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a b s t r a c t 

In this work, numerical solvers based on extensions of the Roe and HLL schemes are adapted to deal 

with test cases involving extreme collapsing conditions in elastic vessels. To achieve this goal, the sys- 

tem is transformed to provide a conservation–law form, allowing to define Rankine–Hugoniot conditions. 

The approximate solvers allow to describe the inner states of the solution. Therefore, source term fixes 

can be used to prevent unphysical values of vessel area and, at the same time, the eigenvalues of the 

system control stability. Numerical solvers of different order are tested using a wide variety of Riemann 

problems, including extreme vessel collapse and blockage. In all cases, the robustness of the approximate 

solvers presented here is checked using first and third order methods in time and space, using the WENO 

reconstruction scheme in combination with the TVDRK3 method. 

© 2019 Elsevier Ltd. All rights reserved. 

1. Introduction 

Human venous and arterial flow is sensitive to variations in 

the body positioning. When analysing in detail changes due to 

the operation of the baroreceptor reflex, gravity-driven flow pres- 

sure variations in time-dependent postural maneuvers are of rel- 

evance [1] . On the other hand, the mechanical behavior of ves- 

sels strongly differs if comparing veins and arteries. Veins exhibit a 

highly nonlinear pressure-area relation due to their flexibility, and 

they collapse in sitting or standing humans while arteries do not. 

The appropriate treatment of all these phenomena requires non- 

trivial numerical solvers, that must ensure accuracy and stability 

when dealing with time-dependent postural maneuvers and time- 

dependent pressure variations in coexistence with spatial varia- 

tions of the mechanical properties of the vessel wall. 

Both arterial and venous system can be modeled using 

one–dimensional (1D) approaches [2–4] , for blood flow in 

large/medium arteries and veins involving mass and momentum 

conservation, leading to a hyperbolic system of equations with 

source terms. In the literature 1D formulations in terms of con- 

served variables [5–12] as well as in terms of primitive variables 

[13–16] are presented. It has been pointed out that the formula- 

tion in primitive variables may result in an inadequate estimation 

of the shock propagation velocity [17–19] . 
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The numerical discretization of the source terms associated to 

spatial variation of mechanical and geometrical properties of ves- 

sels requires an special care [11,20] . The same conclusion is de- 

rived when analyzing other hyperbolic systems such as the 1D 

shallow water equations (SWE). Both mathematical models include 

geometric–type source terms that can be expressed as the product 

of a function of the conserved quantities and a geometric function 

that depends upon the position and can be discontinuous [22,23] . 

It is well known that, if the geometric-type source terms are 

not treated correctly, spurious oscillations may be generated in the 

numerical solution leading to failure. The correct balance between 

fluxes and source terms, or well balanced solutions, [21,24] is the 

first step to correctly reproduce steady solutions in the presence of 

source terms. It is pertinent to point out that, in presence of source 

terms, resonant problems can be defined, leading to multiple solu- 

tions in the SWE [25] . This phenomena has also been described in 

collapsible vessels [17,26] . 

The numerical innovations developed for the SWE, based on 

well balanced solutions, can be applied to the analysis of the flow 

in collapsible vessels [6,11] . High-order path-conservative numer- 

ical schemes that exactly preserve steady solutions in any flow 

regime [41] are of interest. They can include variable geometrical 

properties [20] and are extensible to the resolution of vessel junc- 

tions [27] . 

As the selection of families of paths is not trivial task [25,28,29] , 

it may be desirable to use alternative strategies. In [30] , with only 

a few modifications of existing shock-capturing Total Variation Di- 

minishing (TVD) schemes, an extension of a TVD scheme was pre- 
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sented in combination with a Runge-Kutta time integration. The 

resulting tool provided accurate solutions when compared with 

those presented in [20] . High order extensions can also be devised 

by combining a weighted essentially non-oscillatory (WENO) re- 

construction of the conserved variable with Runge-Kutta time in- 

tegrators [9] . 

Tube laws for thin walled vessels have a sigmoid shape where 

pressure falls exponentially when the area tends to zero but they 

never fully close. If using this type of law for modelling flow in 

veins, when veins collapse the blood flow is greatly reduced and a 

negative value of transmural pressure is observed. Therefore, clas- 

sical waves in the conventional Riemann problem cannot be con- 

nected to the zero state with a zero value of vessel area [31] . When 

approaching a collapsed state it is of utmost importance to con- 

trol the approximations made in the numerical scheme. For the 

SWE it has been shown that negative non-physical values of cross- 

sectional area must be avoided. Numerical codes crash because the 

eigenvalues do not determine the time step size as a result of the 

not pure hyperbolic character of the system of equations in such 

conditions [32] . 

The capabilities of numerical methods preserving the well 

balanced-property can be enhanced to ensure the exactly well bal- 

anced property. Exactly well-balanced methods, named commonly 

energy balanced numerical schemes, also ensure conservation in 

exact solutions derived from the entropy function of the system, 

in our case an energy conservation law. A challenging aspect to be 

faced by energy-balanced schemes is the robustness of the numer- 

ical algorithm in resonant cases and in transitions from supercriti- 

cal to subcritical flow in energy dissipating shocks or elastic jumps 

[26] . 

An alternative to path-conservative numerical schemes are 

the augmented solvers ARoe (Augmented Roe) presented in 

[33–36] and HLLS [37] used here. Comparisons between path- 

conservative based schemes, such as the HLLE and DOT solvers, 

and the ARoe solver are presented in [40] in the framework of the 

SWE. The ARoe solver was previously applied to ensure a correct 

treatment of blood flow in arteries with discontinuous mechani- 

cal and geometrical properties and variable external pressure in 

[38] expressed in fluctuation form. The ARoe solver can also be ex- 

tended to schemes with arbitrary order of accuracy [22,39] . 

When analyzing the SWE hydrostatic or gravity forces and fric- 

tion forces have the same effect on the flow as the observed in the 

governing equations for blood flow in elastic vessels and they can 

be formulated exactly in the same way. Variations in atmospheric 

pressure for the SWE or in the external pressure in vessels are 

equivalent. The advantage in the SWE is that the relation between 

water depth and pressure is linear, which allows to express the 

system of equations in conservative form. Variations in bed eleva- 

tion in channels or changes in vessel elevation provide hydrostatic 

variations in the pressure and, in consequence, have an analogous 

impact in the flow. In the context of the SWE, it is well known that 

well-balancing problems appear when hydrostatic pressure varia- 

tions associated to variations in bed elevation are not considered 

in the approximate solution used to construct the numerical solver 

[22,33,34,36] . Therefore, in this work, changes in pressure derived 

from changes in vessel elevation are unified with the rest of varia- 

tions of pressure and, as will be seen in the applications, this for- 

mulation preserves the exact solution in exactly balanced RP’s. 

Friction forces in the SWE can cause problems because of stiff- 

ness. The current tendency to avoid numerical errors (lack of bal- 

ance in the solution and/or oscillations) arising from the friction 

terms is the use of an implicit treatment of the resistance source 

term. However, even though implicit discretization of the fric- 

tion terms ensures stability, a detailed analysis shows that it does 

not provide an exact balance among fluxes and source terms in 

steady state cases [42,43] , leading to undesirable non uniform dis- 

charge values. Explicit discretizations of the friction can also lead 

to non uniform discharge values. The upwind unified treatment 

[36,43,44] of all terms, including boundary shear stress, ensures an 

exact balance among fluxes and source terms in steady cases with 

non-zero velocity. 

This work focuses on the application of the ARoe and HLLS 

solvers to flow in collapsible tubes with discontinuous mechanical 

properties including collapsed states. To the best of our knowledge, 

there are not previous works focused on the application and design 

of numerical solvers devoted to the solution of Riemann problems 

in collapsed vessels. Recently, the presence of collapsed states in 

the exact solution has been analyzed in [31] , remarking the differ- 

ences between veins and arteries. Another novelty of this work is 

the use of the HLLS solver. The system of equations can not be ex- 

pressed using a conservation–law form, and the flux function used 

to derive the eigenvalues of the system can not be defined. This 

request can be avoided by defining a suitable Jacobian matrix, as 

in [38] , but the HLLS requires the definition of a flux to define 

jumps across shocks. The transformation of the initial system of 

equations presented here provides an equivalent system written in 

conservation–law form, where a flux function is defined, allowing 

the application of the HLLS scheme. 

This paper is organized as follows. In Section 2 the mathemat- 

ical model is recalled. In Section 3 the system is transformed to 

provide a conservation–law form, allowing to define jumps across 

shocks or Rankine–Hugoniot (RH) conditions necessary to apply 

the ARoe and HLLS solvers in Section 4 and 5 respectively. For both 

solvers conditions of vessel collapse are analyzed. Section 6 in- 

cludes a summary of the steps required to compute the fluxes used 

for both ARoe and HLLS solvers. The flux solvers are extended from 

first to third order using the weighted essentially non-oscillatory 

(WENO) reconstruction scheme in combination with the optimal 

third-order total variation diminishing Runge-Kutta (TVDRK3) in 

Section 7 . Numerical results in a wide variety of cases including 

severe collapse are discussed in Section 12. 

2. 1D mathematical models in arteries and veins 

Simplified 1D models can be used to represent the essential 

physical features of wave propagation in compliant vessels. The re- 

sulting 1D equations involve cross section average of the mass and 

momentum that, in conservative form, lead to the following first- 

order, nonlinear hyperbolic system: 

∂ t U + ∂ x F (U ) = G χ , (1) 

with U = U (x, t) and 

U = 

[
A 
Q 

]
, F (U ) = 

[ 

Q 

κ
Q 

2 

A 

] 

, 

G χ = 

[ 

0 

− A 

ρ

∂ p 

∂x 
− f 

ρ
− gA 

∂η

∂x 

] 

= 

[
0 
G χ

]
, (2) 

where x is the axial coordinate along the vessel, t is the time, A is 

the cross-sectional area, Q = Au is the volume flow rate with u the 

cross sectional average axial velocity, p ( x, t ) is the average inter- 

nal pressure over the cross section, f is the friction force per unit 

length, ρ is the blood density and η is a coordinate perpendicu- 

lar to Earth surface, that accounts for the gravitational forces due 

to the presence of gravity acceleration g . The parameter κ depends 

on the assumed velocity profile, and a blunt velocity profile is as- 

sumed in this work with κ = 1 . If Poiseuille flow is considered for 

collapsible tubes the friction force becomes f = 8 πμu . This system 

of equations is closed with a pressure–area relation of the form: 

p(x, t) − p e (x, t) = ψ, ψ = ψ(K, A, p o , A o , x ) , (3) 
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where p e is the external pressure and function ψ is the elastic 

transmural pressure that depends on the vessel stiffness K = K(x ) . 

Following [45] transmural pressure is assumed of the form: 

ψ = Kσ + p o , σ = αm − αn , (4) 

with α = A/A o . Vessel stiffness K has different formulations for ar- 

teries, and exponents in σ are of the form m > 0 and n ∈ [ −2 , 0 ] . 

Finally A o is the vessel cross-sectional area for which the transmu- 

ral pressure ψ is p o . 

2.1. Quasilinear form 

From (2) it is possible to define a Jacobian matrix A of the flux 

F (U ) defined as: 

A = 

∂F (U ) 

∂U 

= 

[
0 1 

−u 2 2 u 

]
, (5) 

with u = Q/A, the flow velocity. Using (4) , the pressure derivative 

can be expanded as follows: 

∂ x p = ∂ x p e + ∂ x K σ + K σA ∂ x A + K σA 0 ∂ x A 0 + ∂ x p o , (6) 

with 

σA = 

∂σ

∂A 
= mA m −1 A 0 

−m − nA n −1 A 0 
−n 

, 

σA 0 = 

∂σ

∂ A 0 
= −mA m A 0 

−(m +1) + nA n A 0 
−(n +1) 

. 

