

Load Testing of

Vaadin Flow applications

UNIVERSITY OF TURKU

Department of Future Technologies

Master of Science in Technology Thesis

Communication Systems

March 2020

Anastasiia Smirnova

Supervisors:

Antti Hakkala

Seppo Virtanen

The originality of this thesis has been checked in accordance with the University of Turku quality

assurance system using the Turnitin OriginalityCheck service

UNIVERSITY OF TURKU

Department of Future Technologies

Anastasiia Smirnova: Load testing of Vaadin Flow applications

Master of Science in Technology Thesis, 80 p., 34 app. p.

Communication Systems

March 2020

All types of businesses, from small start-ups to big enterprises, have an online presence.

Their web pages and applications can be used to acquire products ans services and are

thus expected to be efficient. Yet, the web environment imposes additional requirements

on software, such as the need for reliable security and adequate response times. To ensure

these requirements are met and the product is of the expected quality, various types of

testing are utilized during development.

This master’s thesis evaluates a procedure for verifying a non-functional requirement of

a web application – its performance. It focuses on load testing, which is used to analyze

and assess an application’s behavior with different user loads.

The scope of applications is limited to server-side applications that are developed with

the latest long-term support version of the Vaadin framework. The effects of the

performance arising from the server-side architecture of the framework and the Java

ecosystem are reviewed. Furthermore, an overview of available improvement techniques,

such as cache and load balancers, is given.

From a load testing perspective, the biggest challenges that arise from Vaadin’s

architecture are its unique features. These include node values of user interface

components, synchronization and Cross-Site Request Forgery protection tokens. The

defined universal regular expressions that capture these attributes can be used again later.

The main contribution of this thesis is formulating a ready-to-use method of load testing

a Vaadin Flow application. Once established and analyzed, the method is then applied to

a real-life situation to verify its applicability and usefulness. Two widely used load testing

tools are utilized – JMeter and Gatling. Furthermore, a method to estimate a web

application’s session size is presented. Potential bottlenecks and other potential issues are

identified by using a profiled to track the application’s memory consumption during a test

run. After the load test is finalized and completed, a session size estimation is conducted.

As a result of test execution, a potential bottleneck is identified and fixed in the

application. Complete test plans for both JMeter and Gatling are defined and

implemented. Alternatives and possible improvements to the proposed solution are

reviewed. Based on the literature review, when deploying an application on multiple

servers, the best solution is enabling the sticky sessions feature.

Keywords: Load Testing, Vaadin, Performance, JMeter, Gatling, Java

Acknowledgments

This Master’s thesis is the biggest independent project I have ever completed, but I didn’t

do it alone. I would like to thank my supervisors at the University of Turku, Antti Hakkala

and Seppo Virtanen, for reviewing my thesis and offering valuable advice and

suggestions. Finding a topic and writing my thesis would not have been possible without

the help of my supervisor at Vaadin, Johannes Tuikkala, who provided me with technical

guidance and expertise.

I would like to express my gratitude to the Finnish Meteorological Institute and especially

Mikko Parviainen for giving me access to the application and providing me with vital

information. I also want to thank everyone at Vaadin who found the time to answer my

questions or lend me advice. Special thanks are owed to Leif Åstrand and Denis Anisimov

for all their technical assistance and Erik Lumme and Matti Hosio for helping me to find

and set up the FMI project.

Achieving this milestone would not have been possible without the dedication and

influence of my teachers over the years. I would like to thank every teacher whose course

I enrolled in at Kovdor’s school, Salla’s gymnasium, Shanghai’s Fudan University and

the University of Turku. I have never received anything, but encouragement from all of

you.

Most of all, I would like to thank two people who supported me the entire way, who had

trust in me, when I had little in myself and whom I love the most - Ville and my mum, to

whom this thesis is dedicated.

