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Abstract The paper proposes a new computational approach using the moving element method (MEM) for 

simulating the dynamic responses of Mindlin plate resting on a viscoelastic foundation subjected to moving 

loads during abrupt braking. In this approach, the governing equations as well as the plate element mass, 

damping and stiffness matrices are formulated in a convected coordinate in which the origin is attached to the 

applied point of the moving load. Thus, the proposed method simply treats the moving loads as ‘stationary’ at 

the nodes of the plate to avoid updating the locations of moving loads due to the change of the contact points on 

the plate. The interaction between the moving load and the plate during abrupt braking is accounted for 

through the vertical force and tangential wheel-pavement friction force. The effects of wheel sliding, load 

deceleration magnitude, friction coefficient, and plate thickness on the dynamic responses of plate are 

investigated.  
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I. INTRODUCTION 

 

The dynamic responses of plates resting on a 

viscoelastic foundation subjected to moving loads have 

attracted much research attention in the last two decades. 

The results of these studies can be employed in many 

branches of modern transportation engineering such as 

the design of track/road beds, highway and runway 

pavements. Analytical methods were used in earlier 

research works to study the static and dynamic responses 

of plates. A few of these works related to the dynamic 

analysis of plates resting on a viscoelastic foundation 

subjected to moving loads are those works by Gbadeyan 

and Oni [1], Kim and Reosset [2], Huang and 

Thambiratnam [3],[4], Sun[5],[6].  

The Finite Element Method (FEM) is a well-

established numerical method widely used to solve many 

complicated problems, including problems involving 

moving loads. Wu et al. [7] used the FEM to analyze the 

responses of flat plate subjected to various moving loads. 

The effects of eccentricity, acceleration and initial 

velocity of moving loads and the effects of span length 

on the dynamic responses of plates were examined in 

this study. Zaman et al. [8] investigated the dynamic 

responses of a thick plate on viscoelastic foundation 

subjected to moving loads by taking into account the 

transverse shear deformation as well as the bending of 

the slab. Phung-Van et al. [9] developed the CS-DSG3 

for analyzing dynamic responses of Mindlin and 

composite plates on the viscoelastic foundation subjected 

to moving loads. Li et al. [10] studied the dynamic 

responses of a rectangular plate on a viscoelastic 

foundation subjected to moving loads with varying 

velocity. Three types of moving loads, including 

acceleration, deceleration and uniform speed were 

discussed.  

In studies using the FEM, a global coordinate system 

fixed in space is normally defined to form the structural 

matrices. The complication arises as the load moves 

from one finite element into another element, and hence 

the load position has to be updated at every time step of 

the solution procedure. In addition, in the case of 

infinitely long plates subjected to moving loads such as 

the pavement of highway or runway, some additional 

boundary conditions have to be introduced artificially to 

truncate the infinitely long plate at the edges of the plate. 

In those cases, the moving loads will soon approach 

closely to the artificial boundary end on the 

‘downstream’ side and may even go beyond the 

downstream end. This difficulty can be overcome by 

employing a large enough domain size but the 

computational cost will increase significantly. 

To overcome such the complication encountered in 

the FEM, Krenk et al. [11] proposed the use of FEM in 

convected coordinates to obtain the response of an elastic 

half-space subjected to a moving load. This approach 

will help overcome the problem related to the moving 

loads travelling over a finite domain. Andersen et al. [12] 

gave a formulation in convected coordinates for the 

problem of a beam on a Kelvin foundation subjected to a 

harmonic moving load. Koh et al. [13] adopted the idea 

of convected coordinates for solving train-track 

problems, and named the numerical algorithm as Moving 

Element Method (MEM). The method was subsequently 

applied to the analysis of in-plane dynamic responses of 

annular disk (Koh et al. [14]) and moving load on 

continuum (Koh et al. [15]). Xu et al. [16] extended the 

one-dimensional MEM proposed by Koh et al. [13] to 

two dimensional problems in which the vehicle moves 

on an infinite Kirchhoff plate supported by Kelvin 
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foundation. Recently, Ang and Dai [17] employed the 

MEM computational to investigate the dynamic response 

of high-speed rail system for the situation where there is 

an abrupt change of foundation stiffness. The influence 

of different factors, including the degree of change of 

foundation stiffness, traveling velocity of the train and 

the severity of track irregularity, on the response of the 

train as well as the track is examined and discussed. Ang 

et al. [18] applied the MEM to investigate the “jumping 

wheel” phenomenon in high-speed train motion at 

constant velocity over a transition region where there is a 

sudden change of the foundation stiffness. Tran et al. 

