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Fuzzy Prime Ideals of ADL’s
Chigurupalli Santhi Sundar Raj, Natnael Teshale Amare and Uppasetti Madana Swamy

Abstract—In this paper the concept of prime L-fuzzy ideals
and L-fuzzy prime ideals of an ADL A with truth values in a
complete lattice L satisfying the infinite meet distributive law
are introduced. All prime L-fuzzy ideals of a given ADL A are
determined by establishing a one-to- one correspondence between
prime L-fuzzy ideals of an ADL A and the pairs (P,α), where P
is a prime ideal of A and α is a prime element in L. Also, here
minimal prime L-fuzzy ideals and L-fuzzy minimal prime ideals
of an ADL A are introduced and characterized.

Index Terms—Almost Distributive Lattice (ADL), complete
lattice, L-fuzzy minimal prime ideal L-fuzzy prime ideal, minimal
prime L-fuzzy ideal, prime L-fuzzy ideal.

I. INTRODUCTION

A fuzzy subset of a set X is a function from X into I =
[0,1], as in [1]. J.A. Goguen [2] explored, generalized

and continued the work of L.A. Zadeh and realized that the
unit interval [0,1] is not sufficient to take the truth values of
general fuzzy statements. Wang-Jing Liu [3] introduced the
notion of a fuzzy ideal of a ring in the case when L = [0,1] of
real numbers and T.K. Mukherjee and M.K. Sen [4] introduced
the notion of a fuzzy prime ideal and continued the study of
fuzzy ideals. U.M. Swamy and K.L.N. Swamy [5] introduced
the concept of fuzzy prime ideal of a ring with truth values in
a complete lattice satisfying the infinite meet distributive law.

The concept of prime ideal of an Almost Distributive Lattice
was introduced by U.M. Swamy and G.C. Rao, in 1981 [6].
U.M. Swamy, Ch. Santhi Sundar Raj and Natnael Teshale A
[7] have introduced the notion of L-fuzzy ideals of an ADL
with the truth values in a complete lattice L satisfying the
infinite meet distributive law.

In this paper, we introduce and study prime L-fuzzy ideals
and L-fuzzy prime ideals of an ADL A, where L is a complete
lattice satisfying the infinite meet distributive law. Also, in this
paper we introduce minimal prime L-fuzzy ideals and L-fuzzy
minimal prime ideals of an ADL A.

II. PRELIMINARIES

First we give necessary definitions and results mostly taken
from [6] and [7] which will be used in the later text.

Definition 2.1: An algebra A = (A,∧,∨,0) of type (2,2,0)
is called an Almost Distributive Lattice (abbreviated as ADL)
if it satisfies the following conditions for all a,b and c ∈ A.

1) 0∧a = 0
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2) a∨0 = a
3) a∧ (b∨ c) = (a∧b)∨ (a∧ c)
4) a∨ (b∧ c) = (a∨b)∧ (a∨ c)
5) (a∨b)∧ c = (a∧ c)∨ (b∧ c)
6) (a∨b)∧b = b.
Any bounded below distributive lattice is an ADL, where

0 is the smallest element. Any nonempty set X can be made
into an ADL by fixing an arbitrarily chosen element 0 in X
and by defining the binary operations ∧ and ∨ on X by

a∧b =

{
0, if a = 0
b, if a 6= 0

and a∨b =

{
b, if a = 0
a, if a 6= 0.

This ADL (X ,∧,∨,0) is called a discrete ADL.
Definition 2.2: Let A = (A,∧,∨,0) be an ADL. For any a

and b ∈ A, define a≤ b if a = a∧b (⇔ a∨b = b). Then ≤
is a partial order on A with respect to which 0 is the smallest
element in A.

Theorem 2.3: The following hold for any a,b and c in an
ADL A.
(1) a∧0 = 0 = 0∧a and a∨0 = a = 0∨a
(2) a∧a = a = a∨a
(3) a∧b≤ b≤ b∨a
(4) a∧b = a⇔ a∨b = b
(5) a∧b = b⇔ a∨b = a
(6) (a∧b)∧ c = a∧ (b∧ c) (i.e., ∧ is associative)
(7) a∨ (b∨a) = a∨b
(8) a≤ b⇒ a∧b = a = b∧a

(
⇔ a∨b = b = b∨a

)
(9) (a∧b)∧ c = (b∧a)∧ c

(10) (a∨b)∧ c = (b∨a)∧ c
(11) a∧b = b∧a⇔ a∨b = b∨a
(12) a∧b = inf{a,b}⇔ a∧b = b∧a⇔ a∨b = sup{a,b}.