Table of Contents

1 Introduction ... 1

2 Load testing and application performance .. 3

2.1 Performance testing .. 3

2.1.1 Load testing ... 4

2.1.2 Scalability testing .. 4

2.2 Performance enhancements .. 5

2.2.1 Load balancers .. 5

2.2.2 Cache ... 7

2.3 Java ... 11

2.3.1 JVM memory management ... 11

2.3.2 Performance pitfalls and countermeasures.. 12

3 Vaadin Flow applications .. 15

3.1 Communication model ... 15

3.1.1 Deployment ... 15

3.1.2 Push ... 16

3.1.3 User session ... 17

3.2 Client-side .. 17

3.2.1 Shadow Domain Object Model ... 18

3.2.2 HTML Template ... 18

3.2.3 Custom Elements .. 18

3.2.4 Optimizations and IE11 support.. 21

3.3 Performance .. 21

4 Designing load tests for a Flow application .. 24

4.1 Flow features .. 24

4.1.1 An HTTP request .. 24

4.1.2 A csrfToken ... 25

4.1.3 v-uiId and node ... 25

4.1.4 Synchronization tokens ... 26

4.2 JMeter ... 26

4.2.1 Recording .. 27

4.2.2 Listeners .. 29

4.2.3 Regular Expression Extractor ... 29

4.3 Gatling .. 30

4.3.1 Recording .. 31

4.3.2 A request building blocks ... 31

4.3.3 Reports .. 32

5 Load Test Implementation and testing .. 33

5.1 Overview .. 33

5.2 Prerequisites ... 35

5.2.1 Versions .. 36

5.2.2 Browser proxy set-up .. 37

5.2.3 Regular expressions .. 37

5.2.4 Scenario ... 38

5.3 JMeter implementation ... 39

5.3.1 A CSRF token handling .. 40

5.3.2 Extracting an element’s node value .. 41

5.3.3 Randomizing and supplying data .. 45

5.3.4 Output .. 49

5.4 Gatling implementation .. 52

5.4.1 Payloads .. 53

5.4.2 A CSRF token handling .. 54

5.4.3 Extracting clientId and syncId .. 54

5.4.4 Feeders and random data ... 55

5.4.5 Setting session variables ... 55

5.4.6 Debugging and Generating load.. 56

5.4.7 Output .. 59

5.4.8 Comparing outputs .. 61

5.5 Application memory consumption ... 62

5.6 Integrating tests into maven.. 65

6 Discussion ... 66

6.1 Assuring randomness and finding node id’s in the test scenario...................... 66

6.2 Debugging .. 67

6.3 JMeter ... 68

6.4 Gatling .. 69

6.4.1 Recording .. 69

6.4.2 Test execution ... 70

6.5 Push .. 70

6.6 Alternatives .. 71

6.7 Future work .. 71

7 Conclusion .. 73

References ... 75

Appendix A A custom element from an HTML Template A-1

A.1 CustomDiv.html ... A-1

A.2 MainView.java ... A-2

A.3 CustomDiv .. A-2

Appendix B A configured JMeter’s Test Plan .. B-1

Appendix C Scala script created for a Gatling test .. C-1

C.1 Test script ... C-1

C.2 Bodies ... C-16

Appendix D Profile for integration tests .. D-1

Abbreviations and Acronyms

API Application Programming Interface

CSRF Cross-Site Request Forgery

CSS Cascading Style Sheets

CSV Comma Separated Values

CDN Content Delivery Network

DOM Document Object Model

GUI Graphical User Interface

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

ID Identifier

JS JavaScript

JVM Java Virtual Machine

OS Operating System

Regex Regular Expression

UDV User Defined Variable

UI User Interface

URL Uniform Resource Locator

List of Figures

Figure 1. JVM Memory management ... 11

Figure 2. A request handling process .. 16

Figure 3. Push definition with transport and mode specified for an individual view 17

Figure 4. Adding elements to a VerticalLayout. ... 19

Figure 5. Content of a custom-div.js template .. 20

Figure 6. CustomDiv rendered in Google Chrome browser ... 20

Figure 7. A default Test Plan generated from Recording template 27

Figure 8. A JMeter’s configured User Defined Variables component............................ 28

Figure 9. Configured Regular Expression Extractor for a CRSF token. 30

Figure 10. A protocol definition and set-up for a scenario ... 32

Figure 11. A response payload to a request presented in Chapter 4.1.1 34

Figure 12. The method to load test a Flow application ... 36

Figure 13. Defined user scenario .. 38

Figure 14. The tested UI.. 39

Figure 15. Configuration in "Advanced" tab for a request ... 40

Figure 16. Recorded request without modifications ... 40

Figure 17. Replaced csrfToken, syncId and clientId tokens ... 41

Figure 18. A Snippet of the response with the "Producer" grid definition. 42

Figure 19. Grid position inside div ... 43

Figure 20. Configured Regular Expression extractor for syncId and clientId 45

Figure 21. BeanShell script for parsing and saving synchronization tokens into memory

 ... 45

Figure 22. Comma-separated values Data set configuration in JMeter 46

Figure 23. Generating two random parameters. .. 48

Figure 24. Request presented in Figure16 after alterations... 49

Figure 25. JMeter reported results when running 50 users ... 51

Figure 26. Scenario definition via objects... 52

Figure 27. A request payload passed as a RawFileBody .. 53

Figure 28. Extraction of a csrfToken .. 54

Figure 29. Definition of regular expressions for syncId and clientId tokens 55

Figure 30. Capturing synchronization tokens from a request ... 55

Figure 31. Setting default values for the lead times using session object 56

Figure 32. Printing information for debug purposes ... 57

Figure 33. LoginAndNavigate object .. 58

Figure 34. Statistics table generated by Gatling tool after test execution 60

Figure 35. Global information provided by Gatling after the execution of the second

scenario is completed .. 61

Figure 36. Memory consumption over test execution ... 64

Figure 37. Structure of a src/test folder ... 65

Figure 38. Part of the JSON for an element with defined id ... 67

Figure 39. A response with an `Internal error` message ... 68

Figure 40. Parsing string to integer ... 69

List of Tables

Table 1. Regular expressions used to extract node ID of the "Producers" grid 44

Table 2. Regex expressions used to extract ID for the first available parameter id 48

Table 3. Summary of JMeter captured responses ... 50

Table 4. Common code snippets used in Gatling test ... 53

Table 5. Gatling run summary info ... 61

Table 6. Session’s size measurement results... 63

1

1 Introduction

Testing is an essential part of perfecting a software development process. A client and a

provider who agree on the assets of a deliverable software product sign a Service-Level

Agreement (SLA) to ensure that the requirements are met. Testing is therefore a tool that

guarantees that these promises are upheld. There are various software testing types,

techniques, and practices available for any aspect of a product. Load testing verifies that

a system functions properly for expected simultaneous users.

Businesses that target a wide audience must also provide services online. However,

building a client-oriented web application is not always an easy task. There are dozens of

frameworks and libraries available on the market that facilitate and ease this development.

Vaadin is one of the better known-known frameworks; it makes it possible to design and

implement user interfaces entirely in Java.

To accurately load test an application, one must be aware of its distinct traits. The

available tools and a scenario should be established and analyzed. Several resources that

discuss load testing of a Vaadin application can be found online. Unfortunately, none of

them provide a complete picture of how a test can be conducted, nor of any peculiarities

of the test that one might need to beware of. Moreover, most of the available material is

out of date and concerns the Vaadin Framework 8. The goal of this Master’s thesis is to

establish a way of load testing a Vaadin Flow application. To do this, it is important to

discuss available performance improvement techniques. Three research questions are set

to help achieve this goal:

• How does one perform load testing for a Vaadin Flow application?

• What are the distinctive features of a Vaadin app from a load testing perspective?

• What are the performance improvement approaches utilized during the

development and deployment of an application?

This thesis is divided into seven chapters, which can be classified into three groups as

follows: background (Chapters 1-3), implementation (Chapters 4-5), and retrospective

(Chapters 6-7). A Flow-based application’s state is stored on a server; therefore,

2

improvement techniques studied and presented for thesis are predominantly on the server-

side. Chapter 2 presents load balancers and cache as available software and hardware

options. A Java Virtual Machine (JVM) memory structure and leaks scenarios are

reviewed. The software family used for performance testing is introduced and a definition

for load testing is given.

The Vaadin framework’s building blocks are outlined in Chapter 3. Both the server-side

and client-side parts are presented. A simple component is built to demonstrate a

connection between the client-side techniques and a Vaadin application. The chapter

closes with a discussion of the performance of a flow application, which concludes the

section on theory and background.

Chapter 4 introduces the JMeter and Gatling tools that are used to create and execute load

tests. The prerequisites for building a test against a Flow application are established by

defining a Flow application’s unique features. Chapter 5 is the central chapter of this

thesis, as it covers practical details of test configurations and implementation details. A

procedure of load testing a Vaadin application is defined. The tests implemented have

been conducted for the Finnish Meteorological Institute (FMI), who has kindly provided

access to their application. This chapter answers the central thesis question, which is how

to perform load testing for a Vaadin Flow application. Numerical values for session size

and response times are presented as well. The chapter then concludes integrating tests

into a maven build’s verify phase.