[19] analyzed the dynamic response of high-speed rail 

(HSR) traveling at non-uniform speed using the MEM. 

In this study, both linear and nonlinear wheel-rail contact 

models were examined. Dai and Ang [20] presented an 

analytical solution to the steady-state response of a 

curved beam resting on a viscously damped foundation 

and subjected to a single or sequence of moving loads by 

using MEM. On the same thread, Tran et al. [21], [22], 

[23][24] employed the MEM to investigate the dynamic 

response of high-speed rail experiencing heavy braking 

and abrupt braking. The effects of the wheel sliding, 

initial train deceleration, initial train speed and the 

severity of the railhead roughness on the dynamic 

response of the HSR were investigated.  

In the aforementioned studies, the MEM has been 

successfully applied to the analyses of various moving 

load problems including the train-track dynamics. 

However, such suprior approach has rarely been applied 

to the analysis of plates under moving loads. To the 

author’s knowledge, no studies have investigated the 

dynamic responses of plate subjected to moving loads 

during abrupt braking. 

Hence in order to fill in the abovementioned research 

gap, the present paper proposes a computational 

approach using the MEM for analyzing the dynamic 

responses of Mindlin plate resting on a viscoelastic 

foundation subjected to moving loads during abrupt 

braking. In this approach, the plate is truncated and 

discretized into “moving-elements”, which are not 

physical elements fixed to the plate but are conceptual 

elements that “flow” with the moving load along the 

plate. The formulations of plate element mass, damping 

and stiffness matrices, which are written in a relative 

coordinate attached to the moving load, are derived. The 

interaction between the moving load and the plate during 

abrupt braking is accounted for through the vertical force 

and tangential wheel-pavement friction forces. To verify 

the accuracy of the proposed method, the dynamic 

responses of plates resting on a viscoelastic foundation 

subjected to moving loads are examined. The results 

obtained in this study are compared with other published 

results in the literature. Next, the effects of wheel sliding, 

load deceleration magnitude, friction coefficient, and 

plate thickness on the dynamic responses of plate are 

investigated. 

 

II. FORMULATION AND METODOLOGY 

A. Weakform for the Mindlin plate resisting on 

viscoelastic foundation 

Let us consider an isotropic Mindlin plate with length L, 

width B, thickness h resting on a viscoelastic foundation 

under bending deformation as shown in Figure 1. The 

viscoelastic foundation has foundation stiffness f
k

 and 

foundation damping coefficient f
c

. The middle (neutral) 

surface of the plate is chosen as the reference plane that 

occupies a domain 
2

R . Let w  be the vertical 

deflection and 
T

x y      be the vector of rotations, 

in which 
x ,

y  are the rotations of the middle plane 

around y  axis and x axis, respectively, with the 

positive directions defined in Figure 1. 

The unknown vector of three independent field 

variables at any point in the middle plane of the plate can 

be written as  
T

x yw     u  (1) 

The curvature of the deflected plate   and the shear 

strains   are defined, respectively, as  

d
L 

 (2) 

w   
 (3) 

where   / /
T

x y       , and 
d

L  is a differential 

operator matrix defined by 

/ 0

0 /

/ /

d

x

y

y x

  
    
     

L  (4) 

The Galerkin weak form for the dynamic equilibrium 

equation of the Mindlin plates resting on a viscoelastic 

foundation can be written as 

 
Figure 1. Model of a Mindlin plate resting on a viscoelastic foundation and positive directions of vertical displacement w  and 

two rotations ,x y  . 
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(5) 

 

where  ( , ) 0 0
T

p x yb  is the vector of the distributed 

load ( , )p x y  applied on the plate; m is the mass matrix 

containing the mass density of the material   and plate 

thickness h  
3 3

diag , ,
12 12

h h
h
 

  
 

m  (6) 

and 
bD , 

sD   are the material matrices related to the 

flexural and shear rigidity, respectively, and are given by  

in which E  is the Young’s modulus;   is poison’s 

ratio; 5 / 6k   is shear correction factor. 