An element m ∈ A is said to be maximal if, for any x ∈
A, m ≤ x implies m = x. It can be easily observed that m is
maximal if and only if m∧ x = x for all x ∈ A.

Definition 2.4: Let I be a non empty subset of an ADL
A. Then I is called an ideal of A if a,b ∈ I ⇒ a∨ b ∈ I and
a∧ x ∈ I for all x ∈ A.
As a consequence, for any ideal I of A, x∧a ∈ I for all a ∈ I
and x ∈ A. For any S⊆ A, the smallest ideal of A containing S
is called the ideal generated by S in A and is denoted by (S].
It is known that

(S] =
{( n∨

i=1

xi
)
∧a | n≥ 0,xi ∈ S and a ∈ A

}
.

when S = {x}, we write (x] for ({x}]. Note that
(x] = {x∧a | a ∈ A}.

Definition 2.5: An L-fuzzy subset λ of X is a mapping from
X into L, where L is a complete lattice satisfying the infinite
meet distributive law. If L is the unit interval [0,1] of real
numbers, then these are the usual fuzzy subsets of X .
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For any α ∈ L, the set λα = {x ∈ X : α ≤ λ (x)} is called
the α-cut of λ .

Definition 2.6: An L -fuzzy subset λ of A is said to be an
L -fuzzy ideal of A, if λ (0) = 1 and λ (x∨ y) = λ (x)∧λ (y),
for all x,y ∈ A.

Lemma 2.7: Let λ be an L-fuzzy ideal of A, S a non-empty
subset of A and x,y ∈ A. Then we have the following.

(1) x∧ y = y and y∧ x = x =⇒ λ (x) = λ (y)
(2) λ (x∧ y) = λ (y∧ x)
(3) x ∈ (S] =⇒ λ (x)≥

∧n
i=1 λ (ai) for some

a1,a2, ...,an ∈ S
(4) x ∈ (y] =⇒ λ (x)≥ λ (y)
(5) If m is a maximal element in A then λ (m)≤ λ (x), for all x
(6) λ (m) = λ (n) for all maximal elements m and n in A.

Theorem 2.8: The set of all L-fuzzy ideals of A is a
complete distributive lattice, in which the supremum

∨
i∈∆ λi

and infimum
∧

i∈∆ λi of any family
{λi : i ∈ ∆} of L-fuzzy ideals of A are given by(∨

i∈∆

λi

)
(x) =

∨{∧
a∈F

(∨
i∈∆

λi(a)
)

: x ∈ (F ],F ⊂⊂ A
}

and
(∧

i∈∆

λi

)
(x) =

∧
i∈∆

λi(x)

III. PRIME L-FUZZY IDEALS

Let us recall from [6] that a proper ideal P of an ADL A
is said to be prime if for any x,y ∈ A, x∧ y ∈ P implies that
x ∈ P or y ∈ P; (equivalently, for any ideals I and J of A,
I∩ J ⊆ P⇒ I ⊆ P or J ⊆ P.)

The following definition is analogous to that of a prime
ideal of A. Here after A stands for an ADL with a maximal
element. An L-fuzzy ideal λ of A is called proper if λ (x) 6= 1
for some x ∈ A.

Definition 3.1: A proper L-fuzzy ideal λ of A is called a
prime L-fuzzy ideal if for any L-fuzzy ideals ν and µ of A,
ν ∧µ ≤ λ implies either ν ≤ λ or µ ≤ λ .
An element x 6= 1 in L is called prime if for any a,b ∈ L
a∧b≤ x implies either a≤ x or b≤ x.

Now, we determine all prime L-fuzzy ideals of A by
establishing a correspondence between prime L-fuzzy ideals
and pairs (I,α), where I is a prime ideal of A and α is a
prime element in L. First, we recall from [7] that for any
ideal I of A and α ∈ L, the L-fuzzy ideal αI of A defined by

αI(x) =

{
1 if x ∈ I
α if x /∈ I.

and that αI is called the α-level L-fuzzy ideal correspondence
to I.

Theorem 3.2: Let I be an ideal of an ADL A and α ∈ L.
Then αI is a prime L-fuzzy ideal of A if and only if I is a
prime ideal of A and α is a prime element in L.

