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Abstract. Fractal interpolation functions are fixed points of contraction maps on
suitable function spaces. In this paper, we introduce the Kantorovich-Bernstein α-
fractal operator in the Lebesgue space Lp(I), 1 ≤ p ≤ ∞. The main aim of this
article is to study the convergence of the sequence of Kantorovich-Bernstein fractal
functions towards the original functions in Lp(I) spaces and Lipschitz spaces without
affecting the non-linearity of the fractal functions. In the first part of this paper,
we introduce a new family of self-referential fractal Lp(I) functions from a given
function in the same space. The existence of a Schauder basis consisting of self-
referential functions in Lp spaces is proven. Further, we derive the fractal analogues
of some Lp(I) approximation results, for example, the fractal version of the classical
Müntz-Jackson theorem. The one-sided approximation by the Bernstein α-fractal
function is developed.
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1. Introduction and preliminaries. First we will briefly describe the con-
struction of a fractal interpolation function from an iterated function system (IFS)
[4]. This method was first introduced by Barnsley in the reference [3]. Let Ni
denote the first i natural numbers, and {(xi, yi), i = 1, 2, . . . , N} be a set of
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data points with x1 < x2 < · · · < xN , I = [x1, xN ], and Ii = [xi, xi+1]. Let
Li : I → Ii, i ∈ NN−1 be contractive homeomorphisms such that

Li(x1) = xi, Li(xN ) = xi+1. (1)

Let K = I × R, and N − 1 continuous mappings Fi : K → R be satisfying

Fi(x1, y1) = yi, Fi(xN , yN ) = yi+1, |Fi(x, y)− Fi(x, y′)| ≤ ci|y − y′|, (2)

where (x, y), (x, y′) ∈ K, 0 ≤ ci < 1, i ∈ NN−1. Now define wi : R2 → R2 as
wi(x, y) = (Li(x), Fi(x, y)) ∀ i ∈ NN−1. Define

C∗(I) = {h ∈ C(I) : h(x1) = y1, h(xN ) = yN}.

Then C∗(I) is a closed subspace of the Banach space (C(I), ‖.‖∞). Define the
Read-Bajraktarević (RB) operator T : C∗(I)→ C∗(I) as

(Th)(x) = Fi(L
−1
i (x), h(L−1

i (x))), x ∈ Ii, i ∈ NN−1.

T is a contraction map with the contraction factor c := max{ci, i ∈ NN−1}. The
Banach fixed point theorem guarantees that T has a unique fixed point g which
interpolates the data {(xi, yi), i = 1, 2, . . . , N} [3] and satisfies the self-referential
equation

g(Li(x)) = Fi(x, g(x)), i ∈ NN−1.

The previous function is called the fractal interpolation function (FIF) correspond-
ing to the IFS I = {I × K,wi(x, y) = (Li(x), Fi(x, y)), i ∈ NN−1}. A fractal
function with variable scaling is obtained from the following IFS:

{K; (Li(x), Fi(x, y)), i ∈ NN−1}, Li(x) = aix+bi, Fi(x, y) = αi(x)y+qi(x). (3)

Here αi are continuous functions on I and α=(α1(x), . . . , αN−1(x)) ∈ (L∞(I))N−1

satisfying ‖α‖∞ := max{‖αi‖∞; i ∈ NN−1} < 1, where ‖αi‖∞ := sup{|αi(x)|, x ∈
I} and qi(x1) = yi − αi(x1)y1, qi(xN ) = yi+1 − αi(xN )yN . For different choices
of qi, one can get different kinds of fractal functions ([15], [20]). Navascués [16]
observed that a class of continuous functions can be obtained from a given contin-
uous function on a compact set with the definition qi(x) = f(Li(x)) − αi(x)b(x),
where b is a continuous function satisfying b(x1) = f(x1), b(xN ) = f(xN ). For this
choice of qi and a fixed partition ∆ := {x1, x2, . . . , xN : x1 < x2 < · · · < xN}, the
corresponding RB operator has a fixed point fα. This α-fractal function is the
fixed point of

(Tα
∆,b,fg)(x) = f(x) + αi(L

−1
i (x))(g − b)(L−1

i (x)), x ∈ Ii, i ∈ NN−1, (4)

and hence enjoys the self-referential equation

fα(x) = f(x) + αi(L
−1
i (x))(fα − b)(L−1

i (x)), x ∈ Ii, i ∈ NN−1. (5)

The fractal dimension of fα depends on the scaling function α [1]. The uniform
error bound for the process of approximation fα to f can be obtained [14] from
(5) as