 

(7) 

in which E  is the Young’s modulus;   is poison’s 

ratio; 5 / 6k   is shear correction factor. 

 

B. The friction force acting on the pavement 

The vehicle is assumed to be traveling at an initial 

constant velocity and the vehicle brakes are then 

suddenly applied at a certain instant of time. Depending 

on the coefficient of static friction between the wheels 

and the pavement, sliding of wheels may subsequently 

occur. The friction forces produced between the wheels 

and the pavement depend on whether sliding of wheels 

occurs. Sliding occurs when   and vice versa, where H 

denotes the total horizontal inertial force, N the total 

vertical contact force and   the coefficient of static 

friction between wheel and pavement. The friction force 

produced between the ith wheel of the vehicle and the 

pavement may be written as 

wi s

i

k wi s

H
F for H N

f N

F for H N



 

  
 

 
(8) 

ve de
H m a  (9) 

1

n

wi

i

N F


  (10) 

in which ve
m  is the weight of the vehicle; de

a  is the 

vehicle deceleration; 
wi

F  is the vertical contact force at 

the ith wheel; 
k

  is the coefficient of kinetic friction 

between the wheel and the pavement.   

In case of a concentrated load P moving on the plate, 

the vertical contact force 
wi

F  at the ith wheel and the 

total vertical contact force N is assumed as 

wi
N F P   (11) 

Substituting Eq. (11)into Eq. (8), the magnitude of 

the vehicle deceleration which causes the sliding of 

wheels is given as   

de s
a g  (12) 

Figure 2 shows the model of the friction force acting 

on the pavement. In this study, the effect of the axial 

force on the dynamic response of the plate is neglected. 

The friction force acting on the pavement is modeled as a 

concentrated moment 
wi

M   at the contact point and 

defined as 

w w
2

i i

h
M f  (13) 

In view of moving load problem, the plate is 

subjected to a concentrated load P moving along the 

midline in x-direction and experienced to abrupt braking. 

The load vector b  in Eq. (5) is rewritten as  

( ) ( 0) ( ) ( 0) 0
2

T

wi

h
P x s y f x s y          

b  (14) 

 

Figure 2. The model of the friction force acting on the pavement. 

 

 

Figure 3. Discretization of a plate into e
N  moving elements. 
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where s  is the distance traveled by the load at any 

instant t ;   denotes the Dirac-delta function that equals 

unity at x s  and 0y  , and zero elsewhere; t  is the 

travel time of the moving load.   

 

C. Moving element method for the Mindlin plate resting 

on a viscoelastic foundation subjected to moving load 

In this paper, the one-dimensional MEM proposed by 

Koh et al. [13] is extended to solve the two dimensional 

problems of the Mindlin plate resting on the viscoelastic 

foundation subjected to moving load. The bounded 

domain   of the plate is discretized into e
N  moving 

elements such that 
1

eN

ee
    and 

i j
   , 

i j  as shown in Figure 3.  

In view of the moving element method (MEM), a 

moving coordinates system  ,X Y  is attached to the 

applied point of the moving load P and moves at the 

same speed as the moving load. The relationship 

between the moving coordinate  ,X Y  and the fixed 

coordinate  ,x y  is given by 

21

2
o

o

X x s

Y y

s V t at

V V at

 


 

 

 
(15) 

where , ,
o

V V a  are the initial velocity, the velocity at 

any instant t , the acceleration/deceleration of the 

moving load, respectively. 