(7) 

Source terms in G χ are expressed as 

G χ = −B 

∂U 

∂x 
+ S χ , B = 

[
0 0 

c 2 0 

]
, (8) 

where B accounts for the cross–sectional variations in space, with 

c 2 = 

A 
ρ KσA , and matrix S χ is given by 

S χ = 

[ 

0 

− A 

ρ

∂ p 

∂x 
+ c 2 

∂A 

∂x 
− f 

ρ
− gA 

∂η

∂x 

] 

. (9) 

Using (5) and (8) the following matrix J can be built 

J = A + B , J = 

[
0 1 

c 2 − u 2 2 u 

]
. (10) 

Now, system in (1) is written in quasilinear form as follows 

∂U 

∂t 
+ J (U ) 

∂U 

∂x 
= S χ , (11) 

and, depending on the value of parameters m and n , system (1) can 

be considered of hyperbolic nature [17] . Matrix J has two eigen- 

values, λ1 = u − c and λ2 = u + c, and two real eigenvectors, e 1 = (
1 , λ1 

)T 
and e 2 = 

(
1 , λ2 

)T 
, appear. 

3. Semi-discrete approximate RP 

Between each two adjacent cells i and i + 1 of constant length 

�x a local RP posed for a time step t ∈ (0, �t ) is defined for the 

system as follows: 

∂ ̂  U 

∂t 
+ 

∂F( ̂  U ) 

∂x 
= G χ , ˆ U (x, 0) = 

{
U i i f x < 0 
U i +1 i f x > 0 

(12) 

in the control volume represented in Fig. 1 , where ˆ U is an approx- 

imate solution of (12) and U i = U 

n 
i 
and U i +1 = U 

n 
i +1 

are the initial 

conditions for ˆ U at time t = 0 at the left and right side of the RP 

respectively, with 

U 

n 
i = 

1 

�x 

∫ �x 

0 

U (x, t = 0) dx. (13) 

Fig. 1. Integration control volume defined by a time interval [0, �t ] and a space 

interval [ −�x/ 2 , �x/ 2] . 

The RP in (12) will be solved using approximate linear solu- 

tions of an initial value problem by means of an explicit conserva- 

tive formula that, according to the Godunov first order method, is 

written as: 

U 

n +1 
i 

= U 

n 
i −

�t 

�x 
[ F −

i + 1 2 
− F + 

i − 1 
2 

] , (14) 

with F + 
i −1 / 2 

the numerical fluxes yet to be defined, that will in- 

clude both the physical flux F and the source term G , that is, 

F = F (F , G ) . The necessary conditions required to define numeri- 

cal flux F are presented in this section. 

Analogously, Eq. (14) can be rewritten in terms of fluctuations, 

denoted here by δM , leading to 

U 

n +1 
i 

= U 

n 
i −

�t 

�x 
[ δM 

−
i + 1 2 

+ δM 

+ 
i −1 / 2 

] , (15) 

following the quasi-steady wave-propagation algorithm [46] , with, 

F −
i + 1 2 

= F i + δM 

+ 
i −1 / 2 

, F + 
i − 1 

2 

= F i − δM 

−
i + 1 2 

(16) 

where instead of defining a numerical flux at each interface F , the 

solution is explored using differences between the conserved vari- 

ables and fluxes across the interface. In exactly balanced cases of 

equilibrium the desired solution will be δM 

±
i + 1 / 2 = 0 . 

It must be noticed that the differential form of the govern- 

ing equations for 1D blood flow only allows to formulate a flux 

function for the system in the homogeneous case with constant 

vessel properties [17] , otherwise they cannot be described using 

a conservation–law form. As a consequence, when managing real- 

istic simulations involving geometrical and mechanical properties, 

the path-conservative numerical schemes in [20,41] , the shock–

capturing TVD scheme in [30] or the ARoe solver in [38] , were 

expressed in fluctuation form. This section is devoted to the con- 

struction of an approximate RP in conservation–law form, that will 

allow us to locally define a flux F in (14) . 

With independence of the approximate solver used, the Con- 

sistency Condition must be satisfied [47] . The control volume is 

limited by the maximum and minimum wave celerities of the 

system, −�x/ 2 ≤ λL �t and �x /2 ≥λR �t , with λL ≥λR . Integrating 

(12) over the control volume the resulting condition is 

1 

�x �t 

∫ �x 
2 

− �x 
2 

ˆ U (x, �t) dx = 

(U i +1 + U i ) 

2�t 
−

δF i + 1 2 
�x 

+ 

1 

�x �t 

∫ �x 
2 

− �x 
2 

∫ �t 

0 

G χ dx dt , (17) 

where δ symbol is used to express space difference, δ(·) i +1 / 2 = 

(·) i +1 − (·) i . The flux difference δF 

i + 1 
2 
is written using an approxi- 
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mate Jacobian ˜ A : 

δF i + 1 2 = 

˜ A i + 1 2 δU i + 1 2 , 
˜ A i +1 / 2 = 

(
0 1 

−˜ u 2 2 ̃  u 

)
i +1 / 2 

, (18) 

involving the Roe average value: 

˜ u i +1 / 2 = 

u i 
√ 

A i + u i +1 

√ 

A i +1 √ 

A i + 

√ 

A i +1 

. (19) 

The source term is included in the Riemann solver as a singu- 

lar source at the discontinuity point x = 0 [33] . Considering that 

source terms are not necessarily constant in time, the following 

time linearization is applied [33,34] 

G i +1 / 2 = 

1 

�t 

∫ �x/ 2 

−�x/ 2 

∫ �t 

0 

G χ dx dt 

≈

⎡ ⎢ ⎣ 

0 

−A 

ρ
(δp + gρδη) −

˜ f 

ρ
�x 

⎤ ⎥ ⎦ 

i +1 / 2 

, (20) 

with A a suitable value of vessel area that will be defined depend- 

ing on the flow conditions and ˜ f the integral of the friction force in 

the control volume. The numerical approximation in (20) , based on 

preserving the jump in pressure, will prove successful when seek- 

ing energy balanced solutions in Section 3.2 . 

The pressure variation δp can be defined exactly as: 

δp i + 1 2 = δ(p e ) i + 1 2 + δ(Kσ ) i + 1 2 + δ(p o ) i + 1 2 , (21) 

or in terms of the variations of the vessel stiffness K and of the 

function σ using the average values 

δ(Kσ ) i +1 / 2 = 

(
K̄ δσ + σ̄ δK 

)
i +1 / 2 

. (22) 

The variations in the dimensionless function σ at each i + 

1 
2 

edge 

δσ = δ(A m A −m 

o ) − δ(A n A −n 
o ) (23) 

can be again expressed in terms of variations in cross sectional ar- 

eas A and A o , using 

δ(A m A −m 

o ) = A m δA −m 

o + A −m 

o δA m , δ(A n A −n 
o ) = A n δA −n 

o + A −n 
o δA n . 

(24) 

Power functions of the cross sectional areas in (24) are lin- 

earized by suitable average values in the following way: 

δA m = 

˜ A m −1 δA, δA n = 

˜ A n −1 δA, δA −m 

o = 

˜ 

A −(m +1) 
o δA o , 

δA −n 
o = 

˜ 

A −(n +1) 
o δA o . (25) 

Average values ̃  A m −1 , ˜ A n −1 , 
˜ 

A −(m +1) 
o and 

˜ 

A −(n +1) 
o are functions of 

A i and A i +1 and are defined in Appendix A . With these expansions 

it is possible to express the pressure variation in (21) as 

δp = δp e + σ̄ δK + δp o + K̄ ̃  σA δA + K̄ ̃  σA 0 δA o , (26) 

with 

˜ σA = 

[ 
A −m 

o 
˜ A m −1 − A −n 

o 
˜ A n −1 

] 
, ˜ σA 0 = 

[
A m 

˜ 

A −(m +1) 
o − A n 

˜ 

A −(n +1) 
o 

]
. 

(27) 

Now the source term G i +1 / 2 can be expressed as 

G i +1 / 2 = −˜ B i +1 / 2 δU i +1 / 2 + S i +1 / 2 , (28) 

where matrix ˜ B includes an energy balanced approach in the wave 

speed estimation: 

˜ B 2 ,i +1 / 2 = 

[
0 0 ˜ c 2 0 

]
i +1 / 2 

, ˜ c 2 = 

A 

ρ
K̄ ̃  σA . (29) 

and source term S i +1 / 2 can be defined in terms of variations as: 

S i +1 / 2 = 

[ 

0 

−A 

ρ

(
δp e + σ̄ δK + δp o + K̄ ̃  σA 0 δA o 

)
− A gδη −

˜ f �x 

ρ

] 

i +1 / 2 

, 

(30) 

or involving the wave speed estimation ̃  c and the jump in driving 

pressure δp d,i +1 / 2 , 

S i +1 / 2 = 

[
0 
S 2 

]
i +1 / 2 

= 

[ 

0 

−A 

ρ
δp d + ̃

 c 2 δA −
˜ f �x 

ρ

] 

i +1 / 2 

, (31) 

with p d = p + gρη an equivalent pressure generated by the com- 

bination of the pressure and the gravitational force. Now that all 

terms are redefined, the integral of the solution in the volume of 

interest is given by ∫ +�x/ 2 

−�x/ 2 

U (x, �t) dx = 

�x 

2 
( U i + U i +1 ) − δM i +1 / 2 �t, (32) 

with 

δM i + 1 2 = (δF − G ) i + 1 2 = ( ̃  A + ̃

 B ) i + 1 2 δU i + 1 2 − S i + 1 2 . (33) 

3.1. The linear semi-discrete approximate RP 

The RP in (12) is now approximated by using the following con- 

stant coefficient linear RP [48] 

∂ ̂  U 

∂t 
+ ̃

 J i + 1 2 
∂ ̂  U 

∂x 
= 

1 

�x 
S i + 1 2 , 

ˆ U (x, 0) = 

{
U i i f x < 0 
U i +1 i f x > 0 

(34) 

where ˜ J 
i + 1 

2 
= ̃

 J 
i + 1 

2 
(U i , U i +1 ) is a constant matrix. Integrating 

(34) over the same control volume, the following constraint ap- 

pears 

( ̃  A + ̃

 B ) i + 1 2 δU i + 1 2 = ̃

 J i + 1 2 δU i + 1 2 , (35) 

that is, ˜ J 
i + 1 

2 
= ( ̃  A + ̃

 B ) 
i + 1 

2 
. Equilibrium in (33) is then also ex- 

pressed as: 

δU i + 1 2 = ̃

 J −1 

i + 1 2 
S i + 1 2 . (36) 

The approximate Jacobian ̃  J provides a set of two real eigenval- 

ues ̃  λ1 = ̃

 u −˜ c and ̃  λ2 = ̃

 u + ̃

 c with ̃  λ1 

i + 1 
2 

< ̃

 λ2 

i + 1 
2 

, and two eigenvec- 

tors ̃  e 1 , 2 
i +1 / 2 

= 

(
1 , ̃  λ1 , 2 

)T 
i +1 / 2 

. With them it is possible to define two 

approximate matrices ̃  P = ( ̃  e 1 , ̃  e 2 ) and ̃  P −1 that diagonalize ̃  J : 

˜ P 

−1 
i +1 / 2 ̃

 J i +1 / 2 ̃
 P i +1 / 2 = 

˜ �i +1 / 2 , 
˜ �i +1 / 2 = 

(˜ λ1 0 

0 ˜ λ2 

)
i +1 / 2 

. (37) 

Formulation in (34) allows us to define a new flux function of 

interest, 

F i +1 / 2 (U i ) = F(U i ) + ̃

 B i + 1 2 U i = 

(
A i u i ˜ c 2 

i +1 / 2 
A i + A i u 

2 
i 

)
, (38) 

as 

δF i +1 / 2 = F i +1 / 2 (U i +1 ) − F i +1 / 2 (U i +1 ) 

= δF i +1 / 2 + ̃

 B i + 1 2 δU i +1 / 2 = ̃

 J i +1 / 2 δU i +1 / 2 . (39) 
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Although the new function F is not a real physical flux it 

allows to define the following approximate semi-discrete RP in 

conservation–law form: 

∂ ̂  U 

∂t 
+ 

δF i + 1 2 ( ̂
 U ) 

�x 
= 

1 

�x 
S i + 1 2 , 

ˆ U (x, 0) = 

{
U i i f x < 0 
U i +1 i f x > 0 

, 

(40) 

with the same initial conditions, transforming the result in (33) in 

δM i + 1 2 = δF i + 1 2 − S̄ i + 1 2 , (41) 

involving a flux difference and a source term. 

