
An Efficient Approach of Sokoban Level
Generation

著者 WU YUEYANG
出版者 法政大学大学院情報科学研究科
journal or
publication title

法政大学大学院紀要. 情報科学研究科編

volume 15
page range 1-6
year 2020-03-24
URL http://doi.org/10.15002/00022716



An Efficient Approach of Sokoban Level Generation
WU YUEYANG

Graduate School of Computer and Information Science
Hosei University

yueyang.wu.6f@stu.hosei.ac.jp

Abstract—This article describes an algorithm for the proce-
dural generation of the Sokoban puzzle. This algorithm can
generate Sokoban levels according to the given parameters. The
algorithm is meant to generate Sokoban levels efficiently but
maintains acceptable quality. This article provides evidence that
this algorithm is efficient and produces levels with a quality
comparable with other existing levels which can be found online.

The approach contains two parts. They are forward process
and backward process. The forward process creates the goal
position and empty room for the result. And the backward
process makes initial status further away from its goal status.
In each iteration of the forward or backward process, a box
and a direction will be selected based on the strategies being
set in the generator parameters. The number iterations are
able to be configured by changing the parameters. With certain
configuration, the generated levels can be with acceptable average
quality. The detailed explanations are also included in this article.

I. INTRODUCTION

Sokoban is a classic tile-based puzzle game, where the
player plays a warehouse manager, pushing boxes to their
goals. The player, boxes, and walls collide with each other.
Boxes can be pushed by a player to move around. The player
can only push one box at a time.

Fig. 1. A Sokoban level

The design of a puzzle can largely affect the difficulty of
a level. It’s a NP-Complete problem [1]. A puzzle can be
extremely hard if the author of the puzzle is an experienced
Sokoban designer [2]. I present an algorithm to generate levels
with reasonable difficulty yet with very little time spent. A
completely randomly generated puzzle can be either too easy
or impossible to solve. A properly generated Sokoban puzzle
should at least be possible to solve. And it should be of fair

difficulty. The difficulty of a Sokoban level is a little hard to
distinguish because it’s about human beings’ feelings.

The easiest way to evaluate the difficulty of a Sokoban
puzzle is by looking at the steps of the optimized solution.
A solution means a series of directions the character move
and pushes boxes to complete a level. A better solution is
which has fewer steps. The number of pushes can be used
for evaluating a level’s difficulty. A better way to evaluate a
Sokoban puzzle is to calculate the box lines of it’s optimized
solution. In a solution of a Sokoban puzzle, each continuous
push without changing direction is called one box line. A level
with more box-lines tends to be more difficult. But it’s easy to
make a very easy to solve the level with high box lines, such
as a bunch of boxes in a line right next to a bunch of goals.
The box-lines can go as much as you want, but it just makes
the level more tedious rather than interesting and difficult.

The main objective is to build a generation method which
produces Sokoban levels with an interesting-to-solve difficulty,
but also within a limited amount of time. This article describes
an algorithm for the procedural generation of Sokoban puzzles.
In this work, we focus on the efficiency of the algorithm.
The algorithm can produce a level with a large size and more
boxes in a relatively short time. The quality may be lower than
the algorithms which search for every possible result. but still
reasonable.

II. RELATED WORKS

Procedural content generation is always an important topic
in the game industry. There are works about generating every
aspect of a game. There are works about procedurally generate
terrian [3], dungeons [4], maze-like levels [5], etc. When
a game needs a large amount of content, the procedural
generation can help a lot. It will make an approximately
infinite number of contents.

Sokoban generation is a topic with a fairly long history.
A generation method was introduced by Murase Yoshio and
Matsubara Hitoshi and Hiraga Yuzuru in 1996. They use
templates to generate room and remove unsolvable levels using
a solver [6] . Joshua Taylor and Ian Parberry have introduced a
generation approach in 2011 [7]. This approach uses templates
to generate the empty room, and then place the goals by brute
force searching, and then find the farthest possible state. This
approach uses a load of searching which costs a large amount
of time to finish a relatively larger level. The empty rooms are
generated by putting together several 3 by 3 templates, and a
lot of possibilities are eliminated because other restrictions



like no 4 by 4 or larger empty space are allowed. There is
also a method by Bilal Kartal, Nick Sohre and Stephen Guy
which uses Monte Carlo Tree Search to generate Sokoban
puzzles [8]. Most of the other researches about Sokoban
is about solving the puzzles. Junghanns and Schaeffer have
introduced a method for solving Sokoban problems [9]. Adi
Botea introduced a method that uses abstraction to solve
Sokoban puzzles [10]. There are also some work have been
done to estimate the difficulty of a given Sokoban puzzle [11].