‖fα − f‖∞ ≤
‖α‖∞

1− ‖α‖∞
‖f − b‖∞. (6)
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It is clear from (6) that the convergence of fα to f is guaranteed whenever the
scaling function is chosen as ‖α‖∞ → 0 for a fixed partition ∆ and a fixed base
function b. Till now almost all researchers have studied the convergence of different
smooth and non-smooth fractal functions to an original function with the concept
of ‖α‖∞ tending to 0 (see for instance [5], [17], [23]). When the original function
is non-smooth, we should use a sequence of non-smooth fractal functions for con-
vergence results. To facilitate it, Vijender [19] chose the base function b(x) as the
classical Bernstein function in [x1, xN ] ∀ x ∈ I, n ∈ N as

Bn(f ;x) =
1

(xN − x1)n

n∑
k=0

(
n

k

)
(x− x1)k(xN − x)n−kf

(
x1 +

k(xN − x1)

n

)
. (7)

Thus there is a sequence of Bernstein polynomials corresponding to each f in C(I).
It is also known [10] that the sequence of Bernstein polynomials of f converges
uniformly to it on [x1, xN ]. Though the convergence is slow, it has the shape
preserving properties that help us to transmit the properties of f to Bn(f). It is
also clear from (7) that Bn(f ;x1) = f(x1), Bn(f ;xN ) = f(xN ) ∀ n ≥ 1 so that a
Bernstein polynomial to f interpolates it at both endpoints of [x1, xN ]. Thus for
every n ∈ N, the corresponding fractal function fαn is called the n-th Bernstein
α-fractal function of f ∈ C(I), and it is defined implicitly as

fαn (x)=f(x)+(fαn (L−1
i (x))−Bn(f ;L−1

i (x)))αi(L
−1
i (x)) ∀ x∈ Ii, n∈N, i∈NN−1.

(8)
It is noted that for a given f ∈ C(I), there exists a sequence {fαn (x)}∞n=1 of Bern-
stein α-fractal functions. From (8), it is easy to deduce that

‖fαn − f‖∞ ≤
‖α‖∞

1− ‖α‖∞
‖f −Bn(f)‖∞, (9)

which gives the convergence of Bernstein α-fractal function towards f as n→∞.
When we approximate an original function which is irregular in nature, the current
approach is more appropriate over the existing methods. The Bernstein operator
Bn : (C[x1, xN ], ‖.‖∞) → (C[x1, xN ], ‖.‖∞) is linear, and ‖Bn‖(C[x1,xN ],‖.‖∞) = 1,
but Bn : (Lp, ‖.‖p) → (Lp, ‖.‖p) is not bounded on (Lp[x1, xN ], ‖.‖p). In order to
achieve the approximation in Lp-norm, Kantorovich [12] modified the Bernstein
polynomial as

Kn(f ;x) =
1

(xN − x1)n

n∑
k=0

(
n

k

)
(x− x1)k(xN − x)n−k(n+ 1)Ck,

where Ck =
∫ x1+

(k+1)(xN−x1)

n+1

x1+
k(xN−x1)

n+1

f(t)dt. Here Kn maps each space Lp, 1 ≤ p ≤ ∞ into

itself with norm one. Also ‖f−Kn(f)‖p → 0 as n→∞ for each f ∈ Lp [13]. Indeed
for continuous f , we have uniform convergence Kn(f)→ f . Navascués, Chand and
Viswanathan [22] extended the notion of α-fractal function to Lp spaces and derived
some approximation properties while approaching the scaling function tending to
0. In this article, we introduce a new construction Kantorovich-Bernstein α-fractal
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function in Lp(I) and obtain some approximation properties without affecting the
scaling functions. The rest of the paper is organized as follows: In Section 2,
we construct the Lipschitz Bernstein α-fractal function from a given Lipschitz
function. We introduce the construction of the Kantorovich-Bernstein α-fractal
functions and deduce some properties of the corresponding multi-fractal operators
in Section 3. Later we derive the fractal Müntz polynomials and prove the density
theorems for the case of continuous and p-integrable functions without assuming
conditions on the scaling functions in Section 4. Finally, we obtain an one-sided
approximation using the Bernstein α-fractal functions.

2. Bernstein α-fractal function in Lipschitz spaces. The fractal dimen-
sion of fα depends on the scaling function α. Nasim et al.[1] computed the box
dimension of the α-fractal functions by using relevant conditions on the scaling
function, the original function f , and the base function b. The following proposi-
tion furnishes the details.