3.2. Discrete equilibrium and steady state solutions. 

At this point, with independence of the flux solver selected, the 

source term linearization in (20) ensures an exact integration in 

steady conditions when δM i +1 / 2 = 0 . In this case, (33) results in an 

equilibrium between a flux difference and a source term: 

δF i + 1 2 = G i + 1 2 , (42) 

leading to: 

δ(Au ) i + 1 2 = 0 , δ
(
Au 2 
)
i + 1 2 

= −
(
A 

ρ
δp d + 

˜ f 

ρ
�x 

)
i + 1 2 

. (43) 

But the steady solutions not only have to satisfy momentum 

equilibrium, they also must ensure convergence to a physically 

based solution. Therefore, exactly energy balanced solutions will be 

considered here. For our system of interest, the entropy function is 

a combination of the mass and the momentum conservation equa- 

tions expressed in terms of the primitive variables: 

∂u 

∂t 
+ 

∂ 

∂x 

(
u 2 

2 
+ 

p d 
ρ

)
= �, (44) 

where � = 

f 
Aρ stands for the viscous dissipation. If this function 

is integrated in our volume of interest and steady conditions are 

assumed, the resulting condition is: 

δ

(
u 2 

2 
+ 

p d 
ρ

)
i + 1 2 

= −
(

˜ f 

Ā ρ

)
i + 1 2 

�x. (45) 

If the equivalent area A in (20) is approximated by A E at each 

i + 

1 
2 edge: 

A E = Ā + �E (A min − Ā ) , (46) 

where ( ·) symbol denotes the arithmetic mean, ( ̄·) i +1 / 2 = 

1 
2 [ (·) i +1 + (·) i ] , ( · ) min symbol denotes the minimum value, (·) min = 

min (·) i , (·) i +1 . The combination of momentum and energy conser- 

vation equations in (43) and (45) leads to the following value of 

�E [38] : 

�E = 

(
δ
(
Au 2 
)

− Ā 

2 
δu 2 
)(

( ̄A − A min ) δp d 
ρ

)−1 

, (47) 

a dimensionless parameter or weight, limited in this work by −1 ≤
�E ≤ 1 . 

In cases of static equilibrium, �E = 0, and the solution reduces 

to δp d = 0 , ensuring the well balanced property. If flow is consid- 

ered, the equivalent area A E can be expressed as 

A E = 

1 

2 
[ A min (1 + �E ) + A max (1 − �E ) ] , A min ≤ A E ≤ A max , 

(48) 

with (·) max = max (·) i , (·) i +1 . Therefore, energy conservation is en- 

sured in steady flow conditions by means of the approximate area 

A E that varies linearly with �E between the maximum and mini- 

mum values of the vessel area in the discontinuity. 

3.3. Energy dissipation 

The energy balance integral accounting for pressure variations 

and gravitational effects makes use of the approximation area A = 

A E in (48) limited by the left and right values of cross-sectional 

area. Using energy conservation arguments it is possible to gen- 

erate a steady solution resembling that of a converging-diverging 

nozzle in a flexible vessel, generated by smooth variations of ex- 

ternal pressure defined by a bell-shaped curve. Minimum vessel 

area appears consequently at the point of maximum external pres- 

sure equivalent to the nozzle throat. When dealing with nozzles if 

the flow becomes sonic at this point flow limitation occurs and, 

downstream this point, a steady shock or jump with a supersonic- 

subsonic transition where energy is dissipated can be produced. 

Once sonic blockage is produced, further difference between up- 

stream and downstream pressures is unable to increase the flow 

across the nozzle throat generated in the vessel [52] . An analogous 

phenomenon is produced in elastic vessels under some external 

pressure variations. This phenomenon is observed in the respira- 

tory tract during forced expiration, when the maximal air outflow 

rate from the lung is independent of the effort put forward by the 

patient [26] . 

Therefore, the numerical integration of the source terms must 

be able to ensure energy balanced solutions but also must be able 

to dissipate energy and ensure that the maximum flow is indepen- 

dent of the difference between upstream and downstream pres- 

sures in sonic blockage conditions. 

Depending on the flow conditions and of the speed index SI = 

u/c, the following numerical integration of the source term S 2 in 

(31) and selection of pulse wave velocity ̃  c are proposed: 

• If u i u i +1 
> 0 

1. In case that a left/right supersonic-subsonic transition ap- 

pears, SI 
i 
> 1 , SI 

i +1 
< 1 and A i < A i +1 or SI i > −1 , SI 

i +1 
< −1 

and A i +1 < A i respectively, set: 

S 2 = −A min 

ρ
δp d + 

(
A min 

Ā 

)˜ c 2 δA, ˜ c 2 = 

Ā 

ρ
K̄ ̃  σA . (49) 

2. Otherwise compute the dimensionless parameter �E follow- 

ing (47) and limit it by −1 ≤ �E ≤ 1 if necessary. Then de- 

fine: 

S 2 = −A E 

ρ
δp d + ̃

 c 2 δA, ˜ c 2 = 

A E 

ρ
K̄ ̃  σA . (50) 

• If u i u i +1 
≤ 0 impose: 

S 2 = − Ā 

ρ
δp d + ̃

 c 2 δA, ˜ c 2 = 

Ā 

ρ
K̄ ̃  σA . (51) 

This procedure summarizes the selection of the pulse wave ve- 

locity ̃  c and the source term S 2 depending on the type of flow tran- 

sitions. 

4. Augmented roe solver 

According to the Godunov method it is sufficient to provide the 

solution for ˆ U (x, t) at the intercell position x = 0 in order to derive 

the updating numerical fluxes in (14) . In order to recover the value 

of the approximate intermediate states U 

−
i 
and U 

+ 
i +1 

at the left and 

right side of the ( x, t ) plane solution respectively, 

U 

−
i 

= lim 

x → 0 −
ˆ U i (x, t > 0) , U 

+ 
i +1 

= lim 

x → 0 + 
ˆ U i +1 (x, t > 0) , (52) 

the system in (34) is transformed by using ̃  P −1 matrix as follows: 

˜ P 

−1 

i + 1 2 

(
∂ ̂  U 

∂t 
+ ̃

 J i + 1 2 
∂ ̂  U 

∂x 

)
= 

1 

�x ̃
 P 

−1 

i + 1 2 
S i + 1 2 . (53) 
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Expressing (34) in terms of the characteristic variables V = ˜ P −1 

i + 1 
2 

ˆ U , with V = (V 1 , V 2 ) T . The following linear RP can be formu- 

lated: 

∂V 

∂t 
+ ̃

 �i + 1 2 
∂V 

∂x 
= 

1 

�x 
B 

β

i + 1 2 
, 

V (x, 0) = 

{ 

V i = ̃

 P 

−1 

i + 1 2 
U i i f x < 0 

V i +1 = ̃

 P 

−1 

i + 1 2 
U i +1 i f x > 0 

(54) 

with B 
β

i + 1 
2 

= ( ̃  P −1 S ) 
i + 1 

2 
= (β1 , β2 ) T 

i + 1 
2 

the set of source strengths 

defined as: 

β̄1 = − S 2 
2 ̃  c 

, β2 = −β1 . (55) 

System in (54) is a decoupled system and each equation 

∂ V r 

∂t 
+ ̃

 λr 
i + 1 2 

∂ V r 

∂x 
= 

1 

�x 
β r 
i + 1 2 

, r = 1 , 2 (56) 

involves the variable V r , the wave celery ̃  λr and the source strength 

βr 

i + 1 
2 

. It is possible to generate a set of independent equations 

that can be solved exactly for each characteristic variable V r . The 

solution is constructed from the set of wave strengths A 

α
i + 1 

2 

= 

(α1 , α2 ) T 
i + 1 

2 

= δV 

i + 1 
2 

= ̃

 P −1 

i + 1 
2 

δU 

i + 1 
2 
with 

α1 
i +1 / 2 = 

(˜ λ2 δA − δQ 

2 ̃  c 

)
i +1 / 2 

, α2 
i +1 / 2 = −

(˜ λ1 δA − δQ 

2 ̃  c 

)
i +1 / 2 

. 

(57) 

The αr wave strengths allow to express simple linear relations 

for both conserved variables and flux vector differences as follows: 

δU i + 1 2 = 

∑ 

( α˜ e ) 
r 
i + 1 2 , δF i + 1 2 = 

∑ (̃
 λα˜ e 
)r 
i + 1 2 

. (58) 

The value of the characteristic variables at the left and right 

side of the intercell position in matrix form, V 

−
i 

and V 

+ 
i +1 

, is: 

V 

−
i 

= V i + 

(˜ �−1 ˜ �−�δV 

)
i + 1 2 

V 

+ 
i +1 

= V i +1 −
(˜ �−1 ˜ �+ �δV 

)
i + 1 2 

, 

(59) 

where � is a diagonal matrix 

�i + 1 2 = 

(
θ1 0 

0 θ2 

)
i + 1 2 

, θ r 
i + 1 2 

= 1 −
(

β r ˜ λr αr 

)
i + 1 2 

. (60) 

Now the intermediate states U 

−
i 

and U 

+ 
i +1 

can be directly ob- 

tained by using the ˜ P matrix. Vector solutions U 

−
i 

= ̃

 P V 

−
i 

and 

U 

+ 
i +1 

= ̃

 P V 

+ 
i +1 

are recovered from (59) as follows: 

U 

−
i 

= U i + ( ̃  P ̃

 �−1 ˜ �−�˜ P 

−1 ) i + 1 2 δU i + 1 2 = U i + 

∑ 

˜ λr < 0 

( αθ˜ e ) 
r 
i + 1 2 , 

U 

+ 
i +1 

= U i +1 − ( ̃  P ̃

 �−1 ˜ �+ �˜ P 

−1 ) i + 1 2 δU i + 1 2 = U i +1 −
∑ 

˜ λr > 0 

( αθ˜ e ) 
r 
i + 1 2 , 

(61) 

with the following property: 

U 

+ 
i +1 

− U 

−
i 

= ( ̃  P ̃

 �−1 B 

β ) i + 1 2 = ̃

 P ̃

 �−1 ˜ P 

−1 S i + 1 2 = ̃

 J −1 

i + 1 2 
S i + 1 2 = H i + 1 2 . 

(62) 

Being the solution defined as a sum of jumps or shocks be- 

tween the different intermediate states, the solution for the ap- 

proximate linear flux function at x = 0 , F −
i 

and F + 
i +1 

, is: 

F −
i 

= F i + 

∑ 

r 

(̃
 λ−αθ˜ e 

)r 
i + 1 2 

, F + 
i +1 

= F i +1 −
∑ 

r 

(̃
 λ+ αθ˜ e 

)r 
i + 1 2 

. (63) 

with ̃  λ± = 

1 
2 ( ̃

 λ ±
∣∣̃  λ
∣∣) . Also, the relation between the intercell ap- 

proximate fluxes can be analyzed using the RH (Rankine-Hugoniot) 

relation at x = 0 that includes a steady contact wave between ap- 

proximate solutions U 

−
i 

and U 

+ 
i +1 

F + 
i +1 

− F −
i 

− S̄ i + 1 2 = λ0 (U 

+ 
i +1 

− U 

−
i 
) = 0 . (64) 

It also provides the following relation among fluxes and con- 

served variables: 

F + 
i +1 

− F −
i 

= ̃

 J i + 1 2 (U 

+ 
i +1 

− U 

−
i 
) = S i + 1 2 , (65) 

that recovers the relation in (62) . 

