
Quantum Science and Technology

ACCEPTED MANUSCRIPT

Analog errors in Ising machines
To cite this article before publication: Tameem Albash et al 2019 Quantum Sci. Technol. in press https://doi.org/10.1088/2058-9565/ab13ea

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2018 IOP Publishing Ltd.

 

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully
protected by copyright and cannot be reused or reposted elsewhere.
As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript is available for reuse
under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they
adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions will likely be
required. All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 129.180.1.217 on 31/03/2019 at 12:44

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio Universidad de Zaragoza

https://core.ac.uk/display/304718875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1088/2058-9565/ab13ea
https://creativecommons.org/licences/by-nc-nd/3.0
https://doi.org/10.1088/2058-9565/ab13ea


Analog Errors in Ising Machines

Tameem Albash,1, 2, 3 Victor Martin-Mayor,4, 5 and Itay Hen1, 2, 3

1Information Sciences Institute, University of Southern California, Marina del Rey, California 90292, USA
2Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA

3Center for Quantum Information Science & Technology,
University of Southern California, Los Angeles, California 90089, USA
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Recent technological breakthroughs have precipitated the availability of specialized devices that
promise to solve NP-Hard problems faster than standard computers. These ‘Ising Machines’ are
however analog in nature and as such inevitably have implementation errors. We find that their
success probability decays exponentially with problem size for a fixed error level, and we derive a
sufficient scaling law for the error in order to maintain a fixed success probability. We corroborate
our results with experiment and numerical simulations and discuss the practical implications of our
findings.

Introduction.—Recently there has been a flourish-
ing of experimental quantum information processing de-
vices [1–5]. The scientific community is readying itself for
the first demonstration of ‘quantum supremacy’ [6–13] in
the Noisy Intermediate-Scale Quantum (NISQ) era [14],
whereby quantum information processing devices will
start performing tasks not accessible even for the largest
classical supercomputers. At the forefront of this effort
has been the development of analog quantum devices per-
forming quantum annealing [15, 16], already realized on
various platforms such as arrays of superconducting flux
qubits [5, 17–23], to solve optimization problems, that is,
to find bit assignments that minimize the cost of discrete
combinatorial problems or equivalently the ground states
(GSs) of Ising Hamiltonians. With this growing inter-
est in developing special purpose devices for solving such
problems, alternatives have also emerged [24–26], touting
improved performance over standard computers [27, 28].

These Ising machines are analog in nature: the pro-
grammable parameters of the cost functions they aim to
solve are controlled by continuous fields, implying that
the intended cost function is only implemented to a cer-
tain precision. In this Letter, we study the effect of the
analog nature of these devices on their ability to find
global minima. We argue that even when such devices
are assumed ideal, i.e., always find a minimum of the im-
plemented cost function, the obtained configurations be-
come exponentially unlikely to be global minima of the
intended problem. In the absence of fault tolerant error
correction, this represents a fundamental limitation to
the scalability of Ising machines. We corroborate our an-
alytical findings with numerical simulations as well as ex-
periment carried out on a D-Wave 2000Q processor [29].
We further derive a scaling law for how the magnitude
of implementation errors must be reduced with problem
size in order to maintain acceptable performance. We
find that errors must scale as a power-law with prob-
lem size, with a model dependent exponent. Our results
imply that fixed-size classical repetition codes are not

a feasible approach to help these devices maintain their
performance asymptotically with size.
Analog Ising machines.—Analog Ising machines

suffer by nature from implementation errors caused by
the conversion of the intended problem parameters to
analog signals [30]. The Hamiltonian implemented by
these devices is generally of the form:

Hσ(s) = H0 + δHσ =
∑
〈ij〉

J̃ijsisj +
∑
i

h̃isi (1)

=
∑
〈ij〉

(Jij + δJij) sisj +
∑
i

(hi + δhi) si ,

where {si = ±1} are binary variables that are to be op-
timized over and 〈ij〉 denotes the underlying connectiv-
ity graph of the model. We denote by {Jij , hi} the in-
tended Ising couplings between connected spins and the
intended local fields on individual spins respectively of
the intended Hamiltonian H0, and we denote by {J̃ij , h̃i}
the implemented values, obeying J̃ij = Jij + δJij and

h̃i = hi + δhi. The variables δJ and δh represent the
noise due to the analog nature of the device, and we take
for simplicity δJ, δh ∼ N (0, σ2) [31]. We assume the
noise for the different δJij and δhi is statistically inde-
pendent [32].

