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Abstract  

The incorporation of active faults in seismic hazard analyses may have a significant 

impact on the feasibility, design and cost of major engineering projects (e.g., nuclear 

facilities, dams), especially when located in the site vicinity. The regulatory definition 

of active versus inactive fault is generally based on whether the fault has ruptured or 

not after a specific chronological bound (i.e. fault recency). This work presents a 

methodology, mainly based on geomorphological mapping and trenching, for 

determining whether specific faults can be considered as active or inactive. The 

approach is illustrated through the analysis of several faults located in the Spanish 

Pyrenees (Loiti, Leyre, La Trinidad, Ruesta faults). The 29 km long Loiti Thrust was 

included in the Neotectonic Map of Spain as a probable neotectonic structure. 

Previous works, based on geomorphological investigations, incorporated the 28 km 

long Leyre Thrust as a significant seismic source in a probabilistic seismic hazard 

analysis, which challenged the seismic design of nearby large dams. The production of 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

detailed geomorphological strip maps along the faults allowed the recognition of 

specific sites where the faults are covered by Quaternary deposits. The establishment 

of chronosequences (pediments-terrace sequences) and the available 

geochronological data helped identifying the most adequate morpho-stratigraphic 

units for satisfactorily evaluating fault activity vs. inactivity. The excavation of trenches 

at the selected sites provided unambiguous information on the presence or lack of 

deformation in the Quaternary cover overlying the fault, and the origin of scarps 

(tectonic versus erosional). Trenches were also useful for collecting samples and 

reliably measuring the relative height of terraces overlain by thick colluvium. The 

evidence gathered by these methods were complemented with the numerical dating 

of non-deformed slope deposits covering a fault, the analysis of the longitudinal 

profiles of old pediment surfaces located in the proximity of a fault, the examination of 

a cave situated next to a fault searching for speleoseismological evidence, and regional 

geodetic and seismotectonic data (GPS measurements, earthquake focal mechanisms). 

The integration of all the data, and especially the trenches dug in non-deformed old 

terrace deposits (>100 ka) truncating the faults, indicates that the analysed faults can 

be considered inactive and that previous neotectonic postulations were based on non-

valid geomorphological interpretations. 
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1. Introduction 
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The outcome of seismic hazard assessments, either probabilistic or deterministic, may 

determine the feasibility of major engineering projects (e.g., nuclear facilities, dams) 

and may have a significant impact on their design and cost (e.g., Bommer et al., 2015). 

Seismic hazard estimates and seismic design parameters at a particular site of interest 

depend on the characteristics of the seismic sources, including earthquake catalogues 

and fault sources. The incorporation of active faults in the seismic source model, 

especially when located in the vicinity of the site and when low annual probabilities 

are considered, may have a significant impact on the hazard results (maximum credible 

event, ground motion for a given return period). Consequently, it is essential (1) to 

recognize and properly characterize all the active faults located in the vicinity of the 

site; and (2) to check the validity of the criteria used to classify the proposed active 

faults in the region, in order to avoid hazard under- and over-estimations, respectively.  

Regulatory criteria used to define active (or capable) faults generally include a 

chronological bound for the most recent displacement (i.e., recency of fault activity). 

The term capable fault is frequently used to designate active faults that can cause 

displacement at or near the surface (IAEA, 2015). However, according to the definitions 

proposed by some regulatory bodies, capable faults do not necessarily produce surface 

deformation (e.g., U.S. Bureau of Reclamation, U.S. Nuclear Regulatory Agency). Therefore, in 

this work, like in most regulatory definitions, we use the term active fault for those 

structures that have experienced surface displacement within the time window 

established by the corresponding regulation. In Spain, there is no regulatory definition 

for active fault (e.g., CNEGP, 1999). The Division of Safety of Dams of the California 

Department of Water Resources defines an active fault as having ruptured within the 

last 35,000 years (Fraser, 2001). These regulators argue that Holocene activity (ca. 10 
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ka), as proposed by the International Commission on Large Dams (ICOLD, 1998, 2016) 

is not a sufficiently conservative criterion and that the 35 ka age limit retains the 

practicality of allowing the application of several geochronological methods. However, 

unambiguously determining whether a fault meets this type of regulatory criterion, 

regardless of the established age bound, may not be feasible even in situations in 

which there is available geochronological data on faulted Quaternary deposits. 

Figure 1 illustrates multiple scenarios and their limitations combining different: (1) 

stratigraphic-pedologic settings (youngest surface unit is pre-Quaternary bedrock, soil 

profile or Quaternary deposits); (2) geomorphic (presence or absence of scarp, which 

could be erosional or related to surface deformation); and (3) structural (without or 

with fault, which may offset different units). Other alternatives can be envisioned 

combining those scenarios; for instance, considering the presence of Quaternary 

deposits overprinted by younger soil profiles. McCalpin (2009a, Fig. 9.52) presents a 

complementary flow chart with indeterminate and conclusive scenarios assuming that 

there is an active fault according to regulatory definition.  

In scenarios A and B pre-Quaternary bedrock is offset by a fault, which may and may 

not be expressed by a scarp, respectively (Fig. 1). Both scenarios are indeterminate, 

since it cannot be proved that the fault has moved after the age bound established by 

the regulators (e.g., 35 ka). Moreover, it may not be possible to elucidate whether the 

scarp is related to differential erosion (fault-line scarp) or surface deformation, and in 

the latter case, if the latest displacement occurred after 35 ka. 

In scenarios C and D there is no Quaternary cover, but a Quaternary soil profile has 

developed on the faulted pre-Quaternary bedrock. In C, where the base of the soil 

profile does not show any offset, the situation could be indeterminate if the soil 
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started developing before or after 35 ka. For instance, the geometrical relationships 

could be essentially the same if faulting occurred at 36 ka (inactive fault) or at 34 ka 

(active fault) and soil development started at 37 ka or 33 ka. In scenario D, in which the 

base of the soil profile is displaced, the fault would be indeterminate or active if the 

soil development started before or after 35 ka, respectively. The use of soils for 

determining fault activity is complex since they do not record a depositional event, but 

a weathering period on a relatively stable surface. The presence of a clear offset in the 

soil horizons in case the fault would be active depends on multiple factors including: 

(1) the timing of the start of soil development; (2) the rate at which soils develop, 

which may vary significantly depending on climate and parent material; (3) the timing 

of faulting with respect to the start of soil development; (4) the amount of vertical 

offset; and (5) post-faulting modification of the ground surface by erosion (upthrown 

block) and aggradation (downthrown block). This is illustrated by the Gedanken 

experiment shown in figure 2, which explores the final situation depending on the 

timing of faulting and incorporating the following assumptions: (1) soil development 

starts at 50 ka; (2) the rate of soil development determines the formation of A, Bw, Bt, 

and Cox horizons over periods of 10 kyr, 20 kyr, 30-40 kyr and 50 kyrs, respectively; (3) 

fault throw is approximately half of the thickness of a fully developed soil; and (4) after 

faulting, the footwall and its soil profile are eroded “instantaneously” to the level of 

the downthrown block, which may restart or set back the soil clock. The determination 

of fault activity on the basis of soils may require a specific analysis considering the 

multiple local factors indicated above.  

Scenarios E, F and G show different situations with faulted Quaternary deposits (Fig. 

1). E and G show throughgoing faults that reach the surface, with an associated fault 
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scarp in the latter case. In scenario F the fault offsets an old Quaternary unit and is 

truncated and buried by a non-faulted younger deposit. In E and G, the fault can be 

conclusively classified as active if the deformed deposit is younger than 35 ka, and 

indeterminate if the age is older than 35 ka; faulting could have occurred either before 

or after 35 ka. Scenario F offers the possibility of having two age controls. If the older 

faulted unit would be younger than 35 ka, the fault would be active and indeterminate 

if older than 35 ka. The fault would be inactive in the younger non-deformed unit 

would be older than 35 ka. 

Scenarios H, I and J show non-faulted Quaternary deposits that may have a scarp and 

different morpho-stratigraphic arrangements. In case there is a concealed fault, it 

would be inactive if the undeformed Quaternary cover is older than 35 ka and 

indeterminate if younger than that age. In Scenario I the erosional scarp is related to 

the development of an inset strath surface (e.g., fill-strath terrace). In J there is a 

younger aggradational unit inset into the older one. A trench excavated across the 

scarp would expose a steep contact between two different age units (e.g., buried 

scarp, erosional channel margin) that could be misinterpreted as a fault, especially if 

the excavation is not deep enough to reach non-faulted bedrock. The amount of 

deformation in old units should be equal or larger than that identified in overlying 

younger units. 

The different scenarios illustrate that conclusive determination of fault activity or 

inactivity according to the regulatory definition is dependent on (1) the presence of 

markers associated with the fault and with adequate age; and (2) the availability of 

reliable geochronological data. Inactivity is demonstrated by non-faulted markers older 

than the chronological bound established by the regulator and activity by faulted 
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markers younger than that bound. Indeterminate situations arise when the faulted and 

non-faulted markers are older and younger than the reference age, respectively.  

Active faults may have a decisive impact on earthquake hazard for dam projects (e.g., 

Brune, 1993; Tosun et al., 2007), which include as main components ground shaking, 

surface faulting and earthquake-triggered landsliding (Wieland, 2014). For instance, 

the 2008 Mw 7.9 Wenchuan earthquake, China damaged 1,803 dams and reservoirs 

(Wieland and Chen, 2009). The 2011 Mw 9.0 Tohoku earthquake, Japan, caused the 

failure of an 18 m high embankment dam resulting in 8 fatalities. The worst-case 

scenario is the presence of active faults at the dam foundation, posing a surface-

rupture hazard that may eventually compromise the integrity of the structure (ICOLD, 

1998; Wieland et al., 2008). A number of dams have been directly affected by 

coseismic fault movement, such as the Upper Crystal Springs Dam, USA (1906 San 

Francisco earthquake); Shih-Kang Dam, Taiwan (Mw 7.7 1999 Chi-Chi earthquake, 

Taiwan); Matahina Dam, New Zealand (M6.3 1987 Edgecumbe Fault earthquake). This 

situation may require (1) the abandonment of the project; (2) the relocation of the 

dam site (e.g., Sayano-Shusshenskaya Dam and Charvak Dam, Uzbekistan); (3) the 

modification of the type of structure (e.g., conservative embankment dams instead of 

concrete dams); (4) the incorporation of a special design such as slip joints above the 

fault in concrete dams (e.g., Clyde Dam, New Zealand; Inguri Dam and Morris Dam, 

USA) or large self-healing transition zones and ductile cores in embankment dams 

(e.g., Coyote Dam and Cedar Springs Dam, USA; Rogun Dam, Tajikistan; Tarbela Dam, 

Pakistan); or (5) the reinforcement of the structure (e.g., Matahina Dam, New 

Zealand). The discovery of a seismogenic fault in the vicinity of a dam after or during its 
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construction may affect the validity of the seismic design parameters of the structure 

and compliance with safety requirements. 

