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ABSTRACT. Fractal interpolation functions are fixed points of contraction maps on
suitable function spaces. In this paper, we introduce the Kantorovich-Bernstein a-
fractal operator in the Lebesgue space LP(I), 1 < p < oo. The main aim of this
article is to study the convergence of the sequence of Kantorovich-Bernstein fractal
functions towards the original functions in £?(I) spaces and Lipschitz spaces without
affecting the non-linearity of the fractal functions. In the first part of this paper,
we introduce a new family of self-referential fractal £P(I) functions from a given
function in the same space. The existence of a Schauder basis consisting of self-
referential functions in £P spaces is proven. Further, we derive the fractal analogues
of some LP(I) approximation results, for example, the fractal version of the classical
Miintz-Jackson theorem. The one-sided approximation by the Bernstein a-fractal
function is developed.
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1. Introduction and preliminaries. First we will briefly describe the con-
struction of a fractal interpolation function from an iterated function system (IFS)
[4]. This method was first introduced by Barnsley in the reference [3]. Let N;
denote the first ¢ natural numbers, and {(x;,y:;),s = 1,2,...,N} be a set of

*Corresponding author.

Quaestiones Mathematicae is co-published by NISC (Pty) Ltd and Informa UK Limited
(trading as the Taylor & Francis Group)



2 A.K.B. CHAND, S. JHA AND M.A. NAVASCUES

data points with z; < 29 < -+ < zn, [ = [z1,2zN], and I; = [z, x;41]. Let
L;: I — I;,© € Ny_; be contractive homeomorphisms such that
Li(z1) = x4, Li(vn) = @41 (1)

Let K =1 xR, and N — 1 continuous mappings F; : K — R be satisfying

Fi(z1,y1) =i, Filen,yn) = Yiy1, |Fi(z,y) — Fi(z,y)| < aly—y],  (2)

where (z,vy), (x,y') € K, 0<¢ <1,i € Ny_;. Now define w; : R? — R? as
w;(z,y) = (Li(x), Fi(z, ))VZENN,L Define

C*(I) = {h S C(I) : h(fL‘l) = Y1, h(.%‘N) = yN}-
Then C*(I) is a closed subspace of the Banach space (C(I),]|.||oo). Define the
Read-Bajraktarevi¢ (RB) operator T : C*(I) — C*(I) as
(Th)(2) = FL7(2), WL\ (), = € I, i € Ny_y.

K2

T is a contraction map with the contraction factor ¢ := max{c;, i € Ny_1}. The
Banach fixed point theorem guarantees that 7' has a unique fixed point g which
interpolates the data {(z;,v:),i = 1,2,..., N} [3] and satisfies the self-referential
equation
9(Li(z)) = Fi(z,9(z)), i € Ny_1.

The previous function is called the fractal interpolation function (FIF) correspond-
ing to the IFS Z = {I x K,w;(z,y) = (Li(z), Fi(z,y)),i € Ny_1}. A fractal
function with variable scaling is obtained from the following IFS:

{K;(L;(x), Fi(z,y)), i € Ny_1}, Li(z) = ajz+b;, Fi(x,y) = a;(x)y+q:(z). (3)

Here «; are continuous functions on I and a= (a1 (z),...,an_1(x)) € (L)1
satisfying [|ol|oo := max{||a;||o; @ € Ny_1} < 1, where |a;|loo = sup{|oi(z)|, z €
I} and gi(z1) = vi — ai(z1)y1, ¢i(zN) = yit1 — ai(xn)yn. For different choices
of ¢;, one can get different kinds of fractal functions ([15], [20]). Navascués [16]
observed that a class of continuous functions can be obtained from a given contin-
uous function on a compact set with the definition ¢;(x) = f(L;(x)) — a;(z)b(x),
where b is a continuous function satisfying b(z1) = f(21),b(xn) = f(xn). For this
choice of ¢; and a fixed partition A := {x1,29,..., 25y : 21 < 22 < --+ < zpN}, the
corresponding RB operator has a fixed point f*. This a-fractal function is the
fixed point of

(TR 4,p9)(@) = f(2) + (L7 (2))(g — 0)(L7 ' (2)), x € I, i € Ny_1,  (4)

and hence enjoys the self-referential equation

F(@) = f@) + (L (@) (f* = b)(Li ' (x)), @ € I, i € Ny_1. ()