To isolate the effect of analog noise on performance
[33–36], where success is defined as finding a GS of the
intended Hamiltonian, we assume that the machine is
otherwise ideal, i.e., that it always finds the GS of the
implemented Hamiltonian. This allows us to draw from
classical spin glass theory, where it is known that spin
glasses are susceptible to a phenomenon referred to as
J-chaos, in which perturbations to the intended Hamil-
tonian change the identity of the GS [37–40].
Analytical treatment.— For concreteness, we con-

sider a spin-glass Hamiltonian of the form of Eq. (1),
where the intended couplings take values Jij = {1, 0,−1}
and hi = 0 [41]. Let us denote a GS of the intended
Hamiltonian (in general, there could be exponentially
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many of those) by sG and an excited state (ES) of the
intended Hamiltonian by sE. The energy gap between
the two is

∆E0 = H0(sE)−H0(sG) > 0 . (2)

The ES has a chance of becoming the GS of the imple-
mented Hamiltonian only if ∆Eσ = Hσ(sE)−Hσ(sG) <
0. Expressed differently,

∆Eσ = ∆E0 −
∑
〈ij〉

δJijs
G
i s

G
j (1− qlink

ij )

−
∑
i

δhis
G
i (1− qi) , (3)

where we have introduced the spin overlap qi = sG
i s

E
i and

the link-overlap qlink
ij = sG

i s
G
j s

E
i s

E
j corresponding to the

bond (ij). When qlink
ij = 1, it implies that if the bond

(ij) is satisfied (unsatisfied) by the GS of the intended
Hamiltonian, it is also satisfied (unsatisfied) by the ES.
Similarly qlink

i,j = −1 implies that the corresponding bond
is satisfied in one spin assignment and unsatisfied for the
other.

We now define W to be the total number of bonds with
qlink
ij = −1 and D to be the total number of spins with
qi = −1 (or equivalently the Hamming distance between
the ES and the GS). Because (i) the δJij and δhi are
statistically independent from sG

i and sG
i s

G
j and (ii) the

δJij for different bonds and δhi for different spins are
mutually independent, we can write

∆Eσ = ∆E0 + 2σ
√
W +Dη , (4)

where η is a normal random variable N (0, 1). Defining
the parameter z = ∆E0

2σ
√
W+D

, the probability p(z) of hav-

ing ∆Eσ < 0 is given by

p(z) ≡ Prob[∆Eσ < 0] =

∫ −z
−∞

dη√
2π

e−η
2/2 . (5)

Therefore, the likelihood that a particular ES lies below a
GS for the implemented Hamiltonian ranges from being
infinitesimal [more precisely p(z) ∼ e−z

2/2 for z � 1], to
50% (for z � 1). In fact, p(z) become sizable at z = 1.

For physical devices, the number of couplers scales lin-
early with number of spins n, so at most W ∼ n. Simi-
larly, D can at most scale as ∼ n. More specifically, we
identify two kinds of ESs (see Ref. [34]). On the one hand,
there are ‘topologically trivial’ ESs for which W ∼ 1. For
these, there are no energy barriers separating them from
a GS, i.e., gradient descent takes the ES to a GS and
therefore, p(z) is extremely small for these ESs up to
σ ∼ 1. On the other hand, there exist topologically non-
trivial ESs for which W ∼ n. These low lying ESs pro-
duce a sizable p(z) already for σ ∼ 1/

√
W +D ∼ 1/

√
n.

From now on, we consider only the latter kind.
So far we have only considered a pair of states, a sin-

gle GS and a single ES (both out of possibly exponen-
tially many [42–44]). However, the relative degeneracies

of these must be taken into account. To do that, in lieu
of relying on a particular model [39], we make a few sim-
plifying assumptions. First, let us restrict to the ESs
with a fixed ∆E0 (in our case ∆E0 ≥ 2) and assume
there are NES of those. We further assume that: i) W
does not fluctuate significantly between different ESs. In
other words, p(z) defined in Eq. (5) can be roughly re-
garded as non-fluctuating. ii) In Eq. (4), each ES defines
a random variable η. We now assume that the η’s for
different ESs can be regarded as independent. In other
words, NES becomes the effective number of statistically
independent η’s within the entire population of ESs of
the intended Hamiltonian (we later show that the conclu-
sions that follow from these assumptions are consistent
with numerical results).