Evidence of Quaternary deformation has been reported in multiple sites of the Spanish 

and French Pyrenees. Lacan and Ortuño (2012) published a comprehensive review on 

active seismotectonics in the Pyrenees, including an inventory of Quaternary 

deformation. However, these authors indicate that some of the reported recent 

deformation, eventually used to infer regional stress regimes (e.g., Philip et al., 1992; 

Goula et al., 1999), are probably related to non-tectonic processes, as supported by 

various recent investigations, including glaciotectonics (López-Martínez, 1986), 

sackung (Gutiérrez-Santolalla et al., 2005, Gutiérrez et al., 2008; Ortuño, 2009; 

McCalpin and Corominas, 2019), landsliding (Gutiérrez et al., 2012), dissolution-

induced subsidence (Gutiérrez et al., 2016; Fabregat et al., 2017) or salt flow (Lucha et 

al., 2012, Gutiérrez et al., 2015). Other neotectonic interpretations are based on weak 

indirect evidence (e.g., clustering of low-to-moderate earthquakes, assumed 

geomorphic correlations) or have been challenged. For instance, in the western French 

Pyrenees, Alasset and Meghraoui (2005) proposed that the 50 km long Lourdes Fault is 

an active seismogenic structure that could produce large Mw 6.5-7.1 earthquakes. They 

inferred from two trenches evidence for a late Holocene surface rupture and 

suggested that the seismic hazard in SW France should be re-assessed incorporating 

the Lourdes Fault in the source model. However, this interpretation was dismissed by 

the neotectonics and paleoseismology (NEOPAL) expert committee, indicating that the 

reverse fault documented in one of the trenches (Arcizac site) is related to landsliding 

and that the normal fault interpreted on the other trench (Capbis site) corresponds to 

a steep erosional contact (i.e., channel margin) (Sébier and Meyer, 2008). 
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In September 2004, during the first filling of the Itoiz Reservoir, western Spanish 

Pyrenees, a seismic series occurred in the vicinity of the dam. The main shock reached 

a body-wave magnitude of MbLg 4.6 and was felt in the epicentral area with a 

maximum intensity of EMS V (Ruiz et al., 2006a). According to García-Mayordomo and 

Insua-Arévalo (2011), “the event generated a significant social awareness that was 

used by social groups aided by a few academics to put the security of the dam under 

question, and particularly the stability of the left abutment”. The Spanish Ministry of 

Environment requested the performance of a probabilistic seismic hazard analysis 

(PSHA) providing results in terms of strong ground motion to be used in dynamic 

stability analyses of the dam and the slopes of the reservoir. A complementary study 

on active tectonics in the surroundings of the dam was also recommended by the 

Ministry of Environment. As a result, Insua and García-Mayordomo (2009), on the basis 

of a geomorphological investigation, proposed that the 26 km long Leyre Thrust is an 

active seismogenic structure. This fault is located 20 km to the south of the Itoiz Dam 

and 2.5 km north of the Yesa Dam. The latter dam, currently in operation, is being 

enlarged (from 78 m to 108 m high) to approximately double the storage capacity of 

the reservoir. The results of the PSHA, which included the Leyre Thrust as a relevant 

seismic source, was presented to the Ministry of Environment (González de Vallejo et 

al., 2010) and was published in a scientific journal (García-Mayordomo and Insua-

Arévalo, 2011). The hazard results indicated a peak ground acceleration at the dam site 

for the 1000-yr return period and rock-type terrain of 0.127g, significantly higher than 

the values estimated in 1992 for the Itoiz Dam project (0.08g) and the NCSE-02 Spanish 

seismic code of 2002 (0.065g).  
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Furtheremore, a mining company, willing to exploit a potash-bearing saline formation 

south of the Yesa Reservoir by the room and pillar method with subsequent backfilling, 

recently submitted an environmental impact assessment to the Spanish Ministry of 

Environment. The Ministry of Environment, following the recommendation of the 

Spanish Geological Survey and a committee of experts, requested investigations aimed 

at determining whether some nearby faults (Loiti, La Trinidad, Yesa, Ruesta faults) 

show any evidence of Quaternary activity. The underlying justification was that the 

seismic design parameters derived from the Spanish seismic code would be 

inadequate in case there would be an active fault capable of producing large 

earthquakes in the region, as suggested by García-Mayordomo and Insua-Arévalo 

(2011). This work illustrates how geomorphological and trenching investigations can be 

applied to assess whether some specific faults show any evidence of Quaternary 

activity.  

 

2. Geological and geomorphological setting 

2.1. Stratigraphy and structure 

The study area is located in the Pyrenees, an Alpine orogen related to the convergence 

and collision between the Euroasiatic plate and the Iberian microplate during Late 

Cretaceous and Tertiary times (Fig. 3). The study region forms part of the South 

Pyrenean Zone on the Spanish side of the Pyrenees, characterized by outcrops of post-

Variscan (Mesozoic and Tertiary) sedimentary rocks affected by S-verging folds and 

thrusts (Barnolas and Pujalte, 2004). The investigated faults and folds are located 

within the Jaca-Pamplona Basin, in the western sector of the South Pyrenean Zone 

(Fig. 3). This is an E-W trending foreland basin incorporated into the Pyrenean orogen 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

by the southward piggy-back propagation of the thrust system during the development 

of the orogenic wedge (Teixel, 1996). The Eocene-Oligocene fill of the basin shows an 

overall regressive sequence, changing upwards from marine sediments with deep 

turbiditic facies into continental alluvial and fluvial formations (Barnolas et al., 2004).  

The formations exposed in the investigated area include sediments deposited before 

the development of the Jaca-Pamplona Basin (Late Cretaceous-Paleocene) and units of 

the basin fill (Eocene-Oligocene), all of them affected by E-W- to WNW-ESE-oriented 

and S-verging compressional structures and younger transverse extensional faults with 

limited length (Fig. 3). The main stratigraphic units relevant to the present work are 

indicated below in ascending stratigraphic order. The Late Cretaceous – Late Eocene 

formations deposited before the initial configuration of the Jaca-Pamplona Basin 

include calcarenites and calcareous sandstones of the Marboré Sandstone Fm., 

siliceous sandstones and conglomerates ascribed to the Arén Sandstone Fm. (López et 

al., 1997), continental sediments of the so-called Garumn Facies, attributed to the 

Tremp Fm. (Rosell et al., 2001), and a thick unit of marine carbonate rocks with 

interlayered calcareous sandstones, capped by the Alveoline Limestone (López et al., 

1997). 

During the initial development of the Jaca-Pamplona Basin, between the Ypresian and 

the Lutetian (Early-Middle Eocene), the basin was characterized by an asymmetric 

configuration, comprising a deep trough with turbiditic sedimentation (Hecho Group) 

at the foot of the orogenic wedge, and carbonate platforms associated with the 

foreland margin (Guara Limestone Fm.) (Barnolas et al., 2004; López et al., 1997) (Fig. 

3).  
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In the Bartonian (Late Eocene) there was a significant paleogeographic change in the 

basin (Puigdefábregas, 1975). A thick succession more than 2000 m thick, dominated 

by blue marls, was deposited atop the Guara Limestone and the Hecho Group 

(Montes, 2009) (Fig. 3). This includes, from base to top, the Arro-Fiscal Marls Fm. (ca. 

350 m thick) and the Pamplona Marls (ca. 2000 m thick) both separated by the 

Sabiñanigo Sandstone and a correlative unit to the west, represented in the Sigués 

village area by re-sedimented calcareous breccias with nummulites and glauconite and 

some sandstone beds (Puigdefábregas, 1975). In the Yesa Reservoir area, the 

Pamplona Marls are conformably overlain through a gradational contact by a flyschoid 

succession 70-150 m thick of alternating marls and sandstones known as the Yesa 

Flysch (Puigdefábregas, 1975; López et al., 1997). 

Marine sedimentation culminates in the Priabonian (Late Eocene) with the 

development of the so-called Navarrese Potassic Basin and the deposition of the 

Guendulain Fm. (Fig. 3). This is a 150-200 m thick unit that includes) a saline section 

with the potash salts targeted by the mining project (Rosell and Pueyo, 1997). The 

Guendulain evaporites, or the equivalent residual material related to its interstratal 

karstification, are overlain by the so-called “Banded Marls”, consisting of light brown 

marls with sandstone intercalations in the upper part with an aggregate thickness of 

15-20 m. The Liédena Sandstone, 50-80 m thick, concordantly overlies the “Banded 

Marls”. This resistant unit with prominent geomorphic expression is interpreted as 

shallow marine facies (Montes, 2009). The Liédena Sandstone is overlain by a thick 

Late Eocene-Oligocene detrital succession several kilometers thick dominated by 

reddish fluvial and alluvial deposits with an overall fining-upward trend corresponding 

to the Campodarbe Group. 
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The cartographic relationships and the analysis of the syn-tectonic formations in this 

sector of the South Pyrenean Zone indicate a southward progression of the 

deformation, towards the foreland (Teixell, 1996). The northernmost thrusts (Lakora, 

Larra) were active in Late Cretaceous and Early Eocene times. The Gavernie Thrust, 

whose leading edge emerges within the Jaca-Pamplona Basin through the Leyre and 

Loiti thrusts, was active between the Late Eocene and the Early Oligocene. Finally, the 

Guarga Thrust, which crops out in the External Sierras (southern edge of the Pyrenees), 

was active during the Oligocene and Early Miocene. 

Two main groups of structures have been recognized in the investigated area (Fig. 3): 

(1) Long folds and thrusts with a dominant E-W to ESE-WNW trend and S vergence, 

related to the Pyrenean compression, and (2) Short transverse normal faults, clearly 

superimposed on the previous contractional structures, mainly concentrated south of 

the Yesa Reservoir around the Ruesta village and the valley of the Regal River. The 

main thrusts, with a NE-stepping and overlapping arrangement, are the 28 km long 

Leyre Thrust, and the 29 km long Loiti Thrust (Puigdefábregas et al., 1976; García et al., 

1994) (Fig. 3). In the overlapping zone between these two faults, SE of Lumbier village, 

there is another thrust around 6 km long with smaller displacement called La Trinidad 

Thrust. In the southern sector of the study area, the Eocene-Oligocene succession is 

affected by a series of ESE-WNW folds and S-verging thrusts with limited displacement 

including, from N to S: (1) The 50 km long Undués-Los Pintanos Synclinorium (also 

known as San Juan de la Peña Synclinorium; Montes, 2009). This is an asymmetric 

synformal structure on the southern margin of the Aragón River valley, with a steeper 

southern limb; (2) The 50 km long Magdalena Anticline, whose steeper, locally 

overturned southern forelimb is offset by the N-dipping Magdalena reverse fault, with 
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an estimated displacement lower than 100 m. The normal faults are represented by 

the NNE-WSW trending Ruesta Fault system. The Ruesta Fault is the longest one (<10 

km) and with greater displacement (ca. 650 m).  

2.2. Seismotectonics 

The Pyrenees is considered a slowly deforming orogen with low to moderate 

seismicity. Rigo et al. (2015), based on a GPS survey with 74 stations spanning 18 years, 

infer a deformation field with velocities lower than 1 mm/yr across the range and 

estimate a maximum extensional horizontal strain rate of 2.0±1.7 nanostrain per year 

in a N-S direction in the western part of the range. More recently, Nguyen et al. (2016) 

measured NNE-SSW extensional strain rates in the western Pyrenees of up to 4 

nanostrain per year. These authors interpret that the collision that generated the 

Pyrenees has ceased and that it can be considered as an inactive plate margin. The 

analysis of focal mechanisms indicates lateral variation of the style of faulting, from 

compression and extension in the east to strike-slip and extension in the western 

sector (Ruiz et al., 2006b; Lacan and Ortuño, 2012; Martín et al., 2015; Rigo et al., 

2015). 

According to the earthquake catalogue of the Spanish National Geographic Institute, 

between 1373 and 1924, the Pyrenees was struck by a total of eleven historical 

earthquakes felt with intensity (EMS-98) equal or larger than VIII. The 1373 intensity IX 

Ribagorza earthquake had its epicentre in the central Pyrenees around 150 km east of 

the study area. The events that have caused the largest damage were the so-called 

1427-1428 seismic crisis in the eastern Pyrenees (Olivera et al., 2006). The 1428 

intensity IX-X event destroyed the village of Queralbs and killed around 800 people 

(Martínez-Solares and Mezcua, 2002). This spatial and temporal earthquake cluster is 
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attributed to the sequential rupture of several segments of the Amer Fault (Perea, 

2009; Zarroca et al., 2012). This is a transverse extensional structure related to the 

development of the post-orogenic Ampurdán graben system, superimposed on the 

Pyrenean contractional structures. Interestingly, no primary surface ruptures have 

been attributed to any of the historical earthquakes. The instrumental catalogue 

includes five events with magnitude larger than 5. 

The largest earthquake in the region is the Martes (or Berdún) event of July 10, 1923 

(Martínez-Solares and Mezcua, 2002), which is also the largest earthquake recorded 

instrumentally in the Pyrenees (Stich et al., 2018) (see epicentral location in Fig. 3). 

According to the earthquake catalog of the Instituto Geográfico Nacional (IGN), this 

earthquake, which did not produce any surface rupture or fatality, reached an 

epicentral intensity of VII. Stitch et al. (2018), based on the analysis of 20 seismograms 

from nine European observatories, estimate for this event a magnitude of Mw5.4, a 

centroid depth of 8 km, and a pure normal faulting source with a strike roughly parallel 

to the structural grain (N29E), 66N dip. They interpret that the source was a blind 

structure located below the basal thrust of the Pyrenees, situated at ca. 4-5 km depth 

(Teixell, 1998) and attribute the deformation to a post-orogenic collapse process. A 

comprehensive review on the seimotectonic of the Pyrenean orogen can be found in 

Lacan and Ortuño (2012). 