In view of Eq. (15), Eq. (5) is rewritten as 

 

 

 

 

(16) 

 

 By means of the FEM, the quadrilateral nine-node 

element, Q9, of the serendipity family is employed in 

this numerical model to ensure both the deflection and 

slope compatibility on the adjacent elements. Figure 4(a) 

and Figure 4(b) show the Q9 elements in the global 

coordinates  ,x y  system and in the natural coordinates 

 ,   system. 

All Q9 elements are transformed from the global 

coordinates  ,x y  into the natural coordinates  ,  . 

The shape functions for the Q9 element in the natural 

coordinates  ,   can be derived as 

        

        

        

1 2 3

2 2

4 5 6

2 2 2 2
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1 1 1
1 1 , 1 1 , 1 1 ,

4 4 4

1 1 1
1 1 , 1 1 , 1 1

4 2 2

1 1
1 1 , 1 1 , 1 1

2 2

N N N

N N N

N N N

        

        

       

        

        

        

 

(17) 

Using the shape functions, the displacement vector 
T

x yw     u  and the vertical displacement w  

within each element can be interpolated from the nodal 

displacements of the element, respectively, as 

e
u = Nd  (18) 

w e
w = N d  (19) 

where N , wN  are the matrices containing the shape 

functions as 

1 2 9

1 2 9

1 2 9

0 0 0 0 ... 0 0

0 0 0 0 ... 0 0

0 0 0 0 ... 0 0

N N N

N N N

N N N

 
   
  

N
 

(20) 

 1 2 90 0 0 0 ... 0 0w N N NN  (21) 

and ed  is the node displacement vector of the element 

as  

1 1 1 2 2 2 9 9 9...
T

e x y x y x yw w w        d

 
(22) 

The bending and shear strains can be expressed in 

the matrix forms as 

b e
B d , 

s e
 B d  (23) 

in which 

 

Figure 4. The quadrilateral nine-node elements, Q9, of the serendipity family: (a) Q9 element in global coordinates (x, y); (b) 

Q9 element in natural coordinates (ξ, η). 
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(24) 

91 2
1 2 9

91 2
1 2 9

0 0 ... 0

0 0 ... 0
s

NN N
N N N

x x x

NN N
N N N

y y y

  
    

  
    

B

 

(25) 

Substituting Eq. (18), Eq. (19)and Eq. (23) into Eq. 

(16) and using simple rearrangement, the Galerkin 

weakform for the Mindlin plate element can be 

expressed as 
2

,

, ,

,

d d d d

d d

2 d d d d

e e e e

e e

e e e e

T T T T

b b b e s s s e rr e f w w e

eT T

f w w r e r e

T T T T

r e f w w e e e e e

V k

c V a

V c

   

 

   

          
 
      
 
   
            
   

B D B B D B m N N N N

d
N N m N N

+ m N N N N d m N N d = N b

 

(26) 

The element mass, damping and stiffness matrices in 

the moving coordinate system can be expressed as 

   

M
e
= m N

T
Nd W

e
W

e

ò
 

(27) 

   

C
e

= - 2mV N
T
N

,r
d W

e
W

ò + c
f

N
w

T
N

w
d W

e
W

e

ò
 

(28) 

2

,

, ,

d d d

d d d

e e e

e e e

T T T

e b b b e s s s e rr e

T T T

f w w e f w w r e r e

V

k c V a

  

  

       

       

K B D B B D B m N N

N N N N m N N

 

(29) 

where  
,r

,  
,rr

 denote partial derivative and second 

partial derivative with respect to r , respectively. 

Assembling all element matrices gives the equation 

of the motion of the plate as 

 (30) 

where ,  and d  denote the global acceleration, 

global velocity and global displacement vectors of the 

nodal, respectively; M , C and K the global mass, global 

damping and global stiffness matrices, respectively; and 

P the global load vector. The above dynamic equation 

can be solved by any direct integration methods such as 

Newmark- method. 

