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Construction the Statistics Distributions for 
Characterizing the Transfer Factors of Metals 

from Soil to Plant (TFsp) Using Bayesian 
Method          
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AbstractPlants have the faculty of  levy the metals in the soil. The consumption of this plants can represent in some 
situations a health risk to be assessed. The transfer of contaminants from soil to food crops is a major route connecting the soil 
contamination to human exposure. The Transfer Factors Soil-Plant (TFsp) (the ratio between the concentration of contaminants 
in plants and the concentration of contaminants in the soil) is a value commonly used in the assessment of exposure and health 
risks. This research use the BAPPET database (database contents the informations of elements metal traces plants and 
vegetables). The goal of this research is for define the variable that influent the variability of TFsp and for characterizing their 
effects from their posteriors distributions using bayesian methods, Metropolis-Hastings. There are 3 metals (Cd, As and Pb), 4 
plant types (leaf, fruit, root and tuber) and 2 analysis (using 4 plant types and 3 plant types, without tuber) with 4 models of 
analysis of varians (ANOVA, using normal and lognormal distribution for likelihood) that used in this research. The results of 
analysis for 4 plant types is chosing the model II with lognormal distribution for likelihood (yi ~ LN(µi, σi

2)) for the best model 
and for 3 plant types is chosing the model IV with lognormal distribution for likelihood (yi ~ LN(µi, σ2), µi = µ + αi + Bj + δk, Bj ~ 
N(0, σB

2)) for the best model. The contains of metal Cd, As and Pb in leaf has the highest risk for the health because that has the 
biggest posterior mean of TFsp 
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I. INTRODUCTION1 
he plant foods consumed by humans not only come 
from agriculture but also the cultivation of plants in 

gardens and gathering. Plants have the ability to remove 
metals in the soil, consumption of vegetables can 
represent in some situations a health risk to be assessed. 
The transfer of contaminants from soil to food crops is a 
major route connecting the soil contamination to human 
exposure. The transfer factors of metals from soil to 
plant (TFsp) (ratio between the concentration of 
contaminants in plants and the concentration of 
contaminants in the soil) is a value commonly used in the 
assessment of exposure and health risks. Especially in 
studies of exposure modeling, it is recognized as one of 
the key parameters. BAPPET database (database 
contents Elements metal traces Plants Vegetables) which 
contains many experimental data of contaminated 
vegetable plants by trace metals, and therefore 
information on the TFsp parameter is used. This data is 
analyzed with the Bayesian approach. 

The aim of the research is to define the variables 
responsible for the variability of TFsp and characterize 
their effects through posterior distribution. In these 
analyzes, the three metals (Cd, As and Pb), four plant 
types (leaf vegetable, fruit vegetable, root vegetable and 
tuber vegetable) and two methods of extracting the 
amount of metals in soil (extraction total and semi-total) 
are used. 

                                                 
1Pratnya Paramitha Oktaviana is with Departement of Statistic, 

Faculty of Mathematic and Sains, Institut Teknologi Sepuluh 
Nopember, Surabaya, 60111, Indonesia. E-mail: 
pratnya.paramitha@yahoo.co.id. 

2Marie-Pierre Etienne is with Department of Mathematics and 
Informatics Applied, AgroParisTech, Paris, France. E-mail: 
marie.etienne@agroparistech.fr. 

II. METHOD 
Bayesian method that explained in this chapter is used 

in the analysis for this research. The step of analysis will 
be explained after the theory of Bayesian. 

Hierarchical Bayesian models are really a combination 
of two things: i) written in hierarchical form which 
model is ii) estimated using Bayesian methods. A 
hierarchical model is one that is written in a modular 
way, or in terms of sub-models. The sub-models are 
combined to form a hierarchical model, Bayes' theorem 
is used to integrate the pieces together and realize all the 
uncertainty that is present. The MCMC (Monte Carlo 
Markov Chain) are numerical methods to describe the 
posterior distributions and work especially well with 
hierarchical models, and it is the engine that has fueled 
the development and application of Bayes' theorem [1]. 