 

2.3. Morphostructure 

The main drainage of the investigated area is the Aragón River (Figs. 3, 4). This fluvial 

system has carved a broad E-W-oriented strike valley (Canal de Berdún) in the easily 

erodible Eocene marls of the footwall of the Leyre Thrust. The northern margin of this 
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valley is formed by the large escarpment of the Leyre Range, with a local relief of more 

than 900 m. This range is underlain by the resistant Cretaceous and Paleogene 

limestones and sandstones of the hanging-wall of the Leyre Thrust. The southern 

margin of the valley, with less prominent topography, is mainly controlled by cuesta 

scarps developed on the Liédena Sandstone and Campodarbe Group with a general S-

dip. In this section of the valley, the Aragón River has developed an extensive stepped 

sequence of terraces and mantled pediments (Fig. 4). The Esca River and the Regal 

River are discordant tributary drainages that traverse the Leyre Thrust and the Ruesta 

Fault, respectively. Downstream of the Yesa village, the Aragón River changes into a 

transverse drainage sub-perpendicular to the structural grain and receives the flow of 

the Irati River upstream of Sangüesa town. The Irati River is the main drainage in the 

western sector, together with its tributary the Salazar River. These fluvial systems have 

excavated a broad erosional depression in Eocene marls upstream of the Lumbier 

Anticline, where they have developed a widespread system of terraces and mantled 

pediments (Fig. 4). The Irati River traverses perpendicularly the WNW-ESE-oriented 

Lumbier Anticline through a narrow limestone canyon (Lumbier Canyon). Downstream, 

the river veers into a strike-parallel ESE-WNW orientation along a relatively wide valley 

section associated with the Loiti Thrust and has well-developed terraces in this reach. 

 

3. Methodology 

Initially, two detailed geomorphological strip maps were produced showing the 

analyzed faults and the associated Quaternary landforms and deposits, mainly 

pediments and terraces. One of the maps covers: (1) the range and piedmont 

associated with the Leyre Thrust, on the northern margin of the Aragón River; (2) the 
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La Trinidad Thrust east of the Irati-Salazar valley; and (3) the eastern portion of the 

Loiti Thrust and its hanging-wall anticline (Lumbier Anticline), which are traversed by 

the Irati River. The other strip map covers the Ruesta Fault, at the southern margin of 

the Aragón valley, which is traversed by the Regal River. The following data were used 

for the production of the maps: (1) aerial photographs of the Instituto Geográfico 

Nacional (IGN) from different dates and printed a various scales (1956, 1:33,000; 1967, 

1:18,000; 1997-2000, 1:20,000); (2) orthophotographs from 2012 with a spatial 

resolution of 0.5 m/pixel (IGN); (3) a LiDAR-derived DEM with a spatial resolution of 

5m/pixel (IGN); (4) the sheets 174-II (Lumbier) and 175-I (Tiermas) of the Geological 

Map of Navarra at 1:25.000 scale (López and Solé, 1997a, b; López et al., 1997); and (5) 

various sheets of the 1:50,000 scale Geological Map of Spain (Puigdefábregas et al., 

1976). After conducting thorough field surveys, the maps were produced in a GIS 

environment and using a vector graphics editor. 

Topographic profiles were measured in the field with a range finder (Advantage Laser 

Atlanta) that provides azimuth, inclination, and horizontal and vertical distance values 

between measuring stations. Longitudinal topographic profiles of pediments located in 

the piedmont of the Leyre Range were constructed with the 5 m resolution DEM and 

using GIS tools. Trenches were excavated in terrace deposits with backhoe. The deep 

(10 m) and large-volume trench excavated in the Ruesta Fault required the use of two 

large backhoes and trucks to extract the excavated  sediment, with a total cost of 

57,000 euro. One of the walls of each trench was logged on graph paper after placing a 

grid with cord and nails with variable spacing (1-4 m), depending on the complexity of 

the stratigraphy and structure. Charcoal samples collected from slope deposits 

onlapping the Leyre Thrust were dated at Beta Analytic. The Peña Blanca Cave, located 
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in a difficult-access escarpment at 1.4 km distance from the trace of the Leyre Thrust 

was examined with the assistance of the speleologist who mapped the cave (Fig. 4). 

 

4. The Lumbier Anticline and the Loiti Thrust 

4.1. Previous work 

Insua and García-Mayordomo (2009) and González de Vallejo et al. (2010) conducted a 

geomorphological and geochronological investigation on the terraces of the Irati River 

upstream and downstream of the Lumbier Anticline, which is the hanging-wall fault-

propagation fold of the Loiti Thrust. These were postulated as adequate morpho-

stratigraphic markers for identifying and assessing recent activity on the associated 

contractional structures. They produced a geomorphological map differentiating seven 

terrace levels (T0:+47 m; T1:+40 m; T2: +36 m; T3: +30 m; T4: +24 m; T5: +10 m; T6: +5 

m) and two alluvium-mantled pediments, and carried out geochronological analyses. 

Based on their geomorphological analysis, including topographic profiles constructed 

with DEMs, they deduced that the Lumbier Anticline has been active during the 

Quaternary (growing fold). This interpretation was based on two main geomorphic 

anomalies:  

(1) The surface of a T1 terrace of the Irati River on the northern limb of the Lumbier 

Anticline is situated at a relative height above the channel of at least 4 m higher than 

expected (+44 m instead of +40 m or +36 m) and shows an anomalous northward 

upstream inclination (see location of trench TIN in Fig. 5). 

(2) South of the Lumbier Anticline, where the Irati Valley veers into a ENE-WSW 

orientation subparallel to the structure, the authors, on the basis of topographic 

profiles, recognized an anomalous down-valley gradient of 2° in an alluvial surface that 
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they attributed to their T1 terrace (see location of trenches TIS1 and TIS2 in Figs. 5 and 

6). Insua and García-Mayordomo (2009) contended that, although an ESE tilting is not 

consistent with the growth of a WNW-ESE trending anticline, the high slope of the 

terrace must be related to neotectonic deformation, probably due to the interplay of 

secondary faults. 

Insua and García-Mayordomo (2009) and González de Vallejo et al. (2010) obtained 

eight numerical thermoluminescence (TL) ages from samples collected in terraces (4), 

pediments (3) and colluvial deposits (1). A sample from the deposit of terrace T1 (+40 

m) yielded and age of 108 +39/-22 ka. Their terrace level T2 (+36 m) is dated with one 

sample at 117 +44/-24 ka (overlapping the previous age). On the basis of these data, 

the authors attribute to the T1 terrace a minimum age of 108 ka. A sample collected in 

the apparently uplifted terrace deposit at the northern limb of the anticline yielded an 

age of 85.7 +24.0/-15.8 ka. This age led the authors to consider that the putative 

deformed terrace deposit could correspond to either T1 (+40 m) or T2 (+36 m), and 

consequently the vertical displacement could range between 4 m and 13 m. 

Based on the inferred Quaternary activity of the Lumbier Anticline, they postulate that 

the Leyre Thrust, located to the NE and beyond the La Trinidad Thrust, can be 

considered a seismogenic source (Figs. 3, 4). The authors do not explain why they 

decided to categorize the Leyre Thrust as a seismogenic source and not the Loiti 

Thrust, which is geometrically and genetically associated with the Lumbier Anticline. 

For the characterization of the Leyre Thrust, Insua and García-Mayordomo (2009) and 

González de Vallejo et al. (2010) assume a rupture length of 26 km, a 30N dip and a 

seismogenic depth of 5-6 km. Using these geometrical parameters and the empirical 

relationships of Wells and Coppersmith (1994) they estimate moment magnitudes of 
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6.53±0.25 (rupture area) and 6.73±0.28 (surface rupture length) and a mean value of 

Mw 6.6±0.26. With these magnitudes and using the Wells and Coppersmith (1994) 

relationships, they estimate mean displacement per event between 0.61 m and 0.69 m 

and maximum displacement per event between 1.19 m and 1.43 m. Earthquake 

recurrence was assessed considering that the terrace onlapping the northern limb of 

the Lumbier Anticline has been uplifted 8 m, involving a net displacement of 16 m on 

the thrust, dipping 30N. With a cumulative displacement of 16 m and ascribing an age 

100 ka to the uplifted terrace, they calculate a mean slip rate for the Leyre Thrust of 

0.16 mm/yr. Based on these rates and the values of displacement per event they 

further calculate an average recurrence of 6,124 years. Similar values are obtained 

using the relationships of Slemmons (1982) and Aki (1966); 5,500 and 6,631 years, 

respectively.  

This fault characterization was incorporated into the PSHA for the Itoiz Dam site, 

situated 20 km north of the Leyre Thrust. The aim of the PSHA was to obtain strong 

ground motion parameters to be used in dynamic stability analyses for the dam and 

the slopes of the reservoir. The PSHA was elaborated for the Spanish Ministry of 

Environment (González de Vallejo et al., 2010) and published in a scientific journal 

(García-Mayordomo and Insua-Arévalo, 2011). The source model of the seismic hazard 

analysis included two types of sources: (1) Sixteen zones within a 150 km radius from 

the Itoiz Dam site, for which an earthquake catalogue was produced. (2) A single fault 

source corresponding to the Leyre Thrust, which was incorporated in the analysis 

following a time-independent characteristic earthquake model (Youngs and 

Coppersmith, 1985). The criteria used to select fault sources included evidence of 

activity younger than 125 ka and a distance to the site lower than 25 km. The obtained 
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peak ground acceleration (PGA) for rock-type terrain and the 1000- and 5000-yr RP 

were 0.127g and 0.300g, respectively. The 1000-yr RP value is significantly higher than 

those estimated for the Itoiz Dam project (0.08g) and in the NCSE-02 Spanish seismic 

code (0.052g). The analysis of the hazard results indicated that the main contributing 

sources in order of importance are the zone in which the Itoiz Dam is located and the 

Leyre Thrust. A deaggregation analysis revealed that the controlling earthquake for the 

5000-yr return period is the maximum earthquake established for the Leyre Thrust 

(García-Mayordomo and Insua-Arévalo, 2011). 

 

4.2. Evaluation of the neotectonic interpretation 

A new 1:5,000 scale geomorphological map was produced that focused on the alluvial 

levels developed by the Irati and Salazar rivers upstream and downstream of the 

Lumbier Anticline, which is traversed discordantly by the Irati River through the 

Lumbier Canyon (water gap). A simplified version of this map is integrated in Figure 4. 

Five main alluvial levels were differentiated (V to I from older to younger). The two 

oldest ones (PV-TV and PIV-TIV) and level TII-PII are represented by terraces (T) and 

correlative mantled pediments (P). The rest of the alluvial levels are recorded by 

terraces (TIII and TI). The terraces show consistent relative heights above the river 

channel: TV:+47 m; TIV:+40-45 m; TIII:+35 m; TII:+20 m; TI:+2-9 m. Our TIV terrace 

coincides with the T1 terrace of Insua and García-Mayordomo (2009). Terrace and 

pediment deposits are typically less than 3 m thick, dominated by gravelly facies and 

overlie flat strath surfaces cut across dipping bedrock. 

Initially, a N-S-oriented topographic profile was constructed with a range finder across 

the terrace situated on the northern limb of the Lumbier Anticline and supposedly 
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affected by northward tilting and 8 m of uplift (Insua and García-Mayordomo, 2009). 

This profile revealed: (1) an upper section associated with the valley margin with a 

northward slope of 8° ascribable to colluvium deposited after the development of the 

terrace; and (2) a lower section with an average slope to the north of 0.7°, with the 

edge of the terrace surface next to the riser situated at +40 m above the river channel, 

not +44 m. Subsequently, a 38 m long and 4 m deep backhoe trench was excavated 

with a N-S orientation and with the northern edge situated at the terrace riser (Trench 

TIN in Fig. 5). The trench exposed: (1) marl bedrock with a gentle N-dip (unit 1); (2) a 

3.1 m thick fluvial package (units 2, 3, 4) lying on a gently south-dipping strath surface; 

(3) around 1 m of fine-grained slope-wash deposits with angular limestone clasts (units 

5, 6); and (4) an anthropogenic fill ca. 1 m thick (unit 7). Detailed descriptions of the 

units are included in Fig. 5. The trench provided the following relevant factual data for 

assessing the previous neotectonic interpretation: (1) the terrace deposit does not 

show any evidence of northward tilting or deformation; (2) measurements taken with 

a total station (Leica TCRA1102plus) indicated that the base and the top of the terrace 

deposit (units 2 to 4) are situated at 31.3 m and 34.4 m above the river channel. 