Proposition 2.1. Let f ∈ C(I) and b : I 7→ R be the Lipschitz functions satisfying
b(x1) = f(x1), b(xN ) = f(xN ). Suppose ∆ = {x1, x2, . . . , xN} is a partition of I
satisfying x1 < x2 < · · · < xN and α = (α1, α2, . . . , αN−1) ∈ (−1, 1)N−1. Also

assume that the interpolation points are not colinear and γ =
N−1∑
i=1

|αi|, then the

graph of fα has the box dimension

D =

{
1 + logN γ, if γ > 1,

1, otherwise.

For 0 < d ≤ 1, the Lipschitz space is defined as

Lipd =

{
f : I → R : sup

x 6=y

|f(x)− f(y)|
|x− y|d

<∞

}
.

Define ‖f‖0,d = max{‖f‖∞, |f |d}, where

|f |d = sup

{
|f(x)− f(y)|
|x− y|d

, x, y ∈ I, x 6= y

}
.

Then (Lipd, ‖ · ‖0,d) is a complete metric space. In [7] Brown et al. showed that
for a given f ∈ Lipd, its Bernstein polynomial Bn(f) ∈ Lipd for each n ≥ 1. The
next theorem demonstrates that for a given Lipschitz function, we can construct a
Lipschitz Bernstein α-fractal function. Since the fractal dimension is a quantifier
of the irregularity of the approximated function, and the base function plays an
important role to find the box dimension, the following theorem is useful.

Theorem 2.2. Let f ∈ Lipd. Suppose ∆ = {x1, x2, . . . , xN} is a partition of I
satisfying x1 < x2 < · · · < xN , Ii := [xi, xi+1]. Let Li : I → Ii be given by
Li(x) = aix+ bi. Choose the base function as b(x) = Bn(f ;x) and scaling function
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αi ∈ Lipd, i ∈ NN−1. Define the RB-operator T : (Lipd, ‖ · ‖0,d) → (Lipd, ‖ · ‖0,d)
by

Tg(x) = f(x) + αi(L
−1
i (x))(g −Bnf)(L−1

i (x)).

Further, if the scaling functions satisfy the condition max
{
‖αi‖∞
adi

: i ∈ NN−1

}
< 1,

then the operator T has a unique fixed point fα ∈ Lipd.

Proof. Let g ∈ Lipd. Now for each n ∈ N,

|Tg|d = sup
x,y∈I,x 6=y

|Tg(x)− Tg(y)|
|x− y|d

= sup
x,y∈Ii,x 6=y

|f(x)− f(y) + αi(g −Bn(f)) ◦ (L−1
i (x))− αi(g −Bn(f)) ◦ (L−1

i (y))|
|x− y|d

≤ sup
x,y∈Ii,x 6=y

{
|f(x)− f(y)|
|x− y|d

}
+ max

i∈NN−1

(‖αi‖∞) sup
x,y∈Ii,x 6=y

[ |g(L−1
i (x))− g(L−1

i (y))|
|x− y|d

+
|Bn(f ;L−1

i (x))−Bn(f ;L−1
i (y))|

|x− y|d
]

= |f |d + max
i∈NN−1

(‖αi‖∞) sup
x,y∈Ii,x 6=y

[
|g(L−1

i (x))− g(L−1
i (y))|

adi |L
−1
i (x)− L−1

i (y)|d

+
|Bn(f ;L−1

i (x))−Bn(f ;L−1
i (y))|

adi |L
−1
i (x)− L−1

i (y)|d

]
= |f |d + max

i∈NN−1

(
‖αi‖∞
adi

) sup
x∗,y∗∈I,x∗ 6=y∗

[
|g(x∗)− g(y∗)|
|x∗ − y∗|d +

|Bn(f ;x∗)−Bn(f ; y∗)|
|x∗ − y∗|d

]
= |f |d + max

i∈NN−1

(
‖αi‖∞
adi

)(|g|d + |Bn(f)|d).

Since f ∈ Lipd, Bn(f) ∈ Lipd [7], we obtain |Tg|d <∞ from the above inequality,
and hence Tg ∈ Lipd. Also for g, g∗ ∈ Lipd,

‖Tg − Tg∗‖∞ ≤ max
i∈NN−1

(‖αi‖∞)‖g − g∗‖∞.

Using similar steps in the estimation of |Tg|d, we obtain

|Tg − Tg∗|d ≤ max
i∈NN−1

(
‖αi‖∞
adi

)
|g − g∗|d.