The fractal dimension of f* depends on the scaling function a [1]. The uniform
error bound for the process of approximation f* to f can be obtained [14] from
(5) as

el

17 = fll < 7o

1 = blleo- (6)



KANTOROVICH-BERNSTEIN o-FRACTAL FUNCTION IN L£P SPACES 3

It is clear from (6) that the convergence of f* to f is guaranteed whenever the
scaling function is chosen as ||a|| — 0 for a fixed partition A and a fixed base
function b. Till now almost all researchers have studied the convergence of different
smooth and non-smooth fractal functions to an original function with the concept
of ||a||so tending to 0 (see for instance [5], [17], [23]). When the original function
is non-smooth, we should use a sequence of non-smooth fractal functions for con-
vergence results. To facilitate it, Vijender [19] chose the base function b(z) as the
classical Bernstein function in [z1,2y]|V 2 € I,n € N as

Bulfin) = oS (1) o) — =ty (o B2 2))

(N —2)" =

Thus there is a sequence of Bernstein polynomials corresponding to each f in C(I).
It is also known [10] that the sequence of Bernstein polynomials of f converges
uniformly to it on [z1,zx]. Though the convergence is slow, it has the shape
preserving properties that help us to transmit the properties of f to B,(f). It is
also clear from (7) that B, (f;z1) = f(z1), Bn(f;2n5) = f(zn) VYV n > 1 so that a
Bernstein polynomial to f interpolates it at both endpoints of [z, zx]. Thus for
every n € N, the corresponding fractal function f is called the n-th Bernstein
a-fractal function of f € C(I), and it is defined implicitly as

Fi(@) = (@) + (f (L7 (@) = Ba(f3 Ly (@) (L () Y w €1, n€N, i€ Ny—1.

(8)
It is noted that for a given f € C(I), there exists a sequence {f(x)}°2; of Bern-
stein a-fractal functions. From (8), it is easy to deduce that

152~ flloe < A%k yp B (1)) 9)

— llelloo

which gives the convergence of Bernstein a-fractal function towards f as n — oo.
When we approximate an original function which is irregular in nature, the current
approach is more appropriate over the existing methods. The Bernstein operator
By ¢ (Clev,a [Hloe) = (Cln, an], |]loo) i Tinear, and | Ba s npii iy = 1
but B, : (L7, ].|l,) = (L£P,||.||p) is not bounded on (£P[x1,zn], ||.||p)- In order to
achieve the approximation in £P-norm, Kantorovich [12] modified the Bernstein
polynomial as

K,(f;z) = - Z (Z) (x — xl)k(xN — x)"_k(n—l— 1)Cy,

(oy = z)" (=

(k+1) (@ —w1)
where C, = f::,c(wfjll) f(t)dt. Here K,, maps each space £LP, 1 < p < oo into
n+1
itself with norm one.+Also | f—Kn(f)ll, = 0asn — oo foreach f € £P [13]. Indeed
for continuous f, we have uniform convergence K, (f) — f. Navascués, Chand and
Viswanathan [22] extended the notion of a-fractal function to £P spaces and derived
some approximation properties while approaching the scaling function tending to
0. In this article, we introduce a new construction Kantorovich-Bernstein a-fractal
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function in £P(I) and obtain some approximation properties without affecting the
scaling functions. The rest of the paper is organized as follows: In Section 2,
we construct the Lipschitz Bernstein a-fractal function from a given Lipschitz
function. We introduce the construction of the Kantorovich-Bernstein a-fractal
functions and deduce some properties of the corresponding multi-fractal operators
in Section 3. Later we derive the fractal Miintz polynomials and prove the density
theorems for the case of continuous and p-integrable functions without assuming
conditions on the scaling functions in Section 4. Finally, we obtain an one-sided
approximation using the Bernstein a-fractal functions.

2. Bernstein a-fractal function in Lipschitz spaces. The fractal dimen-
sion of f* depends on the scaling function «. Nasim et al.[1] computed the box
dimension of the a-fractal functions by using relevant conditions on the scaling
function, the original function f, and the base function b. The following proposi-
tion furnishes the details.

PROPOSITION 2.1. Let f € C(I) andb : I — R be the Lipschitz functions satisfying
b(xz1) = f(x1),b(zn) = f(zy). Suppose A = {x1,29,...,2N} is a partition of T
satisfying ©1 < xo < --- < xy and a = (o, qa,...,any_1) € (—=1,1)N"1. Also

N-1
assume that the interpolation points are not colinear and v = Y |«;|, then the
i=1

graph of f* has the box dimension

D— 1+logyy, ify>1,
B 1, otherwise.