There are also researches about some more generous puz-
zle generation. Such as Automatic Puzzle Level Generation
using a Description Language [12] by Khalifa and etc.,and
An approach to general videogame evaluation and automatic
generation using a description language [13] by Lim and etc.

III. METHOD OVERVIEW

The basic idea of this method is to generate the level from
its initial status. Each time choose a box to push. Every tile that
the player walked on, or a box been pushed on, will be marked
as an empty space. After this pushing stage, some pulling
operations should be applied to increase the level’s difficulty.
So generally there are two stages, forward and backward. The
forward procedure should try to open up as less empty space
as possible to make a difficult level. There is configuration

Fig. 2. A basic flow chart of the method

functionality for the generator. It’s possible to choose what
kind of methods are to be used in the process of generation.
Each different strategy of doing box selection, push direction
selection, route generation and so on will significantly affect
the outcome. Here is a list of the basic steps of the generation
method.

• Forward Process
– Initialize
– Iteration

• Backward Process
– Initialize
– Iteration

• Finalize

IV. IMPLEMENTATION DETAILS

A. Data Structure

Several maps of the data used in the generation will be
stored as one-dimensional arrays. The width of the map will

be recorded separately to make the ”maps” two dimensional.
Using this method to represent a level will allow the repre-
sentation of the positions using just one integer instead of two
integers representing X and Y value.

B. Initialize

The random seed, width, height, and the box count should
be set at this step. Map size is calculated by multiplying width
and height. Box positions, initial box positions, push of the
boxes, and ”walked” map information will be stored in arrays.
The box positions are randomly generated and then copied to
the box positions and initial box positions arrays. A player
position is represented with an integer which will be randomly
picked within the map size and without colliding with box
positions. The initial player position will also be recorded at
the same time. Then all the positions with boxes or player are
marked in the walked area array as true.

C. Forward Process

Firstly, a reachable map will be generated based on the
player’s position and the box positions. Then a box should be
selected based on the reachable map. Then a direction will be
selected based on the surroundings of the box. The direction
should make sure it’s possible for the player to push it in
the opposite position, and also the new position of the box
doesn’t collide with another box. If every check is done and
the push is valid, then a route should be generated from the
player’s original position to the pushing position. Then the box
position, the player position are changed. And the walked area
map will record the walking route and the new box position
as true.

D. Backward Process

The Backward Process changes the initial positions of the
boxes. Firstly a reachable map should be generated basing on
the initial player position, boxes and walked-map. Then a box
and the pulling direction is selected based on this reachable
map and the pulling strategy set up in the beginning. The new
position of the box and the player shouldn’t collide with other
boxes and the un-walked tiles (which is considered as walls.
After checking the situation, and everything is good to go, the
initial player position and the initial box positions are changed.

E. Result Output

The result will be generated based on the data after doing
several iterations of the forward and backward process. First,
the walls will be defined by the un-walked map. And the result
goals are positioned based on the box positions. The result box
positions will be based on the initial box positions. The player
position will be the player position as it is. All the content will
be converted to a string with an integer number representing
the width.

A common method of representing a Sokoban level is
to represent it with a string. Different characters represent
different tiles. After generation, this string format is used for
storage and evaluation. Because this is a common format of



a Sokoban Level, the information can be used in many other
Sokoban related software like YASC and JSoko.

F. Reachable Map Generation

The reachable map is generated using a naive method,
flooding the whole map from the player’s position. A queue is
used for the calculation. First, push the starting position into
the queue, and mark it as a position that is visited. Then, take
an element out of the queue. Visit the neighbors and check
if they are accessible. Push the accessible and not yet being
visited neighbor into the queue, and so on. Thus a reachable
map from the starting position is generated. To determine
whether a tile is accessible, the obstacles should be defined
before this process. Using this ”reachable map” can largely
improve the overall generation time because it provides the
information used so many times in each step.