Combining the above two inequalities, we get

‖Tg − Tg∗‖0,d = max{‖Tg − Tg∗‖∞, |Tg − Tg∗|d}

≤ max

{
max
i∈NN−1

(‖αi‖∞)‖g − g∗‖∞, max
i∈NN−1

(
‖αi‖∞
adi

)
|g − g∗|d

}
= max
i∈NN−1

(
‖αi‖∞
adi

)
max {‖g − g∗‖∞, |g − g∗|d}

= max
i∈NN−1

(
‖αi‖∞
adi

)
‖g − g∗‖0,d.

Thus, under the given assumption on the scaling functions, T is a contraction. 2
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Theorem 2.3. Let f ∈ Lipd. Choose the scaling function α such that

max
{
‖αi‖∞
adi

: i ∈ NN−1

}
< 1. Then the sequence of Bernstein α-fractal functions

{fαn }∞n=1 converges to the original function f when n→∞.

Proof. From the definition of the Bernstein α-fractal function, fαn obeys the
following self-referential equation:

fαn (x)=f(x)+(fαn (L−1
i (x))−Bn(f ;L−1

i (x)))αi(L
−1
i (x)) ∀x ∈ Ii, n∈N, i∈NN−1.

From the above equation and using the Lipschitz norm, it can be easily deduced
that

‖fαn − f‖0,d ≤
B

1−B
‖f −Bn(f)‖0,d, whereB = max

{
‖αi‖∞
adi

: i ∈ NN−1

}
< 1.

(10)
It is known from [8] that

‖f −Bn(f)‖0,d → 0 asn→∞. (11)

Thus the proof follows using (10) and (11). 2

3. Kantorovich-Bernstein α-fractal function. Using the base function as
Kn(f ;x), we define the Kantorovich-Bernstein α-fractal function as

fαn (x)=f(x)+(fαn (L−1
i (x))−Kn(f ;L−1

i (x)))αi(L
−1
i (x)) ∀ x∈ Ii, n∈N, i∈NN−1.

(12)

Theorem 3.1. Let f ∈ Lp(I), 1 ≤ p ≤ ∞. Suppose ∆ = {x1, x2, . . . , xN} is a
partition of I satisfying x1 < x2 < · · · < xN , Ii := [xi, xi+1), i ∈ NN−2, IN−1 =
[xN−1, xN ]. Let Li(x) = aix + bi be satisfying Li(x1) = xi, Li(x

−
N ) = xi+1 for

i ∈ NN−1, and LN−1(x1) = xN−1, LN−1(xN ) = xN . Choose αi ∈ L∞(I)∀ i ∈
NN−1, and b(x) = Kn(f ;x) ∈ Lp(I). Then the RB-operator given in (4) defines a
self-map on Lp(I). Further, if the scaling function α satisfies

[ ∑
i∈NN−1

ai‖αi‖p∞

] 1
p

< 1 if 1 ≤ p <∞,

‖α‖∞ < 1 if p =∞,

then T is a contraction on Lp(I). Further, the fixed point fαn ∈ Lp(I) of T satisfies
the self-referential equation (12).

Proof. The proof can be obtained using arguments similar to those used in [22].
2
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Proposition 3.2. Let f ∈ Lp(I). If fαn is constructed according to Theorem 3.1,
then we have the following error estimation:

‖fαn − f‖p <


[ ∑
i∈NN−1

ai‖αi‖p∞

] 1
p

‖fαn −Kn(f)‖p, for 1 ≤ p <∞,

‖α‖∞‖fαn −Kn(f)‖∞, for p =∞.

Proof. From the functional equation (12), we have

‖fαn − f‖pp =

∫
I

|(fαn − f)(x)|pdx, 1 ≤ p <∞,

=
∑

i∈NN−1

∫
Ii

∣∣(fαn (L−1
i (x))−Kn(f ;L−1

i (x)))αi(L
−1
i (x))

∣∣p dx
=

∑
i∈NN−1

ai

∫
I

|(fαn (x∗)−Kn(f ;x∗))αi(x
∗)|p dx∗

≤
∑

i∈NN−1

ai‖αi‖p∞
∫
I

|(fαn (x∗)−Kn(f ;x∗))|p dx∗

=
∑

i∈NN−1

ai‖αi‖p∞‖fαn −Kn(f)‖pp.

For p =∞, the proof follows from straightforward computation. 2

Proposition 3.3. For f ∈ Lp(I), 1 ≤ p ≤ ∞, we have the following estimate:

‖fαn − f‖p <



[ ∑
i∈NN−1

ai‖αi‖p∞

] 1
p

1−
[ ∑
i∈NN−1

ai‖αi‖p∞

] 1
p
‖f −Kn(f)‖p, for 1 ≤ p <∞,

‖α‖∞
1−‖α‖∞ ‖f −Kn(f)‖∞, for p =∞.