For 0 < d <1, the Lipschitz space is defined as

Lipdz{f:[—ﬂR:sup'f(x)_f(y)'<oo}.

TH#Yy ‘I 7y‘d

Define [| fllo,a = max{[|fl[oo, [f[a}, where

flx) - fly
| fla ZSUP{Wa%y celr#yg.
Then (Lipd, || - ||o,a) is a complete metric space. In [7] Brown et al. showed that

for a given f € Lipd, its Bernstein polynomial B, (f) € Lipd for each n > 1. The
next theorem demonstrates that for a given Lipschitz function, we can construct a
Lipschitz Bernstein a-fractal function. Since the fractal dimension is a quantifier
of the irregularity of the approximated function, and the base function plays an
important role to find the box dimension, the following theorem is useful.

THEOREM 2.2. Let f € Lipd. Suppose A = {x1,x2,...,xN} Is a partition of I
satisfying ©1 < x9 < -+ < zn, I; := [z;,2;41]. Let L; : I — I; be given by
L;(z) = a;x+b;. Choose the base function as b(x) = B,(f;x) and scaling function
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a; € Lipd,i € Ny_1. Define the RB-operator T : (Lipd, || - |lo,a) — (Lipd, || - |/0,q)
by
Ty(x) = f(z) + oi(L7 (2)(g = Buf)(L7 ().

Further, if the scaling functions satisfy the condition max { “D‘ﬂU"" 1€ NN_l} <1,

al

then the operator T has a unique fixed point f* € Lipd.

Proof. Let g € Lipd. Now for each n € N,
Tg(z) = Tg(y)|

|Tgla= sup y
z,yel,x#y |x - y|
— s |f(x) = f(y) + ailg = Bu(f)) o (L; *(2)) — ai(g — Ba(f)) o (L; ' ()]
z,y€l;,x#y |z — y[
@~ FN e [l @) — gL W)
<, AP+ g o) | [
¢ Bl L0 0) = B 17 )]
|z — y|

Pg(Lfl(m)) —9(L; ' ()]
ad|L; (z) — Ly Y (y)]?
|Bn(f; L ' (2)) — Bn(f;Lzl(y))l]
ad|L7 " (x) — L7 (y)|?
lg(=") — g(y™) n |Bn(f;2") — Balf; y*)q
[z* — y* |4 |+ — y*|¢

=|[fla+ max ([oiflsc) sup
1€ENN_1 z,y€l; ,x#y

+

sup {
z*,yr el z*Fy*

d|°° )(Igla + | Bn(f)la)-

Qa;

= Fla+ ax (

llvi

= Ifla+ max (
Since f € Lipd, B, (f) € Lipd [7], we obtain |T'g|q < oo from the above inequality,
and hence T'g € Lipd. Also for g, ¢g* € Lipd,
1Tg =Tg [le < max ([lilloc)llg = g%l
1ENN_1
Using similar steps in the estimation of |T'g|4, we obtain
.
|Tg —Tg"la < max (”Z,L'f”) l9—9"a-
1€ENN_1 ai
Combining the above two inequalities, we get

1Tg —Tg"|lo,a = max{||Tg — Tg"||oo, |Tg — Tg"[a}

[l o
. _ * He oo _ %
maX{ierlr\lﬁxl(llazIIOO)Ig 9 oo»ierggxl( ) 19—9la

)

IN

= a. —_— a. - -
z_ean%NX1< ) x{llg = 9"llocslg — g7[a}

_ il .
—&gﬁl( il I X

K3

Thus, under the given assumption on the scaling functions, 7" is a contraction. O
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THEOREM 2.3. Let f € Lipd. Choose the scaling function o« such that
max{% NS NN,l} < 1. Then the sequence of Bernstein a-fractal functions

{f>}22, converges to the original function f when n — oo.

Proof.  From the definition of the Bernstein a-fractal function, f& obeys the
following self-referential equation:

f@)=f@)+ (2 (L7 (@) = Balf; L (2)))ei(Ly H(2)) Yo € i, neN, i€ Ny_y.