 

III. NUMERICAL RESULTS 

In this section, several numerical examples are 

carried out in order to illustrate the performance of the 

MEM for the dynamic analysis of Mindlin plates resting 

on a viscoelastic foundation subjected to moving load 

during abrupt braking. The first example considers the 

dynamic responses of a Mindlin plate resting on an 

elastic foundation subjected to a moving load to verify 

the accuracy of the proposed method. The present results 

are compared with other published results in the 

literature. Next, the dynamic responses of plates resting 

on a viscoelastic foundation subjected to a moving load 

during abrupt braking are examined. The effects of 

wheel sliding, load deceleration magnitude, friction 

coefficient, and plate thickness on the dynamic responses 

of plate are investigated. In all numerical examples, the 

material properties of the plate are Young’s modulus 
103.1 10E   N/m

2
, Poisson’s ratio 0.25   and mass 

density 2440  kg/m
3 
(Huang and Thambiratnam [4]). 

 

A. Verification 

For the purpose of comparison, we now consider a 

rectangular plate resting on an elastic foundation as 

shown in Figure 5. The plate has the dimensions of 

length 100L  m, width 10B  m, thickness 0.3h 
m, and rests on an elastic foundation with the stiffness 

71 10
f

k   N/m
3
. A load 1000P  N moves along the 

longitudinal midline of the plate with constant velocity 

20V  m/s. The shorter edges of the plate (x = 0 and x = 

100m) are simply supported while the remaining edges 

are free. In this analysis, the plate is discretized into 

 
 

Figure 5. Model of a plate resting on an elastic foundation subjected to a moving load. 
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100 10  moving elements of size 1mx1m. The 

equations of motion are solved using Newmark’s 

constant acceleration method employing a time-step of 

0.0025s. Note that the MEM mesh and the time-step size 

are chosen based on the outcome of a convergence study. 

Figure 6 shows the comparison of the deflected 

shape along longitudinal midline of the plate obtained in 

this study with that obtained by Huang and 

Thambiratnam [4]. The comparison shows that these 

results agree well with each other and the accuracy of the 

proposed MEM approach has been carried out.  

 

B. Dynamic responses of plates subjected to moving load 

during abrupt braking 

Firstly, the effects of load deceleration on the dynamic 

responses of plates resting on a viscoelastic foundation 

are examined. The plate has the dimensions given by 

length 30L  m, width 10B  m, thickness 0.5h  m, 

and rests on a viscoelastic foundation having stiffness 
79.5 10

f
k   N/m

3
 and damping coefficient 61 10

f
c  

Ns/m
3
. A concentrated load 83333P  N 

(approximately the rear wheel load of the Dong Feng 

EQ1168G1 truck  Zhao et al. [25]) moves along the 

longitudinal midline of the plate. The load is assumed to 

be traveling initially at a constant speed 
0 20m / sV  . 

After time 1t , which is taken to be long enough for the 

vibration of the plate to attain steady-state, the load is 

 

 

Figure 6. Deflected shapes along longitudinal midline of the 

plate when the moving load is applied at x = 50m. 

Figure 7. Load speed profile 

 

  
Figure 8. Effects of the load deceleration magnitude on the 

dynamic coefficient 

 

Figure 9. Effects of the kinetic friction coefficient on the 

dynamic coefficient 

 

 
Figure 10. Effect of the plate thickness on the dynamic coefficient 
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then assumed to decelerate uniformly at 
de

a  and finally 

comes to a halt at time 2t  as shown in Figure 7. The 

coefficient of friction between the wheel and pavement 

depends on the pair of surfaces in contact and needs to 

be measured experimentally. For concrete and rubber, 

the coefficient of static friction, μs, ranges typically from 

0.3 (wet) to 1 (dry). The coefficient of kinetic friction, μk, 

ranges from 0.45 (wet) to 0.85 (dry) [26]. 