A. Bayes Formula 
In the sequel, the notation [.] Is used for a probability 

of whether they are of a probability density function or a 
discrete distribution. In a Bayesian framework the 
estimation of a model is defined by updating the prior 
distribution of the parameters [ ]θ  due to the training data 
contained in it, through the Bayes formula [9]. 
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with [ ]yθ  is posterior density of θ . 
B. Markov Chaine and MCMC Metropolis-Hastings 

Method 
This section begins with a brief review of Markov 

chains that define the MCMC method of Metropolis-
Hastings algorithm. 
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1) Markov Chain Theory 
Let θ = {θn ; n ≥ 0}is a sequence of dependent random 

variables, θ is a Markov chain if  
[ ] [ ]nnnn θθθθθθ 1101 ,,, ++ =           (2) 
for all n ≥ 0. That is to say that the probability 
distribution of θn+1 given past variables depends only on 
θn. This conditional probability distribution is called 
transition kernel K is K (θn, θn+1) [11]. 

Most of Markov chains encountered in Monte Carlo 
Markov Chain (MCMC) methods have a property of 
very high stability to ensure convergence to a stationary 
probability distribution, that verifies Markov Chain is 
irreducible, aperiodic and recurrent.. There is a 
probability distribution f such that if θn ~ f,  then θn +1 ~ f. 
2) Metropolis-Hastings Algorithm 

The Metropolis-Hastings algorithm associated with the 
objective (target) density f and conditional density g 
produces a Markov chain {θn} are defined by Robert and 
Casella [11] as follows: 
a. Given nθ , generates the candidate  Yn ~ )( nyg θ , 

which is randomly distributed 
b. take 
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Distribution g is called the candidate probability 
distribution and ρ(θ,y) is called the probability of 
acceptance of Metropolis-Hastings. 

This algorithm is the basis of the operation of 
OpenBUGS software that was used to carry out the 
inferences of the models considered. 
3) The Method of Gelman-Rubin Convergence 

Diagnostics in MCMC 
To calculate the Gelman-Rubin statistic, as modified 

by Brooks and Gelman [2], the basic idea is to generate 
multiple chains from dispersed initial values, and assess 
convergence by comparing the extra variability and 
international channels. The researcher denote the number 
of strings generated by M and the length of each chain 
2T. We take as a measure of the variability of the 
posterior width of the 100 (1 - α)% credible interval for 
the parameter of interest (in OpenBUGS, α = 0.2). 
According to the final iterations of T, calculate the 
empirical credible interval for each channel, then the 
average width intervals through chains of M and denote 
by W. Finally, calculate the width B of the empirical 
credibility interval based on all samples MT grouped 
together. The ratio 

W
BR =      (4) 

pooling to medium widths range must be greater than 1 if 
the starting values are dispersed on properly, it will also 
tend to 1 as convergence is approached, so we can 
assume convergence for practical reasons if R <1.05, for 
example. 
4) Deviance Information Criterion 

In Bayesian analysis, Deviance Information Criterion 
(DIC) summarizes the model fit in posterior expectation 
of deviance, ,D  and the complexity of a model by the 
actual number of parameters, Dp  [3]. Models that 

receive the most support from the data are those that 
have the lowest values of the DIC. The definition of DIC 
is 

DpDDIC +=      (5) 
where: 

)( log 2)( θθ ypD −=      (6) 

[ ])(θθ DD yΕ=       (7) 

)(θDDpD −=       (8) 
The process has six steps. Stages of data analysis that 

are used to achieve the desired objectives are as follows: 
1. Calculate the factors of soil-plant transfer ( TFsp ) 
2. Identify outliers: 
a. Transform the original data to TFsp natural logarithm 

(Ln) of TFsp function. To overcome the complexity 
issues related to asymmetric information in the 
process of outlier detection , transformation functions 
and algorithms exist that can help to increase the 
symmetry of the distribution [4]. Symmetrical data is 
important in most methods for detecting outliers 
because they were designed around the management 
of data following a normal distribution. Two 
commonly used functions are the functions log and 
square root because they have advantageous 
properties compared to the variance. 

b. Calculate SDX 2±  
of transformed data. (SD = 

Standard Deviation ) 
This is the method of standard deviation, if the 
transformed data are less than or greater than are 
therefore these data are outliers [12]. 
Study again the data identified as outliers, if there is 
sufficient reason to doubt the value of the data 
(usually in the case of a framework for testing other 
very different experiences based ) on deletes this 
data. If there is no objective reason to remove it from 
the guard. 