In order to account for the variations in material and geomet- 

rical properties of the vessels, the intercell flux in (63) is modified 

to provide the approximate first order flux in (14) , given by: 

F ARoe −
i + 1 2 

= (F −
i 

− F i ) + F i = F i + 

∑ 

r 

(̃
 λ−αθ˜ e 

)r 
i + 1 2 

, 

F ARoe + 
i − 1 

2 

= (F + 
i 

− F i ) + F i = F i −
∑ 

r 

(̃
 λ+ αθ˜ e 

)r 
i − 1 

2 

. 

(66) 

On the other hand, the equivalent fluctuation form of numerical 

scheme in (13) can be derived by simply using the intercell flux 

definitions in (66) 

U 

n +1 
i 

= U 

n 
i −
([

F i + 

∑ 

r 

(̃
 λ−αθ˜ e )r 

i + 1 2 

]
−
[
F i −

∑ 

r 

(̃
 λ+ αθ˜ e )r 

i − 1 
2 

])
�t 

�x 
, 

(67) 

leading to 

δM 

ARoe −
i + 1 2 

= 

∑ 

r 

(̃
 λ−αθ˜ e 

)r 
i + 1 2 

, δM 

ARoe + 
i − 1 

2 

= 

∑ 

r 

(̃
 λ+ αθ˜ e 

)r 
i − 1 

2 

. (68) 

with 

δM 

ARoe −
i + 1 2 

+ δM 

ARoe + 
i + 1 2 

= δM i + 1 2 . (69) 

If functions δM 

±
i + 1 

2 

satisfy δM 

ARoe ±
i ∓ 1 

2 

= 0 in steady cases, conver- 

gence to a solution with mesh refinement is guaranteed. 

4.1. Wave-Speed estimates in the ARoe solver 

Roe’s linearization provides a good approximation for contact 

and shock waves or elastic jumps but, for rarefaction waves, where 

a continuous change in flow variables appears, the approxima- 

tions based on shocks may lead to inaccurate results, especially in 

cases of transonic flow. The accuracy is certainly improved if us- 

ing the Harten-Hyman entropy fix [4 8,4 9] and can be extended to 

account for the presence of source terms [36] . If a left transonic 

rarefaction characterized by λ1 
i 

< 0 < λ1 
i +1 

is present in the solu- 

tion, ̃  λ1 → 0 , to prevent unphysical solutions, the ̃  λ1 celerity and 

the wave strength β1 are split in two components, ̃  λ1 
a , ̃

 λ1 
b 
and ˜ β1 

a , ˜ β1 
b 
respectively: ˜ λ1 
a,i + 1 2 

= λ1 
i (λ

1 
i +1 −˜ λ1 

i + 1 2 
) (δλ1 ) −1 

i + 1 2 
, 

˜ λ1 
b,i + 1 2 

= λ1 
i +1 ( ̃

 λ1 
i + 1 2 

− λ1 
i ) (δλ

1 ) −1 

i + 1 2 
, ˜ β1 

a = β̄1 , ˜ β1 
b = 0 . (70) 

In case of a right transonic rarefaction, λ2 
i 

< 0 < λ2 
i +1 

, ̃  λ2 → 0 . 

The entropy fix procedure is entirely analogous to the left rarefac- 

tion case and the ˜ λ2 celerity and the wave strength β2 are split 

again in two components ˜ λ2 
a,i + 1 2 

= λ2 
i (λ

2 
i +1 −˜ λ2 

i + 1 2 
) (δλ2 ) −1 

i + 1 2 
, 

˜ λ2 
b,i + 1 2 

= λ2 
i +1 ( ̃

 λ2 
i + 1 2 

− λ2 
i ) (δλ

2 ) −1 

i + 1 2 
, 

˜ β2 
a,i + 1 2 

= 0 , ˜ β2 
b,i + 1 2 

= β̄2 
i + 1 2 

. (71) 
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4.2. Positive solution preservation in the ARoe solver 

The numerical integration of the source terms can be performed 

exactly in steady state RP’s but, when moving to transient varia- 

tions, gross estimations of the source term may lead to unphysi- 

cal results independently of the time step selected. Inner states in 

both ARoe and HLLS solvers are determined involving integration 

of source terms that may lead to negative values of vessel area. 

In order to avoid unphysical results, the strategy proposed here is 

based on enforcing positive values of the inner states given by the 

approximate solution. At each RP, positivity is enforced by ensur- 

ing: 

A −
i 

− A coll i ≥ 0 , A + 
i +1 

− A coll i +1 ≥ 0 , (72) 

where A coll = αcoll A o , and αcoll is considered the limiting ratio for 

the collapsed vessels. 

It must be noticed that the tube law used for very elastic ves- 

sels describes a stiffness that rapidly increases when the vessel is 

close to achieve the collapse condition. For veins, transmural pres- 

sure becomes equal to infinity for αcoll = 0 , so a value of collapsed 

area equal to zero cannot be handled numerically. This issue is 

remedied here setting αcoll = 1 .e −10 in the numerical experiments 

performed in this work. In this way the numerical scheme will 

treat solutions with arbitrarily small, but positive, vessel section 

area, allowing to define time step size based on the celerity of the 

waves of the system. 

It is possible to enforce positivity conditions over the two in- 

ner states that shape the approximate solution given by the ARoe 

solver in the subsonic case, ̃  λ1 ˜ λ2 > 0 . The following results can be 

derived: 

• Positive values of A −
i 

− A coll 
i 

≥ 0 require the following limit over 

source term integral S 2 

S 2 ≤ S Roe 2 , max , S Roe 2 , max = −2(A � 
i + 1 2 

− A coll i )( ̃  c ̃  λ1 ) i + 1 2 > 0 , (73) 

with A � 
i + 1 

2 

− A coll 
i 

> 0 . In case that A −
i 

− A coll 
i 

becomes negative, 

S 2 can be replaced by S 
Roe 
2 , max 

with the following consequences: 

A −
i 

= A coll i , A + 
i +1 

= A � 
i + 1 2 

− (A � 
i + 1 2 

− A coll i ) 

(˜ λ1 ˜ λ2 

)
i + 1 2 

> 0 . (74) 

• Positive values of A + 
i +1 

> A coll 
i +1 

, lead to the following limit for S 2 

S 2 ≥ S Roe 2 , min , S Roe 2 , min = −2(A � 
i + 1 2 

− A coll i )( ̃  c ̃  λ2 ) i + 1 2 < 0 (75) 

provided that A � 
i + 1 

2 

− A coll 
i 

> 0 . In case that A + 
i +1 

− A coll 
i +1 

becomes 

negative, S 2 can be replaced by S 
Roe 
2 , min 

with the following con- 

sequences 

A + 
i +1 

= A coll i +1 , A −
i 

= A � 
i + 1 2 

− (A � 
i + 1 2 

− A coll i +1 ) 

(˜ λ2 ˜ λ1 

)
i + 1 2 

> A coll i +1 

(76) 

ensuring positive values of water depth in both sides of the so- 

lution. 

Therefore positives values of A −
i 

and A + 
i +1 

can be ensured if 

S Roe 
2 , min 

≤ S 2 ≤ S Roe 
2 , max 

when A � 
i + 1 

2 

> A coll 
i +1 

and A � 
i + 1 

2 

> A coll 
i 

. 

5. The HLLS solver 

The integral average of the approximate RP (40) between the 

slowest and fastest signals at time �t , that will be referred to as 

Ū , can be derived by simply setting x L = λL �t and x R = λR �t in 

the control volume defined in Fig. 1 . 

Ū = 

∫ x R 
x L 

U (x, �t) dx 

�t(λR − λL ) 
= 

λR U i +1 − λL U i − F i +1 + F i + S i + 1 2 
(λR − λL ) 

. (77) 

The presence of the source term S introduces a variation in U 

in the solution across x = 0 , leading to two new integral averages 

U 

−
i 

and U 

+ 
i +1 

U 

−
i 

= 

∫ 0 
x L 
U (x, �t) dx 

−�tλL 

, U 

+ 
i +1 

= 

∫ x R 
0 U (x, �t) dx 

�tλR 

. (78) 

The introduction of the source term leads also to the definition 

of fluxes, F −
i 

= F (U 

−
i 
) and F + 

i +1 
= F (U 

+ 
i +1 

) , with the following RH 

relations across the left and right waves respectively 

F −
i 

− F i = λL (U 

−
i 

− U i ) , F i +1 − F + 
i +1 

= λR (U i +1 − U 

+ 
i +1 

) , (79) 

and the RH relation for the steady contact wave, of speed λ0 = 0 , 

at x = 0 in (65) . Using this RH relations the intermediate states are 

given by [37] 

U 

+ 
i +1 

= U 

∗
i +1 / 2 + 

S i + 1 2 − λL H i + 1 2 
λR − λL 

, U 

−
i 

= U 

∗
i +1 / 2 + 

S i + 1 2 − λR H i + 1 2 
λR − λL 

. 

(80) 

The intermediate fluxes are: 

F + 
i +1 

= F ∗i +1 / 2 + 

λR (S i + 1 2 − λL H i + 1 2 ) 

λR − λL 

, 

F −
i 

= F ∗i +1 / 2 + 

λL (S i + 1 2 − λR H i + 1 2 ) 

λR − λL 

, (81) 

with 

U 

∗
i +1 / 2 = 

λR U i +1 − λL U i + δF i + 1 2 
λR − λL 

, 

F ∗i +1 / 2 = 

λR F i − λL F i +1 + λL λR δU i + 1 2 
λR − λL 

, (82) 

the solutions for the particular case S̄ i +1 / 2 = 0 . 

The corresponding inter cell flux for the approximate Godunov 

method in (14) is given by two functions adapted here to include 

the variation in geometrical and mechanical properties of the ves- 

sel 

F HLLS−
i +1 / 2 

= 

⎧ ⎪ ⎨ ⎪ ⎩ 

F i if 0 ≤ λL 

(F ∗
i +1 / 2 

− F i ) + 

λL (S i +1 / 2 −λR H i +1 / 2 ) 

λR −λL 
+ F i if λL ≤ 0 ≤ λR 

δF i + 1 2 − S i +1 / 2 + F i if 0 ≥ λR 

, 

(83) 

F HLLS+ 
i +1 / 2 

= 

⎧ ⎪ ⎨ ⎪ ⎩ 

−(δF i + 1 2 − S i +1 / 2 + F i +1 ) if 0 ≤ λL 

(F ∗
i +1 / 2 

− F i +1 ) + 

λR (S i +1 / 2 −λL H i +1 / 2 ) 

λR −λL 
+ F i +1 if λL ≤ 0 ≤ λR 

F i +1 if 0 ≥ λR 

. 

(84) 

If expressed in fluctuation form, the approximate Godunov 

method results in: 

δM 

HLLS− = 

⎧ ⎪ ⎨ ⎪ ⎩ 

0 if 0 ≤ λL 

(F ∗
i +1 / 2 

− F i ) + 

λL (S i +1 / 2 −λR H i +1 / 2 ) 

λR −λL 
if λL ≤ 0 ≤ λR 

δF i + 1 2 − S i +1 / 2 if 0 ≥ λR 

, 

(85) 
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δM 

HLLS+ = 

⎧ ⎪ ⎨ ⎪ ⎩ 

−(δF i + 1 2 − S i +1 / 2 ) if 0 ≤ λL 

(F ∗
i +1 / 2 

− F i +1 ) + 

λR (S i +1 / 2 −λL H i +1 / 2 ) 

λR −λL 
if λL ≤ 0 ≤ λR 

0 if 0 ≥ λR 

. 

(86) 

In order to generate the intercell fluxes it is necessary to com- 

pute the speeds λR and λL . Suitable approximations will be dis- 

cussed next. 

5.1. Wave-Speed estimates in the HLLS solver 

Appropriate estimates for the wave speeds λL and λR are re- 

quired when computing the numerical fluxes in the HLLS solver. 

Direct wave speed estimates, λL = (u − c) L and λR = (u − c) R , are 

the simplest methods providing minimum and maximum signal 

velocities [50] and can be combined with the Roe averages [51] . 

