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Abstract: The relationship between added sugar and arterial stiffness in youth with type 1 diabetes
(T1D) has not been well-described. We used data from the SEARCH for Diabetes in Youth Study
(SEARCH), an ongoing observational cohort study, to determine the association between added sugar
and arterial stiffness in individuals diagnosed with T1D <20 years of age (n = 1539; mean diabetes
duration of 7.9 ± 1.9 years). Added sugar intake was assessed by a food frequency questionnaire, and
arterial stiffness measures included pulse wave velocity (PWV) and augmentation index. Separate
multivariate linear regression models were used to evaluate the association between added sugar
and arterial stiffness. Separate interaction terms were included to test for effect modification by body
mass index (BMI) z-score and physical activity (PA). Overall, there was no association between added
sugar and arterial stiffness (P > 0.05); however, the association between added sugar and arterial
stiffness differed by BMI z-score (P for interaction = 0.003). For participants with lower BMI z-scores,
added sugar intake was positively associated with PWV trunk measurements, whereas there was no
association for those who had a higher BMI z-score. PA did not significantly modify the association
between added sugar and arterial stiffness. Further research is needed to determine the longitudinal
relationship and to confirm that obesity differentially affects this association.
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1. Introduction

Current recommendations from the Dietary Guidelines for Americans and the World Health
Organization advise individuals to consume less than 10% of their total caloric intake from added
sugars [1], while the American Heart Association recommends that children (2–18 years of age) should
consume less than 100 calories of added sugar per day [2]. However, added sugars account for
approximately 15% of the total calories consumed in the general population of youth, with the leading
source being sugar-sweetened beverages (SSBs) [3–5].These findings are concerning given the mounting
evidence that added sugar is adversely associated with cardiovascular disease (CVD) [2,6]. Among
youth, higher added sugar or SSB intake is associated with lower high-density (HDL) lipoprotein
cholesterol [7,8], increased triglyceride levels [8], and higher blood pressure [9], independent of
adiposity [10]. However, there are conflicting findings suggesting either a more nuanced relationship
exists between added sugar and CVD or that the null findings are due to differences in study designs
or the specific CVD risk factor or outcome being examined. For example, added sugar intake was
associated with increased CVD mortality in U.S. adults [11] but not in elderly Chinese adults [12].
In youth with type 1 diabetes (T1D), SSB consumption was positively associated with total cholesterol
and low-density lipoprotein (LDL) cholesterol [13]. In contrast, among U.S. adolescents, added sugars
were associated with HDL cholesterol and triglycerides, but not LDL cholesterol [5].

Arterial stiffness is a measure of subclinical CVD and has been associated with markers of
atherosclerosis, stroke and coronary heart disease, and mortality in adult populations [14–18]. However,
there have been few studies examining the relationship between added sugar with arterial structure
and function. In adults, the effect of SSB or sugar-based products has also yielded mixed findings with
some studies showing high SSB adversely affecting endothelial function [19–21], while other studies
show no effect on arterial stiffness [22]. A clearer understanding of the role of added sugar on CVD and
associated risk factors is warranted, especially in youth when the arterial structure and function are
still modifiable [23]. Further, determining this relationship in youth with T1D is particularly critical as
they are at substantially increased risk of developing CVD at earlier ages [24], and evidence shows that
50% of youth with T1D consume SSBs [13] despite recommendations to limit added sugar intake [25].

We aimed to determine the association between added sugar and arterial stiffness, which is an
independent predictor of CVD events and measures subclinical disease [26] in individuals with type 1
diabetes. In addition, given increasing evidence suggesting that obesity and physical activity may
modify the effect of nutrition on health outcomes [27,28], we also tested whether the associations
between added sugar and arterial stiffness differed by body mass index z-score and physical activity.