3. Several models will be considered, modeled through 
a random variability of plant species considered 
within its group ( leaf vegetable , fruit vegetable , 
root vegetable and tuber vegetable ) effect. Since the 
potato tuber is only representative group was 
removed when the group considered this model. It is 
therefore 
The analysis of four types of plant 
For this analysis, all data TFsp metals (Cd , As, Pb) is 
used for all types of plant ( leaf vegetable , fruit 
vegetable , root vegetable and tuber vegetable ). 
Model I and II are used for this analysis. 
The analysis of three types of plant (without tuber) 
For this analysis, data TFsp metals (Cd , As, Pb) is 
used for three types of plant (leaf vegetable , fruit 
vegetable , root vegetable) , without tuber vegetable. 
All models (I, II , III and IV) was used for this 
analysis. 

4. The estimation is conducted under OpenBUGS. 
We need to file that contained both models, data and 
boots. For the (likelihood ) probability data (TFsp ), 
normal and log normal distribution is used. 

5. The outputs of the software are then analyzed in R (R 
Script). It is the Bayesian analyzes (the MCMC , 
Metropolis -Hastings algorithm , 3 chains) by using 
the R software package BRUGS .  
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6. Choose the best model that has the smallest value of 
DIC (Deviance Information Criterion).  
Depending on the model chosen (best model), we can 
assess which variables responsible for the variability 
of TFsp and also we can characterize their effects on 
each type of plant according to the posterior 
distribution.  

Detail of the model compared is presented in Table 1. 

III. RESULT AND DISCUSSION 
This chapter discusses analysis of TFsp metals 

Cadmium (Cd), arsenic (As) and lead (Pb) using the 
Bayesian method. The variability of TFsp of each metal 
type of plant (leaf vegetable [1], fruit vegetable [2], root 
vegetable [3] and tuber vegetable [4]) and characterize 
their effects according to the results the posterior 
distribution analysis can be known. 4 models are used for 
this analysis, the model I and II for analysis four types of 
plant, while all models (I to IV) for analysis of three 
types of plant (without tuber vegetable). 

A. Application to Metal Cadmium (Cd) 
In this section, we will apply the method described 

above to analyze the factors of soil-plant transfer (TFsp) 
metal cadmium (Cd). The number of data used to 
analyze four types of plant is 820; 330 data TFsp in leaf 
vegetables, 163 data TFsp in fruit vegetable, 198 data 
TFsp in root vegetable and 129 data TFsp in tuber 
vegetable; and then, for three types of plant analysis, 691 
data are used (without tuber vegetable). 
1) The Outputs of the Metropolis-Hastings MCMC 

Method 
Before the discussion the MCMC output, the first is to 

show the descriptive analysis TFsp metal Cd Descriptive 
statistics TFsp metal Cd plant types is shown in the box 
plots in Figure 1. Figure 1. shows that the value of TFsp 
metal Cd in leaf vegetables is greater than other types of 
plant (vegetable, fruit, vegetable and vegetable root 
tuber). There is still data that are not included in interval 
(based on the boxes in Figure 5.1), while it was already 
removing outliers, but it cannot deleted because there not 
strong evidence. Values can TFsp great for concentration 
Metal Trace Elements (ETM) in the plant is large, it 
depends on the context. 
a. Analysis 4 Plant Types 

Table 2 present values of DIC for model I and II 
analysis four types of plant using likelihood normal and 
log normal. 

According to the DIC value in Table 2, the model II 
that uses the likelihood of yi is log normal distribution (yi 
~ LN(µi, σi

2)) as the best model because it has the 
smallest DIC value (828.4) is chosen. 

