

University of St Augustine for Health Sciences SOAR @ USA

Virtual OTD Capstone Symposium, Spring 2020

Spring 4-23-2020

Exploring the Concurrent Validity of the Indoor Mobility Pre-driving Screen (IMPS): A Comparison of the IMPS and EF-Car Motion Driving Simulator

Nicholas T. Bolen University of St. Augustine for Health Sciences, n.bolen@usa.edu

Kayla Collins University of St. Augustine for Health Sciences, kcollins@usa.edu

Mary P. Shotwell University of St. Augustine for Health Sciences, mshotwell@usa.edu

Kaitlyn Cremer University of St. Augustine for Health Sciences, kcremer@usa.edu

Follow this and additional works at: https://soar.usa.edu/otdcapstonespring2020

Part of the Occupational Therapy Commons

Recommended Citation

Bolen, Nicholas T.; Collins, Kayla; Shotwell, Mary P.; and Cremer, Kaitlyn, "Exploring the Concurrent Validity of the Indoor Mobility Pre-driving Screen (IMPS): A Comparison of the IMPS and EF-Car Motion Driving Simulator" (2020). *Virtual OTD Capstone Symposium, Spring 2020*. 10. https://soar.usa.edu/otdcapstonespring2020/10

This Book is brought to you for free and open access by SOAR @ USA. It has been accepted for inclusion in Virtual OTD Capstone Symposium, Spring 2020 by an authorized administrator of SOAR @ USA. For more information, please contact soar@usa.edu, erobinson@usa.edu.

Exploring the Concurrent Validity of the Indoor Mobility Pre-driving Screen (IMPS): A Comparison of the IMPS and EF-Car Motion

Abstract

The purpose of this study was to explore the concurrent validity of an in-clinic assessment of pre-driving skills, the IMPS, in comparison to five rehabilitative programs on the EF-Car Motion Driving Simulator. Assessment data was collected from 36 participants ages 18+ who possess a valid driver's license. Pearson's productmoment correlations revealed there is some correlation between scores on the IMPS and three of the five assessments on the driving simulator (DS).

Literature Review

Driving is an important occupation linked closely to feelings of independence (Crizzle et al., 2019). Many drivers with disabilities seek driving assessment and rehabilitative services to regain independence (Macdonald, Pellerito Jr., & Di Stefano, 2006).

No one in-clinic assessment, or group of assessments, is considered best able to accurately predict on the road outcomes (Dickerson, 2014). The IMPS has the potential to fulfill that gap if proven a valid and predictive assessment. The IMPS has been shown to be a valid tool for predriving assessment in initial studies (Pope & Tope, 2011; Miles, Svay, Madrid, & Crichton, 2014; Alhasmi, Hudson, Mendez-Schiaffino, & Williford, 2016).

Table 1

Participant Age Groups

Methodology

Design: This design of this study was a nonexperimental assessment comparison study of concurrent validity.

Participants: A convenience sample of 36 Results community-dwelling adults ages 18+ who Some correlations were present between possess a valid driver's license were total scores on the IMPS and constructs of recruited for this study. Attempts were the DS assessments (Table2). It should be made to stratify the sample based on age, noted that the IMPS generates a total score however age distribution was uneven indicative of performance on the measure, (Table 1). Four participants experienced dissimilar to the DS assessments which do simulator sickness during testing and had not generate a grand total. Individual to halt testing procedures. testing variables of the IMPS and DS assessments were compared to further **Data Collection:** Participants were explore correlations between the scheduled for a one-hour session during assessments. Results detailed below. On which they completed the IMPS and the the left is the IMPS construct and on the DS assessments. Order of assessment right is the DS assessment construct.

(IMPS or DS first) administration was randomized to eliminate carryover and testing effects.

Assessments administered through the DS were: Reaction Time, Cognitive Abilities, Field of View, Glare/Memorization, and Situational Awareness.

Data Analysis: In order to answer the primary research question, relationships between IMPS total score and scores on the DS assessments were explored through the use of Pearson product-moment correlations.

Age Group	20-29	30-39	40-49	50-59	60-69	70-79	80-89
Number of Participants	5	9	2	4	11	2	3

Driving Simulator

Nicholas Bolen, OTS Dr. Kayla Collins, OTR/L **Dr. Mary Shotwell, OT/L** Dr. Kaitlyn Cremer, OTR/L

Cognitive Abilities Assessment:

- IMPS scanning right Stayed on course (r=.332, p=.048)
- IMPS scanning left Times over speed limit (r=-.390, *p*=.019)
- IMPS accuracy right Veering to the right (r=-.340, *p*=.043)

Field of view (FOV) Assessment:

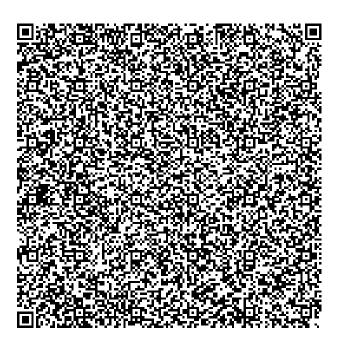
- IMPS scanning right Objects identified (r=.369, *p*=.029)
- IMPS scanning right Correct location of objects (r=.428, p=.01)
- IMPS accuracy right Objects identified (r=.366, p=.031)
- IMPS accuracy right Correct location of objects (r=.368, p=.03)
- IMPS accuracy left Objects identified (r=.518, *p*=.001)
- IMPS accuracy left Correct location of objects (r=.393, p=.02)

Table 2

Pearson Correlations of IMPS Total Score with Driving Simulator Scores

Reaction Time Assessment					
Reaction Time Average					
Cognitive Abilities Assessment					
Number of Times Over Speed Limit					
Number of Times Under Speed Limit					
Veering to the Right					
Veering to the Left					
Maintained Appropriate Speed (%)					
Stayed on Course (%)					
Glare/Memorization Assessment					
Glare/Memorization Trial 1					
Glare/Memorization Trial 2					
Glare/Memorization Trial 3					
Field of View Assessment					
Objects Identified					
Correct Location of Objects					
Situational Awareness Assessment					
Insufficient Separation Gap					
Turn Signal Errors					
White Line Errors					
Inappropriate actions at Junctions					
Number of Times Over the Speed Limit					
Lane Discipline					
Wrong Direction					
Number of Collisions					
Hazards Negotiated					
*p<.05					

**p<.01


Discussion

The results of data analysis show some correlations between IMPS total score and testing items on the five DS assessments utilized. The greatest number of correlations were found when comparing the IMPS to the DS FOV assessment. The DS situational awareness assessment was the assessment most similar to a real world, on the road drive. Yet, only one of its constructs was found to be correlated with the IMPS total score.

While only a few correlations were found between the IMPS and the chosen DS assessments, it should not be discredited as a pre-driving assessment. The IMPS needs to be compared, concurrently, to an on the road driving assessment to truly explore its predictability.

Correlation	<i>p</i> -value	Significant
196	.251	No
384*	.021	Yes
186	.278	No
359*	.032	Yes
.042	.808	No
.299	.076	No
.041	.812	No
.047	.788	No
.199	.252	No
.180	.301	No
.469**	.004	Yes
.429**	.010	Yes
139	.426	No
302	.078	No
.051	.773	No
349*	.040	Yes
.274	.111	No
144	.408	No
007	.969	No
061	.726	No
.046	.792	No

References