V. PARAMETERS OF THE GENERATOR

There are several parameters can be configured before doing
a generation. These parameters can largely influence the result.
They are the size of the level, box count, forward iterations,
backward iterations, the strategies of box selection, push
direction selection, pull direction selection, route generation.
Also, all of the randomnesses are based on a random seed.
The random function is provided by the Unity engine. So by
changing the random seed, different results can be generated
with other parameters not being changed.

A. Box Selection Strategies

There are three available strategies implemented by the time
this article is written: Random, Least Pushed, and In Order.

”Random” is a strategy that is totally random.
”Least Pushed” is a strategy that selects the boxes with the

least pushes applied before. Every boxes’ number of pushes
are recorded during the iteration. So it’s easy to find a ”least
pushed” box. This strategy is found useless because in many
cases, there are several boxes can never be reached, which
makes their pushing history being zero. In this situation, the
generator is always trying to move that particular box which
will end up doing nothing.

”In Order” is a strategy that selects the boxes one by one
in order. The box entities are stored in an array, so simply
increase an index is enough to keep track of which box to
push. This is the most ”fare” strategy because every box will
be moved with a very similar amount of times after iterations.

B. Push Strategies (Forward Direction Selection)

There are three available strategies implemented by the time
this article is written: Random, Farthest, Most Obstacles.

”Farthest” is a strategy that tries to find the direction farthest
from the original position of the selected box. Calculate the
total Manhattan distance to all the goals from each direction.
The highest-distanced direction will be selected. When using
this strategy, the boxes tend to be farther away from their
initial positions.

”Most Obstacles” is a strategy which tries to find the
direction which makes the boxes end up in a position where

there are the most un-walked area or boxes surrounding. This
method simply checks each new position’s neighbors and see
if they are boxes or un-walked area. The direction with the
highest total number will be selected.

C. Pull Strategies (Backward Direction Selection)

There are four available strategies implemented by the time
this article is written: Random, Farthest, Most Obstacles, Most
Access.

”Most Obstacles” and ”Farthest” are the same thing inverted
with the ones with the same name in the Push Strategies.

”Most Access” is a strategy where leaves out most acces-
sible tiles for the player after the operation. In this method,
every new status will generate a different ”reachable map”
from the position of the new player position. The direction
with the largest number of reachable tiles will be selected. This
strategy is introduced because, during the backward process,
the player tends to stuck in a pit of boxes or walls which
makes it’s impossible to further modify the level.

D. Route Generation Strategies

There are two available strategies implemented by the time
this article is written: Direct, Closest Active Tile.

”Direct” is a strategy that generates a direct route to the
target position starting from the current player position. To
find the route from the player position to the target position,
a flooding algorithm is used. First, push the player position
into a queue and mark it as ”visited”. Then each time the
system pops an element from the queue and push the un-visited
neighbors into the queue. Also when pushing an element into
the queue, the recently popped element will be recorded to that
new position. Iterate until the target position is visited. Then
using the recorded information to backtrack to the original
position. Thus a route is generated.

”Closest Active Tile” is a strategy that generates a route
from the closest reachable walked tile to the target position.
Using this strategy will mark fewer tiles as ”walked”, so it
preserves more walls. The closest tile is found simply by
going through all the acceptable empty areas and calculate
their Manhattan distance to the target. And then using the
same algorithm used in the ”Direct” strategy to generate the
route.

The order of visiting neighbors of different directions should
be randomized to avoid different weights of different direc-
tions. Without randomize the order, the route will always be
like, more likely to go one direction rather than the opposite
one. (Because some direction is always visited before others,
thus the other ones only have the chance to be in the result
when the opposite one fails.)

VI. EXPERIMENT AND RESULT

Here are some examples of the generated levels.
The generated result has been evaluated in several ways.

