ R, belong to F . If F is
generated by the partition P, then, X is F-
measurable if and only if X =

∑
B∈P xB1B .

6) Two events A and B are independent if
P (A ∩ B) = P (A)P (B). Two algebra’s F
and G are independent if the events F and
G are independent for all choices of F ∈ F
and G ∈ G. A random variable Y and an
algebra F are independent if the algebra’s
FY and F are independent, where FY de-
notes the algebra generated by the partition
{Y = a}, a ∈ Y (Ω).

7) Polya’s urn contains b black and w white
balls. One draws an arbitrary ball from
the urn and replaces it with a new ball of
the same colour, and so on. The fraction
black balls after the nth drawing is given by
Zn = (Yn +b)/(b+w+n), where Yn denotes
the number of times up to and including n
that a black ball was drawn from the urn.
Then (Zn) is a martingale with respect to
its natural filtration.
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