Consequently, the terrace has neither been tectonically uplifted up to a relative height 

of 44 m, nor tilted to the north. 

Insua and García-Mayordomo (2009), using a DEM (5 m spatial resolution), constructed 

a longitudinal topographic profile along an alluvial surface situated south of the 

Lumbier Anticline and ascribed to their T1 terrace level (+40 m). They inferred an 

anomalous downstream inclination of 2° for this geomorphic surface. Initially, we 

measured in the field a topographic profile with a range finder, which indicated the 

following features: (1) The alluvial surface has an average inclination of 1.2°. (2) The 
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alluvial surface does not have a continuous graded topography. Instead, the terrace 

shows four NNE-trending downstream-facing scarps 1.5 to 2.5 m high that separate 

eastward-stepping benches (Fig. 6). These data suggested that the investigated surface 

does not correspond to a single deformed terrace, but to a series of minor terraces. In 

order to test this hypothesis, two trenches were excavated across the two 

westernmost scarps (trenches TIS1 and TIS2 in Fig. 5).  

Trench TIS1, 58 m long and 3 m deep, exposed the deposits of two different terraces 

(units 2 and 3) situated on both sides of the scarp and inset into marl bedrock. These 

gravelly deposits did not show any evidence of deformation (Fig. 5). Trench TIS2, 32 m 

long and 3.5 m deep revealed: (1) a gravelly terrace deposit (units 2 ,3) underlying the 

upper bench with a channel-like base showing a N170E orientation, measured using 

piercing points at both sides of the trench; and (2) below the lower part of the scarp 

and the inset bench, the top of the bedrock and the eastern edge of the terrace 

deposit corresponds to an artificial excavation surface overlain by different man-made 

fills (unit 4). See detailed description of units in Fig. 5. Pamplona Marls were exposed 

in the trench beneath the entire scarp landform, and no faults were present. The most 

reasonable interpretation is that there used to be two different inset terraces on both 

sides of the scarp and that the lower one was removed by the excavation of a gravel 

pit, and subsequently filled for agricultural purposes (see current analog situation in 

the floodplain of the Irati River in Fig. 6). The gathered geomorphic and stratigraphic 

evidence indicates that the previously interpreted tilted terrace, in fact corresponds to 

a non-deformed composite slip-off terrace comprising multiple stepped minor terraces 

(e.g., Fairbridge and Harris, 1968; Brackenridge, 1985). These terraces record episodic 

entrenchment and downstream migration of the Irati River in the inner side of a 
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meander with a transverse channel section, which can be observed in the current path 

of river (Figs. 5, 6). These geometrical relationships are equivalent to scenario J in 

figure 1. 

The 29 km long Loiti Thrust, also known as Monreal and Lumbier fault (Puigdefábregas 

et al., 1976; Hernández and Simó, 1987; López et al., 1997) is a N-dipping fault with 

reverse displacement. It has a N120E strike that veers to a E-W orientation on its 

eastern sector (Figs. 3, 4). Close to the surface, the fault  seems to have a steep dip as 

supports its linear cartographic trace (García et al., 1994; López and Solé, 1997a). In 

the investigated area, the Loiti Thrust places Eocene marine sediments, mainly 

Pamplona Marls, over Oligocene detrital formations of the Campodarbe Group 

(Hernández and Simó, 1987; López et al., 1997) (Fig. 3). The Lumbier Anticline, 

interpreted as an active fold by Insua and García-Mayordomo (2009), is the hanging-

wall fault-propagation anticline of the Loiti Fault, with a steep forelimb and a more 

gentle backlimb (López et al., 1997). The Loiti Thrust is not included in the Quaternary 

Faults Database of Iberia (IGME, 2015), but it was represented in the 1:1,000,000 scale 

Neotectonic and Seismotectonic Map of Spain as a probable neotectonic structure, 

although no justification for this interpretation was provided in the accompanying 

report (Baena-Pérez et al., 1998). 

The geomorphological map produced for this work revealed that west of Liédena 

village, the Loiti Thrust is overlapped by the oldest terrace (TV; +47 m) of the Irati River 

(Figs. 4, 5). An excavation was carried out with pick and shovel (30T 640375 / 4720251; 

WGS84) to obtain information on the geometrical relationships between the Loiti 

Thrust and the overlying terrace deposit (Fig. 7). The artificial exposure showed that 

the fault is truncated by an undeformed terrace deposit that carries a red, clayey, well-
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developed soil profile. The basal unconformity displayed a non-displaced subhorizontal 

trace across the fault and the overlying gravels do not show any evidence of 

disturbance (i.e., reoriented fabrics, shear zones). Considering that the adjacent inset 

and younger terrace (TIII, +35 m; mapped as slip-off terrace in Fig. 4) was dated at ca. 

117 ka by Insua and García-Mayordomo (2009), we can infer that the Loiti Thrust has 

not experienced any surface rupture over at least the last 117 ka. This situation fits 

with scenario H of figure 1. 

 

5. The La Trinidad Thrust 

The WNW-ESE-trending and S-verging La Trinidad Thrust is located in the overlapping 

zone between the Leyre and the Loiti thrusts (Figs. 3, 4). This is a secondary structure 

with a limited mappable length of at least 5 km, whose western sector is concealed by 

Quaternary alluvium. The thrust places the La Magdalena Anticline in the hanging-wall 

over the Lumbier Anticline in the footwall (López et al., 1997). The western sector of 

the La Trinidad Thrust is overlapped by the TIV terrace of the Irati-Salazar fluvial 

system, situated at around 40 m above the current channel (Figs. 4, 5). East of the 

terrace, on the valley margin, the thrust superposes the Guara Limestone and an 

unnamed unit of calcarenites, marls and marly limestones (hanging wall, Lutetian) over 

younger sediments of the so-called Irurozqui Flysch (footwall, Bartonian). To the west, 

in the scarp overlooking the floodpain, the thrust shows a smaller stratigraphic throw, 

juxtaposing different sections of the Irurozqui Flysch (López et al., 1997).   

The surface of the terrace developed across the trace of the La Trinidad Thrust does 

not show any geomorphic feature indicative of recent tectonic deformation (i.e., fault 

scarp). However, in order to elucidate whether the complete package of Quaternary 
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deposits overlying the fault is not displaced (i.e., discard scenario F of figure 1), a 

trench was excavated intersecting perpendicularly the projection of the cartographic 

trace of the fault, which crops out 160 m to the east in the valley margin, and 150 m to 

the west in the terrace scarp (Fig. 5). The trench, 51 m long and 2.7 m deep, exposed a 

non-deformed terrace deposit up to 2.7 m thick unconformably overlying the faulted 

bedrock (Fig. 8). 

Two lithostratigraphic units were differentiated in the exposed bedrock bounded by 

the La Trinidad Thrust, which was expressed as a damaged zone 3 m wide and 

truncated by the non-deformed Quaternary cover (Fig. 8). On the NE side of the fault 

(hanging wall) the bedrock consists of a dark grey, massive and difficult-to-excavate 

marly limestone, mainly with wakestone texture. This unit with subhorizontal attitude 

(N133E4SO) and abundant millimetre-sized particles of glauconite and oxidized pyrite 

crystals is ascribable to the unnamed unit of calcarenites, marls and marly limestones 

of López et al. (1997). Around the vertical reference lines 23 and 36 the bedrock 

showed solutionally-enlarged fractures 20-40 cm wide filled with a reddish grey 

argillaceous material with carbonate nodules and subvertical veins of macrocrystalline 

calcite. These karstified discontinuities filled by residual material were clearly 

truncated by the planar strath surface (angular unconformity) lying at the base of the 

terrace deposit. On the SE side of the failure zone (footwall), the bedrock consists of a 

poorly stratified, relatively soft, light grey calcareous marl ascribable to the Irurozqui 

Flysch (López et al., 1997). This considerable stratigraphic throw and the well-

developed shear zone indicates that the trench was excavated at a considerable 

distance from the fault tip. Locally, a strike and dip of bedding of N120E62SW was 

measured on this wall. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

The fault zone shows a fault breccia comprising a large block of resistant limestone 1 m 

wide (ZF2) and a soft, reddish grey-brown marl with scattered angular clasts 

(floatbreccia) traversed by shear planes with an apparent dip of 25NE (ZF1) (Fig. 8). The 

northern boundary of the fault zone in contact with the hanging wall is a NE-dipping 

reverse fault. The terrace deposit, mainly composed of crudely stratified bouldery 

gravels with imbricated fabrics, lies on an erosional planar surface (rock-cut strath 

surface) with a slight downstream inclination and without any offset attributable to 

recent deformation. In the fault zone, the base of the terrace shows a more irregular 

geometry due to the presence of local scours 50-60 cm deep generated by differential 

erosion in the softer marls situated at both sides of the limestone block. Along the 

entire length of the trench, the gravels do not show any evidence of deformation such 

as shear zones or reoriented fabrics. Insua and García-Mayordomo (2009) obtained a 

TL age from a sample collected in this terrace level of 108 +39/-22 ka and an age of 117 

+44/-24 ka from the subsequent terrace level (TIII, +36 m). Both ages, considering the 

error margin at one sigma, overlap at 147-93 ka. Consequently, the available data 

indicates that the La Trinidad Thrust has not experienced any surface rupture at least 

over the last 93 ka. This case illustrates scenario H of figure 1. 

 

6. The Leyre Thrust 

The Leyre Thrust is located 20 km to the south of the Itoiz Dam and 2.5 km to the north 

of the Yesa Dam, which is being enlarged and will create the largest reservoir of the 

Pyrenees (Figs. 3, 4). The Leyre Thrust was included in an early version of the 

Quaternary Faults Database of Iberia (QAFI v.1) (e.g., Nemser et al., 2010), referring to 

the work by Insua and García-Mayordomo (2009). Lacan and Ortuño (2012) included 
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the Leyre Thrust in a review on active tectonics in the Pyrenees quoting the “non-

conclusive” studies carried out by the previous authors. Nonetheless, the Leyre Thrust 

was excluded from a more recent version of the Quaternary Faults Database of Iberia 

(QAFI v.2; IGME, 2015). The E-W-oriented and S-verging Leyre Thrust has a mappable 

length of 28 km and places along most of its cartographic trace resistant Cretaceous 

and Paleogene carbonate formations over softer Middle Eocene marls (de Rojas and 

Latorre, 1972; Puigdefábregas, 1975). The hanging wall of the Leyre Thrust shows a 

general antiformal structure with a steeper forelimb, which has been largely removed 

by erosion. The exposed rocks in the footwall are mainly Middle Eocene marls of the 

Arro-Fiscal and Pamplona formations, which show a dominant southward dip close to 

the thrust. In the eastern edge, the thrust grades laterally into the E-plunging pericline 

of the hanging-wall anticline, which is truncated by extensive non-deformed mantled 

pediments (Fig. 4). 

The superposition along the Leyre Thrust of rocks with contrasting resistance to 

erosion and different structural attitude has controlled the development of the 

following geomorphic domains (Fig. 5): (1) The hanging wall of the thrust forms the 

higher part of the Leyre Range, with a broad and gently sloping northern flank roughly 

concordant with the structure (dip slope), and a south-facing front defined by a rock 

escarpment (free-face scarp) around 400 m in local relief, whose base tends to 

coincide with the thrust. (2) Below the rock escarpment, an extensive E-W-oriented 

erosional depression has been excavated in the footwall marls, drained by the Aragón 

River. The piedmont on the northern margin of the Aragón River valley is characterised 

by relatively steep colluvium-covered slopes (debris slopes) at the foot of the 

escarpment, that grade into mantled pediments dissected by drainages. This stepped 
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sequence of pediments locally merge with different terrace levels of the Aragón River 

(Fig. 4). The production of a detailed geomorphological map allowed the identification 

of six alluvial levels that record the episodic entrenchment of the Aragón River. The 

oldest level is represented by pediments surfaces (P6), the two youngest ones by 

terraces (T2, T1), whereas the remaining ones show correlative pediments and 

terraces (P5-P3, T5-T3). The following approximate heights above the channel were 

obtained for the different terrace levels: T5: +46-49 m, T4: +38-40 m; T3: +28-33 m, T2: 

+20-22 m; T1: +5-8 m. 

