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Abstract—Cancer is a disease characterized by uncontrolled
cell division and the ability of these cells to invade other tissues,
either tissue next to them or not. Cancer treatment process is
very diverse. The issue in this paper is about the treatment of
cancer that processed by combining radio and anti-angiogenic
therapy, which is intended to minimize the size of cancer, by
adding control w (dose of radiotherapy) and u (dose of anti-
angiogenic). By applying Pontryagin minimum principle, the
simulation results show that the size of the cancer become the
most minimum if given minimum weight of anti-angiogenic (P)
therapy is 0.3 and radiotherapy (Q) is 0.015. Which take big
effect of this treatment is dose of anti-angiogenic therapy.

Index Terms—Anti-angiogenic agent, Pontryagin minimum
principle, radiotherapy.

I. INTRODUCTION

CANCER is a disease characterized by uncontrolled cell
division and ability of these cells to invade other tissues,

either tissue next to them or not. Cancer is one of the
disease that caused mortality in the world. More than 30%
of cancer deaths are caused by five behavioral risk factors
and diet that is high body mass index, less consumption of
fruits and vegetables, lack of physical activity, tobacco, and
excessive alcohol consumption. Estimated annual cancer cases
will increase from 14 million in 2012 to 22 million in the next
two decades [1].

The increasing number of cancer patients resulted in the
medical world to find ways to prevent cancer or cancer
treatment method. More than 30% of cancer can be prevented
by changing behavioral risk factors and dietary causes of
cancer. When the stage prevention is not successful then the
treatment process can be reached. Cancer treatment can be
done with surgery, chemotherapy, radiation, or a combination
between treatments [1].

The main principle of radiotherapy which uses ionizing
radiation to damage the genetic material of cancer cells
(DNA), causing cell death or loss of ability to proliferation.
However, radiotherapy side effects that exposure to radiation
can damage normal tissue around the cancer cells. Realized
that radiotherapy has low efficiency level and high number of
toxicity to the cells of non-cancerous, doctors try to develop
gene therapies that can improve the efficiency of the therapy,
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while reducing the level of toxicity to the cells of non-
cancerous, by attacking the blood vessels of cancer known
as anti-angiogenic therapy.

Anti-angiogenic therapy is usually given to patients that
have last stages of cancer and radiotherapy can be applied at
all levels of the cancer. When radiotherapy is combined with
anti-angiogenic agent, radiotherapy will help reduce the pain
suffered by patients. On the other hand, anti-angiogenic hold
up the supply of nutrients and oxygen to the cancer cells. So
with combination the two treatments is expected to shrink the
size of the cancer and hold up the metastasis of cancer and
the patient’s life expectancy may increase.

Based on the description above, in this research, we will
analyze dynamical model and establish an optimal control
in the treatment model of cancer by combining radio and
anti-angiogenic therapy. After optimal control is obtained, we
will analyze the relevance or the effect of each variable on
mathematical models.

II. RESEARCH METHODOLOGY

Mathematical models of cancer treatment by combining
radio and anti-angiogenic therapy is a non-linear model, so to
analyze the dynamic model, we must go through linearization
process. After the system is linear, it can be analyzed whether
the system is stable, controllable, observable or not.

The next step is to form optimal control using Pontryagin
minimum principle, with the objective function of minimizing
the size of cancer. Then, we calculate using numerical order
Runge-Kutta method 4, and the results of the simulation
analysis on the relevance of each variable.

III. RESULTS AND DISCUSSIONS

A. Analysis of Dynamical Model

The mathematical models used in this problem are [2]:

ṗ =−ξ pln
p
q
− (α +β r) pw (1)

q̇ = bp−
(

µ +d p
2
3

)
q− γqu− (η +δ r)qw (2)

ṙ =−ρr+w (3)
ẏ = u (4)
ż = (1+θs)w (5)
ṡ =−σs+w (6)

where:
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• p primary tumor volume
• q carrying capacity of the tumor vasculature
• r tissue repair
• y accumulated amount of used anti-angiogenic agent
• z accumulated radiation dose in tumor
• s accumulated radiation dose in healty tissue
• u dosage of anti-angiogenic agent
• w radiation dose
• α,η linear damage caused by radiation of the tumor
• β ,δ quadratic damage caused by radiation of the tumor
• ρ repair rate of the tumor and endothelial cells
• σ repair rate for the healty cells
• θ parameter of the healty tissue
• b tumor-induces stimulation parameter
• d tumor-induces inhibition parameter
• γ anti-angiogenic elimination parameter
• ξ tumor growth parameter
• µ baseline loss of vascular support through natural causes

1) Stability Analysis of the System: The mathematical
model shown in equation (1)-(6) is non-linear, so the analysis
of the stability to be around the point of equilibrium.

Definition 1 (Equilibrium Point [3]): Point x ∈Rn is called
the equilibrium point of the system if f (x) = 0.