2. Materials and Methods

2.1. SEARCH for Diabetes in Youth Study (SEARCH)

Data for this study were derived from the SEARCH Study and the SEARCH Nutritional Ancillary
Study. SEARCH ascertained cases of diabetes among individuals diagnosed before the age of 20 years
from 2002 onward. A detailed description of SEARCH study methods has been published elsewhere [29].
Briefly, SEARCH participants who were newly diagnosed in 2002–2006 or 2008 from 5 United States
centers (Cincinnati, Ohio and surrounding counties; Colorado with southwestern Native American
sites; Kaiser Permanente Southern California members; Seattle, Washington and surrounding counties;
and South Carolina) completed a baseline study visit. Participants who were diagnosed in 2002–2005
were also invited for follow-up visits at approximately 12, 24, and 60 months after baseline visit.
A subset of SEARCH participants aged 10 years and older who had a least 5 years of diabetes duration
were recruited for an additional outcome study visit between 2011 and 2015 to ascertain additional data
and measurements of diabetes-related complications and comorbidities [24]. The SEARCH Nutrition
Ancillary Study was designed to assess the associations of nutritional factors with the progression
of insulin secretion defects and CVD risk factors in youth with T1D. Both studies were reviewed
and approved annually by the local institutional review boards that had jurisdiction over the local
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study population and complied with the Health Insurance Portability and Accountability Act. Written
informed consent was obtained from participants age ≥ 18 years or their parents or legal guardians if
<18 years.

2.2. Dietary Data and Added Sugar Intake

At baseline, 12-, and 60-month follow-up, and outcome study visits, dietary intake was obtained
via a food frequency questionnaire (FFQ) for youth aged 10 years and older; the majority of youth
completed the FFQ without assistance after receiving staff instruction [13]. The details of the SEARCH
FFQ and its validation are described elsewhere [30]. Briefly, the FFQ contained 85 food lines that
queried for weekly frequency of consumption, and for average portion size if the food line item
was consumed. The nutrient composition of participant diets was derived using the Nutrition Data
System for Research (NDSR, Nutrition Coordinating Center, University of Minnesota, Minneapolis MN,
Database version 2.6/8A/23), a comprehensive nutrient database of more than 18,000 food products.
While the methods used to calculate added sugars in the NDSR database are not published, it is
probable that added sugars are derived from the summation of added sugar values from individual
ingredients in recipes [24]. For our analysis, added sugars were all carbohydrates (grams per day)
from caloric sweeteners that were added during preparation or processing. The caloric sweeteners
included: white sugar (sucrose), brown sugar, powdered sugar, honey, molasses, pancake syrup, corn
syrups, high-fructose corn syrups, invert sugar, invert syrup, malt extract, malt syrup, fructose, glucose
(dextrose), galactose, and lactose. In addition, overall diet quality according to the 2015–2020 Dietary
Guidelines for Americans was assessed by a Healthy Eating Index 2015 (HEI) score, which includes
13 components and has a range of values from 0 to 100 [31], with higher scores associated with greater
guideline adherence. One of the HEI components is added sugars, which was excluded from these
analyses, making the total possible index score 90.

2.3. Arterial Stiffness

At the SEARCH Outcome visit conducted between 2011 and 2015, noninvasive measures of arterial
stiffness, including pulse wave velocity (PWV) and augmentation index (AIx), were ascertained using
a SphygmoCor-Vx device and tonometer. Measurements were obtained in a stable room temperature
after 10 min of rest. The utility and details of the arterial stiffness measures in youth including
their reproducibility and validity are described elsewhere [32–35]. Briefly, PWV measurements were
obtained at three sites. PWV-trunk measured the pulse transit time from the carotid artery to the
femoral artery, is a measure of central arterial stiffness in a large, elastic artery, and it predicts future
cardiovascular disease events and mortality [36]. PWV-leg measured the pulse transit time from the
femoral artery to the dorsalis pedis artery, which provides a peripheral measure of arterial stiffness
in medium-sized, more muscular arteries, and it can be indicative of peripheral vascular disease.
Three separate recordings were taken at each site, averaged, and reported in m/s. Higher PWV values
indicated increased arterial stiffness. AIx is a measure of wave reflections influenced by central stiffness
and also is associated with all-cause mortality in adults [26]. Because AIx is affected by heart rate,
values were adjusted to a standard heart rate of 75 beats per minute [33]. Higher AIx values indicated
stiffer vessels.