Proof. Following the proof of Proposition 3.2, we obtain

‖fαn − f‖pp ≤
∑

i∈NN−1

ai‖αi‖p∞‖fαn −Kn(f)‖pp,

which gives

‖fαn − f‖p ≤

 ∑
i∈NN−1

ai‖αi‖p∞

 1
p

‖fαn −Kn(f)‖p

≤

 ∑
i∈NN−1

ai‖αi‖p∞

 1
p

[‖fαn − f‖p + ‖f −Kn(f)‖p] .

The proof follows from further simplifications. 2
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Theorem 3.4. Let n ∈ N and 1 ≤ p ≤ ∞. For each scale function α, the self-
referential Kantorovich-Bernstein α-fractal operator Fα

n : Lp(I) → Lp(I) defined
by Fα

n (f) = fαn is a bounded linear operator, and Fα
n reduces to identity for α = 0.

Proof. Let f, g ∈ Lp(I) and λ1, λ2 be real scalars. The functional equations for
the corresponding Kantorovich-Bernstein α-fractal functions are given by

fαn (x) = αi(L
−1
i (x))(fαn (L−1

i (x)) + f(x)−Kn(f ;L−1
i (x))),

gαn (x) = αi(L
−1
i (x))(gαn (L−1

i (x)) + g(x)−Kn(g;L−1
i (x))) ∀x ∈ Ii, i ∈ NN−1.

Therefore,

(λ1f
α
n + λ2g

α
n )(x) = (λ1f + λ2g)(x) + αi(L

−1
i (x))(

(λ1f
α
n + λ2g

α
n )(L−1

i (x))−Kn(λ1f + λ2g;L−1
i (x))

)
from which we obtain that λ1f

α
n + λ2g

α
n is a fixed point of the operator

(Th)(x) = (λ1f + λ2g)(x) + αi(L
−1
i (x))(h−Kn(λ1f + λ2g;L−1

i (x)).

Thus, by the uniqueness of fixed point, Fα
n (λ1f+λ2g) = λ1f

α
n +λ2g

α
n = λ1Fα

n (f)+
λ2Fα

n (g).
Consider

L =


[ ∑
i∈NN−1

ai‖αi‖p∞

] 1
p

, if 1 ≤ p <∞,

‖α‖∞, if p =∞.

(13)

Now

‖Fα
n (f)‖p = ‖fαn ‖p

≤ ‖fαn − f‖p + ‖f‖p

≤ L

1− L
‖f −Kn(f)‖p + ‖f‖p

≤ L

1− L
‖Id−Kn‖‖f‖p + ‖f‖p. (14)

The third step in the previous computation uses the Proposition 3.3. Since ‖Id−
Kn‖ is bounded in Lp, there exists ξ such that ‖Id−Kn‖ < ξ for all n ∈ N. Then
from (14) we get

‖Fα
n ‖ ≤

(
1 +

L

1− L
ξ

)
.

Consequently, Fα
n is a bounded operator for each n ∈ N. 2

Let us introduce the following terminologies that are required hereafter.

Definition 3.5. A continuous map f : X → Y between two topological spaces
X and Y is said to be a homeomorphism (topological isomorphism) if it has a
continuous inverse.
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Definition 3.6. If f : X → X is a continuous map on the topological space X
having a continuous inverse, then f is said to be a topological automorphism.

Theorem 3.7. Let n ∈ N. Suppose the scaling function α satisfies ∑
i∈NN−1

ai‖αi‖p∞

 1
p

< min{1, ‖Kn‖−1}, if 1 ≤ p <∞,

‖α‖∞ < min{1, ‖Kn‖−1}, if p =∞.
Then the corresponding fractal operator is bounded below. In particular, Fα

n is
injective and has a closed range. Also Fα

n : Lp(I) → Fαn (Lp(I)) is a topological
isomorphism for each n ∈ N.