Field work conducted during the elaboration of the geomorphological map allowed the 

identification of outcrops of the thrust plane in the canyon of the Esca River and in 

several quarries north of the Yesa Dam. In one of the latter outcrops, the Leyre Thrust 

is covered by non-deformed stratified talus deposits (30T 0649933/4722645; WGS84) 

(Fig. 9). The slope deposits, around 4.6 m thick, are composed of alternating, parallel-

bedded decimetre-scale layers of matrix-free angular pebble gravel and  thinner beds 

of fines with scattered clasts (Fig. 9). These are grèze litées mainly generated by frost 

shattering under past periglacial conditions (Gutiérrez, 2013; Gutiérrez and Gutiérrez, 

2016). The deposit shows a syndepositional dip concordant with the inclination of the 

slope, which reflects the repose angle of the material at the time of its accumulation. 

The beds onlap the limestone of the hanging wall abutting a steep contact and 

recording the progressive burial of the rock scarp by the vertical accretion of the talus 

deposits (replacement of free-face by debris slope). Beneath the surface, the colluvium 

is overprinted by a calcic horizon attributable to the morphologic stage I-II of Machette 

(1985). The layers of the slope deposit show clear lateral continuity without any 

evidence of displacement over the thrust. Two charcoal samples were collected 3.2 m 
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(LEY-1) and 3.5 m (LEY-2) below the surface for AMS radiocarbon dating. Sample LEY-2 

had insufficient organic carbon for dating. Sample LEY-1 yielded a calibrated age of 

4425-4245 cal. yr BP (age range at 2 sigma; 95% probability). This geochronological 

information indicates the Leyre Thrust has not experienced any surface rupture since 

at least 4.2 ka, considering that the base of the undeformed basal part of the slope 

deposits may be significantly older. This case corresponds to scenario H of figure 1 and 

leads to an indeterminate result in case inactive faults are defined as those that have 

not experienced surface displacement over the last 10 kyr. 

In the Leyre Thrust, we have not found old non-deformed Quaternary deposits 

truncating the fault. Nonetheless, there are geomorphic markers and indicators that 

could provide indirect evidence of activity or support inactivity. If the Leyre Thrust was 

considered to be an active fault, its long-term propagation could have caused the 

progressive steepening of the pediment surfaces developed in the piedmont. The 

slope of the different pediment levels would increase with their age (the older the 

steeper) and they would show divergent longitudinal profiles towards the mountain 

front (e.g., Pearce et al., 2004) (Fig. 10). Moreover, the flexure of the strata in the 

footwall, including beds of different rheology, could have resulted in the development 

of flexural-slip faults. Such faults would be expressed in the pediment surfaces as 

layer-parallel upslope-facing scarps and linear troughs at their foot (Rockwell et al., 

1984; Kelsey et al., 2008; Walker et al., 2013; Gutiérrez et al., 2014; McCalpin et al., 

2019). In order to rule out this scenario, we have constructed longitudinal profiles of 

pediments of different levels situated in the central sector of the Leyre Range 

piedmont and selecting a 1.9 km wide proximal band parallel to the trace of the thrust 

(Fig. 10). The profiles show a parallel pattern and similar average slopes within the 
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range of 7.8-13.4%, regardless of the age of the pediment levels. Moreover, the 

pediment surfaces do not show irregularities attributable to surface deformation 

related to flexural-slip faulting.  

Other features that support the lack of Quaternary activity in the Leyre Thrust include: 

(1) Active thrusts tend to occur at the foot of mountain fronts and are typically 

expressed by asymmetric convex scarps (e.g., McCalpin et al., 2019). However, the 

trace of the Leyre Thurst occurs at a high elevation, well above the mountain-

piedmont junction, and is not expressed by scarps or convex slope breaks (Fig. 4). (2) 

The activity of the thrust would cause the growth of the hanging-wall anticline located 

in the eastern edge of the structure and the upwarping of the extensive mantled 

pediment cut-across the fold. However, this pediment does not show any evidence of 

deformation (Fig. 4). (3) A TIV terrace +40-45 m) of the Irati-Salazar fluvial system, 

situated 70 m apart from the Leyre Thrust, does not show any evidence of 

deformation, although this terrace seems to be located close to the fault tip (Fig. 4).  

The 205 m long Peña Blanca Cave, located on the western wall of the canyon carved by 

the Esca River across the Leyre Range (see location in Fig. 4), was examined to check 

whether it contains any speleoseismological evidence (e.g., broken speleothems or 

with anomalous growths, collapses, discontinuities with recent displacement, 

liquefaction structures; Forti, 2001, 2003; Becker et al., 2006). This cave could be a 

good archive for the potential seismic activity sourced from the Leyre Thrust due to 

the following factors (Gisbert and Pastor, 2009): (1) It is located in the hanging-wall of 

the Leyre Thrust at a distance of just 1.4 km from the fault (30T 662720/4724215; 

ETRS89). (2) IThe caveis perched 170 m above the river channel on a steep 

escarpment, were ground motion is expected to experience significant topographic 
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amplification. For example, Gilli et al. (1999) documented that environmental effects 

caused by a Mw 5.2 earthquake in southern France were restricted to caves situated in 

elevated positions. (3) The cave, discovered in 2007, has not been disturbed by human 

activity. 

The Peña Blanca Cave has been developed in a section of calcarenites of the Alveoline 

Limestone, with a ENE-WSW strike and dipping around 15N. The cave is located on the 

northern backlimb of the hanging wall anticline of the Leyre Thrust. It is essentially a 

subhorizontal and rectilinear passage controlled by subvertical WSW-ENE-trending 

joints. Along most of its length, the cave has s a compound cross-section, comprising 

(1) an ellipsoidal phreatic conduit (water-table passage) with the major axis controlled 

by the joint; (2) a fissure in the upper part related to the solutional enlargement of the 

controlling joint; and (3) a rectilinear, narrow and deeply entrenched vadose channel 

in the lower part. Close to the entrance, the geometry of the cave has been 

substantially modified by condensation corrosion processes as revealed by rock 

pendants and solution pockets. Although speleothems are not abundant, they show 

significant diversity (stalactites, soda straws, eccentric stalactites, stalagmites, 

columns, flowstones, draperies, microgours, popcorn-type coralloids (Palmer, 2007; 

Gutiérrez and Gutiérrez, 2016). The cave does not show features attributable to past 

seismic activity. Of especial interest is the presence of unbroken soda straws, which 

are considered very adequate indicators of seismic activity in caves due to their 

fragility and high length to diameter ratio (Lacave et al., 2004; Becker et al., 2005; 

Kagan et al., 2005). 

 

7. The Ruesta Fault  
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The Ruesta Fault is a NNE-SSW-striking and down-to-the west normal fault that crops 

out on the southern margin of the Aragón River valley (Fig. 3). An early geological map 

by De Rojas and Latorre (1972) proposed that this fault extends across the Leyre 

Range, offsetting the Leyre Thrust and reaching 16 km in length. Puigdefábregas (1975) 

and Montes (2009), in more recent and realistic geological maps restrict the Ruesta 

Fault (7.5 km) to the southern margin of the Aragón River valley. This is supported by 

the apparent lateral continuity and similar attitude of correlative distinctive beds that 

crop out on both sides of the Esca River valley (i.e., calcareous breccias between the 

Arro-Fiscal and Pamplona marls) (Fig. 11A). The Ruesta Fault, between 5.5 and 9.5 km 

in length, cross-cuts older contractional structures and juxtaposes along most of its 

cartographic trace Pamplona Marls (upthrown eastern block) against more resistant 

detrital sediments of the Liédena Sandstone and the Campodarbe Group (downthrown 

western block) (Fig. 3). According to INYPSA (2018), the master Ruesta Fault has a 

throw of around 650 m and is accompanied by other shorter secondary synthetic and 

antithetic faults with vertical separations lower than 100 m (Fig. 11A). In the 

downthrown block, the Liédena Sanstone is affected by a sharp drag fold reaching dips 

as high as 70W that rapidly attenuate away from the fault. Kinematic indicators 

measured on planes of secondary faults indicate dip slip displacement (rake ~90). 

The Ruesta Fault displays a very conspicuous geomorphic expression related to 

differential erosion (fault-line scarp) (Fig. 11A). The downthrown block, underlain by 

the steeply dipping (drag-folded) and resistant Liédena Sandstone forms a prominent 

ridge parallel to the fault, whereas higher erosion in the softer marls of the upthrown 

block has created an erosional depression with pediments and terraces of the Aragón 

River. This is an example of relief inversion that supports fault inactivity, in which the 
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topographically higher area is associated with the downthrown block due to the 

presence of more resistant rocks. 

Geomorphic mapping and field surveys revealed that the Ruesta Fault is concealed by 

terrace T4 of the Aragón River, situated around 40 m above the submerged river 

channel (Fig. 11A). It crops out in a very unstable and steep scarp at the southern 

margin of the Yesa Reservoir. Here, the fault, steeply dipping to the W, juxtaposes 

different sections of the Pamplona Marls and is apparently truncated by non-deformed 

gravels of the T4 terrace (Fig. 11B). In order to unequivocally demonstrate that the 

Ruesta Fault does not displace the deposits of the T4 terrace of the Aragón River, a 

trench was excavated across the projected trace of the fault (Fig. 12). Owing to permit 

constrains, the trench was sited in a crop field close to the high-relief valley margin, 

where the terrace deposit is overlain by thick colluvial deposits (ca. 8 m). This setting 

required the excavation of a costly benched trench 56 m long, 10 m deep and 20 m 

wide in the upper part. The application of geophysical methods to better constrain the 

concealed fault was ruled out due to time limitations, the presence of thick and highly 

conductive argillaceous colluvium, and the same lithology at both sides of the fault 

(Pamplona Marls).  

The exposed bedrock consisted of massive bluish grey marls with interbedded 

sandstone layers, in which it was possible to obtain strike and dip (or apparent dip) 

data (Fig. 12A). Faults were mainly identified by lateral truncation of the sandstone 

beds. The Ruesta Fault was expressed as a 15 m wide fault zone (fault planes, shear 

zones, fault breccias) in which the bedding has been largely obliterated. Between the 

reference lines 34 and 47 there were numerous W-dipping faults and fractures with an 

orientation similar to the cartographic trend of the fault. In some fault planes it was 
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possible to measure slickensides (striations, steps) indicative of dip-slip, down-to-the-

west displacement. The master fault seems to be the one mapped at the reference line 

47, as suggest a significant lithological change, with thick sandstone beds on the SE 

side, and a conspicuous drag fold in the downthrown block. Along the 56 m in which 

the trench reached the bedrock, the base of the gravelly terrace deposit showed a 

planar geometry (strath surface) without any evidence of deformation. Similarly, no 

deformations were observed in the terrace deposit (1.5-2.5 m thick), and the overlying 

colluvium (6-8.5 m thick). The trench clearly captured the Ruesta Fault and allowed us 

to confirm that the deposit of terrace T4 is not offset. With the available 

geochronological information (Lewis et al., 2009; Insua and García-Mayordomo, 2009; 

García-Ruiz et al., 2013), we can indicate that the fault has not experienced any surface 

rupture during at least the last 100 ka. Although faults may not rupture along their 

entire length during individual earthquakes (e.g. Wesnousky, 2008; DuRoss et al., 

2016), for the fault to be active, the terrace should be affected by at least one faulting 

event considering the time elapsed since its deposition. 

 

8. Discussion  

A comprehensive seismic hazard analysis (SHA) for sensitive structures such as nuclear 

facilities or large dams should include fault sources, especially those located in the 

vicinity of the site. These may have a significant contribution to the seismic design 

parameters with relevant engineering and societal implications, as illustrates the 

results of the PSHA carried out for the Itoiz Dam, Spanish Pyrenees, which 

incorporated the Leyre Thrust as an active fault with a recurrence of ca. 6000 years 

(García-Mayordomo and Insua-Arévalo, 2011).  
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Before conducting a SHA for a critical structure, it is advisable to identify and 

characterize relevant fault sources, which may be already included in active fault 

databases or may be recognized through new data collection studies. Additionally, it is 

also highly advisable to evaluate if the postulated active faults are related to non-

tectonic processes, and if the criteria used to classify them as active are valid. There 

are numerous scientific publications that illustrate examples of fault source 

characterization (e.g., McCalpin, 2009 and references therein). However, the concept 

of non-tectonic deformation is rarely considered, and the literature dealing with the 

distinction between tectonic and non-tectonic faults is very scarce (e.g., Hanson et al., 

1999; Gutiérrez et al., 2012; Carbonel et al., 2013). As explained in the introduction 

section, numerous Quaternary deformations in the Pyrenees initially interpreted as 

tectonic have been subsequently ascribed to non-tectonic processes (i.e., evaporite 

dissolution, salt flow, sackung, landsliding). Moreover, to our knowledge, accessible 

works presenting studies aimed at elucidating whether a fault can be considered as 

active are scarce. This work illustrates a procedure, mainly based on geomorphological 

mapping and trenching investigations, aimed at determining whether specific faults 

have experienced displacement in Late Quaternary times. The approaches are similar 

to those applied to the characterization of confirmed active faults, although with some 

variations related to the aims of the investigation. The priority for fault 

characterization studies may be to obtain information on the most recent activity of 

the fault (e.g., most recent event), whereas fault activity vs. inactivity evaluation 

studies may require covering longer time spans to unambiguously determine if the 

fault has experienced any surface rupture after the chronological bound established by 

regulatory definition. 
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For the evaluation of fault activity it is essential to investigate and date Quaternary 

deposits, landforms and/or soils associated with the fault and with an adequate age to 

resolve the chronological regulatory criterion (Fig. 1). These critical sites can be 

identified by means of geomorphological and Quaternary geological mapping along the 

fault zones (strip maps) and the establishment of morpho-stratigraphic sequences 

(e.g., McCalpin, 2009c; Burbank and Anderson, 2012), as illustrated in figures 4 and 11. 