Proof: Suppose that αI is a prime L-fuzzy ideal of A.
Since αI is proper, αI(x) 6= 1, for some x ∈ A. Therefore x /∈ I
and hence I $ A. If J and K are ideals of A such that J∩K ⊆ I.
Then αJ ∧αK = αJ∧K ≤ αI and hence αJ ≤ αI or αK ≤ αI , so

that J ⊆ I or K ⊆ I. Therefore, I is a prime ideal of A. Also,
for any γ,β ∈ L,

γ ∧β ≤ α ⇒ (γ ∧β )I ≤ αI
⇒ γI ∧βI ≤ αI
⇒ γI ≤ αI or βI ≤ αI
⇒ γ ≤ α or β ≤ α.

Therefore, α is a prime element in L.
Conversely, suppose that I is a prime ideal of A and α is a
prime element in L. Since I is proper and α 6= 1,αI is clearly a
proper L-fuzzy ideal of A. Let λ and µ be any L-fuzzy ideals
of A such that λ � αI and µ � αI . Then there exists x,y ∈ A
such that λ (x) � αI(x) and µ(y) � αI(y). This implies that
αI(x) = α = αI(y) (otherwise, αI(x) = 1≥ λ (x) and αI(y) =
1≥ µ(y)) and hence x /∈ I and y /∈ I. Since I is a prime ideal,
x∧y /∈ I. Also, since α is prime and λ (x)� α and µ(y)� α ,
we have that λ (x)∧µ(y)� α .
Now, (λ ∧µ)(x∧ y) = λ (x∧ y)∧µ(x∧ y)≥ λ (x)∧µ(y)
(since λ and µ are antitones) and hence (λ ∧µ)(x∧y)� α =
αI(x∧ y) so that, (λ ∧µ)� αI . Hence, αI is a prime L-fuzzy
ideal of A.

Theorem 3.3: A proper L-fuzzy ideal λ of A is prime if and
only if the following are satisfied.

(1) λ is two valued
(2) λ (m) is a prime element in L, for any maximal element m in

A
(3) λ1 is a prime ideal of A.

Proof: Suppose that λ is a prime L-fuzzy ideal of A.
(1): Suppose λ assumes more than two values. Then there
exists x,y∈A and α 6= β ∈ L−{1} such that λ (x) =α, λ (y) =
β and λ (0) = 1. Now, define L-fuzzy subsets ν and µ of A
as follows:

ν(z) =

{
1 if z ∈ (x]
0 if z /∈ (x]

and µ(z) =

{
1 if z = 0
α if z 6= 0.

Then, clearly ν = 0(x] and µ = α(0] and hence ν and µ are
L-fuzzy ideals. Also,for
z = 0⇒

(
ν ∧µ

)
(0) = ν(0)∧µ(0) = 1∧1 = 1 = λ (0).

0 6= z ∈ (x]⇒ ν(z)∧µ(z) = 1∧α = α = λ (x)≤ λ (z) (since λ

is an antitone and z∧ x≤ x, we have
λ (x)≤ λ (z∧ x) = λ (x∧ z) = λ (z))
and z /∈ (x]⇒ ν(z)∧µ(z) = 0∧α = 0≤ λ (z). Therefore, ν ∧
µ ≤ λ . Since λ is prime, ν ≤ λ or µ ≤ λ . But ν � λ (since
ν(x) = 1,λ (x) = α and 1 6= α ).
Therefore, µ ≤ λ . In particular, µ(y) ≤ λ (y) 6= λ (0), we get
that y 6= 0 and α = µ(y) = β , which is a contradiction.
(2): Let m be a maximal element in A. Since λ is proper,
λ (x) 6= 1, for some x ∈ A and hence λ (m) 6= λ (0) = 1(

λ (m) = 1⇒ λ (m∨ x) = 1⇒ λ (m)∧λ (x) = 1⇒ λ (x) = 1.)
Let α and β ∈ L such that α ∧β ≤ λ (m). Define ν and µ of
A as:

ν(x) =

{
1 if x = 0
α if x 6= 0

and µ(x) =

{
1 if x = 0
β if x 6= 0.