2.4. Covariates

At each study visit, questionnaires were used to obtain demographic (birth date, race/ethnicity,
highest level of parental education in the household) and diabetes-related information (duration of
disease, insulin regimen type, frequency and dosage, and clinical site). Fasting blood samples were
obtained under conditions of metabolic stability, defined as no episode of diabetic ketoacidosis during
the previous month. Samples were analyzed for glycated hemoglobin (HbA1c), lipid measurements, and
glutamic acid decarboxylase-65 (GAD65) and insulinoma-associated-2 (IA-2) diabetes autoantibodies.
A Hitachi 917 autoanalyzer (Boehringer Mannheim Diagnostics, Indianapolis, IN, USA) was used
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for assays of plasma cholesterol, triglyceride, and HDL cholesterol. The Friedewald equation was
used to calculate LDL cholesterol if triglyceride concentration was <400 mg/dL (4.52 mM/L) and by
the Beta Quantification procedure if triglyceride was ≥400 mg/dL (Hainline). Height, weight, waist
circumference, and blood pressure (BP) were measured according to standardized protocol by trained
and certified staff. Body mass index (BMI) was calculated as weight (kg)/height squared (m2) and
converted to an age and gender-specific BMI z-score [37]. Insulin sensitivity was estimated using an
equation validated for youth with diabetes [38], which includes waist circumference, HbA1c, and
triglycerides levels. For participants ages≥10 years, physical activity was assessed using questionnaires
from the Youth Risk Behavior Surveillance System (YRBSS) (www.cdc.gov/healthyyouth/data/yrbs/
index.htm), and individuals self-reported the number of days per week they participated in physical
activity that made them breathe hard or sweat for at least 20 minutes.

2.5. Analytic Sample

We included individuals with T1D (combining type 1, type 1a, or type 1b diabetes as assigned
by the treating physician), plus a positive diabetes autoantibody test result (GAD65 or IA-2) who
had completed the FFQ at the outcome visit (n = 1539). Of these eligible individuals, 1517 had PWV
trunk data, 1470 had PWV leg data, and 1277 had Aix-75 data, which comprised our sample sizes for
cross-sectional analyses.

In addition to the cross-sectional sample at the outcome visit, for some participants (n = 553),
we had at least two or more measurements of added sugar from the FFQs at the baseline visit and/or
follow-up visits. Additional analyses were performed on this subsample to examine the relationship
between longer-term estimates of added sugar intake and the outcomes.

2.6. Statistical Analysis

Statistical analyses were performed using SAS software (version 9.4; SAS Institute, Cary, NC,
USA) [39]. Descriptive analyses were conducted to determine the distribution of demographic
measures and arterial stiffness across quartiles of added sugar. Chi-square and analysis of variance
(ANOVA) tests were used to compare the quartiles for categorical and continuous data, respectively,
with statistical significance established at P < 0.05.

Because threshold effects were not evident, separate, multiple linear regression was used to obtain
regression (β) coefficients representing the cross-sectional associations between continuous added
sugar intake and arterial stiffness. Outcome variables with skewed distributions were log-transformed
to improve normality (PWV trunk). For PWV outcomes, Model 1 was adjusted for heart rate, mean
arterial pressure, and calories. For Aix-75, Model 1 was adjusted for height, mean arterial pressure,
and calories. For all outcomes, Model 2 adjusted for Model 1 covariates, demographic (gender, age,
race/ethnicity, and maximum parental education) variables, and diabetes-related variables (diabetes
duration and insulin regimen). Model 3 adjusted for Model 2 covariates and overall diet quality using
the HEI-2015 excluding the added sugar component. Given evidence [40,41] that the effect of added
sugar may be differential according to BMI z-score and physical activity, we examined the potential
for effect modification separately using interaction terms and likelihood ratio tests (criterion, P < 0.1).
For significant interactions, we conducted post hoc tests to examine the effect of added sugars on the
outcomes at selected levels of the potential effect modifier. As part of sensitivity analyses, we also
examined the interaction of added sugar with HbA1c.

In addition to cross-sectional associations, it was of interest to understand how long-term added
sugar intake is associated with arterial stiffness. For the participants with multiple measurements
of added sugar, we constructed a longitudinally assessed summary of average sugar intake (i.e.,
a time-weighted average over all available assessments of added sugar intake). To compute the
time-weighted average, we used a stepwise approximation, assuming added sugar intakes were
constant for half the time interval before and half the time interval after the visit an intake was
reported [42]. We fit similar, separate multiple linear regression models for each outcome using the

www.cdc.gov/healthyyouth/data/yrbs/index.htm
www.cdc.gov/healthyyouth/data/yrbs/index.htm
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longitudinally assessed added sugar intake. The same covariate adjustment as for the cross-sectional
models was used.