Here are the comparisons with Joshua Taylor’s method. Here
I used the YASC Sokoban Solver to evaluate the levels
generated with my method and Joshua Taylors method. First,



Fig. 3. The levels generated with my method

the level sets of both mine and Joshua Taylor’s are fed into
YASC Sokoban Solver. And the resolution will be stored
in the files with the levels. Then I used regular expressions
to extract the essential data from the files. The generation
time, the optimized solution, the moves. And then the box-
lines are calculated based on the optimized solution generated
previously with the YASC Sokoban Solver.

Fig. 4. Generation Time Comparison (with less than 4 boxes)

As is seen in figure 4, it takes much less time than Joshua
Taylor’s method to generate an equivalent difficult level when
the level has 6-14. It can also be seen that my method is
capable of generating 6-14 box-lined levels with a reasonable
ratio. Due to the much lower generation time, it’s a valuable
method if the target is to generate levels with box-lines is 6-14.
In my method, the generation time doesn’t change much when
the result’s complexity goes up. But the average complexity is
not guaranteed. This means that if a level with high complexity
is required, more levels have to be generated so that a level
that meets the requirement can be found.

A. Comparisons For Different Parameters

The result can also vary due to different paramters being
applied.

Fig. 5. Boxlines ratio (with less than 4 boxes)

Fig. 6. Pushes ratio (with less than 4 boxes)

The different settings can affect the result. There is 8
example set being tested and the result is shown in figure
7.The settings are:

• S1 - Random Box Selection Strategy, Random Backward
Strategy, Random Forward Strategy, Direct Route Gener-
ation Strategy

• S2 - Random Box Selection Strategy, Random Backward
Strategy, Random Forward Strategy, Closest Active Route
Generation Strategy

• S3 - In Order Box Selection Strategy, Random Backward
Strategy, Random Forward Strategy, Direct Route Strat-
egy

• S4 - Random Box Selection Strategy, Reserve Most Acess
Backward Strategy, Random Forward Strategy, Direct
Route Strategy



Fig. 7. The comparison of Different Parameter Set

• S5 - Random Box Selection Strategy, Most Obstacles
Backward Strategy, Random Forward Strategy, Direct
Route Strategy

• S6 - Random Box Selection Strategy, Farthest Backward
Strategy, Random Forward Strategy, Direct Route Strat-
egy

• S7 - Random Box Selection Strategy, Random Backward
Strategy, Most Obstacles Forward Strategy, Direct Route
Strategy

• S8 - Random Box Selection Strategy, Random Backward
Strategy, Farthest Forward Strategy, Direct Route Strategy

• S9 - In Order Box Selection Strategy, Reserve Most Acess
Backward Strategy, Farthest Forward Strategy, Closest
Active Route Generation Strategy

It can be inferred that using different strategies can make
the result with more box-lines which potentially increases the
difficulty of the level. The S9 setting is shifted further right
than other settings being tested.

The effects of the forward and backward steps are also
evaluated. All of the levels being tested in this session are
generated in the size of 8 by 8, using the S9 setting of
strategies. There are 128 levels in each configuration. The
result of different forward steps is shown in figure 8. It’s very
obvious that more forward steps can increase the result box-
lines. Average box-lines of different forward steps are shown
in the figure 9. The effect of backward steps is also tested. The
result is shown in figure 10. The box-lines of the result tend to
increase as the backward steps go up. The box-lines statistics
is shown in the figure 11. There are some unexpected spikes
in the graphs. These phenomenons are probably caused by the
number of samples is too low. But even though, we can still
tell that larger forward and backward steps can make the result
tend to be of more box-lines, which potentially increases the
difficulty of the result.

Fig. 8. The comparison of Different Forward Steps

Fig. 9. Average Boxlines of Different Forward Steps

B. Manual Evaluate

A manual evaluation application SOKOBANIAC is also
implemented to evaluate the levels manually. Levels form dif-
ferent levels of sets are presented to the players (participants)
with no difference. After they complete solving a level, the
solution will be sent to the GameJolt sever. Also if they rated
a level’s difficulty, the information will be sent to the server
too. This application is designed to gain the playing data of
both levels generated by my method and the levels from Joshua
Taylors’ data set. So that more human-related properties can be
compared.As is seen in figure 12, the overall rating of Joshua’s
level set is higher than the levels generated with my method.
But there is some overlapping area of scoring.

https://gamejolt.com/games/sokobaniac/384430


Fig. 10. The comparison of Different Backward Steps

Fig. 11. Average Boxlines of Different Backward Steps

VII. CONCLUSION AND FUTURE WORK

This approach is indeed useful when trying to generate
levels with fewer box-lines. It’s faster than Joshua Taylor’s
algorithm but with lower average quality.