Under these assumptions, the probability of a single
GS to remain energetically favorable to every ES for the
implemented Hamiltonian is

p1 GS ≡ [1− p(z)]NES . (6)

Since we expect NES to scale at least polynomially (if
not exponentially) with system size, we conclude that
the likelihood for a single GS to remain optimal for the
implemented Hamiltonian decays exponentially with sys-
tem size.

In the most general case, there may be an effective
number of GSs, NGS, only one of which is required to
remain optimal for an analog Ising machine to succeed.
The probability that at least one GS remains more op-
timal than all the ESs for the implemented Hamiltonian
is:

pS = 1− [1− p1 GS]NGS . (7)

We expect that the growth of NGS is unlikely to overcome
the decay of p1 GS with system size [45], and it would then
follow that pS will also become exponentially small with
system size, i.e., analog Ising machines are expected to
fail for any fixed noise level as we scale up the system
size.

At this point, we address how must the noise strength
σ scale in order to still have a sub-exponential probability
to succeed. In the regime where the asymptotic estimate
p(z) ∼ e−z

2/2 � 1 holds, i.e. a regime where the failure
rate is small, rewriting Eq. (7) for a fixed pS requires that
z behave as:

z2 ≈ 2 (log(NES)− log(1− pS)/NGS) . (8)

If in addition the effective number of ESs scales as NES ∼
eBn

k

(with k = 0 denoting sub-exponential scaling) [46],
then we conclude the noise level must be scaled down as

σS ∼ 1/
√

(W +D)nk . (9)

A worst-case estimate would be to take W,D ∼ n and
k = 1, in which case an estimate of the required scal-
ing of the noise to maintain a sub-exponential success
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probability is

σ
(worst case)
S ∼ 1/n . (10)

Numerical and experimental results.— To illustrate
the validity of the above derivation and accompanying
simplifying assumptions, we present results of numerical
simulations done on instances with known GSs. Our first
problem class is of planted-solution instances [47] defined
on a Chimera lattice: an L×L grid of 8-spin unit cells in
a K4,4 formation and is the graph of currently available
D-Wave quantum annealers [48]. The instances have a
degenerate GS corresponding to all spins pointing up or
all spins pointing down (due to the Z2 symmetry of the
problem Hamiltonian). The couplings are restricted to
have magnitudes {1/3, 2/3, 1}. (See the SM for further
details [49].)

To simulate analog errors, we introduce a zero-mean
Gaussian noise with standard deviation σ as in Eq. (1)
to the implemented Hamiltonian, and we use the Hamze-
Freitas-Selby (HFS) [50, 51] algorithm to find the GSs of
the implemented Hamiltonian. While the HFS algorithm
is not guaranteed to find the GS with certainty, we can
know with certainty if the GS of the implemented Hamil-
tonian has changed from that of the desired Hamiltonian
if (1) the returned state by the algorithm has a lower en-
ergy on the implemented Hamiltonian than the two GSs
of the intended Hamiltonian, and (2) the returned state
is an ES of the intended Hamiltonian. In order to en-
sure that we only consider topologically non-trivial ESs,
we perform 100 sweeps of steepest-gradient updates: we
flip each spin, and if the energy is reduced (according
to the intended Hamiltonian) we accept the update and
reject otherwise. In cases where the returned state fails
either condition, we assume that the GS of the intended
Hamiltonian has not changed. Since this may in fact be
incorrect, our results are an upper bound on the proba-
bility that the GS has not changed. For each grid size
L ∈ [8, 14], we generate 102 instances representing our in-
tended Hamiltonians, and for each instance we generate
103 noisy realizations of the implemented Hamiltonian.