The approximate age of the target units can be estimated using multiple information, 

including regressions that relate age with relative heights or soil development (e.g., 

Moreno et al., 2012; Silva et al., 2017), long-term incision rates, and available or new 

geochronological data. The production of strip maps and field surveys allowed the 

identification of old terraces (+40-50 m) overlapping the Loiti, La Trinidad, and Ruesta 

faults, as well as slope deposits accumulated on the Leyre Thrust. Previous works 

carried out in the region ascribe an age older than 100 ka for terraces of major 

drainages with relative heights of around 40-50 m (e.g., Insua and García-Mayordomo, 

2009; Lewis et al., 2009). 

Geomorphic mapping and field surveys were not conclusive and trenching or the 

improvement of exposures were necessary to determine fault inactivity. Tectonic 

scarps may have been obliterated, and deformed Quaternary deposits may be covered 

by younger non-deformed units. Trenches and artificial excavations allow :(1) Exposing 

the fault in bedrock and unambiguously resolving the geometrical relationships with 

the Quaternary cover (e.g., Trenches at La Trinidad and Ruesta faults); (2) accurately 

measuring the relative height of the base (strath surface) and top of terrace deposits, 

which may be very different to that of the topographic surface due to post-terrace 

natural and artificial aggradation or erosion (Trench TIN); (3) determining whether the 
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terrace deposit has been affected by tilting (Trench TIN); (4) elucidate the nature of 

scarps (Trenches TIS1, TIS2); and (5) sample key stratigraphic units for dating (Fig. 9). 

The excavation of deep trenches may be essential to expose the deepest and oldest 

Quaternary deposits overlying the fault (Fig. 1F, Ruesta trench) and to determine the 

origin of tectonic-like features such as scarps or steep contacts (Fig. 1I, J; Trenches TIS1 

and TIS2). In this regard, trenches dug across the mapped projection of a Quaternary 

fault which do not reach bedrock cannot be used to prove or disprove Quaternary fault 

activity, because there is no evidence that the trench was actually sited over the 

bedrock fault trace. Obviously, if the true bedrock fault lies meters to tens of meters 

beyond the ends of the trench, then absence of deformation in the Quaternary 

deposits in the trench walls is meaningless as applied to fault activity. Therefore, the 

available data collected by geomorphological mapping, trenching, geochronological 

analyses and other approaches may be insufficient to conclusively determine whether 

a fault is tectonic or non-tectonic, and/or if the fault is active or inactive according to 

regulatory definition. This epistemic uncertainty can be addressed in PSHA with 

different alternatives in the logic tree and assigning weights or probabilities to each of 

them. 

Two groups of structures were analysed in this work: (1) longitudinal contractional 

structures related to the development of the Gavarnie Thrust, which can be considered 

elements of the same system (Loiti, La Trinidad, Leyre thrusts and Lumbier Anticline); 

and (2) a transverse normal fault that cross-cuts the earlier compressional structures 

(Ruesta Fault). The inactivity of the Loiti Trust, which was included in the Neotectonic 

and Seismotectonic Map of Spain as a probable neotectonic fault (Baena-Pérez et al., 

1998), was demonstrated by non-deformed terrace deposits older than 100 ka 
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deposited across the fault and exposed in an improved natural outcrop. The same 

criterion was used to rule out activity on the 5 km long La Trinidad Thrust via 

trenching, although this should be considered as a secondary structure due to its 

limited length. Evidence used to postulate Quaternary activity on the Lumbier Anticline 

(Insua and García-Mayordomo, 2009), which is the hanging-wall anticline of the Loiti 

Thrust, was proved to be erroneous by geomorphic mapping and trenching. The 

terrace on the northern limb of the anticline is neither uplifted nor tilted, and the 

alluvial surface to the south of the anticline is not a tilted terrace, but a composite slip-

off terrace comprising several minor terraces and intervening scarps. Direct evidence 

obtained for the Leyre Thrust has a more limited chronological range; non-faulted 

slope deposits indicate inactivity since at least 4.2 ka. This fault was classified as active 

by Insua and García-Mayordomo (2009) and incorporated in a PSHA for the Itoiz Dam 

with a significant contribution to the hazard results (García-Mayordomo and Insua-

Arévalo, 2011). However, multiple lines of evidence support the lack of recent activity 

on this fault: (1) Regional cartographic relationships indicate that the activity of this 

structure, linked to the Gavernie Thrust, ceased in the Early Oligocene (Teixell, 1996). 

(2) The other contractional structures of the system (Loiti, La Trinidad thrusts, Lumbier 

Anticline) should conclusive evidence of being inactive. (3) Recent GPS data indicate 

that this sector of the Pyrenees is currently affected by extension roughly 

perpendicular to the structural grain (Rigo et al., 2015; Nguyen et al., 2016). (4) Focal 

mechanisms in the region indicate normal and strike-slip style of faulting (Ruiz et al., 

2006b; Martín et al., 2015; Rigo et al., 2015). (5) The instrumentally recorded Mw 5.4 

1923 Martes earthquake occurred within the study area was related to normal faulting 

at depths below the basal thrust of the Pyrenees (Stitch et al., 2018). (6) The environs 
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of the Leyre Thrust lack the expected features of a “seismic landscape” (Michetti et al., 

2005) associated with an active thrust, including the fault trace at the mountain-

piedmont junction, tilted and faulted pediment surfaces in the piedmont, upwarped 

pediments cut-across the hanging-wall anticline, speleoseismological evidence in a 

high-elevation cave situated at 1.4 km distance from the fault. A deep trench 

excavated across the Ruesta Fault, less than 10 km long, provided conclusive evidence 

of inactivity since at least 100 ka. 

 

9. Conclusions 

This work illustrates, through the analysis of several faults located in the vicinity of 

large dams in the Pyrenees, the practicality of combining geomorphological mapping 

(strip maps), trenching and geochronological data for evaluating fault activity versus 

inactivity. Geomorphological maps allow the identification of Quaternary deposits 

spatially associated with the faults and establishing their relative chronology and 

approximate age, on the basis of chronosequences and the available geochronological 

data. The excavation of trenches in deposits of adequate age overlying the faults may 

provide conclusive evidence to determine fault activity or inactivity according to the 

regulatory definition (i.e., fault displacement after a specific age). Non-deformed 

deposits older than the chronological bound and deformed deposits younger that the 

age bound provide conclusive evidence of activity and inactivity, respectively. The 

excavation of trenches or the improvement of exposures may be indispensable for 

unambiguously observing the geometrical relationships between the fault and the 

Quaternary units, the presence or absence of deformation in the cover deposits or 

soils, their relative height or the origin of scarps. 
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The presented data reveals that previous neotectonic interpretations indicating that 

the Lumbier Anticline and the 28 km long Leyre Thrust are active structures were 

based on an incorrect interpretation of geomorphic data. Geomorphic mapping and 

trenches reveals that a putative tilted and uplifted terrace is not deformed and lies at 

the expected relative height, and that a supposedly tilted terrace is in fact a non-

deformed composite slip-off terrace comprising multiple terrace treads and 

intervening risers. These findings have relevant implications from the seismic hazard 

and engineering perspective, since PSHA that incorporated the Leyre Thrust as a 

relevant fault source challenged the seismic design parameter of a nearby large dam.  

Trenches or the improvement of exposures at sites selected on the basis of 

geomorphic mapping revealed that the Loiti, La Trinidad, and Ruesta faults have not 

experienced surface ruptures since at least 100 ka (truncated by non-deformed old 

terraces). The lack of activity of the Leyre Thrust is supported by non-faulted slope 

deposits older than 4.2 ka, lack of deformation in nearby old geomorphic surfaces, 

absence of speleoseismological evidence in a proximal cave, regional extension reveled 

by geodetic data, and earthquake focal mechanisms indicating normal and strike-slip 

faulting. This work illustrates the importance for seismic hazard analyses of not only 

characterizing active faults, but also evaluating the criteria used to postulate active 

seismogenic faults.  

 

Acknowledgements 

The authors are grateful to the Ebro Basin Water Authority and GEOALCALI for giving 

permission for publishing the work. We also thank to Fran Sanz and Fernando Palero 

for their assistance in the field and to the speleologist Mario Gisbert for helping in the 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

examination of the Peña Blanca Cave (Aragón Speleological Center). The work carried 

out by FG has been supported by project CGL2017-85045-P (Spanish Government). The 

manuscript has been improved thanks to the insightful comments provided by Edward 

Keller, Sarah Boulton. an anonymous reviewer, and the editor Martin Stokes. 

 

References 

 

 

Aki, K., 1966. Generation and propagation of G waves from the Niigata earthquake of 

June 16, 1964. II., Estimation of earthquake movement, release energy, and stress-

strain drop from G waves spectrum. Bulletin of the Earthquake Research Institute 

44, 23-88. 

Alasset, P.J., Meghraoui, M., 2005. Active faulting in the western Pyrenees (France): 

Paleoseismic evidence for late Holocene ruptures. Tectonophysics 409, 39-54. 

Barnolas, A., Payros, A., Samsó, J.M., Serra-Kiel, J., Tosquella, J., 2004. La Cuenca 

surpirenaica desde el Ilerdiense medio al Priaboniense. In: Vera, J.A. (Ed.). Geología 

de España. SGE-IGME. Madrid, 313-320. 

Barnolas, A., Pujalte, V., 2004. La Cordillera Pirenaica. Definición, límites y división. In: 

Vera, J.A. (Ed.). Geología de España. SGE-IGME. Madrid, 233-241. 

Becker, A., Davenport, C.A., Eichenberger, U., Gilli, E., Jeannin, P.Y., Lacave, C., 2006. 

Speleoseismology: A critical perspective. Journal of Seismology 10, 371-388. 

Baena-Pérez, J., Moreno, F., Nozal, F., Alfaro, J.A., Barranco, L., 1992. Mapa 

Neotectónico y Sismotectónico de España (1:1,000,000 scale). IGME-ENRESA, 

Madrid.  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Bommer, J.J., Coppersmith, K.J., Coppersmith, K., Hanson, K.L., Mangongolo, A., 

Neveling, J., Rathje, E., Rodriguez-Marek, A., Scherbaum, F., Shelembe, R., Staford, 

P.J., Strasser, F.O., 2015. A SSHAC Level 3 Probabilistic Seismic Hazard Analysis for a 

New-Build Nuclear Site in South Africa. Earthquake Spectra, 31, 661-698. 

Brakenridge, G.R., 1985. Rate estimates for lateral bedrock erosion based on 

radiocarbon ages, Duck River, Tennessee. Geology 13, 111-114. 

Brune, J.N., 1993. The seismic hazard at Tehri dam. Tectonophysics, 218, 281-286. 

Burbank, D.W., Anderson, R.S., 2012. Tectonic Geomorphology. Wiley-Blackwell, 

Chichester, 454 p. 

Carbonel, D., Gutiérrez, F., Linares, R., Roqué, C., Zarroca, M., McCalpin, J., Guerrero, J., 

Rodríguez, V., 2013. Differentiating between gravitational and tectonic faults by 

means of geomorphological mapping, trenching and geophysical surveys. The case 

of the Zenzano Fault (Iberian Chain, N Spain). Geomorphology 189, 93-108. 