Chapter 6 is an analysis of the research of the thesis. It contains a description of the

difficulties faced during the assembling of tests and outlines some limitations of the tools.

The parts of the implementation that could have been done differently are also discussed.

Alternative solutions available on the market are also presented. An evaluation of the

work is presented, and future steps are examined. The last chapter is a conclusion, which

summarizes the results and implications of the work.

3

2 Load testing and application performance

Our world has changed dramatically over the last 20 years, with ever-evolving and

expanding offerings presented on the Internet. With business continuously moving to the

web, more and more services [1] are becoming available online.

In a competitive software business-environment, it is critical to ensure availability and

responsiveness and to meet user expectations, thus enhancing revenue and achieving

business targets. Based on research conducted on online retailers, a half-second difference

in page loading time may make a 10 % difference in sales [2]. To verify that SLAs and

Quality of Service (GoS) requirements are met, various types of tests are run against target

software. Each of these tests is aimed to trial a different aspect of a product, from

functionality to performance.

This chapter provides background on load testing, which is the cornerstone of the thesis.

It also discusses methods and techniques available on the market to improve the

performance of web applications as well as Java language and its memory management.

By the end of this chapter, the thesis question What are the performance improvements

approaches utilized during development and deployment of a web application? is

answered.

2.1 Performance testing

Performance testing is a non-functional type of testing whose goal is to identify and,

where possible, eliminate stability, availability and scalability issues of software [3]. It is

an umbrella term that encompasses scalability, load, and stress testing. Although those

words are sometimes used interchangeably in the literature, in this thesis they are

differentiated and will be defined in subsequent sections.

Performance requirements for software can be divided into two parts: service-oriented

such as availability and response time and efficiency-oriented such as throughput and

utilization [4]. Availability requirements for applications vary significantly. Companies

competing for customers aim for high availability, which is the 5th availability class,

guaranteeing 99.999% (five nines) uptime of service. In other words, a permitted

downtime for a service is only five minutes per year [5]. To achieve this level, an

application often runs on multiple servers to distribute an incoming load.

4

Another goal of performance testing is to carry out a capacity estimation, which includes

an evaluation of the Random-Access Memory (RAM) needed to function smoothly and a

number of servers on which a new application is deployed. For this purpose, load testing

is employed, among other methods for estimating minimum requirements.

2.1.1 Load testing

Load testing is a type of performance testing used to verify and study the behavior of a

system under generated load. By simulating hundreds or thousands of simultaneous users,

it helps to reveal a system’s performance, investigating metrics such as latency and

Central Processing Unit (CPU) utilization vs. request amounts.

To obtain valid and feasible results, the most critical and common flows should be tested.

Checking the load and response time of a Contact Us page is less important than verifying

that money transferring operations are consistent under different loads in an online

banking app. Examining non-critical paths does not add any value; therefore, ideally, a

test scenario should be obtained from a real user iteration or based on insights of a person

who knows the system.

Many tools for running web application loading tests are available on the market. Among

the best known are LoadRunner, JMeter, and Gatling. A free version of the latter two is

available, including a recorder tool, which creates a test scenario/script from recording a

user iteration with an application in a browser. JMeter and Gatling will be reviewed in

greater detail in Chapter 4.

2.1.2 Scalability testing

There seems to be no generally accepted definition of scalability, though it is used

extensively in the literature [6]. For the purposes of this thesis, I will define scalability as

the ability and property of a system to scale and continue to perform well as a user changes

demands [7] [8].

Achieving scalable software is the responsibility of the whole development team at any

stage, but the most impactful decisions are made during architectural planning. A system

should be designed from the ground up to be scalable; making changes later will increase

expenses significantly. Testing of a newly implemented feature or modification against

requirements to verify no regressions are introduced to a codebase should be an automatic

5

routine. As part of this process, scalability testing checks the ability of an application to

adjust itself to meet user needs by simulating changing load traffic. Modules that decrease

performance should be identified and fixed. Any hardware limitations that are revealed

should be addressed if user growth is expected. At this stage, there is no need to verify

performance under a load exceeding a forecast; this is a goal of stress testing.

2.2 Performance enhancements

There are two ways to improve scalability of an application at a deployment stage: scaling

up or scaling out. The latter is better known as horizontal scaling. As the name implies,

new server replicas with a deployed application are added to a set-up. The vertical

approach, on the other hand, improves scalability by enhancing a running server through

increased hardware capacity and power (CPU, RAM). However, it may ultimately fail

when there is no better hardware available, or the cost of maintenance becomes

uneconomical. While horizontal scaling may require modifications to a codebase of

software, it is the preferred of the two methods, promoting rapid and cost-effective growth

of service [9].

2.2.1 Load balancers

The fastest way to handle a request is not to handle it at all. While sometimes this can be

achieved by serving previously cached data, other times the request will be forwarded to

a server for processing. An application is generally deployed and run on different servers

to increase its availability and reduce response time. Load balancers are then employed

to distribute the workload between replicas equally.

A load balancer is a hardware device or software program, whose primary goal is to

distribute a workload (incoming requests) among servers behind it. Servers can be

grouped in a cluster, where nodes are aware of one another and can share information, or

in a farm, where servers operate independently. A load balancer can operate at the

application or transport level of the OSI model. The seventh(application) layer load

balancer makes routing decisions based on the content of a received message such as a

cookie or URL. In contrast, the fourth level(transport) acts on individual Transmission

Control Protocol (TCP) or User Datagram Protocol (UDP) network packets [10].

A load balancer periodically checks which of the managed servers is still active and can

respond to an incoming request. A server that ignores check connection attempts will be

6

excluded from a pool of available nodes [11] [12]. This ensures that work is distributed

only among servers, which are capable of processing it.

For users, this process is transparent, meaning that they will not know a load balancer is

being used at all. In case of a default server failure, an incoming request will be redirected

to one node among a pool of active nodes. From a user perspective, a workflow can be

described as follows:

1. User hits the Uniform Resource Locator (URL) in a browser.

2. A request reaches a load balancer.

3. Based on an underlying load balancing algorithm, the request is propagated to a

chosen server.

4. The request is processed on the server.

5. A response is sent back to the client. (The fourth layer load balancer does not

require that traffic be routed back through it, whereas the application balancer

does.)

As mentioned in the third step, a load balancing algorithm decides which server will

handle an incoming request. There are multiple algorithms available; the most commonly

used are Round Robin and Least connections [13] .