The currently existing strategies are strategies that happened
to come to my mind when I was trying to implement this
generator. I believe there could be other strategies that I
haven’t found yet that could produce a better result. Also, a
mixed strategy like randomly choose other strategies each time
may somehow make a better result. My implementation of the
generator is using only one thread only to do the generation. I
believe that a parallelled implementation will largely improve
performance. The evolutional method could make more sense
if running on a paralleled version generator. If an efficient

Fig. 12. The Rating of 40 Levels by 20 individuals

solver can be used within this generator, the quality of the
generated level can be much better. Just generate more levels
and eliminate the bad ones simultaneously. A solver may also
help to do evolutional generation because, with a solver, the
difficulty of a level can be more accurately evaluated.

REFERENCES

[1] Joseph Culberson. Sokoban is pspace-complete. 1997.
[2] Sokoban Wiki. http://sokobano.de/wiki/index.php?title=Main Page,

2018.
[3] J. Doran and I. Parberry. Controlled procedural terrain generation using

software agents. IEEE Transactions on Computational Intelligence and
AI in Games, 2(2):111–119, June 2010.

[4] R. van der Linden, R. Lopes, and R. Bidarra. Procedural generation of
dungeons. IEEE Transactions on Computational Intelligence and AI in
Games, 6(1):78–89, March 2014.

[5] D. Ashlock, C. Lee, and C. McGuinness. Search-based procedural
generation of maze-like levels. IEEE Transactions on Computational
Intelligence and AI in Games, 3(3):260–273, Sep. 2011.

[6] Yoshio Murase, Hitoshi Matsubara, and Yuzuru Hiraga. Automatic
making of sokoban problems. In Pacific Rim International Conference
on Artificial Intelligence, pages 592–600. Springer, 1996.

[7] Joshua Taylor and Ian Parberry. Procedural generation of Sokoban
levels. Technical Report LARC–2011–01, Laboratory for Recreational
Computing, Dept. of Computer Science & Engineering, Univ. of North
Texas, February 2011.

[8] Bilal Kartal, Nick Sohre, and Stephen J Guy. Generating sokoban puzzle
game levels with monte carlo tree search. 07 2016.

[9] Andreas Junghanns and Jonathan Schaeffer. Sokoban: A challenging
single-agent search problem. In IJCAI 1997, 1997.

[10] Adi Botea, Martin Müller, and Jonathan Schaeffer. Using abstraction
for planning in sokoban. pages 360–375, 07 2002.

[11] Petr Jarušek and Radek Pelánek. Difficulty rating of sokoban puzzle. In
Proc. of the Fifth Starting AI Researchers’ Symposium (STAIRS 2010),
pages 140–150, 2010.

[12] Ahmed Khalifa and Magda Fayek. Automatic puzzle level generation:
A general approach using a description language. In Computational
Creativity and Games Workshop, 2015.

[13] Chong-U Lim and D Fox Harrell. An approach to general videogame
evaluation and automatic generation using a description language. In
2014 IEEE Conference on Computational Intelligence and Games, pages
1–8. IEEE, 2014.

http://sokobano.de/wiki/index.php?title=Main_Page

	Introduction
	Related Works
	Method Overview
	Implementation Details
	Data Structure
	Initialize
	Forward Process
	Backward Process
	Result Output
	Reachable Map Generation

	Parameters of the Generator
	Box Selection Strategies
	Push Strategies (Forward Direction Selection)
	Pull Strategies (Backward Direction Selection)
	Route Generation Strategies

	Experiment and Result
	Comparisons For Different Parameters
	Manual Evaluate

	Conclusion and Future Work
	References