Figure 2 shows the posterior densities (the red line and 
also the histogram) of parameters µi and σi

2  (i = 1, 2, 3, 
4) TFsp metal Cd Musample1 is the sample parameter μ1 
and all are sigmasample4 is similar to the sample 
parameter σ4

2. The green line shows the prior density. 
Summary subsequently shown in Table 3 were 

calculated. The effects of each type of plant that is 
encapsulated by each parameter µi (mu[i]) for i = 1 , 2, 3, 
4 , value of TFsp metal Cd can be evaluated by the 
statistics in this table. The average value for Cd metal 
TFsp kind leaf vegetable is a posteriori should be equal 
to 0.095 (mu[1]) compared with others that are negative 

(for 2167 fruit vegetable (mu[2])  ; 1107 for root 
vegetable (mu[3]) and 2436 for tuber vegetable (mu[4])). 

The conclusion is the first type of plant (leaf vegetable) 
has a higher value TFsp Cd metal effect and the fourth 
type of plant (vegetable tuber) has a lower value TFsp 
metal Cd in effect the results of this model. The posterior 
variance (sigma[i]) that this uncertainty in the parameter 
mu[1] is 1187; 2192 for parameter mu[2] ;1041 for 
parameter mu[3] and 1101 for parameter mu[4]. 
b. Analysis 3 Plant Types 

Table 4 shows the value of DIC for each model of 
analysis three plant types. According to the results in this 
table, the model IVb using log normal distribution as the 
likelihood of yi is chosen. It has the smallest DIC value 
(909.8). Then the best model for analysis of three types 
of plant is the model with the likelihood IV b log normal 
(yi ~ LN(µi, σ2) where µi = µ + αi + Bj + δk, Bj ~ N(0, 
σB

2)). 

B. The Results for The Others Metal 
1) Metal Arsenic (As) 

The comparasion of value of DIC for model I and II 
analysis four types of plant is shown in the following 
Table 5. The model II with likelihood log normal is 
chosen (DIC = -473.3).  

Table 6 presents the comparison of the value of DIC 
for the analysis of three types of plant models. According 
to the results in Table 6, the value of DIC is smaller in all 
likelihood is the model with log normal distribution. The 
difference between these values is not very large. So we 
must consider what model you choose. According to the 
results previously Cd metal analysis, Model IV is chosen 
b log normal. We will most definitely consider this 
model. Then, because the smallest DIC is the log normal 
model IV and the difference with the DIC model IV b is 
only 0.6, the model is still IV b chooses with the 
likelihood of yi is log normal distribution (DIC = - 
453.1) as the best model for this analysis. 
2) Metal Plomb (Pb) 

The value of DIC analysis of four types of plant using 
model I and II is presented in Table 7. Model II is chosen 
with the probability distribution of yi is log normal again 
as the best model (DIC = -4047). Model IV b with 
probability yi is log normal distribution (DIC = -2954) is 
chosen as the best model (with the same consideration of 
metal analysis As before, because the difference is small) 
in Table 8. 

IV. CONCLUSION  
Based on the results and discussion that has been done in 
the previous chapter, we can conclude that: 
1. For analysis of four types of plant for TFsp (metal 

Cd, As and Pb), the best model is selected Model II 
with the lognormal probability distribution (yi ~ 
LN(µi, σi

2)). Variable responsible for the variability 
of TFsp metals is only the type of plant. 

a. The mean posterior (µi) and varians 
posterior (σi

2) of TFsp metal Cd : 
µ1 = 0.095 ; σ1

2 = 1.187 (leaf) 
µ2 = -2.167 ; σ2

2 = 2.192 fruit) 
µ3 = -1.107 ; σ3

2 = 1.041 (root)  
µ4 = -2.436 ; σ4

2 = 1.101 (tuber) 
b. The mean posterior (µi) and varians 

posterior (σi
2) of TFsp metal As : 
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µ1 = -3.606 ; σ1
2 = 2.248 (leaf) 

µ2 = -4.881 ; σ2
2 = 5.411 fruit) 

µ3 = -5.307 ; σ3
2 = 1.426 (root)  

µ4 = -4.877 ; σ4
2 = 2.378 (tuber) 

c. The mean posterior (µi) and varians 
posterior (σi

2) of TFsp metal Pb : 
µ1 = -3.784 ; σ1

2 = 2.769 (leaf) 
µ2 = -5.286 ; σ2

2 = 4.066 (fruit) 
µ3 = -4.639 ; σ3

2 = 2.359 (root)  
µ4 = -6.396 ; σ4

2 = 4.157 (tuber) 
2. For analysis of three types of plant (without 

vegetable tuber) for TFsp (metal Cd, As and Pb), the 
best model is selected model IVb with lognormal 
probability distribution (yi ~ LN(µi, σ2), µi = µ + αi + 
Bj + δk, Bj ~ N(0, σB

2)). The variables responsible for 
the variability of TFsp metal Cd are the type of plant 
species plant type and also fashion metal extractions. 