In Fig. 1, we show the probability that the GS of the in-
tended Hamiltonian remains the GS of the implemented
Hamiltonian for several sizes and noise strengths. Our
results show an exponential dependence as a function of
σ2n for large pS and approaching σ7/4n for small pS,
consistently with the above analytical derivation. This
change in scaling may be expected since as the system
size or noise level grows the effective number of ESs grows
as well. We find that for these instances W and D scale
linearly with n (shown in the inset of Fig. 1), which sug-
gests that the number of effective ESs grows from poly-
nomial to a stretched-exponential with k = 1/7 [Eq. (9)].
For these instances then, the noise level must scale as
σS ∼ n−4/7 in order to maintain a fixed performance
level.

0 5 10 15 20 25 30
10

-3

10
-2

10
-1

10
0

600 1000 1400
0

200

400

0

15

30

FIG. 1. Upper bound on the median probability pS over 102

instances that the GS of the intended Hamiltonian remains
the GS of the implemented Hamiltonian for varying planted-
solution instances on different problem sizes n and Gaussian
noise strengths σ ∈ [0.01, 0.2]. Error bars correspond to two
standard deviate error bars obtained from bootstrapping over
the 102 instances. Inset: the scaling of the median D and W
from the intended GSs for σ = 0.1. Solid line corresponds to
a linear fit with slope α ≈ 0.23 and α ≈ 0.02 for D and W
respectively.

While our analysis so far has focused only on whether
the intended GS is no longer a GS of the implemented
Hamiltonian, it is instructive to study the energy distri-
bution (according to the intended Hamiltonian) of the
topologically non-trivial ESs that become the new GSs
of the implemented Hamiltonian. This gives us a sense of
how far away in energy the implemented GSs are from the
intended GS. We show this in Fig. 2, where we see that
for a fixed system size and growing noise strength, the
distribution becomes more Gaussian-like with the mean
moving farther away from the GS energy. Similar behav-
ior occurs for a fixed noise strength and growing system
size, which we provide in the SM. This effect is similar to
the behavior of a thermal energy distribution for a fixed
temperature and increasing system size [52].

We corroborate our analysis with runs on a D-Wave
2000Q quantum annealing processor [5]. The device has
an intrinsic noise level [34, 53], however we introduce ad-
ditional Gaussian noise to simulate the effect of different
noise levels. As shown in Fig. 3, even in the absence of
noise, the device rarely finds a GS, which we can attribute
to both thermal [52] and analog errors on the device. As
the noise level is increased, the distribution of states ob-
served moves even farther away from the GS energy, in a
manner consistent with Fig. 2.

Conclusions and outlook.— In this work, we have
pointed to a fundamental limitation of analog Ising Ma-
chines, whereby implementation errors detrimentally af-
fects their scaling performance. We have shown that even
under the assumption that these devices are otherwise

Page 3 of 7 AUTHOR SUBMITTED MANUSCRIPT - QST-100525.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



4

FIG. 2. Histogram of the energy of the GSs of the imple-
mented (noisy) Hamiltonian as measured by the intended
Hamiltonian. Here we use 103 noise realizations for each of the
102 planted-solution Chimera instances defined on a 12 × 12
grid. Only the topologically non-trivial ESs of the intended
Hamiltonian are shown. Inset: the scaling of the mean and
standard deviation of the distribution of GS energies. The er-
ror bars correspond to two standard deviate error bars gener-
ated by a bootstrap over the 105 data points. The solid curves
are fits to µE = a + σb and σE = c +

√
σd for the mean and

standard deviation respectively, with a = −28.82, b = 429.47
and c = −18.57, d = 84.28.

ideal, i.e., that they instantaneously find a minimizing
configuration of the implemented problem, their success
probability decays exponentially with system size for any
fixed nonzero noise level. Such errors have important
ramifications beyond the context of optimization; in the
setting of generating thermal (Boltzmann) samples, we
can expect that analog errors may distort the sampled
distribution [54]. Even quantum logic gates cannot be
implemented perfectly, but the difference is that fault-
tolerant error correction can correct for these errors [55].

We emphasize that our results do not mean that
‘disorder-chaos’ should be expected for every mildly-
disordered system. (We provide an example in terms of
the 1d chain in the SM that is meant to illustrate this.)
The key point is the nature of the low-energy landscape
of the problem under consideration. Broadly speak-
ing, ‘disorder-chaos’ requires the problem Hamiltonian
to have a large number of very low-energy excitations,
each of them wildly differing from the GS (i.e. Ham-
ming distance of order n). Under such circumstances, it
is intuitively clear that even tiny errors may cause one of
these non-trivial excited states to take over as the true
GS of the implemented Hamiltonian. In fact, the hypoth-
esis we made to derive Eqs. (3-7) made quantitative the
above-outlined physical picture.