Then, it can be easily proved that ν and µ are L-fuzzy ideals
of A and ν ∧ µ ≤ λ . Since λ is prime, ν ≤ λ or µ ≤ λ ,
inparticular, ν(m) ≤ λ (m) or µ(m) ≤ λ (m). Therefore, α ≤
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λ (m) or β ≤ λ (m) and hence λ (m) is prime.
(3): Let I = {x ∈ A : λ (x) = 1}. Clearly, I is a proper ideal of
A, since λ is proper. Let α be the other value of λ . Then

λ (x) =

{
1 if x ∈ I
α if x /∈ I

and hence λ = αI . By theorem 3.2, I is prime.
Conversely suppose that λ is an L-fuzzy ideal of A satisfying
the conditions (1),(2) and (3). By (1), there exists α(6= 1) ∈
L such that λ (x) = α, for each x ∈ A−{0}. Then for any
maximal element m of A, λ (m) = α. By (2), α is prime. Let
I = {x ∈ A : λ (x) = 1}. Then I is a prime ideal of A (by (3)).
Therefore, λ = αI and hence λ is a prime L-fuzzy ideal of A
(by theorem 3.2).

The results 3.2 and 3.3 yield the following.
Theorem 3.4: Let λ be an L-fuzzy subset of A. Then λ is

a prime L-fuzzy ideal of A if and only if there exists a prime
ideal P of A and a prime element α in L such that λ = αP.

IV. L-FUZZY PRIME IDEALS

In this section, we introduce the notion of an L−fuzzy prime
ideal which is weaker than that of a prime L-fuzzy ideal.

Definition 4.1: A proper L-fuzzy ideal λ of A is called an
L-fuzzy prime ideal of A if for any x,y ∈ A,
λ (x∧ y) = λ (x) or λ (y).

The following theorem gives a characterization of an L-
fuzzy prime ideal.

Theorem 4.2: Let λ be a proper L-fuzzy ideal of A. Then
the following are equivalent to each other.

(1) for each α ∈ L, λα = A or λα is a prime ideal of A
(2) λ is an L-fuzzy prime ideal of A
(3) for any x,y ∈ A, λ (x∧ y) ≤ λ (x)∨λ (y) and either λ (x) ≤

λ (y) or λ (y)≤ λ (x).
Proof: (1)⇒ (2) : Let x,y ∈ A and α = λ (x∧ y). Then

x∧ y ∈ λα and hence x ∈ λα or y ∈ λα .
x ∈ λα ⇒ λ (x∧ y) = α ≤ λ (x)≤ λ (x∧ y)

⇒ λ (x∧ y) = λ (x)
Similarly, y ∈ λα ⇒ λ (x∧ y) = λ (y).
(2)⇒ (3) : Let x,y ∈ A. Then, λ (x∧ y) = λ (x) or λ (y).

λ (x ∧ y) = λ (x) ⇒ λ (x ∧ y) = λ (x) ≤ λ (x) ∨ λ (y) and
λ (y)≤ λ (x∧ y) = λ (x).
Similarly, λ (x ∧ y) = λ (y) ⇒ λ (x ∧ y) ≤ λ (x) ∨ λ (y) and
λ (x)≤ λ (y).
(3)⇒ (1) : Let α ∈ L be fixed. If λα 6= A, then λα is a proper
ideal of A. Also, for any x,y ∈ A,
x∧ y ∈ λα ⇒ α ≤ λ (x∧ y)≤ λ (x)∨λ (y) = λ (x) or λ (y)

⇒ α ≤ λ (x) or α ≤ λ (y)
⇒ x ∈ λα or y ∈ λα

Therefore, λα is prime.
Theorem 4.3: A prime L-fuzzy ideal of A is an L-fuzzy

prime ideal of A.
Proof: Let λ be a prime L-fuzzy ideal of A. Then λ = αI

for some prime ideal P of A and α a prime element in L.
Since α < 1, λ is a proper.
Let x,y ∈ A. Then

x∧ y ∈ I⇒ λ (x∧ y) = 1 and x ∈ I or y ∈ I
⇒ λ (x∧ y) = 1 = λ (x) or λ (y)

and x∧ y /∈ I⇒ x /∈ I and y /∈ I
⇒ λ (x∧ y) = α = λ (x) = λ (y)

Therefore, λ is an L-fuzzy prime ideal of A.
The converse of the above theorem is not true; for consider

the given example below.
Example 4.4: Let A= {0,a,b,c}, L= {0, t,1} with 0< t < 1

and let ∨ and ∧ be binary operations on A defined by

Then, (A,∧,∨,0) is an ADL. Now define λ : A→ L by
λ (0) = 1,
λ (a) = λ (b) = 0 and λ (c) = t. Therefore, λ0 = A, λt = {0,c}
and λ1 = {0} are prime ideals of A. Therefore, λ is an L-fuzzy
prime ideal of A, while λ is not a prime L-fuzzy ideal of A,
since λ is not exactly two valued.