3. TFsp metals is only the type of plant. 
a. The mean posterior (µi) and varians 

posterior (σ2) of TFsp metal Cd : 
µ1 = -0.444 (leaf) 
µ2 = -1.496 (fruit) 
µ3 = -0.992 (root)  
σ2 = 1.016 

b. The mean posterior (µi) and varians 
posterior (σ2) of TFsp metal As : 
µ1 = -3.942 (leaf) 
µ2 = -5.070 fruit) 
µ3 = -5.782 (root)  
σ2 = 1.617 

c. The mean posterior (µi) and varians 
posterior (σ2) of TFsp metal Pb : 
µ1 = -3.731 (leaf) 
µ2 = -5.317 (fruit) 
µ3 = -4.333 (root)  
σ2 = 2.862 

4. The metal content of Cd, As and Pb in leafy 
vegetable is more health risk because it has posterior 

mean of transfer factors soil-plant (TFsp) which is 
larger than other types of plant. The effect of metals 
TFsp leafy vegetable is most at risk for health and 
then root vegetable, vegetable, fruit and vegetable 
tuber last. 
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Figure 1. The Boxplot of  TFsp Metal Cd for Each Plant Types
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Figure 2. The Graph of Parameters Density for µi and σi2  (i = 1, 2, 3, 4) Model II TFsp Metal Cd (Likelihood Log Normale) 

 
TABLE 1.  

EXPLANATION OF MODEL ANALYSIS OF VARIANCE (ANOVA) 
Model Explanation 

I         
ijiij EY += µ  

           ),0(~ 2σΝijE  
 

=ijY the j-th TFsp on the i-th type of plant 
 

=iµ the effect due to  i-th level of type of plant  

=ijE  the random error present in the j-th TFsp on the i-th type of plant 

(i = 1, 2, 3, 4) for analysis 4 plant types (1 = leaf, 2 = fruit, 3 = root, 4 = tuber) 
(i = 1, 2, 3) for analysis 3 plant types (without tuber) 
(j= 1, 2, …, n observations) 

II         ijiij EY += µ  

           ),0(~ 2
iijE σΝ  

III  a)    ijkjiijk EBY +++= αµ  

             ),0(~ 2σΝijkE
  

),0(~ 2
ijB σΝ  

              

=µ the overall mean response 

=iα  the effect due to  i-th level of type of plant (fixed) 

=jB  the effect due to  j-th level of species (random) 

(i = 1, 2, 3) 
(j= 1, 2, …, n species) 
(k= 1, 2, …, n observations) 

       b)   ijkjiijk EBY +++= αµ  

              ),0(~ 2σΝijkE
  

),0(~ 2
BjB σΝ  

IV  a)    ijklkjiijkl EBY ++++= δαµ  

             ),0(~ 2σΝijkE
  

),0(~ 2
ijB σΝ  

              
 

 

=µ the overall mean response 

=iα  the effect due to  i-th level of type of plant (fixed) 

=jB  the effect due to  j-th level of species (random) 

=kδ  the effect due to  k-th level of extraction (fixed) 
(i = 1, 2, 3)  ; (j= 1, 2, …, n species)  
(k= 1, 2 ; 1 = extraction total, 2 = extraction semi-total) 
(l= 1, 2, …, n observations) 

       b)   ijklkjiijkl EBY ++++= δαµ  

              ),0(~ 2σΝijkE
   

),0(~ 2
BjB σΝ  

 
TABLE 2. 