From the above equation and using the Lipschitz norm, it can be easily deduced
that

B Qilloo | .
£ = flloa < 1 7B||f— B,.(f)lo,a, where B = max{”all| (i€ NNl} < 1.
Z (10)
It is known from [8] that
If = Br(f)llo,g = 0asn — oo. (11)
Thus the proof follows using (10) and (11). O

3. Kantorovich-Bernstein a-fractal function. Using the base function as
K, (f;x), we define the Kantorovich-Bernstein a-fractal function as

fX(@)=f@)+(FHLT(2) = Ku(f: LT (@)au (L7 () V e € 1, neN, zeNz\(rl_;)

THEOREM 3.1. Let f € LP(I),1 < p < oo. Suppose A = {x1,22,..., TN} iS a
partition of I satisfying ©1 < x9 < -+ < zn, I; := [x;,®iy1), 1 € Ny_o, IN_1 =
[tn_1,2n]. Let Li(z) = a;x + b; be satisfying L;(z1) = z;, Li(xy) = x4 for
1 € Ny_1, and LN,1(£L'1) = TN-1, LNfl(l‘N) = xn. Choose «; € ﬁOO(I)VZ S
Ny-_1, and b(x) = K, (f;x) € LP(I). Then the RB-operator given in (4) defines a
self-map on LP(I). Further, if the scaling function o satisfies

P
>ooaiflag|lB] <1 if1<p<oo,
i1€ENN_1

lee|loo < 1 if p= o0,

then T is a contraction on LP(I). Further, the fixed point f& € LP(I) of T satisfies
the self-referential equation (12).

Proof. The proof can be obtained using arguments similar to those used in [22].
O
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PROPOSITION 3.2. Let f € LP(I). If f& is constructed according to Theorem 3.1,
then we have the following error estimation:

ol < [ 3 aiuainzo] 17 = Ealf)llp for 1 < p < oc,

1€Nn_1
ool £ = Kn ()l for p = <.

Proof. From the functional equation (12), we have

1= 1 = [ 172 = D@Pde, 1<p< .

= > |(F (L7 (@) = Kn(f; L (@) (L (2)) [ dae
i€ENN_1 Ii

= Y o [l - Kl asta ) do
i€Nn_1

< Y afal / (2 @) = (32" da*
1€NN_1

= > aileallZl g = Kn(HIE-
1€ENN_1

For p = oo, the proof follows from straightforward computation. O

PROPOSITION 3.3. For f € LP(I), 1 < p < 0o, we have the following estimate:

[ > aillal] }7
N f = Kn(f)llp, for1<p< oo,

o »
||fn f||p< 17|: Z aiHOlngo]

ieNN_1

1

Aollee 1 #— Koy (F) oo for p = oc.

—lalle
Proof. Following the proof of Proposition 3.2, we obtain
£ =flp < > allalBlfe = Ka(HIE
i€ENn_1

which gives

=

£ = Fllp < | D allailB | £ = Kn(H)llp
1€ENN_1

< | X aillaill| = Fllp+ 1F = Ka(F)llp] -

_iGNN—l

3 =

The proof follows from further simplifications. a
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THEOREM 3.4. Let n € N and 1 < p < oo. For each scale function o, the self-
referential Kantorovich-Bernstein a-fractal operator F& : LP(I) — LP(I) defined
by Fe(f) = f& is a bounded linear operator, and F reduces to identity for a = 0.

Proof. Let f,g € LP(I) and A1, A2 be real scalars. The functional equations for
the corresponding Kantorovich-Bernstein a-fractal functions are given by

fr(@) = ai( L7 (@) (f2 (L7 (@) + flz) — Kn(f; L7 (2))),

g (x) = ai(Li (2) (97 (L7 ' (2)) + g(@) — Kn(g; L' (2))) Y € I;, i € Ny_y.
Therefore,

AL 4 Aegi) (@) = (M f + Aag) (@) + ai(L7 ()

(T + Aag) (L7 (7)) = Kn(Wf + Aags L (2)))
from which we obtain that A1 f + A2g is a fixed point of the operator
(Th)(z) = (M f + Aeg)(x) + ai( L7 (2))(h — Kn(A f + A2g; L ().