CNEGP, 1999. Guía Técnica de Seguridad de Presas Nº 3. Estudios geológicos-

geotécnicos y de prospección de materiales, Colegio de Ingenieros de Caminos 

Canales y Puertos, 189 p. 

de Rojas, B., Latorre, F., 1972. Mapa Geológico de Sigués (175) a escala 1:50.000. 

IGME. Madrid, 15 p. 

DuRoss, C.B., Personious, S.F., Crone, A.J., Olig, S.S., Hylland, M.D., Lund, W.R., 

Schwartz, D.P., 2016. Fault segmentation: New concepts from the Wasatch Fault 

Zone, Utah, USA. Journal of Geophysical Research: Solid Earth 121, 1131-1157. 

Fabregat, I., Gutiérrez, F., Roqué, C., Comas, X., Zarroca, M., Carbonel, D., Guerrero, J., 

Linares, R., 2017. Reconstructing the internal structure and long-term evolution of 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

hazardous sinkholes combining trenching, electrical resistivity imaging (ERI) and 

ground penetrating radar (GPR). Geomorphology 285, 287-304. 

Fairbridge, R.W., Harris, S.A., 1968. Slip-off slope. In: Fairbridge, R.W. (Ed.). The 

Encyclopedia of Geomorphology. Dowden, Hutchinson and Ross. Stroudsburg, 996-

998. 

Forti, P., 2001. Seismotectonic and paleoseismic studies from speleothems: The state 

of the art. Netherlands J. Geosciences 80, 175-185. 

Forti, P., 2003. Paleotectonics from speleothems. In: Gunn, J. (Ed.). Encyclopedia of 

Caves and Karst Science. Fitzroy Dearborn, New York, 565-566. 

Fraser, W.A., 2001. California Division of safety of dams fault activity guidelines. 

California Department of Water Resources, Division of Safety of Dams, California.  

García, J., del Valle, J., Escuer, J., Sarasa, L., Artieda, J., Sánchez, E., Coullaut, J.L., 1994. 

Mapa Geológico de Monreal (142-III) a escala 1:25.000. Comunidad Foral de 

Navarra. Pamplona, 36 p. 

García-Mayordomo, J., Insua-Arévalo, J.M., 2011. Seismic hazard assessment for the 

Itoiz dam site (Western Pyrenees, Spain). Soil Dynamics and Earthquake Engineering 

31, 1051-1063. 

García-Ruiz, J.M., Martí-Bono, C., Peña-Monné, J.L., Sancho, C., Rhodes, E.J., Valero-

Garcés, B., González-Sampériz, P., Moreno, A., 2013. Glacial and fluvial deposits in 

the Aragón valley, central-western Pyrenees: Chronology of the Pyrenean Late 

Pleistocene glaciers. Geografiska Annaler: Series A, Physical Geography 95, 15-32. 

Gilli, E., Levret, A., Sollogoub, P., Delange, P., 1999. Research on the February 18, 1996 

earthquake in the caves of Saint-Paul-de-Fenouillet area, (eastern Pyrenees, 

France). Geodinamica Acta 12, 143–158. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Gisbert, M., Pastor, M., 2009. Cuevas y Simas de la Provincia de Zaragoza. Centro de 

Espeleología de Aragón, Zaragoza, 479 p. 

González de Vallejo, L.; Rodríguez, J.A.; Seisdedos, J.; Insua, J.M.; García-Mayordomo, 

J.; Blázquez, R.; López, S., 2010. Análisis y seguimiento del Embalse de Itoiz: 

Estabilidad de laderas, sismicidad y condiciones geotécnicas. Technical Report 2007-

2009. 

Goula, X., Olivera, C., Fleta, J., Grellet, B., Lindo, R., Rivera, L.A., Cisternas, A., Carbon, 

D., 1999. Present and recent stress regime in the eastern part of the Pyrenees. 

Tectonophysics 308, 487-502. 

Gutiérrez, F., Carbonel, D., Kirkham, R.M., Guerrero, J., Lucha, P., Matthews, V., 2014. 

Can flexural-slip faults related to evaporite dissolution generate hazardous 

earthquakes? The case of the Grand Hogback Monocline of west-central Colorado. 

GSA Bulletin 126, 1481-1494. 

Gutiérrez, F., Fabregat, I., Roqué, C., Carbonel, D., Guerrero, J., García-Hermoso, F., 

Zarroca, M., Linares, R., 2016. Sinkholes and caves related to evaporite dissolution 

in a stratigraphically and structurally complex setting, Fluvia Valley, eastern Spanish 

Pyrenees. Geological, geomorphological and environmental implications. 

Geomorphology 267, 76-97. 

Gutiérrez, F., Gutiérrez, M., 2016. Landforms of the Earth. An Illustrated Guide. 

Springer, Dordrecht, 270 p. 

Gutiérrez, F., Linares, R., Roqué, C., Zarroca, M., Carbonel, D., Rosell, J., Gutiérrez, M., 

2015. Large landslides associated with a diapiric fold in Canelles Reservoir (Spanish 

Pyrenees): Detailed geological-geomorphological zapping, trenching and electrical 

resistivity imaging. Geomorphology 241, 224-242. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Gutiérrez, F., Linares, R., Roqué, C., Zarroca, M., Rosell, J., Galve, J.P., Carbonel, D. 

2012. Investigating gravitational grabens related to lateral spreading and evaporite 

dissolution subsidence by means of detailed zapping, trenching, and electrical 

resistivity tomography (Spanish Pyrenees). Lithosphere 4, 331-353. 

Gutiérrez, F., Ortuño, M., Lucha, P., Guerrero, J., Acosta, E., Coratza, P., Piacentini, D., 

Soldati, M., 2008. Late Quaternary episodic displacement on a sackung scarp in the 

central Spanish Pyrenees. Secondary paleoseismic evidence? Geodinámica Acta 21, 

4, 187-202. 

Gutiérrez, M., 2013. Geomorphology. CRC Press/Balkema, Leiden, 1017 p. 

Gutiérrez-Santolalla, F., Acosta, E., Ríos, S., Guerrero, J., Lucha, P., 2005. 

Geomorphology and geochronology of sackung features (uphill-facing scarps) in the 

Central Spanish Pyrenees. Geomorphology 69, 298-314. 

Hanson, K.L., Kelson, K.I., Angell, M.A., Lettis, W.R. (Eds.), 1999. Techniques for 

identifying faults and determining their origins. U.S. Nuclear Regulatory 

Commission. Washington, contract report NUREG/CR-5503, 186 p. plus appendices. 

Hernández, A., Simó, A., 1987. Mapa Geológico de Sangüesa (174) a escala 1:50.000. 

IGME. Madrid, 55 p. 

IAEA, 2015. The Contribution of Palaeoseismology to Seismic Hazard Assessment in 

Site Evaluation for Nuclear Installations. IAEA TECDOC No. 1767, 208 p. 

ICOLD, 1998. Neotectonics and Dams. Guidelines and case histories. International 

Commission on Large Dams, Bulletin 112, 95 p. 

ICOLD, 2016. Selecting seismic parameters for large dams, guidelines. Committee on 

Seismic Aspects of Dam Design. International Commission on Large Dams, Bulletin 

148. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

IGME, 2015. QAFI v.3: Quaternary Active Faults Database of Iberia. 

http://info.igme.es/QAFI 

Insua, J.M., García-Mayordomo, J., 2009. Upper Pleistocene tectonic activity in the 

central Pyrenees Range (Navarra, N Spain). In: Pérez-López, R., Grützner, C., Lario, J., 

Reicherter, K., Silva, P. (Eds.). Archeoseismology and Paleoseismology in the Alpine-

Himalayan Collisional Zone. 1st INQUA-IGCP 567 International Workshop on 

Earthquake Archeology and Paleoseismology, 60-62. 

INYPSA, 2018. Cartografía geológica del Proyecto Muga y análisis de fallas singulares. 

Technical Report, 39 p. 

Kagan, E.J., Agnon, A., Bar-Matthews, M., Ayalon, A., 2005. Dating large infrequent 

earthquakes by damaged cave deposits. Geology 33, 261–264. 

Kelsey, H.M., Sherrod, B.L., Nelson, A.R., Brocher, T.M., 2008. Earthquakes generated 

from bedding plane-parallel reverse faults above an active wedge thrust, Seattle 

fault zone. Geological Society of America Bulletin 120, 1581-1597. 

Lacan, P., Ortuño, M., 2012. Active tectonics of the Pyrenees: A review. Journal of 

Iberian Geology 38, 9-30. 

Lacave, C., Koller, M.G., Egozcue, J.J., 2004. What can be concluded about seismic 

history from broken and unbroken speleothems? Journal of Earthquake Engineering 

8, 431–455. 

Lewis, C.J., McDonald, E.V., Sancho, C., Peña, J.L., Rhodes, E.J., 2009. Climatic 

implications of correlated Upper Pleistocene glacial and fluvial deposits on the Cinca 

and Gállego Rivers (NE Spain) based on OSL dating and soil stratigraphy. Global and 

Planetary Change 67, 141-152. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

López, S., Solé, J., 1997a. Mapa Geológico de Tiermas (175-I) a escala 1:25.000. 

Comunidad Foral de Navarra. Pamplona, 155 p. 

López, S., Solé, J., 1997b. Mapa Geomorfológico de Lumbier (174-II) a escala 1:25.000. 

Comunidad Foral de Navarra. Pamplona, 177 p. 

López, S., Solé, J., Galán, G., 1997. Mapa Geológico de Lumbier (174-II) a escala 

1:25.000. Comunidad Foral de Navarra. Pamplona, 177 p. 

López-Martínez, J., 1986. Geomorfología del Macizo kárstico de la Piedra de San 

Martín. Tesis Doctoral. Universidad de Zaragoza, 529 p. 

Lucha, P., Gutiérrez, F., Galve, J.P., Guerrero, J., 2012. Geomorphic and stratigraphic 

evidence of incision-induced halokinetic uplift and dissolution subsidence in 

transverse drainages crossing the evaporite-cored Barbastro-Balaguer Anticline 

(EbroBasin, NE Spain). Geomorphology 171-172, 154-172. 

Machette, M.N., 1985. Calcic soils of the southwestern United States. In: Weide, D.L. 

(Ed.). Quaternary soils and Geomorphology of the American Southwest. Geological 

Society of America, Special Paper 203, 1-21. 

Martín, R., Stich, D., Morales, J., Mancilla, F., 2015. Moment tensor solutions for the 

Iberian_Maghreb region during the IberArray deployment (2009-2013). 

Tectonophysics 663, 261–274. 

Martínez-Solares, J.M., Mezcua, J., 2002. Catálogo sísmico de la Península Ibérica (880 

a.c.-1900). Instituto Geográfico Nacional, 253 p. 

McCalpin, J.P., 2009a. Application of paleoseismic data to seismic hazard assessment 

and neotectonic research. In: McCalpin, J.P. (Ed.) Paleoseismology. Academic Press-

Elsevier, 1-106. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

McCalpin, J.P., 2009b. Field techniques in paleoseismology. Terrestrial environments. 

In McCalpin, J.P. (Ed.) Paleoseismology. Academic Press-Elsevier, 29-118. 

McCalpin, J.P. (Ed.), 2009. Paleoseismology. Elsevier, Amsterdam, 613 p. 

McCalpin, J.P., Corominas, J. 2019, in review. Postglacial deformation history of 

sackungen on the northern slope of Pic d’Encampadana, Andorra. Geomorphology. 

McCalpin, J.P., Gutierrez, F., Bruhn, R.L., Guerrero, J., Pavlis, T.L., Lucha, P., 2019, in 

preparation. Tectonic Geomorphology and late Quaternary deformation on the 

Ragged Mountain Fault, Yakutat Microplate, South Coastal Alaska.  

Michetti, A.M., Audemard, F., Marco, S., 2005. Future trends in paleoseismology: 

Integrated study of the seismic landscape as a vital tool in seismic hazard analyses. 

Tectonophysics 408, 3-21. 

Montes, M.J., 2009. Estratigrafía del Eoceno-Oligoceno de la Cuenca de Jaca. 

Sinclinorio del Guarga. Instituto de estudios Altoaragoneses. Colección de Estudios 

Altoaragoneses 59, 355 p. 

Moreno, D., Falguères, C., Pérez-González, A., Duval, M., Voinchet, P., Benito-Calvo, A´, 

Ortega, A.I., Bahain, J.J., Sala, R., Carbonell, E., Bermúdez de Castro, J.M., Arsuaga, 

J.L., 2012. ESR chronology of alluvial deposits in the Arlanzón valley (Atapuerca, 

Spain): Contemporaneity with Atapuerca Gran Dolina site. Quaternary 

Geochronology 10, 418-423. 