 THE VALUE OF DIC FOR EACH MODEL OF ANALYSIS 4 PLANT TYPES TO TFSP METAL CD 

Modèle La Vraisemblance de yi DIC 

I Distribution Normale 2983 
  Distribution Log Normale 856.4 

II Distribution Normale 1927 
  Distribution Log Normale 828.4 

 
TABLE 3.  

POSTERIOS SUMMARY FOR PARAMETERS µI AND ΣI
2  (I = 1, 2, 3, 4) OF ANOVA MODEL II TFSP METAL CD (LIKELIHOOD LOG NORMAL) 

node         mean        SD    MC error val2.5pc médian   val97.5pc start     sample 
mu[1]      0.0947     0.0580    0.0010  -0.0205  0.0953    0.2073   5001      30000 
mu[2]     -2.1670     0.1146    0.0023  -2.3850 -2.1660   -1.9420   5001      30000 
mu[3]     -1.1070     0.0755    0.0014  -1.2620 -1.1060   -0.9642   5001      30000 
mu[4]     -2.4360     0.0923    0.0015  -2.6170 -2.4360   -2.2570   5001      30000 
sigma[1]   1.1870     0.0932    0.0017   1.0150  1.1860    1.3790   5001      30000 
sigma[2]   2.1920     0.2357    0.0045   1.7760  2.1760    2.7080   5001      30000 
sigma[3]   1.0410     0.1052    0.0020   0.8559  1.0320    1.2680   5001      30000 
sigma[4]   1.1010     0.1402    0.0027   0.8698  1.0900    1.4040   5001      30000 
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TABLE 4. 
 THE VALUE OF DIC FOR EACH MODEL OF ANALYSIS 3 PLANT TYPES TO TFSP METAL CD 

Modèle La Vraisemblance de yi DIC 

I Distribution Normale 2630 

 
Distribution Log Normale 1104 

II Distribution Normale 1992 

 
Distribution Log Normale 1077 

III a Distribution Normale 2605 

 
Distribution Log Normale 929.2 

III b Distribution Normale 2605 

 
Distribution Log Normale 928 

IV a Distribution Normale 2585 

 
Distribution Log Normale 911,6 

IV b Distribution Normale 2586 

 
Distribution Log Normale 909.8 

 
TABLE 5.    

THE VALUE OF DIC FOR EACH MODEL OF ANALYSIS 4 PLANT TYPES TO TFSP METAL AS 

Modèle La Vraisemblance de yi DIC 

I Distribution Normale -309 
  Distribution Log Normale -471.7 

II Distribution Normale -326.4 
  Distribution Log Normale -473.3 

 
TABLE 6.   

 THE VALUE OF DIC FOR EACH MODEL OF ANALYSIS 3 PLANT TYPES TO TFSP METAL AS 

Modèle La Vraisemblance de yi DIC 

I Distribution Normale -282.8 
  Distribution Log Normale -433.8 

II Distribution Normale -309 
  Distribution Log Normale -437.3 

III a Distribution Normale -294.5 
  Distribution Log Normale -442.1 

III b Distribution Normale -295.5 
  Distribution Log Normale -440.2 

IV a Distribution Normale -295.5 
  Distribution Log Normale -453.7 

IV b Distribution Normale -295.5 
  Distribution Log Normale -453.1 

 
TABLE 7.    

THE VALUE OF DIC FOR EACH MODEL OF ANALYSIS 4 PLANT TYPES TO TFSP METAL PB 

Modèle La Vraisemblance de yi DIC 

I Distribution Normale -507.9 

 
Distribution Log Normale -4033 

II Distribution Normale -1499 

 
Distribution Log Normale -4047 

 
TABLE 8.  

  THE VALUE OF DIC FOR EACH MODEL OF ANALYSIS 3 PLANT TYPES TO TFSP METAL PB 
Modèle La Vraisemblance de yi DIC 

I Distribution Normale -302.4 

 
Distribution Log Normale -2947 

II Distribution Normale -768.2 

 
Distribution Log Normale -2956 

III a Distribution Normale -297.2 

 
Distribution Log Normale -2955 

III b Distribution Normale -301 

 
Distribution Log Normale -2955 

IV a Distribution Normale -296.9 

 
Distribution Log Normale -2954 

IV b Distribution Normale -300.7 

 
Distribution Log Normale -2954 
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