A load balancer that uses a Round Robin algorithm distributes requests among servers in

turn. For example, having three servers behind a load balancer, the first request is sent to

the first one, the second to the 2nd server, whereas the 4th request is sent again to the first

node. Although this algorithm is the easiest to implement, it does not consider the current

workload of a server. Each request takes a different amount of time to be processed,

resulting in some servers being overwhelmed [14]. To overcome this problem, the Least-

connection algorithm can be used instead. A request will be sent to a server having the

least connections open, balancing the overall workload. Both round-robin and least-

connections algorithms have weighted versions, where hardware capabilities of servers

are taken into considerations. Each server has a value assigned to it by an administrator,

and the bigger the value it has, the more amount of work it can process. For example,

assuming the first server weights four and the second is of weight 1, then a round-robin

7

configured balancer sends every fifth request to the second server. By contrast, the least-

connection algorithm re-calculates the capacity of a server based both on weight and

number of current connections to distribute requests.

In the case of a stateful application, requests from the same user must always be sent to

the same server, which has created and stores the session [10]. A solution to this

consistency issue is sticky sessions, also sometimes referred to as a session affinity.

Enabling this feature makes load balancer route traffic to the same server instance for

requests coming from one user.

There are various ways to define and later determine which server has a session object

for a user and where an incoming request should be sent. Standard identifiers for the 4th

layer load balancer are source’s IP or VIP address and a port number specified in a

TCP/UDP packet. For a load balancer operating at the 7th layer, request cookies are

usually used to find a server. A request from a new user can be sent to any server, based

on an underlying load balancer algorithm.

Load balancers improve scalability and load performance of an application significantly.

Nevertheless, employing LB should not introduce a single point of failure for the system.

Deploying a second load balancer is an example of a failover strategy, which might be

utilized. A heartbeat mechanism can be used to verify a primary load balancer is active.

If a primary load balancer crashes, the second node will become a new default.

2.2.2 Cache

Another technique that is widely used to improve latency and throughput of an application

is caching [15]. A cache is a temporary data storage where already fetched information

can be persisted for faster access in the future. The best candidates for caching are static

resources, or those that change infrequently, such as pictures, JavaScript (JS) files, and

Cascading Style Sheets (CSS) stylesheets. Another candidate for caching are operations

that are expensive to calculate.

Between client and server, various caches are available, from a browser and application

cache to Content Delivery Networks (CDNs) and reverse proxies in front of an application

server. Caches can be divided into two groups based on an allowed access level: shared

(available to multiple users) and private (single user has access) [16].

8

2.2.2.1 The Hypertext Transfer Protocol (HTTP) caching

To specify which resources are cacheable and for how long, developers define values for

HTTP cache headers. A cache-control directive dictates how content can be cached.

Available options for the rule are public, private, no-cache, and no-store.

Without this header set, all other applied caching rules would not have any effect [17].

A header with public permission allows a resource to be stored at any caching level.

Consequently, it is not a viable option for sensitive content, access to which should be

limited. Based on this, either private value, which dictates that storage is allowed only

in a private user’s cache, or no-store value, which prohibits caching completely,

should be used.

To specify the amount of time needed for a previously downloaded resource to be

considered alive (not stale and applicable for re-use), the max-age is used. After a value

has expired, a resource has to be fetched again.

A cache miss occurs trying to read data from a cache, which is not present there. In this

case, the request is forwarded to a higher cache in a chain (closer or to an application

server).

2.2.2.2 Reverse proxy server cache

A proxy server is an intermediate node between a client and a server, passing a user’s

request through and forwarding it to the server if needed. A forward proxy is commonly

used in enterprise systems to restrict access to the Internet and enhance security. All

requests are forwarded directly to a proxy, and if it has the requested data available, it

will send it back immediately. The primary benefits of a forward proxy are savings in

network bandwidth and faster client response time. A reverse proxy, by contrast, prevents

clients from accessing an application server directly, as a DNS lookup for the site’s IP-

that user wants to reach- is resolved to the proxy’s IP [18]. The user is not aware that

content is provided from a reverse proxy server, assuming it communicates directly to the

application server. Aside from faster content delivery and improved security, the number

of requests needed to be processed by a server is reduced. A decreased number of requests

for fetching static data allows allocating resources to serve requests for dynamic content

9

[19]. Various implementations of reverse proxies such as Varnish [20] and NGINX [21]

are available.

2.2.2.3 Database cache

An enormous amount of data needs to be stored and processed in business applications

nowadays. For many of them, a database becomes a common performance bottleneck.

Queries to data repositories are usually identified as among the most substantial reasons

for low scalability of software.

To improve throughput and responsiveness of a database, additional cache memory is

needed. It can be integrated within the database itself, added as a local cache (discussed

with the application cache), or located on a separate server instance.

Multiple caching strategies are available, and some of them are described below [22] :

• Cache Aside. This type of cache is separate from a database. It is positioned aside

and does not communicate with a database directly. When a user requests data,

the cache is always asked first. If no result is present, an application retrieves

missing data from a database and writes it back to the cache. Data can be written

in any form. The cache aside approach is great for read-heavy applications, yet

the first request will take longer because data are not present in the cache yet. A

drawback of this strategy is that an application itself is responsible for writing to

and handling data between an underlying datastore and the cache, adding

overhead and complexity to its codebase [23].

• Read-through. As with a Cache aside storage, a read-through strategy

implementing cache is always asked first before issuing a request to a database.

Data is also loaded lazily when first requested. Nevertheless, contrary to the above

option, a read-through cache is aware of an underlying database and usually

initiates read and write actions to it on a user’s behalf. This also implies that

information is stored in the same form as in the original data source.

• Write-through. Data are always written to a cache as it is updated to a database.

Consequently, the most recent version is always present in the cache and is not

fetched again so long as its expiration date is in the future. The downside is that

rarely accessed modified information is also written to a cache.

10

• Write-Back. Data are written to a cache but propagated to a database after a

specified delay. This is a good choice for applications with a write-heavy logic.

Selecting a cache strategy depends on the use case and available resources. No matter

which one is chosen, one must always ensure that stale data is not served. Setting an

expiration date or updating data manually should be considered potential

countermeasures. For instance, Redis [24] is often used as a cache along with the primary

storage. Another example is a ReportServerTempDB database, which is used internally

for a Report Server Database [25].

2.2.2.4 Application cache

In cases where some operations and calculations take a long time to complete or are

expensive to recalculate, application cache is a practical storage solution to persist results

during an application run. Data created or requested by one user are stored locally or

distributed on outside servers for later re-use. Popular choices for local storage are

Guava’s cache [26] solution and cache2k [27]. Memcached is a cache memory distributed

on multiple servers [28]. It is important to note that such an application cache is neither a

replacement for a database nor meant to store a lot of information. If such outcomes are

needed, another optimization technique should be considered.