Thus, by the uniqueness of fixed point, F¥ (A1 f+A29) = M fE+ X292 = M FX(f)+

A FX(9)-
Consider )
;|0 go , if 1 <p<oo,
lex]l oo s if p= oo.
Now

IF52 (Ol = 1173l

<7 = Fllp + 1141l
L
< 7= IF = KalHllp + £
L
< g Md=EalllFllp + 11 £ 14

The third step in the previous computation uses the Proposition 3.3. Since ||Id —
K, || is bounded in £P, there exists & such that ||Id — K| < & for all n € N. Then

from (14) we get
L
al < o~ )
1750 < (14 T2

Consequently, F is a bounded operator for each n € N. O

Let us introduce the following terminologies that are required hereafter.

DEFINITION 3.5. A continuous map f : X — Y between two topological spaces
X and Y is said to be a homeomorphism (topological isomorphism) if it has a
continuous inverse.



KANTOROVICH-BERNSTEIN o-FRACTAL FUNCTION IN L£P SPACES 9

DEFINITION 3.6. If f: X — X is a continuous map on the topological space X
having a continuous inverse, then f is said to be a topological automorphism.

THEOREM 3.7. Let n € N. Suppose the scaling function a satisfies

1

P
> aillai|B | <min{l,||K,| 1}, if 1< p < oo,
1€ENN_1

el < min{l, || K, 71}, if p = oc.
Then the corresponding fractal operator is bounded below. In particular, F5* is
injective and has a closed range. Also F2 : LP(I) — FS(LP(I)) is a topological
isomorphism for each n € N.

Proof. For 1 < p < oo, from the reverse triangle inequality and the Proposition
3.2, we obtain

1Fllp = 1152 < 11 = £l
< LIy = EKa(Hllp
< LIS + LI [l

1+ L
< ———1F%»- 15

Since L < ||K,| ™!, the operator F& is bounded below and so injective. Now to
prove that F has a closed range, let f<,, be a sequence in F¥(LP(I)) such that
om — hy ie, f,, is a Cauchy sequence in F*(LP(I)). Now

1+L
— <

[ = Fimll
m,n rnlilp

which shows that {f,,} is a Cauchy sequence in LP(I). Since £P(I) is a complete
metric space, there exists f € LP(I) such that f,, — f. Using the continuity of
F, we have h = F2(f) = f&. Thus using the bounded inverse theorem, we found
that the inverse of the map F2 : LP(I) — F(LP(I)) is a bounded linear operator
for each n € N. O

THEOREM 3.8. The fractal operator F< is a topological automorphism on L£P(I)
if the variable scaling function o obeys

%
Z aillaill% | < (14 |Id— K,|)™", if 1<p< oo,
i€ENN_1
oo < (14 ||Id — K,||)7Y, if p=oo.

Also
1 — LI K|l
1+ L
where L is defined in (13).

o L
171l < 1780 < 14 T=—1d ~ KallI £
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Proof.  From (14), we obtain the inequality ||Id — F¢|| < £-||Id — K,||. Since

L(1+||Id — K,||) <1, we get |[Id — F¥|| < 1. Thus Y (Id — F*)’ is convergent
j=0

in the operator norm, and 7 = Id — (Id — F2) is invertible. The bounds follow

from the Proposition 3.3. O

The existence of a Schauder basis of £P(I) is useful for finding the best approx-
imation of an element in £P(I) from a finite dimensional subspace of £LP(T). Also
the Schauder basis of £P(I) is helpful to approximate the solution of the first or-
der non-linear mixed Fredholm-Volterra integro-differential equations [6]. In some
applications, it is required to maintain the global structure involved in a given prob-
lem, and self-referentiality may be beneficial. Hence, it is worth to find a Schauder
basis of £P(I) consisting of fractal functions. First we recall the definition of a
Schauder basis of a Banach space:

DEFINITION 3.9. A sequence {z,} of a Banach space X is a Schauder basis if for
o0
every x € X, there exists a unique representation of x as * = Y ¢y, where

m=1
{em} is a sequence of scalars.

ExaMPLE 3.10. The Haar system is a Schauder basis of LP(I) for 1 < p < co.

The following theorem guarantees the existence of a Schauder basis of fractal func-
tions in L£P(I). Without loss of generality assume that I = [0, 1].

THEOREM 3.11. For 1 < p < oo, the space LP(I) admits a Schauder basis consist-
ing of self-referential functions.