3. Results

Our sample consisted of youth with T1D who were predominately non-Hispanic White with a
mean age of 18 years (17.7 ± 4.1 years) and had diabetes for 8 years (7.9 ± 1.9 years) at the outcome
visit. Mean added sugar intake was 47.0 g/d (interquartile range (IQR) = 26.9–66.4 g/d), and accounted
for 12.4% of total calories consumed. Added sugar intake primarily came from sweets and desserts
(18.4 ± 16.8 g/d) and sugar-sweetened beverages (17.1 ± 27.4 g/d). Other notable food sources were
meal replacement/sports bars (4.1 ± 6.7 g/d), yogurt (3.0 ± 3.9 g/d), and low-fiber grain products
(2.2 ± 2.2 g/d).

Demographics and clinical characteristics of the study population at the outcome visit by quartile of
added sugar intake are shown in Table 1. Added sugar intake was significantly related to race/ethnicity,
maximum parental education, household income, total calorie consumption, and HbA1c. A greater
proportion of participants in the highest quartile of added sugar intake were male (compared to
females), non-Hispanic Black (compared to non-Hispanic White), and had parental high school
education (compared to some college). Participants in the highest quartile also consumed significantly
higher calories, had higher HbA1c, and had lower HEI-scores than those in the lowest quartile.
No significant associations were observed between added sugar intake and insulin regimen, arterial
stiffness measures, or cardiometabolic outcomes.

The multivariate associations between added sugar intake and arterial stiffness measurements
after adjustment for covariates are shown in Table 2. In the cross-sectional analysis, added sugar
intake was not associated with any measure of arterial stiffness in either the minimally adjusted or
fully adjusted models. Although not statistically significant, we converted the β coefficients into
more clinically relevant terms by translating grams of added sugar per day into teaspoons of added
sugar per day (4 grams per teaspoon). Thus, a β coefficient of 0.0003 for log-transformed PWV-trunk
(cross-sectional Model 3) indicates that PWV-trunk increases by 0.1% when added sugar increases
by 1 teaspoon per day, and a β coefficient of 0.01 for AIx (cross-sectional Model 2) indicates that AIx
increases by 0.05 units when added sugar increases by 1 teaspoon per day.

Given our interest in examining the potentially heterogeneous effects of diet on cardiovascular
disease, we examined whether BMI z-score and physical activity modified the relationship between
added sugar intake and arterial stiffness measures using our full sample. Multivariate analysis
adjusting for potential confounders revealed that the association between added sugar intake and
log-PWV trunk was modified by BMI z-score (P for interaction = 0.003). Post hoc tests revealed that
at higher BMI z-scores (BMI z-score = 2), there was no association between added sugar intake and
PWV-trunk (β = −0.0003; P = 0.2); however, for lower BMI z-scores, there was a significant, positive
association (BMI z-score = 0: β = 0.0005 and P = 0.004; BMI z-score = −2: β = 0.001; P = 0.0006).
To facilitate interpretation on the scale of the original variables, model-predicted log-PWV trunk
values were back-transformed at various levels of added sugar intake and displayed by BMI z-score
(Figure 1). As shown in the figure, an additional 25 g of added sugar was associated with a 0.16 increase
in PWV-trunk when BMI z-score was low (−2) but a nonsignificant increase of 0.05 in PWV-trunk
when BMI z-score was high (+2). The 0.16 increase is approximately 13% of a standard deviation
in PWV-trunk, which corresponds to a clinically significant mean shift. BMI z-score did not modify
the associations between added sugar intake with other measures of arterial stiffness (PWV-arm and
AIX-75), and physical activity was not an effect modifier for any measure of arterial stiffness (all P for
interaction ≥ 0.10). Additional analyses exploring potential effect modifications by glycemic control by
including an interaction of HbA1c with added sugar was not significant (P for interaction ≥ 0.10).
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Table 1. Demographic and clinical characteristics of 1539 participants with type 1 diabetes by quartiles of added sugar: The SEARCH for Diabetes in Youth Study at
the Cohort Visit.

Quartiles of Added Sugar Intake

Variable Mean (Standard Deviation) or
N (%) for All Participants

Quartile 1
(2.2–22.9 g/day)

Quartile 2
(30.0–38.4 g/day)

Quartile 3
(38.5–58.5 g/day)

Quartile 4
(≥58.5 g/day)

n 1539 373 388 386 392
Age at diagnosis 9.8 (3.9; n = 1539) 9.8 (3.9) 9.8 (4.2) 9.6 (3.8) 10.1 (3.8)
Age at Outcome Visit 17.7 (4.2; n = 1539) 17.7 (4.2) 17.7 (4.4) 17.5 (4.2) 18.1 (3.8)
Diabetes Duration at Outcome Visit 94.6 (22.6; n = 1539) 95.1 (22.4) 93.3 (21.9) 94.5 (23.1) 95.6 (23.0)