It is of great interest to investigate the maximum 

central displacement of the plate subject to a moving 

load during abrupt braking. Let wcentralstatic be the 

maximum central displacement of the plate when the 

moving load is a static load at the center of the plate and 

wcentraldynamic is the maximum central displacement of the 

plate subjected to moving load. Define the dynamic 

coefficient as the ratio 

centerdynamic

centerstatic

Dynamiccoefficient =
w

w
 (31) 

 

Figure 8 shows the effects of the load deceleration 

magnitude on the dynamic coefficient during the onset of 

deceleration with six cases of load deceleration 

magnitude: ade = -2.5, -5.0, -7.5, -9.81, -15, -20 m/s. In 

this example, the coefficient of static friction and kinetic 

friction are μs = 1, μk = 0.85, respectively. From Eq. (12), 

the load deceleration magnitude which causes the wheel 

sliding is asliding = -9.81 m/s. As to be expected, Figure 8 

shows that the dynamic coefficient increases rapidly 

when the load starts to decelerate. Furthermore, it can be 

seen that when the load deceleration magnitude is 

smaller than asliding (sliding does not occur), the 

maximum dynamic coefficient increases as the load 

deceleration magnitude increases. In contrast, when the 

load deceleration magnitude is larger than asliding (sliding 

occurs), the maximum dynamic coefficient is constant as 

the load deceleration magnitude increases. The reason 

for this may be explained as due to the friction force 

between the wheel and pavement is constant when the 

sliding occurs. Consequently, the maximum dynamic 

coefficient of plate is constant. 

Figure 9 shows the effects of the kinetic friction 

coefficient on the dynamic coefficient with six cases of 

the kinetic friction coefficient: μk = 0, 0.45, 0.55, 0.65, 

0.75, 0.85. In case of the kinetic friction coefficient μk = 

0, the plate is subjected to the decelerated moving load 

without the friction force. The load deceleration 

magnitude ade = -20 m/s (sliding occurs) is employed in 

this example. As to be expected, it can be seen from 

Figure 9 that the maximum dynamic coefficient 

increases as the kinetic friction coefficient increases. It 

can be inferred as due to the friction force increases 

when the kinetic friction coefficient increases. 

Consequently, the maximum dynamic coefficient of 

plate increases. 

Finally, the friction moment acting on the plate 

caused by the friction force depends significantly on the 

thickness of the plate. Error! Reference source not found. 

shows the effects of the plate thickness on the dynamic 

coefficient with five cases of the plate thickness: h = 0.2, 

0.4, 0.6, 0.8, 1.0 m. The load deceleration magnitude is 

ade = -5 m/s (sliding does not occur). As to be expected, 

the dynamic coefficient increases as the plate thickness 

increases. However, it is noted that the dynamic 

coefficient increases significantly when the plate 

thickness increases from 0.2m to 0.6m. In contrast, the 

dynamic coefficient increases lightly when the plate 

thickness is more than 0.6m. The reason for this may be 

explained as due to the plate thickness increases, both the 

flexural rigidity of the plate and the friction moment 

caused by the friction force acting on the plate increase. 

When the plate thickness increases from 0.2m to 0.6m, 

the increase of the friction moment is more than the 

increase of the flexural rigidity of plate. The result is that 

the dynamic coefficient increases significantly as the 

plate thickness increases and vice versa. 

 

IV. CONCLUSION 

The paper presents an extension of the one-dimensional 

MEM for investigated the dynamic responses of Mindlin 

plate resting on a viscoelastic foundation subjected to 

moving loads during abrupt braking. The proposed 

computational approach offers an effective and 

convenient means for calculating the dynamic responses 

of the pavement structure subjected to moving loads 

during abrupt braking and similar problems involving 

moving systems on a Mindlin plate. The parametric 

studies are conducted to determine the effects of various 

parameters on the dynamic responses of the plate and 

some conclusions can be drawn as follows:  

 The accuracy of the proposed method is verified by 

comparing the present results with those of other 

methods in the literature.    

 The dynamic coefficient increases rapidly as the load 

start to decelerate. When the load deceleration 

magnitude is smaller than slidinga  (sliding does not 

occur), the maximum dynamic coefficient increases 

as the load deceleration magnitude increases. In 

contrast, when the load deceleration magnitude is 

larger than slidinga  (sliding occurs), the maximum 

dynamic coefficient is constant as the load 

deceleration magnitude increases. 

 The kinetic friction coefficient and the plate thickness 

have a significant effect on the dynamic coefficient. 

The results show that the maximum dynamic 

coefficient increases when the kinetic friction 

coefficient and the plate thickness increases. 
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