Proof.  Let {fn} be a Schauder basis of LP(I) with the associated coefficient
functionals {A,,}. Suppose that the scaling function a is chosen according to
the Theorem 3.8. Then, F2 is a topological isomorphism for each n € N. Let
f € LP(I). Then (FX)~L(f) € L£P(I) and

(F)E) =D A (F7H)) fome

m=1

Since F is a linear and continuous map,

F=2 2 (FD7HD) fone

m=1

To prove the uniqueness of the representation, let us assume another representation
of f as

f= Z ’me:;,n'
m=1
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Using the continuity of (F®)~, (F*)~(f) = Z Ymfm and hence 7, =
=1

Am ((F&)7H(f)), m € N. Thus, for fixed n, {f n} is a Schauder basis of LP(I)

consisting of self-referential functions. o

4. Fractal version of the Miintz-Jackson theorem. Let A := {\;}52,
be a sequence of distinct, non-negative real numbers with Ay = 0. The non-
negative valued functions z*¢ are well defined on [0,0c0]. The collection A,, =
{0 pM . 2P} s called a finite Miintz system. The linear space M,,(A) :=
span{z?o M ... 2} is called a Miintz space. Let I = [0,1] and A := {1,

.,xn} be a partition of I satisfying 0 = 23 < -+ < zy = 1. Let a =
(a1,...,an—1) € (L®())N~1. As mentioned earlier K, : LP(I) — LP(I) is a
bounded linear map. Also, the Miintz monomials 2*: € LP(I) even if \; > —1.
Using the construction described in the introductory section, we can define the
fractal analogue as (x})® = F&(2)). In this case, a Kantorovich-Bernstein a-
fractal Miintz polynomial is a linear combination of the function (z))* n € N,
where \; € A.

THEOREM 4.1. Let 1 < p < oo and A := {)\;}2 o be a sequence of distinct real
L+

numbers such that A\; > —= for each i. Suppose Z m = 00. Then A =

span{(x)1)® : i,n € N} is dense in LP(I).

Proof. Let f € LP(I) and € > 0 be arbitrary. Under the stated conditions on \;,
it follows from the full-Miintz theorem [11] that there exists a Mintz polynomial
Gm € M,,(A) and a natural number N; such that

€
If = amllp < ivaNl. (16)

With the aid of g, let g, ,, be the Kantorovich-Bernstein a-fractal Miintz poly-
nomial determined by the IFS {[0,1] x R; (L;(x), Fmn,i(%,y)), i € Ny_1}, where
Froni(z,y) = a(2)y + ¢m(Li(z)) — () Ky (gm; @), © € Ny_1. Now, ¢ satisfies

A (@)= i(2)qf o (L7 (%) 4 (2) =i (2) Kn (gm; Ly ' (), 2 € L;, i €Ny—1,n €N

(17)
Using Proposition 3.3, it is easy to verify that q,?’m(:c) satisfies the following in-
equality

||qu,n Imllp < ||qm - Kn(Qm)Hp- (18)

P=1-
Choose C = % > 0. From the convergence result of the Kantorovich-Bernstein
polynomials [13], it follows that for each m € N, there exists a sequence
{Kn(gm;x)}22, of Kantorovich-Bernstein polynomials of g, that converges to it
with respect to the p-norm. Therefore, for a given € > 0, there exists a natural
number Ny such that

qu - Kn(Qm)Hp < %Vn > Na. (19)
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Thus, using (19) in (18), we obtain
€
950 = amllp < 5V 2 No. (20)
Choose N = max{Ny, Na}. Using (16) and (20) for n > N, we obtain
PS3T3To

which proves the density theorem. O

1f = amullp <N = @mllp + llgm — @

Next, we will give the Jackson type rate of convergence. Here we want to
find the possible degree of approximation by fractal polynomials in an arbitrary
space A, = F(Am) = {1, (zp1)™, ..., (zpm)*}. For our results, we need the
LP-modulus of continuity:

DEFINITION 4.2. Let f € £P(]0,1]), 1 < p < oco. The £P-modulus of continuity is
defined by
wp(f,8) = sup [[f(z +1) — f()[lp.
t|<o
THEOREM 4.3. Suppose {\;}_, satisfies the growth condition A\, > Sk, S > 2.
Then for all f € C([0,1]), there exists Q' (z) € Ay, ,, such that

Aun(f39) | llalle

— O% <
I - @l < 2520 4 T

HQ - Bn(Q)”om

>t

where € = exp(—2 ) 1-).