Race, n (%)1

Non-Hispanic, White 1178 267 (22.7) 294 (25.0) 315 (26.7) 302 (25.6)
Non-Hispanic, Black 145 39 (26.9) 32 (22.1) 25 (17.2) 49 (33.8)
Other 216 67 (31.0) 62 (28.7) 46 (21.3) 41 (19.0)

Gender, n (%)1

Female 795 229 (28.8) 217 (27.3) 186 (23.4) 163 (20.5)
Male 744 144 (19.4) 171 (23.0) 200 (26.9) 229 (30.8)

Highest Parental Education, n (%)1

< High School 60 22 (36.7) 13 (21.7) 11 (18.3) 14 (23.3)
High School Graduate 169 45 (26.3) 43 (25.4) 25 (14.8) 56 (33.1)
Some College Thru Assoc. Degree 484 113 (23.4) 103 (21.3) 145 (30.0) 123 (25.4)
College Degree or More 805 189 (23.5) 222 (27.6) 201 (25.0) 193 (24.0)

Household Income, n (%)2

<$25K 214 52 (24.3) 42 (19.6) 58 (27.1) 62 (29.0)
$25–49K 251 59 (23.5) 56 (22.3) 52 (25.1) 73 (29.1)
$50–74K 234 69 (29.5) 61 (26.1) 49 (20.9) 55 (23.5)
$75K+ 578 124 (21.5) 154 (26.6) 164 (28.4) 136 (23.5)
Don’t Know/Refused 254 67 (26.4) 74 (29.1) 49 (19.3) 64 (25.5)

Insulin Regimen, n (%)

Pump 876 192 (21.9) 22.8 (26.0) 229 (26.1) 227 (25.9)
Long + short/rapid, 3 or more times a day 289 69 (23.9) 74 (25.6) 67 (23.2) 79 (27.3)
Long + any other combo, 2 or more times per day 263 78 (29.7) 68 (25.9) 55 (20.9) 62 (23.6)
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Table 1. Cont.

Quartiles of Added Sugar Intake

Variable Mean (Standard Deviation) or
N (%) for All Participants

Quartile 1
(2.2–22.9 g/day)

Quartile 2
(30.0–38.4 g/day)

Quartile 3
(38.5–58.5 g/day)

Quartile 4
(≥58.5 g/day)

Any combo of insulins excluding long, 3 or more
times/day 75 25 (33.3) 14 (18.7) 22 (29.3) 14 (18.7)

Any insulin(s) taken 1 time/day, or any insulin combo
excluding long 2 times/day 31 8 (25.8) 3 (9.7) 12 (38.7) 8 (25.8)

Total Calories1 1681.6 (745.5; n = 1539) 1151.2 (377.8) 1476.4 (471.4) 1732.9 (548.0) 2339.1 (887.9)
Pulse Wave Velocity (PWV) Trunk 5.5 (1.2; n = 1517) 5.5 (1.2) 5.4 (1.1) 5.4 (1.3) 5.5 (1.0)
Pulse Wave Velocity Leg 8.1 (1.6; n = 1470) 8.0 (1.3) 8.0 (1.4) 8.1 (1.4) 8.1 (1.3)
Aix-75 −2.7 (10.5; n = 1331) −1.4 (9.8) −3.1(10.8) −2.8 (10.2) −3.4 (11.1)
Mean Arterial Pressure 81.1 (9.1; n = 1424) 81.2 (8.4) 80.2 (8.8) 81.0 (8.7) 81.9 (10.1)
Heart Rate, mean % (SD) 68.6 (11.39; n = 1316) 69.6 (11.4) 69.4 (12.0) 68.6 (10.8) 67.6 (11.4)
BMI z-score 0.62 (0.93; n = 1316) 0.7 (1.0) 0.6 (0.9) 0.6 (0.9) 0.6 (0.9)
Weight Status, n (% overweight/obese) 539 147 (27.3) 125 (23.2) 136 (25.2) 131 (24.3)
Weight Status, n (%obese) 202 58 (28.7) 42 (20.8) 58 (28.7) 44 (27.8)
Physical Activity, n (% active 3–7 days/week) 888 203 (22.9) 224 (25.2) 233 (26.2) 228 (25.7)
HbA1c, mean % (SD)1 9.12 (1.82; n = 1305) 9.0 (1.7) 9.0 (1.8) 9.1 (1.7) 9.5 (2.0)
Waist Circumference 84.5 (13.5; n = 1314) 84.9 (14.3) 83.2 (13.5) 83.6 (13.1) 84.0 (12.6)
Triglycerides, mean mg/dL (SD) 92.6 (71.7; n = 1465) 92.0 (59.2) 92.0 (72.1) 94.5 (87.7) 91.9 (64.3)
Log-Insulin Sensitivity score 1.83 (0.4; n = 1486) 1.8 (0.4) 1.9 (0.4) 1.8 (0.4) 1.8 (0.4)
Systolic blood pressure, mean mmHg (SD) 106.3 (10.9; n = 1538) 106.5 (11.0) 105.4 (10.5) 106.5 (11.1) 106.8 (10.8)
Diastolic blood pressure, mean mmHg (SD) 68.6 (8.8; n = 1538) 68.9 (8.8) 68.0 (9.3) 68.5 (8.7) 69.0 (8.7)
Healthy Eating Index (HEI)-2015 Total Score (without
added sugar component)2 47.7 (10.7; n = 1539) 48.2 (11.8) 48.8 (10.6) 47.1 (10.4) 46.9 (10.0)