Also, estimates λmin 
L 

and λmax 
R 

can also be defined [48] 

λmin 
L = min (u i , u i +1 ) − max (c i , c i +1 ) 

λmax 
R = max (u i , u i +1 ) + max (c i , c i +1 ) . (87) 

It is worth noting that even if always selecting the direct esti- 

mations to estimate λL and λR , the Roe average celerities ̃
 λm ac- 

tively participate in the approximate solution through the vector 

H = U 

+ 
i +1 

− U 

−
i 

= 

(
H 1 

H 2 

)
= 

(
H 1 

0 

)
, H 1 = − S 2 

˜ λ1 ˜ λ2 
, (88) 

where the jump in vessel area produced by the presence of the 

source terms is defined by H 1 . In H 1 both wave celerities ˜ λ1 and 
˜ λ2 appear, and may produce numerical oscillations or unphysical 

values in cases of transonic flow, as happens for the Roe solver. 

Under this circumstance the computation of the jump across the 

inner solutions in (88) may become unstable, as H 1 can become 

excessively large. It is possible to remedy this situation by using 

an entropy-source fix where wave speed estimates are selected as 

follows: 

• In left transcritical problems when λ1 
i 

< 0 < λ1 
i +1 

set: 

λL = min (λ1 
i , λ

min 
L ) , λR = max ( ̃  λ2 , λ2 

i +1 ) , 
˜ λ1 = λL (89) 

• In right transcritical problems when λ2 
i 

< 0 < λ2 
i +1 

set: 

λL = min ( ̃  λ1 , λ1 
i ) , λR = max (λmax 

R , λ2 
i +1 ) , 

˜ λ2 = λR (90) 

• Otherwise wave celerities are selected setting 

λL = min ( ̃  λ1 , λ1 
i ) , λR = max ( ̃  λ2 , λ2 

i +1 ) (91) 

With this selection (88) become stable in transonic problems. 

5.2. Positive solution preservation for the HLLS 

Again, it is possible to enforce positivity conditions over the 

two inner states that shape the approximate solution given by the 

HLLS solver. In the subsonic case, λL λR < 0 the following results can 

be derived: 

• Positive values of A −
i 

− A coll 
i 

≥ 0 , require the following limit over 

the source term integral S 2 

S 2 ≤ S HLL 
2 , max , S HLL 

2 , max = −(A � 
i + 1 2 

− A coll i )( ̃  λ1 ˜ λ2 ) i + 1 2 

(
1 − λL 

λR 

)
> 0 , 

(92) 

with A � 
i + 1 

2 

> A coll 
i 

, being A � 
i + 1 

2 

the solution for the homogeneous 

case without source terms. In case that A −
i 

becomes negative, 

S 2 can be replaced by S 
HLL 
2 , max 

, leading to the following left and 

right inner states 

A −
i 

= A coll i , A + 
i +1 

= A � 
i + 1 2 

+ (A � 
i + 1 2 

− A coll i ) 

(
−λL 

λR 

)
i + 1 2 

> 0 , 

(93) 

ensuring positive values of vessel area on the right side of the 

plane solution. 
• Positive values of A + 

i +1 
− A coll 

i +1 
≥ 0 lead to the following limit for 

S 2 

S 2 ≥ S HLL 
2 , min , S HLL 

2 , min = (A � 
i + 1 2 

− A coll i +1 )( ̃
 λ1 ˜ λ2 ) i + 1 2 

(
1 − λR 

λL 

)
< 0 , 

(94) 

provided that A � 
i + 1 

2 

> A coll 
i +1 

. In case that A + 
i +1 

becomes negative, 

S 2 can be replaced by S 
HLL 
2 , min 

with the following consequences 

A + 
i +1 

= A coll i +1 , A −
i 

= A � 
i + 1 2 

+ (A � 
i + 1 2 

− A coll i +1 ) 

(
−λR 

λL 

)
i + 1 2 

> 0 , 

(95) 

ensuring positive positive values of vessel area in both sides of 

the solution. 

Therefore positive values of A −
i 

and A + 
i +1 

can be ensured if 

S HLL 
2 , min 

≤ S 2 ≤ S HLL 
2 , max 

when A � 
i + 1 

2 

> A coll 
i +1 

and A � 
i + 1 

2 

> A coll 
i 

. 

6. Summary of the ARoe and HLLS solvers 

In this section, the necessary steps required to compute the in- 

tercell fluxes in (66) or fluctuation waves in (68) at each i + 

1 
2 cell 

edge are listed. In this procedure all quantities are calculated ex- 

plicitly. For the ARoe the procedure is defined as follows: 

1. Compute the fluxes F i = F(U i ) , with F defined as in (2) . 

2. Compute the dimensionless variable �E using (47) and the ap- 

proximate vessel area A using (48) . 

3. Compute the pulse wave velocity average value ˜ c and the 

source term S 2 depending on the flow conditions defined in 

49 –(51) . 

4. Compute eigenvalues ̃  λ1 , 2 and eigenvectors ̃  e 1 , 2 . 

5. Limit the value of the source term S 2 , S 
Roe 
2 , min 

≤ S 2 ≤ S Roe 
2 , max 

, to 

ensure positive values of vessel area. 

6. Compute wave strengths α1,2 , source strengths β̄1 , 2 and coeffi- 

cients θ1,2 in (57), (55) and (60) respectively. 

7. Split the eigenvalues ̃  λ1 , 2 using the Harten-Hyman entropy fix 

as defined in (70) and (71) in cases of transonic flow. 

8. Use summations in (66) or (68) to define the update the so- 

lution using numerical fluxes in (14) or using fluctuations in 

(15) respectively. 

On the other hand, for the HLLS the procedure is defined as 

follows: 

1. Compute the fluxes F i = F(U i ) , with F defined as in (2) . 

2. Compute the dimensionless variable �E using (47) and the ap- 

proximate vessel area A using (48) . 

3. Compute the pulse wave velocity average value ˜ c and the 

source term S 2 depending on the flow conditions defined in 

49 –(51) . 

4. Compute new flux functions F i and F i +1 using definition in (38) . 

5. Compute wave speeds ̃  λ1 , 2 , λL and λR depending on the flow 

conditions in 89 –(91) . 

6. Limit the value of the source term S 2 , S 
HLLS 
2 , min 

≤ S 2 ≤ S HLLS 
2 , max 

, to 

ensure positive values of vessel area. 
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Fig. 2. Mesh discretization.. 

7. Compute U 

∗
i +1 / 2 

and F ∗
i +1 / 2 

in (82) and vector H i +1 / 2 in (88) . 

8. Use summations in (83) or (85) to define the updated solution 

using numerical fluxes in (14) or using fluctuations in (15) re- 

spectively. 

As in both solvers the integration of source term is numeri- 

cally controlled, only wave celerities define the maximum allow- 

able time step. Considering that the grid size �x is fixed, the time 

step �t is computed considering the speed of the fastest wave, 

leading to the following limit: 

�t ≤ C F L 
�x 

max 
(
c i + | u | i 

) , C F L ≤ 1 , (96) 

where a CFL value equal to 1/2 ensures no interaction of waves 

from neighboring Riemann problems. 

7. Extension to high order 

Updating formulae in (14) or (13) can be expressed in the fol- 

lowing form 

U 

n +1 
i 

= U 

n 
i + �t h̄ (U 

n , t n ) , (97) 

with � an operator of the set of approximate solutions at time t n , 

U 

n , 

h̄ (U 

n , t n ) = − 1 

�x 
[ F −

i + 1 2 
− F + 

i − 1 
2 

] n = − 1 

�x 
[ δM 

−
i + 1 2 

+ δM 

+ 
i −1 / 2 

] n (98) 

Following the approach proposed in [22,39] a suitable arbitrary- 

order extension of the previous method can be constructed re- 

defining the � operator as 

h̄ (U ) = − 1 

�x 
[ F −

i +1 / 2 
− F + 

i −1 / 2 
] + 

1 

�x 
[ S i R ,i L ] 

= − 1 

�x 
[ δM 

−
i +1 / 2 

+ δM i R ,i L + δM 

+ 
i −1 / 2 

] , (99) 

where now numerical fluxes and wave fluctuations used to evalu- 

ate � ( U ) will be computed using the WENO reconstruction as ini- 

tial data for the RPs, 

F i + 1 2 = F i + 1 2 (U i R , U (i +1) L ) , δM i + 1 2 = δM i + 1 2 (U i R , U (i +1) L ) , (100) 

with U i R 
and U (i +1) L 

the reconstructed value of the right and left 

states of U at the cells i and i + 1 respectively, as depicted in Fig. 2 . 

Note that in (99) new extra terms that account for centered con- 

tributions appear. Such terms are a suitable approximation of the 

integral of the source term inside the cell, S i R ,i L , and a centered 

wave fluctuation, δM i R ,i L 
, given by [22,39] 

S i R ,i L = S i R ,i + S i,i L , δM i R ,i L = F i R − F i L − S i R ,i L . (101) 

The approach in (99) allows to construct a numerical scheme 

of high order of accuracy in space. In order to provide a high or- 

der accuracy also in time, an optimal third-order TVDRK3 method 

[54] is used. In contrast to the widespread one-step ADER ap- 

proach, the TVDRK3 requires 3 integration steps but avoids the 

use of the Cauchy-Kovalewski procedure, which may become in- 

accurate in presence of stiff source terms [56] . The TVDRK3 is con- 

structed as follows [57] : 

U 

(1) 
i 

= U 

n 
i 

+ �t h̄ (U 

n ) , 

U 

(2) 
i 

= 

3 
4 
U 

n 
i 

+ 

1 
4 
U 

(1) 
i 

+ 

1 
4 
�t h̄ (U 

(1) ) , 

U 

n +1 
i 

= 

1 
3 
U 

n 
i 

+ 

2 
3 
U 

(2) 
i 

+ 

2 
3 
�t h̄ (U 

(2) ) , 

(102) 

where the operator � ( U , t ) is evaluated using the WENO recon- 

structions after each updating stage. 

In order to preserve equilibrium in exactly balanced cases in- 

volving movement, WENO reconstructions are performed over the 

flow Q , over the prescribed external pressure and gravity effects 

combined in p d = p e + gρη, over the vessel stiffness K and over 

the geometrical properties A o and p o . Vessel area is not recon- 

structed directly by means of the WENO method. Instead, total en- 

ergy P t = p + ρ u 2 

2 + p d is reconstructed departing from P t cell aver- 

aged values in each computational cell. The reconstructed value of 

P t can be next expressed in terms of the previously reconstructed 

variables, and the single remaining unknown variable is the vessel 

area A . For more details we refer the reader to the work in [60] , 

where the validity of this method is proved. 

The third-order WENO reconstruction over an arbitrary q func- 

tion can be written in the following form [55] 

q i R = w 0 

(
−1 

2 
q i −1 + 

3 

2 
q i 

)
+ w 1 

(
1 

2 
q i + 

1 

2 
q i +1 

)
, 

q i L = w 0 

(
1 

2 
q i + 

1 

2 
q i −1 

)
+ w 1 

(
−1 

2 
q i +1 + 

3 

2 
q i 

)
, (103) 

where nonlinear weights w k are defined as 

w k = αk / (α0 + α1 ) , αk = d k / (βk + ε) 2 , k = 0 , 1 (104) 

with the smoothness indicators βk given by β0 = (q i − q i −1 ) 
2 and 

β1 = (q i +1 − q i ) 
2 . The optimal linear weighting coefficients are 

d 0 = 1 / 3 and d 1 = 2 / 3 in q L 
i +1 / 2 

, and d 0 = 1 / 3 and d 1 = 2 / 3 in 

q R 
i −1 / 2 

, with ε = 10 −6 for eliminating zero denominators. 