Proof. For 1 ≤ p ≤ ∞, from the reverse triangle inequality and the Proposition
3.2, we obtain

‖f‖p − ‖fαn ‖p ≤ ‖f − fαn ‖p
≤ L‖fαn −Kn(f)‖p
≤ L‖fαn ‖p + L‖Kn‖‖f‖p,

⇒ ‖f‖p ≤
1 + L

1− L‖Kn‖
‖fαn ‖p. (15)

Since L < ‖Kn‖−1, the operator Fα
n is bounded below and so injective. Now to

prove that Fα
n has a closed range, let fαn,m be a sequence in Fα

n (Lp(I)) such that
fαn,m → h, i.e., fαn,m is a Cauchy sequence in Fα

n (Lp(I)). Now

‖fm − fr‖p ≤
1 + L

1− L‖Kn‖
‖fαm,n − fαr,n‖p

which shows that {fm} is a Cauchy sequence in Lp(I). Since Lp(I) is a complete
metric space, there exists f ∈ Lp(I) such that fm → f . Using the continuity of
Fα
n , we have h = Fα

n (f) = fαn . Thus using the bounded inverse theorem, we found
that the inverse of the map Fα

n : Lp(I)→ Fα
n (Lp(I)) is a bounded linear operator

for each n ∈ N. 2

Theorem 3.8. The fractal operator Fα
n is a topological automorphism on Lp(I)

if the variable scaling function α obeys ∑
i∈NN−1

ai‖αi‖p∞

 1
p

< (1 + ‖Id−Kn‖)−1, if 1 ≤ p <∞,

‖α‖∞ < (1 + ‖Id−Kn‖)−1, if p =∞.
Also

1− L‖Kn‖
1 + L

‖f‖p ≤ ‖Fα
n ‖ ≤ 1 +

L

1− L
‖Id−Kn‖‖f‖p,

where L is defined in (13).
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Proof. From (14), we obtain the inequality ‖Id − Fα
n ‖ ≤ L

1−L‖Id −Kn‖. Since

L(1 + ‖Id−Kn‖) < 1, we get ‖Id− Fα
n ‖ < 1. Thus

∞∑
j=0

(Id− Fα
n )j is convergent

in the operator norm, and Fα
n = Id− (Id− Fα

n ) is invertible. The bounds follow
from the Proposition 3.3. 2

The existence of a Schauder basis of Lp(I) is useful for finding the best approx-
imation of an element in Lp(I) from a finite dimensional subspace of Lp(I). Also
the Schauder basis of Lp(I) is helpful to approximate the solution of the first or-
der non-linear mixed Fredholm-Volterra integro-differential equations [6]. In some
applications, it is required to maintain the global structure involved in a given prob-
lem, and self-referentiality may be beneficial. Hence, it is worth to find a Schauder
basis of Lp(I) consisting of fractal functions. First we recall the definition of a
Schauder basis of a Banach space:

Definition 3.9. A sequence {xn} of a Banach space X is a Schauder basis if for

every x ∈ X, there exists a unique representation of x as x =
∞∑
m=1

cmxm, where

{cm} is a sequence of scalars.

Example 3.10. The Haar system is a Schauder basis of Lp(I) for 1 ≤ p <∞.

The following theorem guarantees the existence of a Schauder basis of fractal func-
tions in Lp(I). Without loss of generality assume that I = [0, 1].

Theorem 3.11. For 1 ≤ p ≤ ∞, the space Lp(I) admits a Schauder basis consist-
ing of self-referential functions.

Proof. Let {fm} be a Schauder basis of Lp(I) with the associated coefficient
functionals {λm}. Suppose that the scaling function α is chosen according to
the Theorem 3.8. Then, Fα

n is a topological isomorphism for each n ∈ N. Let
f ∈ Lp(I). Then (Fα

n )−1(f) ∈ Lp(I) and

(Fα
n )−1(f) =

∞∑
m=1

λm
(
(Fα

n )−1(f)
)
fm.

Since Fα
n is a linear and continuous map,

f =

∞∑
m=1

λm
(
(Fα

n )−1(f)
)
fαm,n.

To prove the uniqueness of the representation, let us assume another representation
of f as

f =

∞∑
m=1

γmf
α
m,n.
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Using the continuity of (Fα
n )−1, (Fα

n )−1(f) =
∞∑
m=1

γmfm and hence γm =

λm
(
(Fα

n )−1(f)
)
, m ∈ N. Thus, for fixed n, {fαm,n} is a Schauder basis of Lp(I)

consisting of self-referential functions. 2

4. Fractal version of the Müntz-Jackson theorem. Let Λ := {λi}∞i=0

be a sequence of distinct, non-negative real numbers with λ0 = 0. The non-
negative valued functions xλi are well defined on [0,∞]. The collection Λm =
{xλ0 , xλ1 , . . . , xλm} is called a finite Müntz system. The linear space Mm(Λ) :=
span{xλ0 , xλ1 , . . . , xλm} is called a Müntz space. Let I = [0, 1] and ∆ := {x1,
. . . , xN} be a partition of I satisfying 0 = x1 < · · · < xN = 1. Let α =
(α1, . . . , αN−1) ∈ (L∞(I))N−1. As mentioned earlier Kn : Lp(I) → Lp(I) is a
bounded linear map. Also, the Müntz monomials xλi ∈ Lp(I) even if λi > − 1

p .
Using the construction described in the introductory section, we can define the
fractal analogue as (xλi

n )α = Fα
n (xλi). In this case, a Kantorovich-Bernstein α-

fractal Müntz polynomial is a linear combination of the function (xλi
n )α, n ∈ N,

where λi ∈ Λ.