1p < 0.01, 2 p < 0.05.
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Table 2. Multivariate regression models between cross-sectionally and longitudinally assessed added
sugar intake (area under the curve estimate of average added sugar intake over the study duration,
2–12 years) with arterial stiffness measures in youth with type 1 diabetes (T1D).

Cross Sectional Assessed Added Sugar Intake (Regression [β] Coefficient ± Standard Error)

Log PWV1-Trunk PWV1-Leg AIx2

Model 13 0.0002 ± 0.0002 −0.0001 ± 0.001 0.02 ± 0.01
Model 24 0.0003 ± 0.0002 −0.000005 ± 0.001 0.01 ± 0.009
Model 35 0.0003 ± 0.0002 −0.0001 ± 0.001 0.01 ± 0.01

Longitudinally Assessed Added Sugar Intake (Regression [β] Coefficient ± Standard Error)

Log PWV1-Trunk PWV1-Leg AIx2

Model 13 0.00002 ± 0.002 −0.0006 ± 0.001 0.02 ± 0.01
Model 24 0.00008 ± 0.002 −0.0007 ± 0.001 0.02 ± 0.01
Model 35 0.0001 ± 0.0002 −0.0009 ± 0.001 0.02 ± 0.01

1 PWV – Pulse Wave Velocity. 2 AIx – Augmentation Index. 3 For pulse wave velocity outcomes, Model 1 was
adjusted for heart rate, mean arterial pressure, and calories. For augmentation index, Model 1 was adjusted for
height, mean arterial pressure, and calories. 4 Adjusted for Model 1 covariates, age at visit, sex, race/ethnicity,
parental education, diabetes duration, and insulin regimen. 5 Model 2 covariates, plus HEI-2015 score without
added sugar component.Nutrients 2019, 11, x FOR PEER REVIEW 2 of 14 

 

 

Figure 1. Body mass index modifies the association between cross-sectionally assessed added sugar 
intake and pulse wave velocity (PWV)-trunk measurements. 1 Estimated PWV-Trunk back-
transformed from log-PWV trunk, adjusted for heart rate, mean arterial pressure, calories, age at visit, 
sex, race/ethnicity, parental education, diabetes duration, insulin regimen, and Healthy Eating Index-
2015 without added sugar component. 2 Pairwise test, P value < 0.001. 

In the subsample of participants with multiple measurements of added sugar, parallel 
multivariate analysis revealed similar findings. Long-term added sugar intake was not associated 
with any measure of arterial stiffness in either the minimally adjusted or fully adjusted models 
(results not shown). Long-term BMI modified the association between long-term added sugar intake 
and log-PWV trunk (P for interaction = 0.001), but not other measures of arterial stiffness. Long-term 
physical activity did not modify the association between long-term added sugar intake and arterial 
stiffness. 