2.2.2.5 Content Delivery networks

A larger user base implies diversity of users’ physical locations. While caches described

above increase the throughput and availability of any deployed to a server service, none

of them brings improvements to the network performance. CDNs are generally employed

to fulfill a service’s SLA and ensure transparent and efficient delivery of content to end-

users from different locations. CDN is not a replacement for any of the techniques

presented earlier, but an enhancement to further improve performance.

CDN is a group of servers distributed over different geographical regions, which uses

caching and/or the origin server’s replication to deliver content to end-users. A request to

a web-service is redirected to the nearest edge server, which increases reliability,

responsiveness, and performance of the system as its content is located closer to the user.

Numerous CDN providers are available. Among the biggest market shareholders are

Akamai and Amazon CloudFront [29].

11

2.3 Java

Java is a widely used, strongly-typed, and object-oriented language. First released in

1995, it has since evolved considerably. By default, it is a language used to develop a

server-side part of Vaadin applications. In this subchapter, a brief introduction to

language details are given, and its performance influence on applications is discussed.

The development process of any Java application can be described as follows: a developer

writes code in a .java file, then the javac compiler compiles code into a .class

bytecodes (JVM instructions) file. A virtual machine will process those class files during

an application run.

A JVM is an abstract computing machine, multiple implementations of which are

available, each fulfilling Java Language and Virtual Machine specifications. Efficiency

and performance of an application depend greatly on how memory is managed and

allocated; therefore, I now turn to an analysis of memory management inside a JVM.

2.3.1 JVM memory management

Java has an automatic built-

in memory management

system that is responsible

for the lifecycle of objects.

Consequently, developers

have no way of discarding

any object explicitly.

Memory can be viewed as a

heap or not heap-based. A

heap is created at a JVM

start-up and is common for

all executing threads. All

class instances, as well as

arrays, are allocated from a

heap. The heap is

structurally divided into two areas: young and old generation, used in garbage collection

mechanism. New objects are allocated from the young generation. Objects that have

Figure 1. JVM Memory management

12

survived a certain amount of garbage collection cycles are propagated to the old

generation. Because garbage collection and storage management implementation details

are JVM’s vendor-specific (Oracle or OpenJDK, for instance), no exact type is

assumed.

A method area also shared among running threads is logically a part of a heap area, but

because as specification does not require the exact location it may vary from

implementation to implementation. The method area contains per-class information, such

as method code and data. It also contains the Run-Time constant pool, created per class

or interface.

Java is a concurrent language, where each thread has its own stack. A stack is thread-

private and not accessible for other running threads. Per every method execution, a new

frame is created and allocated from the thread. The frame stores an array of local

variables, an operand stack, and a reference to the method of class inside the run-time

constant pool. There is always only one current frame and method being executed in a

thread of control. The simplified diagram of the JVM memory structure is presented in

Figure 1, adding such parts as native method stack and pc register, which were not

mentioned earlier. Moreover, the method area is placed outside the heap [30].

2.3.2 Performance pitfalls and countermeasures

Except for an Application cache, all previously discussed improvements techniques are

applied to a fully developed system, which might already be in production. This

subchapter will try to bridge the gap by introducing programming pitfalls, avoidance of

which can potentially improve the liveness, stability, and performance of any Java

software.

2.3.2.1 Memory leaks

Garbage collection is a crucial process of memory management that deallocates

unreached objects from memory. Objects created during a program runtime are always

allocated from a heap. To be picked by a garbage collection process, an object should not

have any strong references from the garbage collection (GC) root’s objects [31]. An

object reachable outside a heap, such as a local variable in a stack frame, an active thread,

or a class loader, is called a GC root.

13

Under some circumstances, a GC may retain a no longer needed object, causing a memory

leak. Thus, objects that are irrelevant to program execution are not reclaimed, and

memory is not freed, causing heap size to grow over time. In the worst-case scenario,

performance decreases, and a program crashes with the

java.lang.OutOfMemoryError thrown. Often, such situations arise from

incorrect handling of resources, bad coding practices, or use of third-party flaw software.

 One of the most common scenarios that produces a leak is a resource left open after

handling is complete. For example, after reading an input stream using BufferReader,

close() must be called. The same applies to database connections and ResultSet.

With Java 7, a new try-with-resources block was introduced to mitigate the risk

of leaving resource implementing AutoClosable interface open, guaranteeing it will

be closed at the end of statement execution [32].

Eliminating memory leaks improves the efficiency and stability of software.

2.3.2.2 Deadlocks

Parallelizing task executions can improve resource utilization and responsiveness. Java

implements concurrency using threads. If processing capacity allows, new tasks can be

started while existing ones are still running. Although performance can be enhanced

significantly up to a certain point, one must make sure that excessive lock contention or

deadlocks are not accidentally introduced.

A lock is an object held by a thread that allows for exclusive access to some resource.

Deadlock is a situation where a thread waits to acquire a lock, which is held by a second

thread, which in turn waits for another lock to be released by the first thread. For example,

thread A has acquired X, and thread B holds Y a lock. Now, if both A and B try to acquire

Y and X locks respectively, they are stuck in a deadlock and no further progress can be

made. A Java program, compared to a database system, does not recover from a deadlock,

leading at the very minimum to degraded performance and at maximum to a completely

non-functional stale application [33].

The example described above represents a lock-ordering deadlock, which can be

eliminated if locks that are used in conjunction, are always acquired in a fixed global

14

order. The same applies to a dynamic lock-ordering deadlock, which can be avoided, for

instance, by acquiring the lock with the biggest hash first.

Starvation and livelock are two other problems to the liveness of an application caused

by threads. Starvation occurs when a thread cannot obtain access to a needed resource

such as CPU cycles. In liveness, in turn, the thread retries to accomplish operation, which

always fails. While in starvation and livelock scenarios a thread is not blocked, no work

can be accomplished either.

2.3.2.3 Connection pools

Creating and maintaining a new connection to a database is an expensive operation. Re-

using of pre-created connections is a de-facto optimization technique used in software

development called connection pooling. Instead of opening a new connection, an existing

one is retrieved from a pool and reclaimed back when it is no longer needed. Several

established implementation frameworks exist, including Apache Commons DBCP and

HikariCP. The latter is the default pooling choice of the Spring Boot framework [34].