Now, it turns out that disorder chaos is a generic
feature of spin-glasses. Because spin-glasses are an
archetype of hard optimization problems, we should ex-

FIG. 3. Residual energy of the states returned by the D-Wave
2000Q quantum annealing processor at NASA’s Ames Re-
search Center after post-processing with 100 sweeps of steep-
est descent for a single instance. The instance here is defined
on a 12 × 12 subgraph of the processor (a total possible of
n = 1142 spins), and it is generated in an identical way to the
Chimera instances studied in Figs. 1 and 2. Gaussian noise
with mean 0 and standard deviation σ is added to both the
couplings and local fields before the instance is submitted to
the processor. For this single instance, 104 noise realizations
were generated and 102 anneals were performed for each noise
realization. (Further details are given in the SM.)

pect to encounter disorder chaos in every optimization
problem hard-enough to deserve to be solved with a spe-
cialized analog device such as an Ising machine. Indeed,
the 3-regular 3-XORSAT instances that we study in the
SM exhibit disorder chaos as well. Fortunately, as uni-
versality suggests, the scaling laws that we find for 3-
XORSAT seem compatible with our findings for instances
on the Chimera lattice.

Our results for the Chimera instances differ slightly
from the results on J-chaos (sometimes also called bond-
chaos) for ground state of the 2d Edward-Anderson
model by Krzakala & Bouchaud [39] (a finite temper-
ature analysis was carried out in Ref. [56]), where they
found a scaling of σ2n for the regime of fully developed
J-chaos. This scaling suggests a sub-exponential scaling
for the number of ESs [k = 0 in Eq. (9)]. This discrep-
ancy might be accounted for by the fact, at exactly zero
temperature, that the ruling fixed point for the Renor-
malization Group flow for Gaussian and binary couplings
is different [57]. Extending beyond 2d, the example of 3-
regular XORSAT, which we present in the SM, exhibits
a scaling closer to σ4/3n, indicating a value of k = 1/2
for this class of instances. By deriving appropriate scal-
ing laws, we have found that in order to counteract this
reduction in performance as the system size grows, the
noise level must be scaled down as a power law (with the
worst case being 1/n).

We can consider how known error correction schemes
would effectively reduce the magnitude of this noise. One
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way is to use classical repetition codes that implement
multiple copies of the intended Hamiltonian [58–62]. This
has the feature of effectively rescaling the implemented
Hamiltonian norm by a factor K and hence effectively
reducing the noise strength by a factor of 1/

√
K [58].

Therefore, a rescaling of K ∼ n2 is needed to achieve the
necessary noise reduction for the worst case [Eq. (10)] and
ofK ∼ n8/7 for the Chimera example studied numerically
here (Fig. 1). More generally, for a K that scales as
nα, the encoded Hamiltonian using classical repetition
schemes [58, 62] would require a Hamiltonian for which
the energy scale grows faster than linear with n. For
scalable architectures, this would require the number of
physical spins per encoded spin to grow as a power law
with n. This highlights the importance of scalable error
correction to maintain the performance of an algorithm
as the system size scales.

We conclude by emphasizing that our analysis is
asymptotic in nature and is valid in the large n limit.
If only a specific problem class of a certain finite size
are of interest, then it would be possible in principle to
engineer a device with a sufficiently low noise for that
problem class and size. It remains to be seen whether
analog Ising machines will be a viable alternative to
digital Ising simulations in light of the fundamental
problems illustrated by our work.