From Definition 1, we obtained the following 3 equilibrium
points:
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Then, Taylor series are used to analyze the stability of

the system around the equilibrium point and in the form of
Jacobian. The Jacobian matrix of this mathematical model is:

ṗ
q̇
ṙ
ẏ
ż
ṡ

=


A11 A12 A13 0 0 0
A21 A22 A23 0 0 0
0 0 A33 0 0 0
0 0 0 0 0 0
0 0 0 0 0 A56
0 0 0 0 0 A66




p̂
q̂
r̂
ŷ
ẑ
ŝ



where:

A11 =−ξ

(
ln

p
q
+1
)
− (α +β r)w

A12 =
ξ p
q

A13 =−β pw

A21 = b− 2
3

dqp−
1
3

A22 =−
(

µ +d p
2
3

)
− γu− (η +δ r)w

A23 =−δqw

A33 =−ρ

A56 = θw

A66 =−σ

Theorem 2 ([4]): Given a differential equation ẋ=Ax where
A is a matrix of size n×n and have different characteristic val-
ues λ1, . . . ,λk(k≤ n). The origin point x = 0 is asymptotically
stable if and only if the real parts of λi < 0 for i = 1, . . . ,k.
The point of origin is stable if the real value of λi ≤ 0 with
i = 1, . . . ,k.

From Theorem 2, we can determine the system’s stability
around the equilibrium points E1, E2, E3. For E1, the system
is stable, whereas for E2 and E3 the system is unstable.

2) Controllability Analysis: In this subsection, we describe
a method to check whether a system is controllable or not.

Theorem 3 ([3]): Given the following LTI system:

ẋ(t) = Ax(t)+Bu(t)
y(t) =Cx(t)

}
(7)

A necessary and sufficient condition for LTI system (7)
to be controllable is that the controllability matrix Mc =(
B |AB|A2B| . . . |An−1B

)
has rank equal to n.

After we compute Mc by using the above formula, we
determine the rank of Mc. It turns out that the rank of Mc
is 6, thus the system is controllable.

3) Observability Analysis: In this subsection, we describe
a method to check whether a system is observable or not.

Theorem 4 ([5]): In (7), a necessary and sufficient condition
of a system to be observable is that the following observability
matrix

Mo =


C

CA
CA2

...
CA(n−1)


has rank equal to n.

After determining Mo, we found that rank of Mo is not equal
to 6. From Theorem 4, the system is unobservable.

B. Formulation of the Optimal Control
1) Formulation of the Objective Function: Goal of this

research is minimizing the size of cancer (p) by combining
radio (w) and anti-angiogenic (u) therapy. so that the objective
function can be formulated as follows:

J (w,u) =
∫ t f

t0

(
p+

Q
2

u(t)2 +
P
2

w(t)2
)

dt
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2) Formulation of the Hamilton Function:

H (p,q,r,y,z,s,w,u,λ ) =
(

p+
Q
2
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P
2

w(t)2
)
+

6
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λi fi
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P
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)
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(
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(
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2
3

)
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)
+

λ3 (−ρr+w)+λ4 (u)+λ5 ((1+θs)w)+λ6 (−σs+w)

3) Maximizing H to vector control u(t) and w(t):

∂H
∂w

= Pw(t)−λ1 (α +β r) p−λ2 (η +δ r)q+λ3+

λ5 (1+θs)+λ6 = 0

w(t) =
λ1 (α +β r) p+λ2 (η +δ r)q−λ3−λ5 (1+θs)−λ6

P
So we obtain the radiotherapy control limit values, which

are given by

w : [0,T ]→ min{1,max [w(t)]} .
∂H
∂u

= Qu(t)−λ2 (γq)+λ4 = 0

u(t) =
λ2 (γq)−λ4

Q

And the limit value of anti-angiogenic therapy is u : [0,T ]→
min{1,max [u(t)]}

4) Determine H*:
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(
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5) Determine state functions:
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6) Determine costate functions:
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In the next step, the result from point 1 – 6 is solved
numerically by using fourth-order Runge Kutta.

C. Simulation Results

In the simulation, we use the same initial condition
(0.9;0.55;0.3;0.1;0.01;0.1) and we give a different dosage
of anti-angiogenic and radiotherapy. The following results are
obtained :

1) Dosage of radiotherapy is greater than anti-angiogenic
there is 0.6 Gy for radiotherapy and 0.3 mg/kg for
anti-angiogenic obtained objective function value is
0.1814 mm3.

2) Dosage of radiotherapy is smaller than anti-angiogenic
there is 0.3 Gy of radiotherapy and 0.6 mg/kg for
anti-angiogenic obtained objective function value is
0.1813 mm3.

3) Dosage of radiotherapy as much as anti-angiogenic
dosage there is 0.3 Gy of radiotherapy and 0.3 mg/kg for
anti-angiogenic obtained objective function value of
0.1814 mm3.