15

3 Vaadin Flow applications

Flow is an open-source Java web framework that is offered as a part of the Vaadin

platform. It is the next generation of the well-known Vaadin 8 framework and has a

completely re-written integration for a client-side part, which brought support for Web

Components.

A web application developed with Flow runs on JVM; thus, any language belonging to

the JVM family, such as Java, Kotlin, and Scala, can be used to write an app. Actively

developed and maintained by Vaadin Ltd., the framework is licensed under the Apache

2.0 license, and the source code is available at the official GitHub page [35]. This chapter

is an exploration of Flow. It outlines its essential components, which characterize any

application built with the framework.

3.1 Communication model

Flow is a server-side framework that leverages automated bi-directional communication

between a client (web-browser) and a server. A client-side Document Object Model

(DOM) tree has a corresponding representation on a server-side with a User Interface

(UI) element at a root. Each Element instance of a server-side DOM represents a real

browser DOM element. The synchronization of changes that applied to an element

happens automatically between a server and a browser. A communication process is

transparent to a developer and happens on top of the HTTP or WebSocket protocols [36].

3.1.1 Deployment

When a request comes from a user to a server, the corresponding VaadinServlet

(mapped to the specified path) receives it and delegates it to VaadinService for

processing. Actual processing happens in the VaadinServletService, which

implements VaadinService’s abstract methods. The incoming request is further associated

with VaadinSession, which determines the particular UI instance that it belongs to.

VaadinSession contains relevant information needed for a Servlet to process a

request, and it is usually stored inside an HttpSession object, although this is not

required. VaadinServlet is an extension of an HttpServlet class, which

implements a Servlet interface. A servlet is a Java program that runs inside a web

server, which receives and responds to requests from a client. The diagram below shows

16

the relation between the classes described above; arrows follow the Unified Modeling

Language (UML) convention.

Figure 2. A request handling process

The Vaadin application is deployed to a Java application server, such as WildFly and

Tomcat, implementing the Servlet Specification. The minimal required version to be

supported by a servlet container provider is 3.1.

3.1.2 Push

In a client-server architecture (request-response workflow), communication is always

initiated by a browser. To immediately receive updates to a UI, without waiting for the

next browser request, a server push technology is equipped with the Vaadin framework.

After a connection is established between a client and a server, updates can be sent

asynchronously between the parties. By default, the transport protocol used by Vaadin

Push is WEBSOCKET_XHR, which uses WEBSOCKET for a server to communicate with

clients and XHR for clients to communicate with a server. As well as WEBSOCKET and

WebSocket+XHR, Long_Polling is also available via the HTTP transport mode.

Compared to other options, WebSocket enables a full-duplex communication channel

over a single TCP connection.

A push method can be configured by setting a transport property. The framework adopted

by Vaadin that provides push functionality is Atmosphere [37]. If a browser does not

support the WebSocket, Atmosphere will revert to one of the supported transports.

17

There are three modes available for push management: disabled (push is not used),

automatic and manual. As the name implies, the manual mode requires a developer to

call push explicitly, whereas, the automatic mode does not require developer

involvements, as changes are pushed after a session lock is released.

Push can be configured for an individual view or for the whole application. The same

annotation, shown in Figure 3, is used in both cases. The only difference is the

annotation’s placement. For an application-wide setting, it is in the main layout, and for

a view, it is in a view class itself. The default mode for push, when unspecified, is

automatic.

3.1.3 User session

The HTTP is a stateless protocol. To associate requests coming from one user, there are

different session tracking mechanisms. One of the most used techniques on the web, also

adopted by Flow, is cookies. Therefore, for a Vaadin application to function correctly,

cookies should be enabled on a client’s browser.

A new session is instantiated the first time a user visits an application’s page. A server

cookie, named JSESSIONID by default, is generated by a servlet container and sent with

a response back to a client. Any subsequent request from the same user contains the

cookie that is automatically added by a browser, which associates the request with a

session on a server. A created HttpSession is scoped at an application level [38].

3.2 Client-side

An element’s client-side part is built on top of the Web Components. Web Components

is a specification and a set of Application Programming Interfaces (APIs), which defines

a way to build new custom Hypertext Markup Language (HTML) tags to use on web

pages. The specification is based on four smaller specifications: Custom Elements,

Shadow DOM, ES(ECMAScript) Modules, and HTML template [39]. Together, they

provide a way of building custom components with encapsulated functionality.

Encapsulation ensures that an object is protected from unwanted modifications by

restricting access to its internal representation or state.

@Push(transport = Transport.WEBSOCKET,value= PushMode.AUTOMATIC)

Figure 3. Push definition with transport and mode specified for an individual view

18

ES Modules, also sometimes referred to as JavaScript Modules, is a part of the

ECMAScript language specification, which JavaScript conforms to. JS has a standardized

syntax, which defines how code that is structured in modules can be exported to and

imported from other modules. As ES Modules is a feature of a JS language that is not

directly related to a Flow application’s use and development, it will be omitted from

further discussion.

The current Long-Term Support (LTS) version of Vaadin uses the Polymer web

component library to facilitate and ease the creation of custom components.

3.2.1 Shadow Domain Object Model

DOM represents the structure of an HTML page as a tree of nodes that have parent-child

relationships. The original DOM API does not support encapsulation, making it hard to

preserve the identity fields and stylistic rules. Consequently, HTML and CSS documents

imported from elsewhere might overlap in both style names and IDs, causing bugs in the

rendering of the pages.

To address this issue, a Shadow DOM API specification introduced a scoped DOM called

a shadow tree. Shadow DOM is attached to an element of the tree and encapsulates its

content from the other components presented in the document. Any node added or style

applied to this shadow tree is local to a host element and is not accessible using the regular

DOM API [40].

3.2.2 HTML Template

A template is a reusable fragment of an HTML content, which can be inserted in a

document using JavaScript during runtime. It is not rendered nor executed by a browser

until it is activated [41]. A template itself does not have child elements in DOM, and its

content is located inside a DocumentFragment object [42]. Flow supplements bind

with Polymer templates to simplify the creation of custom components. To use a template

on a server-side, a Java counterpart class extending PolymerTemplate is created. A

class can also implement an API to modify a template [43].

3.2.3 Custom Elements

Custom Elements is a JavaScript API, which specifies the way to build custom DOM

elements. These elements can be divided into two groups, depending on the extended

19

element: autonomous and customized. A customized element inherits properties from an

existing HTML element, simply adding functionality to it. An autonomous element, with

rare exceptions, extends an HTMLElement interface.

For a custom element to be made available on a page, it should be registered to a

CustomElementRegistry. Subsequently, an autonomous element can be added to a

page using a tag name added to a registry [44] [45].