8. Results 

8.1. Empirical convergence rate 

In order to verify that the expected order of accuracy is reached 

when using the third order WENO reconstruction in combination 

with the TVDRK3 method, we perform a numerical convergence 

rate study. The following initial conditions and parameters are im- 

posed in the vessel: 

A (x, t = 0) = 4 . 0 + 0 . 04 sin (2 . 0 πx/L ) , 
A o (x, t = 0) = 4 . 0 + 0 . 04 sin (2 . 0 πx/L ) , 
K(x, t = 0) = 50 0 0 0 . 0 + 5 . 0 sin (2 . 0 πx/L ) , 
p e (x, t = 0) = 5 . 0 sin (2 . 0 πx/L ) , 

(105) 

with A and A o ( x ) in cm 

2 , K and p e in Pa and L = 1 . 0 m. The ves- 

sel is connected at both ends, thus forming a closed loop with 

cyclic boundary conditions. Numerical solutions are computed set- 

ting CFL = 0.45 and compared at t = 1s. The order of the truncation 

error of the solutions can be estimated from the results for differ- 

ent mesh sizes using the double-mesh principle [58,59] , provided 

that they have a set of mesh points in common. Here mesh refine- 

ment is done with a constant cell ratio r �x = 2. Numerical results 

for vessel area factor α are shown in Table 1 , where N is the num- 

ber of cells. Both solvers provide identical values in this case. This 

result was pointed out in [22] (tables 9 and 10). The expected con- 

vergence rate is reached for norms L 1 and L 2 for both solvers. 
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Table 1 

Convergence results for the HLLS and ARoe schemes using the third order WENO reconstruction in combination 

with the TVDRK3 method. 

N L HLLS 
1 L HLLS 

2 O(L 1 ) 
HLLS O(L 2 ) 

HLLS L ARoe 1 L ARoe 2 O(L 1 ) 
ARoe O(L 2 ) 

ARoe 

50 2.18e-03 2.50e-04 2.18e-03 2.50e-04 

100 3.08e-04 3.65e-05 2.82 2.78 3.08e-04 3.65e-05 2.82 2.78 

200 4.26e-05 5.54e-06 2.85 2.72 4.26e-05 5.54e-06 2.85 2.72 

400 5.53e-06 7.26e-07 2.95 2.93 5.53e-06 7.26e-07 2.95 2.93 

800 7.05e-07 9.34e-08 2.97 2.96 7.05e-07 9.34e-08 2.97 2.96 

1600 9.31e-08 1.23e-08 2.92 2.93 9.31e-08 1.23e-08 2.92 2.93 

3200 1.17e-08 1.36e-09 2.99 3.17 1.17e-08 1.36e-09 2.99 3.17 

Table 2 

Left and right mechanical and geometrical properties and initial conditions. 

p e,L (mmHg) A L,o (cm 

2 ) K L (Pa) A L (cm 

2 ) u L (m/s) m n 

0.0 5.0 17888.54382 12 2 0.50 0 

p e,R (mmHg) A R,o (cm 

2 ) K R (Pa) A R (cm 

2 ) u R (m/s) m n 

5.0 4.0 240 0 0 7.6364740860 0 032 3.14281168635121 0.50 0 

Fig. 3. Section 8.2 . Exactly balanced RP. Exactly balanced Riemann problem. Comparison between exact (—–) and numerical solutions at t = 0.005s using the first order 

(upper) and TVDRK3 method (lower) using �x = 1 (red), 0.5 (green), 0.05 (blue) cm, for the HLLS solver − ◦ − and ARoe solver −�−. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

8.2. An exactly balanced riemann problem 

This RP is designed to test the well-balanced properties of both 

the ARoe and the HLLS schemes. Initial conditions are defined in 

Table 2 . The problem presents variations in vessel wall stiffness 

K , cross-sectional area at reference state A o and external pressure 

p e . In this case flow, momentum and energy are exactly balanced, 

therefore the exact solution of this problem is identically the initial 

condition. 

Numerical solutions for factor α and velocity u using the HLLS 

and ARoe solvers are plotted in Fig. 3 at t = 0.005s for the three 

levels of mesh refinement using the first order and the 3th or- 

der WENO in combination with the TVDRK3 method. Both solvers 

preserve the initial condition with machine precission (i.e. L ∞ 

≈
10 −14 ) for the three levels of mesh refinement. 

When analyzing the SWE, hydrostatic or gravity forces and 

friction forces have the same effect on the flow than the ob- 

served in the governing equations for blood flow in elastic ves- 

sels, and they can be formulated exactly in the same way. 

Then, if variations in external pressure can be defined as source 

terms that give rise to well-balancing problems, friction and grav- 

ity can be treated in the same fashion, and not as algebraic 

source terms which can cause problems because of stiffness, not 

well-balancing. 
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Table 3 

Left and right mechanical and geometrical properties and initial conditions. 

Test A L,o (cm 

2 ) K L (Pa) A L (cm 

2 ) u L (m/s) m n 

1 5 17888.54382 12 2 0.50 0 

2 5 17888.54382 8 0 0.50 0 

3 5 17888.54382 8 40 0.50 0 

4 1 0.919219 0.01 2.353043016 0.50 0 

5 1 0.919219 0.01 2.353043016 0.50 0 

6 0.282743339 20 0 0 0.32 10 10.00 −1.5 

7 0.282743339 33.33333333 0.29 20 10.00 −1.5 

8 0.282743339 33.33333333 0.342 50 10.00 −1.5 

9 0.282743339 33.33333333 0.31 −20 10.00 −1.5 

Test A R,o (cm 

2 ) K R (Pa) A R (cm 

2 ) u R (m/s) m n 

1 4 240 0 0 4.503506204 0 0.50 0 

2 4 240 0 0 6 0 0.50 0 

3 4 240 0 0 6.015212661 0 0.50 0 

4 1 0.781336 0.01243004 2.25423876 0.50 0 

5 1 0.781336 0.1 2.25423876 0.50 0 

6 0.311017673 33.33333333 0.32 20 10.00 −1.5 

7 0.296880506 3333.333333 0.32 10 10.00 −1.5 

8 0.32515484 1333.333333 0.334 −10 10.00 −1.5 

9 0.296880506 10 0 0 0.31 10 10.00 −1.5 

When considering gravity forces, hydrostatic pressure variations 

arise from changes in vessel elevation η, and their effect is equiv- 
alent to the application of external pressure variations along the 

length of the vessel. Both source terms appear in the momentum 

equation and can be transformed into an equivalent pressure 

A 

ρ

∂ p e 
∂x 

+ gA 
∂η

∂x 
= 

A 

ρ

∂ 

∂x 
(p e + ρgη) = 

A 

ρ

∂ p � e 
∂x 

(106) 

with p � e (x ) = p e (x ) + ρgη(x ) . Therefore, variations in vessel exter- 

nal pressure can be exactly transformed in variations in vessel el- 

evation using 

δη = −δp e 
ρg 

. (107) 

This transformation allows to express pressure using dimen- 

sions of length. Then, as the gravity term has been included in 

the variations of the driving pressure δp d,i +1 / 2 , the resulting nu- 

merical scheme ensures the preservation of the initial condition 

in exactly balanced problems not only in presence of variations 

of the external pressure, but also in cases involving variations in 

vessel elevation. In this way, when the jump in external pressure 

( p e,R − p e,L = 5 mmHg) imposed at the discontinuity of the RP pre- 

sented in this section is replaced by a jump in the vessel elevation 

( ηe,R − ηe,L = −6 . 45 cm), the numerical solution reproduces exactly 

to the same results, ensuring again the exactly balanced property. 

8.3. Riemann problems with exact solutions. 

In this section exact solutions are compared with numerical so- 

lutions provided by the numerical schemes in a broad variety of 

cases. All numerical test cases are computed setting CFL = 0.45 and 

using three levels of mesh refinement, from a very coarse mesh 

with �x = 1, to �x = 0.5 and �x = 0.05 cm. The minimum value of 

the area for a vessel is computed using the limiting ratio for the 

collapsed vessels αcoll = 

A coll 

A o 
, set here as 1 .e −10 for all vessels. 

The exact solutions have been derived using the work presented 

by Toro and Siviglia in [17] . Their solution algorithm is well-suited 

for assessing the performance of numerical methods intended for 

simulating general situations. 

Different RP’s are listed in Table 3 . Test cases 1 to 5, repre- 

sent different combinations of wave patterns between two arteries 

with variable geometrical and mechanical properties in subsonic 

and supersonic Riemann problems. Test cases 6 to 9 will be used to 

compare exact solutions with numerical predictions for veins with 

variable geometrical mechanical properties. Test cases 1,2,3 and 4 

were proposed in [38] and test cases 6,7, 8 and 9 were proposed 

in [17] . 

The solutions of subsonic test case 1, for dimensionless area fac- 

tor α, velocity and total energy u 2 

2 + 

p d 
ρ , are presented in Fig. 4 

(upper). The solution includes a left moving rarefaction wave, a 

steady contact wave at the vessel junction and a strong elastic 

jump that develops and moves upstream. The numerical solutions 

obtained with the first order HLLS and ARoe solvers are plotted 

at t = 0.05s for the three levels of mesh refinement. Fan expan- 

sion and shock position are accurately captured and numerical 

diffusion decreases with grid refinement. The numerical solution 

converges to the exact solution, preserving a correct value of to- 

tal energy at the initial discontinuity. Numerical results for the 

ARoe and HLLS solvers are indistinguishable. When the 3th order 

WENO in combination with the TVDRK3 method is applied the so- 

lution is improved providing the same level of accuracy for both 

solvers. 

The exact solution for subsonic test case 2 is also a combination 

of a rarefaction and an elastic jump. Now, the flow moves back- 

wards generating a right moving rarefaction wave, a steady contact 

wave at the vessel junction and a left moving elastic jump. Numer- 

ical solutions in Fig. 5 show how the ARoe and the HLLS schemes 

provide accurate and indistinguishable results for both first and 

third order for the different levels of mesh refinement. 

Fig. 6 displays the solution for subsonic test case 3 and contains 

a left-moving elastic jump, a steady contact wave at the disconti- 

nuity and a right-moving elastic jump wave. Again numerical dif- 

fusion decreases with grid refinement and extension from one to 

third order. Numerical results for the ARoe and the HLLS solvers 

are indistinguishable and both methods provide very good agree- 

ment with the exact solution and show no oscillation near the dis- 

continuity regions. 

Supersonic test case 4 in Fig. 7 includes a stationary contact 

discontinuity followed by two rarefactions in opposite directions. 

Both the first order and third order numerical solutions correctly 

capture the propagation velocity of the rarefaction and transition 

between both sides of the stationary contact discontinuity. Third 

order numerical results for α and u show a mild overshoot of 

area at the onset of the left rarefaction wave, x ≈14, balanced by a 

mild undershoot at the middle of the left rarefaction wave, x ≈12. 

The same behavior is noticed when observing the right rarefaction 

wave. 
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Fig. 4. Section 8.2 . Test case 1. Subsonic RP in an artery. Comparison between exact (—–) and numerical solutions at t = 0.05s using the first order (upper) and TVDRK3 

method (lower) using �x = 1 (red), 0.5 (green), 0.05 (blue) cm, for the HLLS solver − ◦ − and ARoe solver −�−. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 5. Section 8.2 . Test case 2. Subsonic RP in an artery. Comparison between exact (—–) and numerical solutions at t = 0.05s using the first order (upper) and TVDRK3 

method (lower) using �x = 1 (red), 0.5 (green), 0.05 (blue) cm, for the HLLS solver − ◦ − and ARoe solver −�−. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Supersonic test case 5 in Fig. 8 includes a stationary contact 

wave, a right moving elastic jump and a right moving rarefaction. 

When using both solvers the numerical diffusion decreases with 

grid refinement and with the extension from first to third order. 

Test case 6 is a subsonic RP composed by left moving rarefac- 

tion, a stationary contact discontinuity and a left moving elastic 

jump where flow moves in the downstream direction. Even though 

veins have a much more non linear behavior than arteries, both 

numerical schemes capture correctly the solution and the high- 

order extension of the HLLS and ARoe solver preserves all the good 

features of their first-order versions, as shown in Fig. 9 . 