Nemser, E.S., García-Mayordomo, J., Cabral, J., Fonseca, J.F.B.D., Martínez-Díaz, J.J., 

Vilanova, S., and the 2010 Working Group of Iberian Seismogenic Sources, 2010. 

Compilation of parametrized seismogenic sources in Iberia for the SHARE European-

scale seismic source model. In: Insua-Arévalo, J., Martín-González, F. (Eds.). Primera 

Reunión Ibérica sobre Fallas Activas y Paleoseismología, 201-204. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Nguyen, H.N., Vernant, P., Mazzotti, S., Khazaradze, G., Asensio, E., 2016. 3-D GPS 

velocity field and its implications on the present-day post-orogenic deformation of 

the Western Alps and Pyrenees. Solid Earth 7, 1349-1363. 

Olivera, C., Redondo, E., Lambert, J., Riera Melis, A., Roca, A., 2006. Els terratrèmols 

dels segles XIV i XV a Catalunya. Institut Cartogràfic de Catalunya, Cataluña, 

Monografies 30, 407 p. 

Ortuño, M., 2009. Deformación active en el Pirineo central: La falla Norte de la 

Maladeta y otras fallas activas. PhD. Thesis. University of Barcelona, 346 p. 

Palmer, A.N., 2007. Cave Geology. Allen Press, Lawrence, 454 p. 

Pearce, S.A., Pazzaglia, F.J., Eppes, M.C., 2004. Ephemeral stream response to growing 

folds. Geological Society of America Bulletin 116, 1223-1239. 

Perea, H., 2009. The catalan seismic crisis (1427 and 1428): Geological sources and 

earthquake triggering. Journal of Geodynamics 47, 259-270. 

Philip, H., Bousquet, J.C., Escuer, J., Fleta, J., Goula, X., Grellet, B., 1992. Présence de failles 

inverses d’àge quaternaire dans l’Est des Pyrénées: implications sismotectoniques. 

Comptes Rendus de l’Académie de Sciences 314, 1239-1245. 

Puigdefábregas, C., 1975. La sedimentación molásica en la Cuenca de Jaca. Instituto de 

Estudios Pirenaicos, Jaca, 188 p. 

Puigdefábregas, C., Rojas, B., Sánchez, I., del Valle, J., 1976. Mapa Geológico de Aoiz 

(142) a escala 1:50.000. IGME. Madrid, 27 p. 

Rigo, A., Vernant, P., Feigl, K.L., Goula, X., Khazaradze, G., Talaya, J., Morel, L., Nicolas, 

J., Baize, S., Chéry, J., Sylvander, M., 2015. Present-day deformation of the Pyrenees 

revealed by GPS surveying and earthquake focal mechanisms until 2011. 

Geophysical Journal International 201, 947-964. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Rockwell, T.K., Keller, E.A., Clark, M.N., Johnson, D.L., 1984. Chronology and rates of 

faulting of Ventura River terraces, California: Geological Society of America Bulletin, 

95, 1466-1474. 

Rosell, J., Linares, R., Llompart, C., 2001. El “Garumniense” prepirenaico. Revista de la 

Sociedad Geológica de España 14, 47-56. 

Rosell, L., Pueyo, J.J., 1997. Second marine evaporitic phase in the south Pyrenean 

foredeep: The Priabonian potash basin (Late Eocene: Autochthonous-Allocthonous 

Zone). In: Busson G., Schreiber, B.C. (Eds.). Sedimentary deposition in rift and 

foreland basins in France (Paleogene and Lower Neogene). Columbia University 

Press, New York, 358-387. 

Ruiz, M., Gaspà, O., Gallart, J., Díaz, J., Pulgar, J.A., García-Sansegundo, J., López-

Fernández, C., González-Cortina, J.M., 2006a. Aftershocks series monitoring of the 

September 18, 2004 M=4.6 earthquake at the western Pyrenee: A case of reservoir-

triggered seismicity? Tectonophysics 424, 223-243. 

Ruiz, M., Gallart, J., Díaz, J., Olivera, C., Pedreira, D., López, C., González-Cortina, J.M., 

Pulgar, J.A., 2006b. Seismic activity at the western Pyrenean edge. Tectonophysics, 

412, 217-235. 

Sébier, M., Meyer, B., 2008. Comité de Pilotage de NEOPAL. Visite de terrain: rapport 

de mission sur le terrain dans les Pyrenees centrales du comite de pilotage da la 

base neopal le Jeudi 23 Octobre 2008. Technical report, 12 p.  

Silva, P.G., Roquero, E., López-Recio, M., Huerta, P., Martínez-Graña, A., 2017. 

Chronology of fluvial terrace sequences for large Atlantic rivers in the Iberian 

Peninsula (Upper Tagus and Duero drainage basins, Central Spain). Quaternary 

Science Reviews 166, 188-203. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Slemmons, D.B., 1982. Determination of the design earthquake magnitudes for 

microzonation. Proceedings of the 3rd International Earthquake Microzonation 

Conference. Seattle, Vol. 1, 119-130. 

Stich, D., Martín, R., Batlló, J., Macià, R., Mancilla, F., Morales, J., 2018. Normal faulting 

in the 1923 Berdún earthquake and postorogenic extension in the Pyrenees. 

Geophysical Research Letters 45, 3026–3034. 

Teixell, A., 1996. The Ansó transect of the southern Pyrenees: Basement and cover 

thrust geometries. Journal of the Geological Society 153, 301-310. 

Tosun, H., Zorluer, I, Orhan, A., Seyrek, E., Savas, H., Turkoz, M., 2007. Seismic hazard 

and total risk analyses for large dams in Euphrates basin, Turkey. Engineering 

Geology 89 155-170. 

Walker, R.T., Khatib, M.M., Bahroudi, A., Rodés, A., Schnable, C., Fattahi, M., Talebian, 

M., Bergman, E., 2013. Co-seismic, geomorphic, and geologic fold growth associated 

with the 1978 Tabas-e-Golshan earthquake fault in eastern Iran. Geomorphology 

237, 98-118. 

Wells, D. L., Coppersmith, K.J., 1994. New empirical relationships among magnitude, 

rupture length, rupture area, and surface displacement. Bulletin of the 

Seismological Society of America 84, 974-1002. 

Wesnousky, S.G., 2008. Displacement and geometrical characteristics of earthquake 

surface ruptures: issues and implications for seismic-hazard analysis and the process 

of earthquake rupture. Bulletin of the Seismological Society of America 98, 1609-

1632. 

Wieland, M. Chen, H., 2009. Lessons learnt from the Wenchuan earthquake. 

International Journal of Water Power and Dam Construction. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

https://www.waterpowermagazine.com/features/featurelessons-learnt-from-the-

wenchuan-earthquake/ 

Wieland, M., 2014. Seismic hazard and seismic design and safety aspects of large dam 

projects. In: Ansal, A. (Ed.). Perspectives on European Earthquake Engineering and 

Seismology. Geotechnical, Geological and Earthquake Engineering. Springer, Cham, 

627-650.  

Wieland, M., Brenner, R.P., Bozovic, A., 2008. Potentially active faults in the 

foundations of large dams. Part II: Design aspects of dams to resist fault 

movements. 14th World Conference on Earthquake Engineering. Beijing, 8 p. 

Youngs, R.R., Coppersmith, K.J., 1985. Implication of fault slip rates and earthquake 

recurrence models to probabilistic seismic hazard estimates. Bulletin of the 

Seismological Society of America 75, 939-964. 

Zarroca, M., Linares, R., Bach, J., Roqué, C., Moreno, V., Font, L., Baixeras, C., 2012. 

Integrated geophysics and soil gas profiles as a tool to characterize active faults: the 

Amer fault example (Pyrenees, Spain). Environmental Earth Science 67, 889-910. 

  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Figure captions 

Figure 1. Different stratigraphic, geomorphic, structural and chronologic scenarios and 

their possibilities and limitations for unambiguously determining if a fault meets the 

regulatory definition for active fault based on the age of the latest displacement (35 ka 

in this example). Explanations given in the text. The complexity associated with soil 

profiles is illustrated in figure 2.  

 

Figure 2. Diagram illustrating how the determination of fault activity using soil profiles 

depends on multiple factors, in addition to the age at which soil development begun. 

This Gendanken experiment assumes (1) onset of soil development at 50 ka; (2) the 

soil rate development indicated in the legend; (3) fault throw equal to half the 

thickness of fully developed soil profile; (4) erosion in the footwall block (FW) to the 

level of the downthrown block.  

 

Figure 3. Geological sketch of the investigated area, showing the distribution of the 

analysed faults and folds, and the main drainages that have generated the Quaternary 

alluvial levels used as geomorphic markers. Lithostratigraphic sketch modified from 

(Barnolas et al., 2004) of the Jaca-Pamplona Basin. Green color in the map corresponds 

to Cretaceous and Paleocene sediments deposited before the development of the 

Jaca-Pamplona Basin. The poorly constrained location of the epicenter of the 1923 

Martes (or Berdún) earthquake is indicated (IGN earthquake catalogue). 

 

Figure 4. Geomorphological map of the alluvial levels (pediments and terraces) 

developed by the Irati-Salazar fluvial system upstream and downstream of the Lumbier 
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Anticline, and the Aragón River on the northern margin of its valley. The map shows 

some cartographic relationships between the analysed structures and Quaternary 

deposits. 

 

Figure 5. Logs of trenches TIN, TIS1, TIS2, and their location, including also trench TIT, 

with respect to the different geological structures. 

 

Figure 6. Oblique view of the composite slip-off terrace developed in the inner side of 

a meander of the Irati River, showing a stepped sequence of minor terraces separated 

by transverse scarps (terrace risers). The approximate location of trenches TIS1 and 

TIS2 excavated across the scarps is indicated (red lines). 

 

Figure 7. Hand-dug artificial exposure showing the Loiti Thrust truncated by 

undeformed deposits of the oldest terrace (TV) of the Irati River. Eocene marine marls 

on the upthrown block and red Oligocene detrital sediments of the Campodarbe Group 

in the footwall. Segments of pole are 10 cm long. 

 

Figure 8. Log of trench TIT excavated in terrace TIV across the projected trace of La 

Trinidad Thrust. See location of trench in figure 4. The photographs show a general 

view of the La Trinidad Thrust and the trench excavated across its projected trace 

(left), and a the fault zone overlain by non-deformed terrace deposits, filling local 

scours in soft material at both sides of a resistant limestone block. 
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Figure 9. A) Artificial exposure of the Leyre Thrust buried by a non-deformed stratified 

slope deposit (grèze letées). B) General view of the outcrop showing the position of 

charcoal samples collected for radicarbon dating.  

 

Figure 10. A) Idealized morphostructural sketch of a hypothetical active Leyre Thrust 

with oversteepened pediments showing diverging longitudinal profiles towards the 

mountain front. Pediment surfaces are offset by flexural-slip faults in the piedmont. 

The amount of deformation increases with the age of the pediment levels. B) Trace of 

longitudinal profiles (indicated by numbers) along different pediment levels on a 

shaded relief model. C) Longitudinal profiles along different pediment levels showing a 

parallel pattern.  

 

Figure 11. A) Morphostructural strip map of the Ruesta Fault, showing the location of 

the trench excavated in terrace T4 across the projected trace of the fault. B) Outcrop 

on the southern margin of the Yesa Reservoir, where the Ruesta Fault is apparently 

truncated by non-deformed gravels of the terrace T4 of the Aragón River. 

Figure 12. The Ruesta Fault trench. A) Log of the southern wall showing the fault zone 

truncated by non-deformed terrace deposits. B) Surface model generated with drone 

data showing the trench and the exposure of the fault in the southern scarped margin 

of the Yesa Reservoir. C) View of the trench form the SE edge. D) General view of the 

trench showing the fault-line scarp associated with the Ruesta Fault, with a prominent 

ridge of Liédena Sandstone in the downthrown block (relief inversion). 
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Highlights 

Evaluation of fault activity vs. inactivity by geomorphic mapping and trenching 

Limitations of soils, Quaternary deposits and numerical ages for determining fault 

activity 

The importance of trenching for reducing epistemic uncertainty 

Geomorphology plays a key role in the identification of seismogenic fault sources 

The impact of incorrect geomorphic interpretations on seismic hazard analyses 
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