Finally, in this section we slightly generalize α-level fuzzy
ideals of A and identify general prime ideals of A with L-fuzzy
prime ideals of A.

Theorem 4.5: Let I a proper ideal of A and α,β ∈ L. Let
〈α,β 〉I be an L−fuzzy subset of A defined by

〈α,β 〉I(x) =


1 if x = 0
α if 0 6= x ∈ I
β if x /∈ I.

Then,
(1) 〈α,β 〉I is an L-fuzzy ideal of A if and only if β ≤ α and, in

this case 〈α,β 〉I is proper if and only if β < 1.
(2) I is a prime ideal of A if and only if χI is an L-fuzzy prime

ideal of A
(3) Suppose that 0 be a prime element in L. Then, I is a prime

ideal of A if and only if 〈α,β 〉I is an L-fuzzy prime ideal of
A for all 1 6= β ≤ α in L.

Proof: (1) and (2) are striaght forward and simple verifi-
cations.
(3): Suppose that I is a prime ideal of A and 1 6= β ≤ α in L.
Let x,y ∈ I. Then,
x∧ y = 0⇒ x = 0 or y = 0

⇒ 〈α,β 〉I(x∧ y) = 1 = 〈α,β 〉I(x) or 〈α,β 〉I(y)
0 6= x∧ y ∈ I⇒ 0 6= x ∈ I or 0 6= y ∈ I

⇒ 〈α,β 〉I(x∧ y) = α = 〈α,β 〉I(x) or 〈α,β 〉I(y)
and x∧ y /∈ I⇒ x /∈ I and y /∈ I

⇒ 〈α,β 〉I(x∧ y) = β = 〈α,β 〉I(x) = 〈α,β 〉I(y).
Converse follows from the fact that χI = 〈1,0〉I .
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V. MINIMAL PRIME L-FUZZY IDEALS

Let us recall from [?] that a prime ideal P an ADL of
A containing an ideal I is said to be a minimal prime ideal
belonging to I if there is no prime ideal of A containing I and
properly contained in P.

Definition 5.1: Let λ be a prime L-fuzzy ideal of A. Then
λ is said to be minimal if λ is a minimal member in the set
of all prime L-fuzzy ideals of A under the point-wise partial
ordering. A minimal prime L-fuzzy ideal belonging to χ{0} is
simply called a minimal prime L-fuzzy ideal.
In this section, we characterize all minimal prime L-fuzzy
ideals of A in terms of minimal prime ideals of A and minimal
prime elements of L.

As usual, by a minimal prime element of L we mean a
minimal element in the poset of all prime elements of L.

Now we have the following:
Theorem 5.2: Let λ be an L-fuzzy ideal of A. Then λ is a

minimal prime L-fuzzy ideal of A if and only if λ = αI , for
some minimal prime ideal I of A and a minimal prime element
α in L.

Proof: Suppose that λ =αI for some minimal prime ideal
I of A and minimal prime element in L. Then by theorem 3.4,
λ is prime L-fuzzy ideal of A. Let µ be a prime L-fuzzy ideal
of A and µ ≤ λ . Then by theorem 3.4, µ = βJ for some prime
ideal J of A and a prime element β in L. Therefore, βJ ≤ αI .
This implies that, β ≤ α and J ⊆ I. By using the minimality
of I and α , we get that β = α and J = I. Therefore, µ = λ

and hence λ is a minimal prime L-fuzzy ideal of A.
Conversely suppose that λ is a minimal prime L-fuzzy ideal
of A. Then by theorem 3.4, there exists a prime ideal I of A
and a prime element α in L such that
λ = αI . Let J be a prime ideal of A such that J ⊆ I. Then
αJ ≤ αI , by the minimality of λ , αJ = αI . Therefore, J = I
and hence I is minimal prime ideal of A. Let β be a prime
element in L and β ≤ α . Then βI ≤ αI . This implies, βI = αI
and hence β = α . Thus α is a minimal prime element in L.

If the smallest element 0 in L is prime, then 0 will be the
only minimal prime element in L. Note that χP = 0P, for any
ideal P of A.

The following is a simple verification.
Theorem 5.3: Let 0 be a prime element in L. Then an L-

fuzzy ideal λ of A is a minimal prime L-fuzzy ideal of A if
and only if λ = χP , for some minimal prime ideal P of A.
More over, P 7→ χP is a bijection of the set of minimal prime
ideals of A onto the set of minimal prime L-fuzzy ideals of A.