Test case 7 is a subsonic RP where flow moves initially in the 

downstream direction, but energy conditions force an upstream 

flow and, in consequence, a right moving elastic jump and a left 

moving rarefaction. Again predictions provided by the ARoe and 

HLLS solvers are indistinguishable for the three levels of mesh re- 

finement ( Fig. 10 ). Accurate results are obtained again for sub- 

sonic test case 8 in Fig. 11 , composed by a left-moving elastic 
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Fig. 6. Section 8.2 . Test case 3. Subsonic RP in an artery. Comparison between exact (—–) and numerical solutions at t = 0.05s using the first order (upper) and TVDRK3 

method (lower) using �x = 1 (red), 0.5 (green), 0.05 (blue) cm, for the HLLS solver − ◦ − and ARoe solver −�−. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 7. Section 8.2 . Test case 4. Supersonic RP in an artery. Comparison between exact (—–) and numerical solutions at t = 10.0s using the first order (upper) and TVDRK3 

method (lower) using �x = 1 (red), 0.5 (green), 0.05 (blue) cm, for the HLLS solver − ◦ − and ARoe solver −�−. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

jump, a stationary contact wave at the discontinuity and a right- 

moving elastic jump wave. It is worth mentioning that a mild un- 

dershoot of area and velocity profiles at the onset of the rarefac- 

tion wave, x ≈32 are observed. The behavior seems to match that 

observed when using other different numerical schemes, as high 

order path-conservative schemes [20] and TVD shock-capturing 

methods [30] . In our experience this discrepancies is related to 

the non-linear nature of the characteristic field generating the rar- 

efaction wave. We have observed also this behavior in the SWE, 

when using energy balanced WENO-ADER solvers [22] . Although 

less pronounced, the same effect can be observed in test case 6 at 

x ≈ −22 . 

In test case 9, Fig. 12 , the solution includes a left–moving rar- 

efaction wave, a stationary contact wave at the discontinuity and 

a right-moving rarefaction wave. Again, the high-order version of 

both schemes preserves all the good features of the first-order 

HLLS and ARoe schemes, such as the energy-balanced property. 

Also, there is an improvement of the resolution of both, contact 
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Fig. 8. Section 8.2 . Test case 5. Supersonic RP in an artery. Comparison between exact (—–) and numerical solutions at t = 5.0s using the first order (upper) and TVDRK3 

method (lower) using �x = 1 (red), 0.5 (green), 0.05 (blue) cm, for the HLLS solver − ◦ − and ARoe solver −�−. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 9. Section 8.2 . Test case 6. Subsonic RP in a vein. Comparison between exact (—–) and numerical solutions at t = 0.05s using the first order (upper) and TVDRK3 method 

(lower) using �x = 1 (red), 0.5 (green), 0.05 (blue) cm, for the HLLS solver − ◦ − and ARoe solver −�−. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

wave and rarefactions, when comparing first-order and high order 

results. 

Table 4 shows the time steps �t computed using (96) for both 

HLLS and ARoe scheme and for test cases 1 to 9 setting �x = 1, us- 

ing first order approximation. The time step remains almost con- 

stant along the simulation of each RP and is approximately equal 

for both solvers. Both schemes behave in the same way when us- 

ing the third order approximation. 

8.4. Collapsed vessels in riemann problems with exact solutions. 

In this section the performance of the numerical methods is 

checked using RP’s involving vessel collapse. Initial conditions, ge- 

ometrical and mechanical properties are listed in Table 5 . 

Test case 10 is a supersonic flow between two vessels with vari- 

able mechanical properties in an artery. The solution in Fig. 13 

shows that, after the stationary contact discontinuity generated by 
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Fig. 10. Section 8.2 . Test case 7. Subsonic RP in a vein. Comparison between exact (—–) and numerical solutions at t = 0.05s using the first order (upper) and TVDRK3 method 

(lower) using �x = 1 (red), 0.5 (green), 0.05 (blue) cm, for the HLLS solver − ◦ − and ARoe solver −�−. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 11. Section 8.2 . Test case 8. Subsonic RP in a vein. Comparison between exact (—–) and numerical solutions at t = 0.05s using the first order (upper) and TVDRK3 method 

(lower) using �x = 1 (red), 0.5 (green), 0.05 (blue) cm, for the HLLS solver − ◦ − and ARoe solver −�−. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Table 4 

Time step �t (s) for each RP with �x = 1. 

RP 1 2 3 4 5 6 7 8 9 

ARoe 0.0 0 087 0.00115 0.00113 0.0 0 053 0.0 0 051 0.0 0 086 0.00107 0.14827 0.13120 

HLLS 0.0 0 087 0.00115 0.00113 0.0 0 053 0.0 0 051 0.0 0 086 0.00107 0.14827 0.13120 
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Fig. 12. Section 8.2 . Test case 9. Subsonic RP in a vein. Comparison between exact (—–) and numerical solutions at t = 0.05s using the first order (upper) and TVDRK3 method 

(lower) using �x = 1 (red), 0.5 (green), 0.05 (blue) cm, for the HLLS solver − ◦ − and ARoe solver −�−. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 13. Section 8.4 . Test case 10. Supersonic collapsed RP in an artery. Comparison between exact (—–) and numerical solutions at t = 5.0s using the first order (upper) and 

TVDRK3 method (lower) using �x = 1 (red), 0.5 (green), 0.05 (blue) cm, for the HLLS solver − ◦ − and ARoe solver −�−. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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Fig. 14. Section 8.4 . Test case 11. Subsonic-supersonic collapsed RP in a vein. Comparison between exact (—–) and numerical solutions at t = 0.02s using the first order (upper) 

and TVDRK3 method (lower) using �x = 1 (red), 0.5 (green), 0.05 (blue) cm, for the HLLS solver − ◦ − and ARoe solver −�−. (For interpretation of the references to colour 

in this figure legend, the reader is referred to the web version of this article.) 

Table 5 

Left and right mechanical and geometrical properties and initial conditions. 

Test A L,o (cm 

2 ) K L (Pa) A L (cm 

2 ) u L (m/s) m n 

10 1.0 0.290682 0.1 1.323213 0.5 0 

11 0.031415927 100.0 0.04712389 0.0 10 −1.5 

12 0.3 0.001 0.3 −10.0 10 −1.5 

13 0.031415927 0.00111 0.067230083 −30.0 10 −1.5 

Test A R,o K R A R u R m n 

10 1.0 0.247 0.012429978 7.3158749 0.5 0 

11 0.031415927 100.0 0.0 0 0751391 0.0 10 −1.5 

12 0.2 0.100 0.3 12.969478 10 −1.5 

13 0.031415927 0.00111 0.067230083 30.0 10 −1.5 

the change in elasticity, a right moving rarefaction wave develops 

leading to an extreme reduction of the vessel area. The velocity 

changes linearly while the area is recovered along the left moving 

rarefaction wave. The numerical solutions converge to the exact so- 

lution preserving a correct value of total energy at the initial dis- 

continuity and at both rarefactions. ARoe and HLLS schemes pro- 

vide accurate and indistinguishable results for both first and third 

order. 

A RP involving a collapsed vein is defined in test case 11, with 

continuous geometrical and mechanical properties. The vein is ini- 

tially collapsed in the right side of the RP, leading to a supersonic 

flow that generates a left moving rarefaction wave and a left mov- 

ing elastic jump ( Fig. 14 ). Numerical results provided by the ARoe 

and the HLLS schemes are accurate for both first and third order 

and converge to the exact solution, being the HLLS less diffusive. 

Test case 12 is a very complex case. Collapse is forced by 

two opposite expansion fans communicated by an stationary 

contact discontinuity generated by the change in geometrical and 

mechanical properties of the vessel. Differences between solvers 

appear. Exact and numerical solutions for first order approxima- 

tion are shown in Figs. 15 and 16 . Numerical solutions for the 

dimensionless area reference α converge to the exact solution 

with mesh refinement. Noticeable differences among numerical 

and exact solutions are observed in velocity and total energy. 

Fig. 16 shows numerical results for both solvers for speed index, 

pulse wave celerity c and flow Q . The pulse wave celerity does not 

have a monotonous behavior and does not decrease continuously 

with vessel area reduction. There is a critical area value where 

the speed of the pulse wave is minimal and, from this point, an 

additional reduction of area causes the velocity of the pulse wave 

to grow again. As a consequence, the speed index first increases 

and, once this critical value is exceeded, decreases again. Even 

though the results for vessel area are accurate, the differences 

in the total energy and pulse wave celerity are noticeable in the 

collapsed region. The reason is that as in this region the relation 

between area and pressure or pulse wave celerity are highly non 

linear. On the other hand, satisfactory results are provided for the 

conserved variable Q . This conserved variable is less sensitive to 

the dramatic reduction of vessel area produced in this case. In 

general, the HLLS provides better results than the ARoe solver for 

both first and also third order, as shown in Fig. 17 . 

Continuous geometrical and mechanical properties are defined 

in the collapsing test case 13, plotted in Fig. 18 , less stiff than test 

case 12. The solution consists of two opposite rarefaction fans con- 

nected by an extremely collapsed area. Numerical results of the 

first order HLLS are plotted using first order (upper) and third 

order (middle and lower) approximations including the speed in- 

dex, wave pulse celerity and flood discharge. Only the HLLS is able 

to provide a numerical solution. Again, speed index suffers strong 

variations in the vicinity of the collapsed area that can not be man- 

aged by the ARoe solver. The position of the minimal pulse wave 

area celerity and maximum speed index is well captured and ac- 

curate results are provided for conserved variable Q . Numerical re- 

sults show very good agreement with the exact solution and im- 

prove with mesh refinement and the proposed high order exten- 

sion. The failure of the ARoe scheme in this particular case may be 

explained by the rigidity of the solver when defining the approxi- 

mate wave celerities. The HLLS solver merges the rich description 

of the inner states given by the ARoe solver with the flexibility in 

the selection of the wave celerities of the system, providing a more 

robust numerical scheme. 
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Fig. 15. Section 8.4 . Test case 12. Subsonic-supersonic collapsed RP in a vein. Exact (—–) and numerical solutions at t = 0.5s for �x = 1 (red), 0.5 (green), 0.05 (blue) cm, for 

the first order ARoe solver −�− and the first order HLLS solver − ◦ −. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 16. Section 8.4 . Test case 12. Subsonic-supersonic collapsed RP in a vein. Exact (—–) and numerical solutions at t = 0.5s for �x = 1 (red), 0.5 (green), 0.05 (blue) cm, for 

the first order ARoe solver −�− and the first order HLLS solver − ◦ −. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 
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Fig. 17. Section 8.4 . Test case 12. Subsonic-supersonic collapsed RP in a vein. Exact (—–) and numerical solutions at t = 0.5s for �x = 1 (red), 0.5 (green), 0.05 (blue) cm, for 

the TVDRK3 ARoe solver −�− and the TVDRK3 HLLS solver − ◦ −. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

Table 6 

Time step �t (s) for RP’s 10 to 13 with �x = 1. 

RP 10 11 12 13 

ARoe 0.05854 0.0 0 010 0.01216 –

HLLS 0.05854 0.01001 0.01216 0.0 0 058 

Table 7 

Left and right mechanical and geometrical properties and initial 

conditions in RP’s 14 to 17. 

A L,o (cm 

2 ) K L (Pa) A L (cm 

2 ) u L (m/s) m n 

2.0 100.0 2.0 0.0 10 −1.5 

A R,o K R A R u R m n 

2.0 100.0 2.0 0.0 10 −1.5 

Table 6 shows the minimum time steps �t computed using 

(96) for both HLLS and ARoe scheme and for test cases 1 to 9 set- 

ting �x = 1, using first order approximation. The time step remains 

almost constant along the simulation of each RP when using the 

HLLS scheme. For the ARoe scheme, time step is strongly reduced 

in RP 11, confirming the diffusive behavior of the ARoe scheme in 

this case. For test cases 10 and 12 the time step is nearly constant 

an approximately equal for both solvers. 

8.5. Riemann problems under expansion conditions. 

In this set of RPs, the transition from subsonic to sonic blockage 

conditions is analyzed. Left and right mechanical and geometrical 

properties and initial conditions in Table 7 are the same in all cases 

except for the variation in external pressure, atmospheric on the 

left side and sub-atmospheric on the right side, defined in Table 8 . 