1

i=1

Proof.  Under the stated hypotheses, the reference [2] asserts the existence of a
polynomial Q(z) € A,, such that

Awso (f5€)
S—2

Let us consider the Bernstein a-fractal function corresponding to this Miintz poly-
nomial Q(z) as Q% = F(Q). Using (9), we obtain

If = Qlle < (21)

o ]
Q% = Qlloo < 777 7= 11Q = Ba(@)l - (22)
lelloo
Finally, combining (21) and (22), we have
Avsc(f:) |l
5=2 1 —[lafle

If = Q7 lleo < 1Q = Bn(Q) |-

This completes the proof. O

The LP analogue of the Miintz-Jackson theorem for the Kantorovich-Bernstein
a-fractal Miintz polynomial is given in the following result:
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THEOREM 4.4. Let 2 < p < oo and Ag‘un be defined as above; A\, > 2k. Then for
every f € LP([0,1]),n € N, there exists a Kantorovich-Bernstein a-fractal Miintz
polynomial Q5 € Ay, ,, such that

L
1f = Qnllp < Awy(f,€) + ﬁHQ — K (Q)llp,

where L is defined in (13).

Proof.  Under the stated hypothesis, it is known from [2] that there exists a Miintz
polynomial @) € A,,, such that

1f = Qllp < Awp(F€). (23)

With the help of this Miintz polynomial @ and for a given partition of [0,1],
construct the Kantorovich-Bernstein a-fractal Miintz polynomial Q% using (12).
Now Q7 € Ay, ,, and from the Proposition 3.3,

L

1Q8 = Qllp < = 1Ka(Q) @l (24)

The proof follows immediately using (23), (24) in
If = Qullp < If = Qullp + 1@n — QFlp- =

5. Application. In this section, we will prove the existence of a fractal one-
sided best approximation. The properties of the Bernstein a-fractal function f
depend on the scaling function and the base function. Several shape preserving
properties of the fractal functions have been studied in (][9], [21]) for the choice of
arbitrary b and a satisfying certain conditions. In our case, considering b(x) =
B, (f;z) and using the properties of B, (f), we get the following result.

THEOREM 5.1. Let f € C(I) be convex on [0,1] and A := {0 = 21 < z2 <
.-+ < xy = 1}. Consider the IFS as described in (3), where ¢; n(z) = f(Li(z)) —
a;(x)By(f; ) and «;(x) € C(I). The corresponding Bernstein a-fractal function
f& satisfies [ (x) < f(z)Vx € I,n € N, and the equality holds at the knot points
provided that a;(z) >0V z € I.

Proof. The Bernstein a-fractal function f satisfies
[ (Li(x)) = f(Li(2)) + (£ (2) = Bu(f;2))i(z) Vo € Ii; n €N, i € Ny—1. (25)

Clearly from the construction of the fractal function, we can observe that the
next generation values of (f$)(Li(x;)) depend on the current values f(x;) for
j=1,2...,N at the grid points. Since (f&)(zm) = f(2m), that is, (f&— f)(@m) <
0Vm =1,2,...,N, to prove the proposed condition it is enough to check that
(f&— H(Li(x)) <0Vie{1,2,...,N}. Thus, from (25), we have

(fr = HLi(x)) = () (f7(x) = Bu(f;2))
= ai() (3 (z) = f(2)) + ci(2)(f(2) = Bu(f;2)).
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(a) Fractal function f* not satisfying (b) Fractal function f* satisfying f& <
fe<f f

Figure 1: Fractal functions for f(z) = x2.

Since B, (f;x) > f(z) for a convex function f [18], (f& — f)(L;(x)) < 0 if
ai(z) >0V z eI as (f& — f)(x) < 0. The theorem follows from the itera-
tive nature of a fractal function. a

EXAMPLE 5.2. Consider I = [0, 1] with a uniform partition A of step size h = i.
Suppose the original convex function is f(z) = x?. The fractal function f< is
constructed with a uniform partition A, scaling vector a = (0.5, —0.45,0.5, —0.65),
and base function b(z) = xe®~ 1. The corresponding graph is depicted in Fig. 1(a).
Note that b(z) = we®~! does not satisfy b(z) > f(z) and « is not a positive vector
in this case, and hence the fractal function f* does not lie completely below f (see
Fig. 1(a)). With a choice of « satisfying the conditions prescribed in Theorem 5.1,
namely, & = (0.2,0.1,0.3,0.25), and b(z) = Ba(f;2) = wz% > f(x), we obtain a
fractal function f* that lies completely below f (see Fig. 1(b)).
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