VI. L-FUZZY MINIMAL PRIME IDEALS

By an L-fuzzy minimal prime ideal of A we mean, as usual,
a minimal element in the set of all L-fuzzy prime ideals of
A under the point-wise partial ordering. In this section, we
characterize all L-fuzzy minimal prime ideals of A in terms of
their α-cuts.

Theorem 6.1: (1) If λ is an L-fuzzy prime ideal of A, then
λ1 = {x ∈ A : λ (x) = 1} is a prime ideal of A.

(2) Let λ be an L-fuzzy prime ideal of A. If λ is an L-fuzzy
minimal prime ideal of A, then λ1 is a minimal prime ideal of
A.

Proof: (1) Let λ be an L-fuzzy prime ideal of A. Then
λ1 is a proper ideal of A since λ is proper. Let x,y ∈ A. Then,
x∧ y ∈ λ1⇒ λ (x∧ y) = 1

⇒ 1 = λ (x∧ y) = λ (x) or λ (y) (by 4.1)
⇒ x ∈ λ1 or y ∈ λ1.

Thus, λ1 is a prime ideal of A.

The converse is not true. For, consider the lattice A =
{0,a,b,c,1} represented by the Hasse diagram is given below.

Define λ : A→ [0,1] by λ (0) = 1, λ (c) = 0.75, λ (b) = 0.5
and λ (a) = λ (1) = 0. Then, λ1 = {0} which is a prime ideal
of A, while , λ is not an L-fuzzy prime ideal of A, since
λ (a∧b) = λ (c) = 0.75 6= λ (a) and λ (b).
(2) Suppose that λ is an L-fuzzy minimal prime ideal of
A. Let Q be a prime ideal of A and Q ⊂ λ1. Then χQ is
an L-fuzzy prime ideal of A and χQ � λ . This implies that
λ is not an L-fuzzy minimal prime ideal of A, which is a
contradiction. Thus λ1 is a minimal prime ideal of A.

The converse is not true; for in the above example, if λ (0)=
1 and λ (x) = 0.5 for all x 6= 0, then it can be easily checked
that λ is an L-fuzzy prime ideal of A and λα = A if
0 ≤ α ≤ 0.5 and λα = {0} if 0.5 < α ≤ 1. In particular,

λ1 is a minimal prime ideal of A. But, λ is not an L-fuzzy
minimal prime ideal of A, since if we define µ(0) = 1 and
µ(x) = 0.25 for all x 6= 0, then µ is an L-fuzzy prime ideal of
A and µ � λ .

The following theorem is a characterization of L-fuzzy
minimal prime ideals of A.

Theorem 6.2: Let λ be an L-fuzzy prime ideal of A and 0
be a prime element in L. Then λ is an L-fuzzy minimal prime
ideal of A if and only if λα is a minimal prime ideal of A, for
all α ∈ L.

Proof: Suppose λ is an L-fuzzy minimal prime ideal of
A and λα is not minimal prime ideal of A, for some 0 < α < 1
in L. Then there exists a prime ideal Q of A such that Q⊂ λα .
Define µ : A→ L by

µ(x) =


1 if x = 0
α if 0 6= x ∈ Q
0 if x /∈ Q.

Then, clearly µ = (α,0)Q and hence µ is an L-fuzzy prime
ideal of A (by theorem 4.5 (3)). Also, µ ≤ λ . Since Q⊂ λα ,
there exists y ∈ λα such that y /∈ Q. Therefore, µ(y) = 0 <
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α ≤ λ (y). Therefore, µ � λ , which is a contradiction. Thus
for each α ∈ L, λα is a minimal prime ideal of A.
Conversely, suppose for each α ∈ L, λα is a minimal prime
ideal of A. Let µ be an L-fuzzy prime ideal of A such that
µ ≤ λ . Then for each α ∈ L, µα ⊆ λα . By the minimality of
λα , we have µα = λα and hence µ = λ . Therefore λ is an
L-fuzzy minimal prime ideal of A.

Remark 6.3: If λ is an L-fuzzy minimal prime ideal of A,
the each α-cut of λ need not be minimal prime ideal of A.

For, consider the example given in the following. Let A =
{0,a,b,c,1} be the lattice represented by the Hasse diagram
is given below.

Define λ : A→ [0,1] by λ (0) = λ (a) = 1,
λ (b) = λ (c) = 0.5 and λ (1) = 0. It can be easily verified
that, λ is an L-fuzzy prime ideal of A and for any t ∈ [0,0.5],
λt = {0,a,b,c} is a prime ideal of A but not minimal.
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