4. Discussion 

In this large cohort of individuals with T1D, added sugar intake accounted for 12.4% of total 
caloric intake. These findings are fairly consistent, albeit slightly lower, with nationally representative 
data from the 2005–2010 National Health and Nutrition Examination Surveys (NHANES), which 
observed that added sugar intake accounted for 16% of total calories in the adolescent (12–19 years) 
diet [5]. It is possible that youth with diabetes who receive medical nutrition therapy may heed 
recommendations to monitor carbohydrate intake, although not strictly. The level of consumption 
among individuals with T1D still exceeds recommendations from the 2015–2020 Dietary Guidelines 
for Americans [1], the American Heart Association [2], and the American Diabetes Association, which 
encourages youth with diabetes to minimize consumption of food or beverages that contain added 
sugar [43]. Our data suggest that the majority of added sugar intake in youth with T1D come from 
amounts of sugar-sweetened beverages and sweets/desserts. These findings emphasize the 
importance of identifying barriers to dietary adherence and enablers that help translate nutrition 
knowledge to behavior, which may be key for improving long-term health in this population. 

In our study, the association between added sugar and arterial stiffness was nuanced. There was 
no association overall between added sugar and arterial stiffness in unadjusted or adjusted models. 
However, because research suggests that diet may have a heterogeneous effect on CVD risk [44–47], 

Figure 1. Body mass index modifies the association between cross-sectionally assessed added sugar
intake and pulse wave velocity (PWV)-trunk measurements. 1 Estimated PWV-Trunk back-transformed
from log-PWV trunk, adjusted for heart rate, mean arterial pressure, calories, age at visit, sex,
race/ethnicity, parental education, diabetes duration, insulin regimen, and Healthy Eating Index-2015
without added sugar component. 2 Pairwise test, P value < 0.001.

In the subsample of participants with multiple measurements of added sugar, parallel multivariate
analysis revealed similar findings. Long-term added sugar intake was not associated with any measure
of arterial stiffness in either the minimally adjusted or fully adjusted models (results not shown).
Long-term BMI modified the association between long-term added sugar intake and log-PWV trunk (P
for interaction = 0.001), but not other measures of arterial stiffness. Long-term physical activity did not
modify the association between long-term added sugar intake and arterial stiffness.
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4. Discussion

In this large cohort of individuals with T1D, added sugar intake accounted for 12.4% of total
caloric intake. These findings are fairly consistent, albeit slightly lower, with nationally representative
data from the 2005–2010 National Health and Nutrition Examination Surveys (NHANES), which
observed that added sugar intake accounted for 16% of total calories in the adolescent (12–19 years)
diet [5]. It is possible that youth with diabetes who receive medical nutrition therapy may heed
recommendations to monitor carbohydrate intake, although not strictly. The level of consumption
among individuals with T1D still exceeds recommendations from the 2015–2020 Dietary Guidelines
for Americans [1], the American Heart Association [2], and the American Diabetes Association, which
encourages youth with diabetes to minimize consumption of food or beverages that contain added
sugar [43]. Our data suggest that the majority of added sugar intake in youth with T1D come from
amounts of sugar-sweetened beverages and sweets/desserts. These findings emphasize the importance
of identifying barriers to dietary adherence and enablers that help translate nutrition knowledge to
behavior, which may be key for improving long-term health in this population.

In our study, the association between added sugar and arterial stiffness was nuanced. There was
no association overall between added sugar and arterial stiffness in unadjusted or adjusted models.
However, because research suggests that diet may have a heterogeneous effect on CVD risk [44–47],
we a priori hypothesized that the relationship between added sugar and arterial stiffness may vary
based on obesity and physical activity. We observed that for individuals with lower BMI z-scores,
added sugar intake was positively associated with central arterial stiffness; yet, for those who had
higher BMI z-scores, added sugar was not associated with central arterial stiffness in this population of
youth with diabetes. The exact mechanism underlying this relationship is not clear, though excess
fructose has been shown to increase hepatic de novo lipogenesis and fatty acid synthesis [48]. Previous
SNAS results support these findings with higher fructose consumption associated with greater plasma
triglyceride levels in youth with T1D [49]. In addition, the effect of sugar on de novo lipogenesis
appears to vary by obesity status. Previous studies indicate that in lean individuals, approximately 10%
of the fatty acids in very low density lipoprotein (VLDL) cholesterol and triglycerides are attributed to
de novo lipogenesis [50]; whereas in obese individuals, this pathway contributes approximately 50%
of the fatty acids in VLDL cholesterol [41]. While our data are not consistent with added sugar being
deleterious for individuals with higher BMI, we observed that arterial stiffness was significantly higher
for those who had higher BMI z-scores than those with lower BMI z-scores regardless of added sugar
intake. These findings are consistent with a recent meta-analysis indicating that obese children have
increased arterial stiffening, especially in central arteries, in comparison to nonobese children [51]. It is
possible for those who are overweight or obese that the excess adiposity supersedes any effect of added
sugar on arterial elasticity. Thus, for lean individuals with diabetes, limiting added sugar consumption
may be a particularly promising approach for improving long-term cardiovascular health, and for
obese individuals with diabetes, weight loss interventions may be more impactful.