Theorem 4.1. Let 1 ≤ p ≤ ∞ and Λ := {λi}∞i=0 be a sequence of distinct real

numbers such that λi > − 1
p for each i. Suppose

∞∑
i=0

λi+
1
p

(λi+
1
p )2+1

= ∞. Then A =

span{(xλi
n )α : i, n ∈ N} is dense in Lp(I).

Proof. Let f ∈ Lp(I) and ε > 0 be arbitrary. Under the stated conditions on λi,
it follows from the full-Müntz theorem [11] that there exists a Müntz polynomial
qm ∈Mm(Λ) and a natural number N1 such that

‖f − qm‖p <
ε

2
∀m ≥ N1. (16)

With the aid of qm, let qαm,n be the Kantorovich-Bernstein α-fractal Müntz poly-
nomial determined by the IFS {[0, 1] × R; (Li(x), Fm,n,i(x, y)), i ∈ NN−1}, where
Fm,n,i(x, y) = αi(x)y + qm(Li(x))− αi(x)Kn(qm;x), i ∈ NN−1. Now, qαn satisfies

qαm,n(x)=αi(x)qαm,n(L−1
i (x))+qm(x)−αi(x)Kn(qm;L−1

i (x)), x∈ Ii, i∈NN−1, n∈N.
(17)

Using Proposition 3.3, it is easy to verify that qαn,m(x) satisfies the following in-
equality

‖qαm,n − qm‖p ≤
L

1− L
‖qm −Kn(qm)‖p. (18)

Choose C = L
1−L > 0. From the convergence result of the Kantorovich-Bernstein

polynomials [13], it follows that for each m ∈ N, there exists a sequence
{Kn(qm;x)}∞n=1 of Kantorovich-Bernstein polynomials of qm that converges to it
with respect to the p-norm. Therefore, for a given ε > 0, there exists a natural
number N2 such that

‖qm −Kn(qm)‖p <
ε

2C
∀n ≥ N2. (19)
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Thus, using (19) in (18), we obtain

‖qαm,n − qm‖p ≤
ε

2
∀n ≥ N2. (20)

Choose N = max{N1, N2}. Using (16) and (20) for n ≥ N , we obtain

‖f − qαm,n‖p ≤ ‖f − qm‖p + ‖qm − qαm,n‖p <
ε

2
+
ε

2
= ε,

which proves the density theorem. 2

Next, we will give the Jackson type rate of convergence. Here we want to
find the possible degree of approximation by fractal polynomials in an arbitrary
space Λα

m,n = Fα
n (Λm) = {1, (xλ1

n )α, . . . , (xλm
n )α}. For our results, we need the

Lp-modulus of continuity:

Definition 4.2. Let f ∈ Lp([0, 1]), 1 ≤ p ≤ ∞. The Lp-modulus of continuity is
defined by

ωp(f, δ) = sup
|t|≤δ
‖f(x+ t)− f(x)‖p.

Theorem 4.3. Suppose {λi}ni=1 satisfies the growth condition λk ≥ Sk, S > 2.
Then for all f ∈ C([0, 1]), there exists Qα

n (x) ∈ Λα
m,n such that

‖f −Qα
n ‖∞ ≤

Aω∞(f ; ε)

S − 2
+
‖α‖∞

1− ‖α‖∞
‖Q−Bn(Q)‖∞,

where ε = exp(−2
n∑
i=1

1
λi

).

Proof. Under the stated hypotheses, the reference [2] asserts the existence of a
polynomial Q(x) ∈ Λm such that

‖f −Q‖∞ ≤
Aω∞(f ; ε)

S − 2
. (21)

Let us consider the Bernstein α-fractal function corresponding to this Müntz poly-
nomial Q(x) as Qα

n = Fα
n (Q). Using (9), we obtain

‖Qα
n −Q‖∞ ≤

‖α‖∞
1− ‖α‖∞

‖Q−Bn(Q)‖∞. (22)

Finally, combining (21) and (22), we have

‖f −Qα
n ‖∞ ≤

Aω∞(f ; ε)

S − 2
+
‖α‖∞

1− ‖α‖∞
‖Q−Bn(Q)‖∞.