In this thesis, a simple component called CustomDiv was created to illustrate how the

Custom Elements, HTML template, and Shadow DOM work within a Flow application.

Complete code for it can be found in Appendix A; in this section, only the relevant parts

are presented.

The content and styles of a new element are specified inside the <template> tag in a

JS file, which represents an HTML Template technology. Shadow DOM encapsulates

styles and content defined inside the tag. As part of the custom elements’ specification,

the element is added to the register. Figure 5 contains the defined element.

To use an element from a Java API, a counterpart class extending a PolymerTemplate

should be created. For simplicity, a class for the custom element defined above is a

CustomDiv. Along with a Vaadin button, this component has been added to a

VerticalLayout. The rendered layout is presented in Figure 6.

Button button = new Button("Vaadin Button");

//A newly created component using HTML template

CustomDiv customDiv=new CustomDiv();

add(customDiv);

add(button);

Figure 4. Adding elements to a VerticalLayout.

20

By inspecting an

attached element

in Chrome

DevTools, one

notices that a

reusable

custom-div

tag from a

CustomDiv

class was created.

A Shadow DOM

of this element

contains

encapsulated styles and input with a button field specified inside the template tag.

Attempting to modify styles or call functions of inner elements from a page using

regular HTML API has no effect. For example, attempting to get a value of paper-input

element calling document.getElementById(“inputId”).value

throws NullPointerException, as there is no globally available element with the

inputId ID.

static get template() {

 return html`

 <style>

 .displayColumn {

 display: flex;

 flex-direction: column;

 background-color: antiquewhite;

 }

 </style>

 <div id="customDivContainer" class="displayColumn">

 <paper-input id="inputId" label="Put your name here!">

 </paper-input>

 <button style="width:120px" on-click="handleClick">

 Alert the name!</button>

 </div>`;

}

 //Register a new custom component

 customElements.define(CustomDiv.is, CustomDiv);

Figure 5. Content of a custom-div.js template

Figure 6. CustomDiv rendered in Google Chrome browser

21

3.2.4 Optimizations and IE11 support

To bundle JavaScript files, Flow uses a webpack library. As well as bundling, webpack

also performs transpilling, gzipping, and minification of JS files, which improve the

client-side performance of an application. Better performance is achieved by a reduced

amount of HTTP requests aimed at fetching frontend resources, as only one minimized

bundle is downloaded. During minimization, unused code, including any comments and

spaces, is removed. Variables are renamed to reduce the size and consequently load time.

Those optimizations are run once an application is packaged in a production mode.

JavaScript transpilling is a conversion of a newer version of an ECMAScript syntax into

the older one, supported by a required environment. It is needed for IE11, which does not

have native support for a syntax introduced with an ES6 and used by Flow [46]. While

transpilling transforms script so that it is understandable in a browser format, some of the

features needed have not yet been implemented in IE11 and cannot be used. To emulate

them, a polyfill, which is a JS piece of code used to provide a missing functionality on

older browsers, is included [47]. As of March 2020, IE11 still lacks support for Custom

Elements and HTML Templates. Performance in IE11 is considerably worse compared to

the other browsers, due to the need for polyfills.

3.3 Performance

As mentioned above, a Vaadin application is stateful. A state is persisted on a server-side

within a user session. It contains a list of UI components with their internal states, such

as captions and style names, data displayed on a screen -for example, a combo box's

content- and any other data referenced from UI objects [48]. Thus, performance of an

application significantly depends on the amount of data stored, used, and shown for a user

and can be configured by a developer.

The predominant performance issues of Vaadin applications usually do not arise due to

the framework itself. These issues include retrieving and storing too much data from a

backend, initializing views prior to their actual use, and complicated and un-optimized

Structured Query Language (SQL) queries to a data source. Each issue has a significant

negative impact. These examples are sources of server-side performance issues, which

increase memory print and response time. On the client-side, rendering time can increase

if a UI layout has a complicated structure or has too many components added to it.

22

A lazy loading technique is used to delay the fetching of resources until they are needed.

For example, a Grid component, which is used to display tabular data, employs this

mechanism to only fetch visible rows of information. Once one scrolls, the next section

of the required data is loaded. This is an example of lazy loading between an application

server and a client that is implemented in the framework by default. A similar method is

utilized for a combo box component.

Data fetched from a server is usually first retrieved from backend storage, such as a

database. When a significant amount of data needs to be fetched, an example of a

recommended approach is to implement lazy loading for an interaction with a database

using pagination.

Another approach widely used to improve the availability of a web application is session

replication. While, in theory, standalone session replication is possible with Vaadin, its

implementation is not trivial. Sticky sessions, discussed in the second chapter of this

thesis, are a recommended approach to achieve results comparable to standalone session

replication. Nevertheless, if high availability is a requirement, then a nearly identical

outcome could be obtained utilizing both sticky sessions and session replication. In such

a set-up, a session is serialized and replicated to another server (or saved to a database)

after each request. However, requests coming from the same user are still processed by

the original server [49]. In the case of failure, a user’s request will be redirected to another

server. If a replicated session is persisted into a database, it will be loaded into a server’s

memory, which becomes a new default choice for further communication.

While session replication is a powerful technique to improve availability, it can bring its

own performance bottlenecks to the app, especially when the session size is big.

Therefore, sometimes a trade-off must be made.

All performance techniques and improvements presented in the previous chapter, such as

load balancing and caching, are applicable to Vaadin applications as well. If performance

constraints are revealed during testing, the introduced methods should be considered. An

application, which is expected to process more traffic over time, must introduce the

discussed techniques to guarantee the availability of its services. The next chapter lays

out a foundation for building load tests, which helps in exposing and detecting

performance bottlenecks. Different profilers are used in conjunction with load testing

23

tools to locate and analyze problematic parts of the code. For instance, commercial

JProfiler tool and bundled with a JDK Java VisualVM are widely adopted options for

profiling a Java application.

24

4 Designing load tests for a Flow application

The previous chapter has discussed the theoretical background of performance testing and

the internals of a Vaadin application. The answer to the thesis question “How can a Flow

application be load tested,” is given in the next chapter by introducing a procedure on an

existing production-ready Flow application. This chapter, instead, discusses the vital parts

of JMeter and Gatling tools, which are employed to build and execute a load test.

To facilitate and simplify testing, both tools provide utilities to record user interaction

with an app. A test script, which is generated from captured requests, provides a base for

further development. Subsequent subchapters will show, how script can be recorded and

adjusted to accommodate unique Flow elements, which are defined and discussed next.