Acknowledgements.— Computation for the work
described in this paper was supported by the University
of Southern California’s Center for High-Performance
Computing (hpc.usc.edu) and by the Oak Ridge Lead-
ership Computing Facility, which is a DOE Office of Sci-
ence User Facility supported under Contract DE-AC05-
00OR22725. The research is based upon work partially
supported by the Office of the Director of National Intelli-
gence (ODNI), Intelligence Advanced Research Projects
Activity (IARPA), via the U.S. Army Research Office
contract W911NF-17-C-0050. The views and conclusions
contained herein are those of the authors and should
not be interpreted as necessarily representing the offi-
cial policies or endorsements, either expressed or im-
plied, of the ODNI, IARPA, or the U.S. Government.
The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwith-
standing any copyright annotation thereon. We acknowl-
edge the support of the Universities Space Research Asso-
ciation (USRA) Quantum AI Lab Research Opportunity
Program. V. M.-M. was partially supported by MINECO
(Spain) through Grant No. FIS2015-65078- C2-1-P (this
contract partially funded by FEDER).

[1] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme,
Maika Takita, Markus Brink, Jerry M. Chow, and

Jay M. Gambetta, “Hardware-efficient variational quan-
tum eigensolver for small molecules and quantum mag-
nets,” Nature 549, 242 EP – (2017).

[2] J. S. Otterbach, R. Manenti, N. Alidoust, A. Bestwick,
M. Block, B. Bloom, S. Caldwell, N. Didier, E. Schuyler
Fried, S. Hong, P. Karalekas, C. B. Osborn, A. Pa-
pageorge, E. C. Peterson, G. Prawiroatmodjo, N. Ru-
bin, C. A. Ryan, D. Scarabelli, M. Scheer, E. A. Sete,
P. Sivarajah, R. S. Smith, A. Staley, N. Tezak, W. J.
Zeng, A. Hudson, B. R. Johnson, M. Reagor, M. P. da
Silva, and C. Rigetti, “Unsupervised Machine Learn-
ing on a Hybrid Quantum Computer,” ArXiv e-prints
(2017), arXiv:1712.05771 [quant-ph].

[3] C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V.
Isakov, V. Smelyanskiy, R. Barends, B. Burkett,
Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. Fowler,
B. Foxen, R. Graff, E. Jeffrey, J. Kelly, E. Lucero,
A. Megrant, J. Mutus, M. Neeley, C. Quintana, D. Sank,
A. Vainsencher, J. Wenner, T. C. White, H. Neven, and
J. M. Martinis, “A blueprint for demonstrating quantum
supremacy with superconducting qubits,” ArXiv e-prints
(2017), arXiv:1709.06678 [quant-ph].

[4] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush,
N. Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and
H. Neven, “Characterizing Quantum Supremacy in Near-
Term Devices,” ArXiv e-prints (2016), arXiv:1608.00263
[quant-ph].

[5] “D-wave systems previews 2000-qubit quantum system,”
.

[6] J. Preskill, “Quantum computing and the entanglement
frontier,” ArXiv e-prints (2012), arXiv:1203.5813 [quant-
ph].

[7] Michael J. Bremner, Ashley Montanaro, and Dan J.
Shepherd, “Achieving quantum supremacy with sparse
and noisy commuting quantum computations,” Quantum
1, 8 (2017).

[8] Xun Gao, Sheng-Tao Wang, and L.-M. Duan, “Quantum
supremacy for simulating a translation-invariant ising
spin model,” Phys. Rev. Lett. 118, 040502 (2017).

[9] Michael J. Bremner, Ashley Montanaro, and Dan J.
Shepherd, “Average-case complexity versus approximate
simulation of commuting quantum computations,” Phys.
Rev. Lett. 117, 080501 (2016).

[10] Tomoyuki Morimae, Keisuke Fujii, and Joseph F. Fitzsi-
mons, “Hardness of classically simulating the one-clean-
qubit model,” Phys. Rev. Lett. 112, 130502 (2014).

[11] Matthew A. Broome, Alessandro Fedrizzi, Saleh Rahimi-
Keshari, Justin Dove, Scott Aaronson, Timothy C.
Ralph, and Andrew G. White, “Photonic boson sam-
pling in a tunable circuit,” Science 339, 794–798 (2013).

[12] Justin B. Spring, Benjamin J. Metcalf, Peter C.
Humphreys, W. Steven Kolthammer, Xian-Min Jin,
Marco Barbieri, Animesh Datta, Nicholas Thomas-Peter,
Nathan K. Langford, Dmytro Kundys, James C. Gates,
Brian J. Smith, Peter G. R. Smith, and Ian A. Walms-
ley, “Boson sampling on a photonic chip,” Science 339,
798–801 (2013).