This completes the proof. 2

The Lp analogue of the Müntz-Jackson theorem for the Kantorovich-Bernstein
α-fractal Müntz polynomial is given in the following result:
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Theorem 4.4. Let 2 ≤ p ≤ ∞ and Λα
m,n be defined as above; λk ≥ 2k. Then for

every f ∈ Lp([0, 1]), n ∈ N, there exists a Kantorovich-Bernstein α-fractal Müntz
polynomial Qα

n ∈ Λα
m,n such that

‖f −Qα
n ‖p ≤ Aωp(f, ε) +

L

1− L
‖Q−Kn(Q)‖p,

where L is defined in (13).

Proof. Under the stated hypothesis, it is known from [2] that there exists a Müntz
polynomial Q ∈ Λm such that

‖f −Q‖p ≤ Aωp(f, ε). (23)

With the help of this Müntz polynomial Q and for a given partition of [0, 1],
construct the Kantorovich-Bernstein α-fractal Müntz polynomial Qα

n using (12).
Now Qα

n ∈ Λα
m,n and from the Proposition 3.3,

‖Qα
n −Q‖p ≤

L

1− L
‖Kn(Q)−Q‖p. (24)

The proof follows immediately using (23), (24) in

‖f −Qα
n ‖p ≤ ‖f −Qn‖p + ‖Qn −Qα

n ‖p. 2

5. Application. In this section, we will prove the existence of a fractal one-
sided best approximation. The properties of the Bernstein α-fractal function fαn
depend on the scaling function and the base function. Several shape preserving
properties of the fractal functions have been studied in ([9], [21]) for the choice of
arbitrary b and α satisfying certain conditions. In our case, considering b(x) =
Bn(f ;x) and using the properties of Bn(f), we get the following result.

Theorem 5.1. Let f ∈ C(I) be convex on [0, 1] and ∆ := {0 = x1 < x2 <
· · · < xN = 1}. Consider the IFS as described in (3), where qi,n(x) = f(Li(x)) −
αi(x)Bn(f ;x) and αi(x) ∈ C(I). The corresponding Bernstein α-fractal function
fαn satisfies fαn (x) ≤ f(x) ∀ x ∈ I, n ∈ N, and the equality holds at the knot points
provided that αi(x) ≥ 0 ∀ x ∈ I.

Proof. The Bernstein α-fractal function fαn satisfies

fαn (Li(x)) = f(Li(x)) + (fαn (x)−Bn(f ;x))αi(x) ∀x ∈ Ii, n ∈ N, i ∈ NN−1. (25)

Clearly from the construction of the fractal function, we can observe that the
next generation values of (fαn )(Li(xj)) depend on the current values fαn (xj) for
j = 1, 2 . . . , N at the grid points. Since (fαn )(xm) = f(xm), that is, (fαn −f)(xm) ≤
0 ∀m = 1, 2, . . . , N , to prove the proposed condition it is enough to check that
(fαn − f)(Li(x)) ≤ 0 ∀ i ∈ {1, 2, . . . , N}. Thus, from (25), we have

(fαn − f)(Li(x)) = αi(x)(fαn (x)−Bn(f ;x))

= αi(x)(fαn (x)− f(x)) + αi(x)(f(x)−Bn(f ;x)).
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(a) Fractal function fα not satisfying
fα ≤ f

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(b) Fractal function fα satisfying fα ≤
f

Figure 1: Fractal functions for f(x) = x2.

Since Bn(f ;x) ≥ f(x) for a convex function f [18], (fαn − f)(Li(x)) ≤ 0 if
αi(x) ≥ 0 ∀ x ∈ I as (fαn − f)(x) ≤ 0. The theorem follows from the itera-
tive nature of a fractal function. 2

Example 5.2. Consider I = [0, 1] with a uniform partition ∆ of step size h = 1
4 .

Suppose the original convex function is f(x) = x2. The fractal function fα is
constructed with a uniform partition ∆, scaling vector α = (0.5,−0.45, 0.5,−0.65),
and base function b(x) = xex−1. The corresponding graph is depicted in Fig. 1(a).
Note that b(x) = xex−1 does not satisfy b(x) ≥ f(x) and α is not a positive vector
in this case, and hence the fractal function fα does not lie completely below f (see
Fig. 1(a)). With a choice of α satisfying the conditions prescribed in Theorem 5.1,

namely, α = (0.2, 0.1, 0.3, 0.25), and b(x) = B2(f ;x) = x2+x
2 ≥ f(x), we obtain a

fractal function fα that lies completely below f (see Fig. 1(b)).
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