Pressure variation in test case 14 leads to a subsonic flow defined 

by a left moving rarefaction wave that leads to a progressive nar- 

rowing of the vessel area in the contact discontinuity followed by 

an abrupt expansion on the side with sub-atmospheric pressure. 

In Fig. 19 , it is shown that both the HLLS and the a ARoe solver 

Table 8 

Sub–atmospheric conditions in RP’s 14 

to 17. 

Test p L,e (mmHg) p R,e (mmHg) 

14 0.0 −4.0 

15 0.0 −4.9 

16 0.0 −10.0 

17 0.0 −20.0 

18 0.0 −40.0 

provide accurate and indistinguishable results with independence 

of the order of the scheme. Note that in this case, energy is kept 

constant across the sudden change in vessel area. 

In test case 15 suction on the left side of the RP is increased 

with respect to the previous case and sonic conditions are forced 

across the contact discontinuity. The flow generated by the left 

rarefaction leads to a critical vessel area in the narrowest section 

were speed index is defined by the sonic condition and therefore 

sonic blockage appears. The comparison of results for this test case 

is shown in Fig. 20 . Both first and third orde schemes provide 

good agreement with the exact solution for the equivalent nozzle 

throat and the expanded area. Numerical differences between the 

results given by the HLLS and the ARoe solvers are indistinguish- 

able. Fig. 21 shows comparison of results for total energy P t in test 

cases (left) 14 and (right) 15. In both test cases, the numerical solu- 

tions ensure the conservation of the discrete level of energy across 

the contact discontinuity. 

Numerical results for α, SI and total energy in test cases 16 

to 18 are shown in Figs. 22 , 23 and 24 respectively. These nu- 

merical experiments have been conducted to analyze the perfor- 

mance of the numerical solvers in cases involving an energy dis- 

sipation formulation while keeping the maximum flow provided 

by the sonic blockage condition and the minimum throat section. 

As sonic blockage has been already generated in test case 15, de- 

spite the increase in suction in the right side of the RP in test 
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Fig. 18. Section 8.4 . Test case 13. Subsonic-supersonic collapsed RP in a vein. Exact (—–) and numerical solutions at t = 0.25ss for �x = 1 (red), 0.5 (green), 0.05 (blue) cm, for 

the first order (upper) and third order (middle and lower) HLLS solver. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

cases 16 to 18, all exact solutions must be identical. Propagation 

speed of the right-moving shock provided by the numerical solvers 

depends on the mesh spacing and converges to the exact solu- 

tion with mesh refinement. We have noticed the same behavior 

in other non-homogenous hyperbolic problems where solvers are 

applied to systems expressed in conservative form [23] . 

Numerical solutions show how the numerical integration of the 

source terms does not allow further flow acceleration with an in- 

creasing values of suction. The sonic blockage condition is ensured 

in all cases. In a first order approximation, numerical solutions 

provided by the HLLS solver are more diffusive than those pro- 

vided by the ARoe solver. Even though numerical differences be- 

tween solvers decrease when using the third order extension of 

the numerical scheme, numerical oscillations around the discon- 

tinuity in total energy can be observed for the ARoe solver in 

Fig. 24 . The third order HLLS solver is able to reproduce more 

accurately the intermediate state on the right hand side of the 

discontinuity. 

When using first or third order approximations and �x = 1cm, 

in RP’s 14 to 18 the time step was nearly constant during each 

simulation. The value of �t was approximately equal to 0.0013 for 

RP 14, and approximately equal to 0.0 0 02 for RP 15 to 18, for both 

solvers. 

9. Conclusions 

Well-balanced first and third-order numerical schemes for one- 

dimensional flow in blood vessels with variable mechanical and 

geometrical properties including collapsed states are presented. 

HLLS and ARoe flux solvers have been described in flux and fluc- 

tuation form by transforming the initial RP formulation in an ap- 

proximate RP written in conservative–law form. 

The well-balanced property of the numerical schemes have 

been verified. Numerical flux solvers and their corresponding en- 

tropy and positivity fixes have been systematically assessed and 

validated in a wide variety of RP’s, involving variations in mechan- 

ical and geometrical properties, subsonic and supersonic cases, en- 

ergy conservation across contact discontinuities, flow limitation 

and extreme collapse. Pulse wave celerity has been defined de- 

pending on the speed index to take into account flow regime tran- 

sitions responsible for flow blockage. 

In most cases HLLS and ARoe flux solvers reproduce identical 

results. The expected theoretical order of accuracy is effectively 

achieved by both numerical schemes. First order HLLS is in some 

cases more diffusive than the ARoe cases, but it is able to provide 

accurate numerical results in all cases, also in third order. The per- 

formance of the HLLS scheme turns out to be very satisfactory. 
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Fig. 19. Section 8.5 . Test case 14. Subsonic RP in a vein. Comparison between exact (—–) and numerical solutions at t = 0.1s using the first order (upper) and TVDRK3 method 

(lower) using �x = 1 (red), 0.5 (green), 0.05 (blue) cm, for the HLLS solver − ◦ − and ARoe solver −�−. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 

Fig. 20. Section 8.5 . Test case 15. Sonic blockage in a vein. Comparison between exact (—–) and numerical solutions at t = 0.1s using the first order (upper) and TVDRK3 

method (lower) using �x = 1 (red), 0.5 (green), 0.05 (blue) cm, for the HLLS solver − ◦ − and ARoe solver −�−. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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Fig. 21. Section 8.5 . Comparison of results for total energy P t in test cases (left) 14 and (right) 15. Comparison between exact (—–) and numerical solutions at t = 0.1s using 

the first order (upper) and TVDRK3 method (lower) using �x = 1 (red), 0.5 (green), 0.05 (blue) cm, for the HLLS solver − ◦ − and ARoe solver −�−. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 22. Section 8.5 . Test cases (left) 16, (middle) 17 and (right) 18. Sonic blockage in a vein. Comparison between exact (—–) and numerical solutions at t = 0.1s using the 

first order (upper) and TVDRK3 method (lower) using �x = 1 (red), 0.5 (green), 0.05 (blue) cm, for the HLLS solver − ◦ − and ARoe solver −�−. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 23. Section 8.5 . Test cases (left) 16, (middle) 17 and (right) 18. Sonic blockage in a vein. Comparison between exact (—–) and numerical solutions at t = 0.1s using the 

first order (upper) and TVDRK3 method (lower) using �x = 1 (red), 0.5 (green), 0.05 (blue) cm, for the HLLS solver − ◦ − and ARoe solver −�−. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 24. Section 8.5 . Test cases (left) 16, (middle) 17 and (right) 18. Sonic RP in a vein. Comparison between exact (—–) and numerical solutions at t = 0.1s using the first order 

(upper) and TVDRK3 method (lower) using �x = 1 (red), 0.5 (green), 0.05 (blue) cm, for the HLLS solver − ◦ − and ARoe solver −�−. (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 
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Appendix A. Pulse wave velocity 

The values of K ( x ) and P o ( x ) in (4) and the values of A o ( x ), m 

and n in σ are parameters that account for mechanical and ge- 

ometrical properties of the vessel. The parameter P o and A o are 

used to provide a reference point in the tube law, and the stiffness 

parameter K is related to the deformability of the vessel. Typical 

values of coefficients m and n in arteries are m = 1 / 2 and n = 0 

[5] while in the much more elastic veins these coefficients are 

m = 10 and n = −3 / 2 [4,52] , derived from the buckling behaviour 

of thin-walled vessels [53] . 

The definition of the approximate pulse wave velocity, ˜ c in 

(29) requires the computation of average values for ˜ A m −1 and ˜ A n −1 
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in (25) to construct ˜ σA . These average values must satisfy the fol- 

lowing: 

δA q = 

˜ A q −1 δA, (A.1) 

with q = m or q = n . The approximate average value ˜ A q −1 can be 

directly estimated as a simple quotient, 

˜ A q −1 = 

{
δA q 

δA 
if δA > ε

A A q −1 otherwise 
, (A.2) 

where ε avoids division by zero. 

One of the most advantageous characteristics of the Roe aver- 

ages is that they decompose differences without requiring any lim- 

iting parameter as in (A.2) . In this work, Roe averages for ˜ A q −1 in 

cases where q is a rational number are presented: 

• In case q = 0 , the average value in (A.1) is ˜ A q −1 = 0 . 
• If q is a positive integer, average value is given by 

˜ A q −1 = 

q −1 ∑ 

s =0 

A q −1 −s 
i +1 

A s i . (A.3) 

• If q is of the form q = 

l 
2 , with l a positive integer, the average 

value is given by 

˜ A q −1 = 

∑ 2 q −1 
s =0 

A 
1 
2 (2 q −1 −s ) 

i +1 
A 

s 
2 

i √ 

A i +1 + 

√ 

A i 
. (A.4) 

• If q is of the form q = − l 
2 , with l a positive integer, the average 

value is given by 

˜ A q −1 = −
∑ −(2 q +1) 

s =0 
A 

(2 q + s ) 
2 

i +1 
A 

− s +1 
2 

i 

( 
√ 

A i +1 + 

√ 

A i ) 
. (A.5) 

The average values ˜ A m +1 
o and ˜ A n +1 

o in (25) express pressure vari- 

ations provided by variations in the reference cross-sectional area 

in ˜ σA 0 
. Even if these parameters do not participate in the formu- 

lation of the pulse wave velocity, it may be of interest to consider 

their estimation. These average values must satisfy 

δA −q 
o = 

˜ 

A −(q +1) 
o δA o , (A.6) 

with q = m or q = n, to recover exactly pressure variations in (21) . 

Depending on the value of q , the average value 
˜ 

A 
−(q +1) 
o is defined 

for the following cases of interest: 

• If q = 0 , the average value is 
˜ 

A 
−(q +1) 
o = 0 . 

• If q is a positive integer, with q > 0, the average value is 

˜ 

A −(q +1) 
o = −

q −1 ∑ 

s =0 

A (−q + s ) 
o,i +1 

A −(s +1) 
o,i 

. (A.7) 

• If q is of the form q = 

l 
2 , with l a positive integer, the average 

value is given by 

˜ 

A −(q +1) 
o = −

∑ 2 q −1 
s =0 

A 
(−2 q + s ) 

2 

o,i +1 
A 

− (s +1) 
2 

o,i 

( 
√ 

A o,i +1 + 

√ 

A o,i ) 
. (A.8) 

• If q is of the form q = − l 
2 , with l a positive integer, the average 

value is given by 

˜ 

A −(q +1) 
o = 

∑ −(2 q +1) 
s =0 

A 
−(2 q +1+ s ) 

2 

o,i +1 
A 

s 
2 

o,i √ 

A o,i +1 + 

√ 

A o,i 
. (A.9) 

The definitions in (A .3), (A .4) , and (A .5) inserted in (27) allow 

to restore pressure difference exactly, and the average values in the 

Jacobian are defined as smooth functions of the conserved vari- 

ables in the left and right side of the Riemann Problem 

˜ A m −1 
i + 1 2 = 

˜ A m −1 (A i +1 , A i ) , 
˜ A n −1 

i + 1 2 = 

˜ A n −1 (A i +1 , A i ) . (A.10) 

When setting A i +1 = A i the average values 
˜ A m −1 and ˜ A n −1 be- 

come 

˜ A m −1 
i + 1 2 = mA m −1 

i 
, ˜ A n −1 

i + 1 2 = nA n −1 
i 

, (A.11) 

that is, 

( ̃  σA ) i + 1 2 = mA m −1 
i 

− nA n −1 
i 

, (A.12) 

and in case that K i +1 = K i , we find 

˜ c 2 
i + 1 2 

= 

(A 

ρ
K̄ ̃  σA 

)
i + 1 2 

= K i 
mA m 

i 
− nA n 

i 

ρ
= c 2 i = c 2 i +1 , (A.13) 

so the differential form of the Jacobian matrix is exactly recovered 

as demanded in Roe type Jacobians. 
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