Although BMI z-score differentially affected the association between added sugar and PWV trunk,
the effect was not observed across all measures of arterial stiffness in our analyses. BMI z-score did not
modify the relationship of added sugar with PWV-leg or AIx. The differential associations between
added sugar intake and the arterial stiffness measures may be expected given that PWV and AIx are
not interchangeable measurements, and obesity may have a greater impact on central arterial stiffness
measures than peripheral measures or on Aix [51], which measures arterial stiffness and wave reflection.
It is possible that added sugar will not have as much of an effect in more muscular arteries such as the
dorsalis pedis artery. Understanding the role of arterial structure on the relationship between added
sugar and arterial stiffness is an area of great research potential.

Physical activity is shown to have a cardioprotective effect [52] and is an important factor in
maintaining glucose homeostasis [53]. In addition, Bremer et al. observed the interaction of sugar
sweetened beverages and physical activity on cardiovascular health in adolescent youth, with low
sugar-sweetened beverage intake and high physical activity levels modifying insulin resistance as well



Nutrients 2019, 11, 1752 10 of 14

as HDL and triglyceride concentrations [40]. Thus, we hypothesized that the relationship between
added sugar and arterial stiffness would differ by physical activity status. In our study, we observed
that physical activity did not modify the relationship between added sugar and any measure of
arterial stiffness in youth with diabetes. It is possible that any modifying effect of physical activity
was significant in our sample of youth with diabetes who have higher levels of arterial stiffness [36].
However, Yang et al. found that the relationship between added sugar and cardiovascular disease
mortality among U.S. adults 20 years and older was similar between those who had high levels of
physical activity and those with low levels of physical activity [11]. Further studies to delineate how
physical activity levels interact with dietary intake are warranted.

There are some limitations to our study. Arterial stiffness was only measured at one point in time,
precluding a longitudinal analysis. The cross-sectional analysis allows associations to be identified, but
not causality or directionality. However, we did examine how long-term added sugar measurements
affected arterial stiffness and we observed similar results. SEARCH is an ongoing study, and future
analysis will allow a thorough longitudinal examination of the relationship between changes in added
sugar intake and changes in arterial stiffness. Other limitations of the study include the use of a food
frequency questionnaire, which was validated but relies on retrospective self-recall and is prone to
error. In addition, while individuals with diabetes have higher levels of arterial stiffness, it is possible
that, given the age of the participants, the impact of diabetes on arterial stiffness was not severe enough
to allow us to detect an association; however, we did use continuous measures of both added sugar
and arterial stiffness to increase the power to detect an association. We also used BMI z-score as a
measure of adiposity in these analyses. While other measures may more accurately capture adiposity,
BMI is recommended for large epidemiologic studies and adequately correlates with total body fat [54].
Finally, while we controlled for a number of confounding factors, including overall dietary quality, it is
possible that residual confounding affected the results.

Our study also has several important strengths including a large, well-characterized multiethnic
sample of youth with T1D who are understudied yet a medically vulnerable population. To our
knowledge, this study is the first to assess the relation of added sugar to arterial stiffness in youth
with diabetes, and we include multiple measures of arterial stiffness. PWV-trunk measurements
predict cardiovascular events above and beyond measurements of traditional cardiovascular risk
factors, measure subclinical cardiovascular disease [55], and provide information about cardiovascular
risk while the arterial structure is modifiable. In addition, PWV foot measurements provide an
understanding of peripheral arterial stiffness in a more muscular artery, which is particularly important,
as those with diabetes are at greater risk of peripheral arterial disease [56]. We also capture AIx, which
measures both peripheral and central stiffness and captures a part of arterial stiffness not captured
by PWV.

In conclusion, our findings indicate that youth with T1D consume similar levels of added sugar to
youth in the general U.S. population, which underscores the need to improve dietary adherence in this
at-risk population. Further, our study suggests a nuanced relationship between added sugar and CVD
risk. Youth with T1D who are lean or less physically active may benefit from a reduction in added
sugar consumption. Future studies should explore factors that differentially affect the role of added
sugar on CVD and confirm that obesity and physical activity modify this association.
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