From threee experiments above, dosage of anti-angiogenic
which is more than radiotherapy proved to be more effective
to suppress the development of cancer. The following chart
shows figures of radiotherapy and anti-angiogenic dosages that
are most effective:

Figures 1 and 2 above show that the dosage of anti-
angiogenic is greater than radiotherapy. But anti-angiogenic
dosage is decreased over time. It is offset by the provision
of radiotherapy which tends to a constant every day. The
treatment process as shown above has proven effective to
inhibit the growth of cancer.

Then we do the experiment with the dosage of anti-
angiogenic 0.6 mg/kg and radiation 0.3 Gy at different initial
conditions by noting that the size of the blood vessels of cancer
is smaller than an area of normal tissue exposed by radiation,
the size of the vessel blood cancer is greater than an area
of normal tissue exposed by radiation, and the size of the
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Fig. 1. Dosage of radiotherapy

Fig. 2. Dosage of anti-angiogenic agent

blood vessels as much as an area of normal tissue exposed by
radiation.

1) The initial conditions (0.9;0.3;0.3;0.1;0.01;0.7) indi-
cate that the size of blood vessels is smaller than an
area of normal tissue exposed by radiation. Based on
initial conditions found that anti-angiogenic’s ability to
attack the blood vessels of cancer is 3, the ability of
radiotherapy to attack non-cancerous tissue is 0.0014
and the ability of non-cancerous tissue that is damaged
to repair themselves is 2:33.

2) The initial conditions (0.9;0.6;0.3;0.1;0.01;0.6) indi-
cate that the size of the blood vessels of cancer as much
as an area of normal tissue exposed by radiation, showed
the ability of radiotherapy to damage normal tissue sur-
rounding the cancer cells is 2 and the network’s ability to
renew damaged is 0.0167. While anti-angiogenic ability
to suppress the growth of cancer blood vessels is 6.

By comparing the above experimental results, we concluded
that a dosage of anti-angiogenic agent is 0.0031 mg

kg and
0.9997 Gy for radiotherapy suitable to be applied in the initial
conditions (0.9;0.3;0.3;0.1;0.01;0.7). The following chart
will be displayed for each variable in the initial conditions
with dosage of radiotherapy and anti-angiogenic has been

determined:

Fig. 3. Size of cancer

Fig. 4. Size of cancer’s blood vessel

Figure 3 - Figure 8 show the changes of the variable given
at different initial condition, but given the same dosage as in
Experiment 2. The size of the initial cancer blood vessels of
0.3 mm3 by giving anti-angiogenic of 0.0031 mg/kg and nor-
mal tissue exposed to radiation of 0.7 by giving radiotherapy
of 0.9997 Gy, the size of the cancer at day 10 is 0.0062 mm3

was followed by a decrease in the size of the blood vessel
to a size of 0.0608 mm3 with the body’s absorption of the
anti-angiogenic at 0.0075 mg.

Thus, it can be concluded that treatment with combined
radiotherapy and anti-angiogenic depends on the size of the
blood vessels of cancer formed by cancerous and focus
whether irradiation radiotherapy that is characterized by the
extent of normal tissue exposed to radiation.

IV. CONCLUSIONS

1) In the model of treatment of cancer by combining
radiotherapy and anti-angiogenesis, we concluded that
the system is controlled at the point of equilibrium:

E1 =

((
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d

) 3
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Fig. 5. Accumulation of anti-angiogenic agent

Fig. 6. Tissue repair
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The system is only stable at E1, while at the point E2,
E3 are unstable. However, E1, E2, E3 are controllable
but not observable. Despite this, on model of the cancer

Fig. 7. Accumulation of radiotherapy

Fig. 8. Accumulation of radiation dosage in healty tissue

treatment we can formulate an optimal control problem.
Thus, the main condition for formulating an optimal
control system is the controllability of the system. If
a system is not stable but the system is controllable, the
system will be stable, and when the system is stable and
controllable, the system will be accelerated to achieve
stability.

2) The most optimal dosage of anti-angiogenic agent and
radiotherapy given when the dosage of anti-angiogenic is
greater than radiotherapy, which amounted to 0.0031 mg
/ kg for anti-angiogenic and 0.9997 Gy for radiotherapy.
Although, the dosage of anti-angiogenic quite a bit of
administration but it is very effective to suppress the
development of cancer.

3) From six variables on mathematical model there are
the various sizes of the cancer, blood vessels of cancer,
tissue repair, accumulation of anti-angiogenic, accumu-
lation of radiotherapy, and accumulation of radiation
dosage in healty tissue, the most influence to develop-
ment cancer is blood vessels of cancer. Because blood
vessels of cancer is formed simultaneously with the
emergence of cancer in a network. The sooner action
is taken, the blood vessels of cancer that forms in size
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is big enough and can still be overcomed.
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