[13] S. Boixo, S. V. Isakov, V. N. Smelyanskiy, R. Babbush,
N. Ding, Z. Jiang, M. J. Bremner, J. M. Martinis, and
H. Neven, “Characterizing Quantum Supremacy in Near-
Term Devices,” ArXiv e-prints (2016), arXiv:1608.00263
[quant-ph].

[14] J. Preskill, “Quantum Computing in the NISQ era
and beyond,” ArXiv e-prints (2018), arXiv:1801.00862

Page 5 of 7 AUTHOR SUBMITTED MANUSCRIPT - QST-100525.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t

http://dx.doi.org/10.1038/nature23879
http://arxiv.org/abs/1712.05771
http://arxiv.org/abs/1709.06678
http://arxiv.org/abs/1608.00263
http://arxiv.org/abs/1608.00263
https://www.dwavesys.com/press-releases/d-wave-systems-previews-2000-qubit-quantum-system
https://www.dwavesys.com/press-releases/d-wave-systems-previews-2000-qubit-quantum-system
http://arxiv.org/abs/1203.5813
http://arxiv.org/abs/1203.5813
http://dx.doi.org/10.22331/q-2017-04-25-8
http://dx.doi.org/10.22331/q-2017-04-25-8
http://dx.doi.org/ 10.1103/PhysRevLett.118.040502
http://dx.doi.org/10.1103/PhysRevLett.117.080501
http://dx.doi.org/10.1103/PhysRevLett.117.080501
http://dx.doi.org/10.1103/PhysRevLett.112.130502
http://dx.doi.org/10.1126/science.1231440
http://dx.doi.org/10.1126/science.1231692
http://dx.doi.org/10.1126/science.1231692
http://arxiv.org/abs/1608.00263
http://arxiv.org/abs/1608.00263
http://arxiv.org/abs/1801.00862


6

[quant-ph].
[15] Tadashi Kadowaki and Hidetoshi Nishimori, “Quantum

annealing in the transverse Ising model,” Phys. Rev. E
58, 5355 (1998).

[16] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and
Michael Sipser, “Quantum Computation by Adiabatic
Evolution,” arXiv:quant-ph/0001106 (2000).

[17] S. K. Tolpygo, V. Bolkhovsky, T. J. Weir, L. M. John-
son, M. A. Gouker, and W. D. Oliver, “Fabrication pro-
cess and properties of fully-planarized deep-submicron
nb/al-alox/nb josephson junctions for vlsi circuits,” IEEE
Transactions on Applied Superconductivity 25, 1–12
(2015).

[18] S. K. Tolpygo, V. Bolkhovsky, T. J. Weir, C. J. Galbraith,
L. M. Johnson, M. A. Gouker, and V. K. Semenov, “In-
ductance of circuit structures for mit ll superconductor
electronics fabrication process with 8 niobium layers,”
IEEE Transactions on Applied Superconductivity 25, 1–
5 (2015).

[19] X. Y. Jin, A. Kamal, A. P. Sears, T. Gudmundsen,
D. Hover, J. Miloshi, R. Slattery, F. Yan, J. Yoder, T. P.
Orlando, S. Gustavsson, and W. D. Oliver, “Thermal
and residual excited-state population in a 3d transmon
qubit,” Phys. Rev. Lett. 114, 240501 (2015).

[20] M W Johnson, P Bunyk, F Maibaum, E Tolkacheva, A J
Berkley, E M Chapple, R Harris, J Johansson, T Lant-
ing, I Perminov, E Ladizinsky, T Oh, and G Rose, “A
scalable control system for a superconducting adiabatic
quantum optimization processor,” Superconductor Sci-
ence and Technology 23, 065004 (2010).

[21] A J Berkley, M W Johnson, P Bunyk, R Harris,
J Johansson, T Lanting, E Ladizinsky, E Tolkacheva,
M H S Amin, and G Rose, “A scalable readout sys-
tem for a superconducting adiabatic quantum optimiza-
tion system,” Superconductor Science and Technology
23, 105014 (2010).

[22] R. Harris, M. W. Johnson, T. Lanting, A. J. Berkley,
J. Johansson, P. Bunyk, E. Tolkacheva, E. Ladizinsky,
N. Ladizinsky, T. Oh, F. Cioata, I. Perminov, P. Spear,
C. Enderud, C. Rich, S. Uchaikin, M. C. Thom, E. M.
Chapple, J. Wang, B. Wilson, M. H. S. Amin, N. Dickson,
K. Karimi, B. Macready, C. J. S. Truncik, and G. Rose,
“Experimental investigation of an eight-qubit unit cell in
a superconducting optimization processor,” Phys. Rev.
B 82, 024511 (2010).

[23] P. I Bunyk, E. M. Hoskinson, M. W. Johnson, E. Tolka-
cheva, F. Altomare, AJ. Berkley, R. Harris, J. P. Hilton,
T. Lanting, AJ. Przybysz, and J. Whittaker, “Archi-
tectural considerations in the design of a superconduct-
ing quantum annealing processor,” IEEE Transactions on
Applied Superconductivity 24, 1–10 (Aug. 2014).

[24] Yoshihisa Yamamoto, Kazuyuki Aihara, Timothee Leleu,
Ken-ichi Kawarabayashi, Satoshi Kako, Martin Fe-
jer, Kyo Inoue, and Hiroki Takesue, “Coherent ising
machines—optical neural networks operating at the
quantum limit,” npj Quantum Information 3, 49 (2017).

[25] Peter L. McMahon, Alireza Marandi, Yoshitaka Harib-
ara, Ryan Hamerly, Carsten Langrock, Shuhei Ta-
mate, Takahiro Inagaki, Hiroki Takesue, Shoko Ut-
sunomiya, Kazuyuki Aihara, Robert L. Byer, M. M.
Fejer, Hideo Mabuchi, and Yoshihisa Yamamoto, “A
fully-programmable 100-spin coherent ising machine with
all-to-all connections,” Science (2016), 10.1126/sci-
ence.aah5178.

[26] “Quantum neural network: Collective computing at crit-
icality of opo phase transition,” .

[27] Yoshitaka Haribara, Hitoshi Ishikawa, Shoko Ut-
sunomiya, Kazuyuki Aihara, and Yoshihisa Yamamoto,
“Performance evaluation of coherent ising machines
against classical neural networks,” Quantum Science and
Technology 2, 044002 (2017).

[28] Takahiro Inagaki, Yoshitaka Haribara, Koji Igarashi,
Tomohiro Sonobe, Shuhei Tamate, Toshimori Honjo,
Alireza Marandi, Peter L. McMahon, Takeshi Umeki,
Koji Enbutsu, Osamu Tadanaga, Hirokazu Takenouchi,
Kazuyuki Aihara, Ken-ichi Kawarabayashi, Kyo Inoue,
Shoko Utsunomiya, and Hiroki Takesue, “A coherent
ising machine for 2000-node optimization problems,” Sci-
ence 354, 603–606 (2016).

[29] J. King, S. Yarkoni, J. Raymond, I. Ozfidan, A. D.
King, M. M. Nevisi, J. P. Hilton, and C. C. McGeoch,
“Quantum Annealing amid Local Ruggedness and Global
Frustration,” ArXiv e-prints (2017), arXiv:1701.04579
[quant-ph].

[30] Other sources of errors not discussed here also exist such
as 1/f -noise [? ].

[31] Andrew D. King, Trevor Lanting, and Richard Harris,
“Performance of a quantum annealer on range-limited
constraint satisfaction problems,” arXiv:1502.02098
(2015).

[32] We expect our results to be robust to noise with a small
local correlation but certainly not to noise with long-
range statistical correlations.

[33] Davide Venturelli, Salvatore Mandrà, Sergey Knysh,
Bryan O’Gorman, Rupak Biswas, and Vadim Smelyan-
skiy, “Quantum optimization of fully connected spin
glasses,” Phys. Rev. X 5, 031040 (2015).

[34] V. Mart́ın-Mayor and I. Hen, “Unraveling quantum an-
nealers using classical hardness,” Scientific Reports 5,
15324 (2015).

[35] Zheng Zhu, Andrew J. Ochoa, Stefan Schnabel, Firas
Hamze, and Helmut G. Katzgraber, “Best-case perfor-
mance of quantum annealers on native spin-glass bench-
marks: How chaos can affect success probabilities,” Phys.
Rev. A 93, 012317 (2016).
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