4.1 Flow features

To answer the second thesis question, “What are the distinctive features of a Vaadin app

from a load testing perspective?”, the unique aspects of a Flow application must be

considered. These traits dictate rules to follow during test creation and, therefore, it is

essential to establish them. Failing to do so, results in the best-case scenario, in a failure

on a test start-up, and, in the worst-case scenario, in incorrect and misleading results. The

following subchapter will answer this question.

4.1.1 An HTTP request

An HTTP request is a base unit of a web application load testing. To provide additional

security measures and synchronization, the framework adds special-use attributes to a

request’s body. For a simulation to be successful, one must consider these attributes.

To inspect a payload and the URL of a request, which is sent to a server, a simple starter

application, downloaded from the Vaadin website, was deployed to a local jetty container.

Its view consists of a vertical layout and a button. Clicking the button issues a request to

the server with this URL: http://localhost:8080/?v-r=uidl&v-uiId=1.

The request payload is

{"csrfToken":"9f558d39-3f2d-4c94-b1cb-

d9711e2700e5","rpc":[{"type":"event","node":4,"event":"click","d

ata":{"event.shiftKey":false,"event.metaKey":false,"event.detail

25

":1,"event.ctrlKey":false,"event.clientX":49,"event.clientY":32,

"event.altKey":false,"event.button":0,"event.screenY":103,"event

.screenX":1585}}],"syncId":0,"clientId":0}

The v-uiId URL parameter with syncId, clientId, csrfToken and node

attributes are of interest for this thesis, as they have an impact on a load test configuration.

A brief introduction to each, with an emphasis on their functional purpose, is given below.

4.1.2 A csrfToken

A csrfToken, which is included in the payload, is a defence mechanism implemented

by Vaadin against a Cross-Site Request Forgery attack (CSRF). It prevents undesirable

actions being performed on a user’s behalf by a malicious program on an authenticated

site. Each user has their own unique token generated by the framework. A token is created

and passed to a user with the first response from a server. With every subsequent request,

it is sent back. The framework verifies both the validity and the existence of value for

each user request [50].

Due to the unique nature of the token, replaying a previously recorded load scenario as is

will not produce any meaningful output. Trying to do so results in an

InvalidUIDLSecurityKeyException exception thrown on a server-side while

processing a received request. This error indicates that a retrieved token does not have an

expected value.

To simplify test execution, if possible, one can disable the CSRF protection during load

testing. Otherwise, a generated value must be extracted from the first response and

parameterized for all the following requests.

4.1.3 v-uiId and node

The v-uiId is an ID with a goal of associating the server-side UI with the corresponding

client-side instance. A new UI is created every time a new tab or a browser window is

opened or refreshed. UIs belonging to one VaadinSession are stored inside the

<Integer,UI> map, where a key value is an ID of UI obtained from a request.

A node is a unique value of an element and its goal is to associate a client-side DOM

element with a server-side component. It is used in Remote Procedure Call (RPC)

requests to exclusively identify the component’s listener that must be fired or to identify

26

where changes must be applied in the UI. The next value (incremented by one) is assigned

to a node during an attach event. If the UI’s hierarchy remains unchanged, this value is

a constant for an element.

4.1.4 Synchronization tokens

To ensure messages are processed in order, the framework internally uses two

synchronization tokens: syncId (server-to-client) and clientId (client-to-server).

Every time a new request is sent, a clientId is incremented by one and added to a

payload. If expected and received values do not match on a server, a re-synchronization

attempt should be issued. Currently, a re-synchronization implementation for a case of

clientId mismatch is being developed [51]. At the time of writing this thesis, if an

unexpected value is received on a server, the exception below is logged in server logs:

java.lang.UnsupportedOperationException: Unexpected message

id from the client. Expected sync id: X, got Y.

The syncId token, in contrast to the clientId, is incremented by one with every

response. A client always appends the last seen syncId value to a payload, which

guarantees that requests are processed in order on a server. If a received value is bigger

than expected, the operation is postponed until the missing messages arive. A syncId’s

value verification can be disabled in an application to simplify the load and scalability

tests run.

There is one more available attribute not presented in the payload above, which is

pushId. If an application is push enabled, each request has a unique identifier, which

associates it with the current session [52]. If this is the case, then an ID should be extracted

in the same way as a csfrToken, as discussed in the next chapter.

4.2 JMeter

First released at the end of 1998, JMeter became a default choice for many companies

that needed to measure performance of their software. In 2016, it was estimated that half

of all companies used JMeter for load testing [53]. Written in Java language, it can be run

on any operating system compatible with Java.

27

In this subchapter, the fundamental and crucial features of JMeter that are used throughout

the thesis are presented. Therefore, the aim is not to offer a comprehensive guide to

JMeter, but to outline the features later used to load test a Flow application.

A saved test is stored in a .jmx format, which is effectively a .xml file. Its root element

is a Test Plan (represented by a jmeterTestPlan tag), which, when run. contains all

configurations and components to be executed by JMeter. All the subsequent discussed

elements are children of some order to it.

4.2.1 Recording

JMeter provides a built-in template named

Recording to capture a user’s navigation on a

web page. User Defined Variables, HTTP

Request Defaults, HTTP Cookie Manager,

Thread Group, and HTTP(s) Test Script

Recorder are components that are added

initially to a generated test plan.

The HTTP(s) Test Script Recorder element

allows JMeter to capture and store requests that are caused by user actions while browsing

a tested web application via a regular browser. By default, recorded HTTP requests are

stored as samples under the Recording Controller, which is usually added under the

Thread Group. Furthermore, intercepted requests that should not be added into a final

script are specified here. In the Request Filtering tab of a recorder component, URL

patterns to exclude are configured. Suggested elements to exclude, such as images and

fonts, along with the custom patterns to ignore, such as accidental Firefox requests, are

added to the rules.

4.2.1.1 Thread Group

At the heart of any Test Plan is a Thread Group element, to which samplers and logic

controllers are added. The number of threads and the time needed to start them (the

“ramp-up period”) are also specified here. Every thread represents a single user, thus

simultaneously running a few simulates concurrent access to a server. A test plan can

contain any amount of thread groups, in which each serves as a separate scenario.

Figure 7. A default Test Plan generated from

Recording template

28

Samplers and logic controllers are two types of controllers provided by JMeter to

manipulate the flow of test execution. Samplers handle dispatching requests to a server.

For each of the supported request types, a sampler is available. For instance, JMeter’s

HTTP and TCP requests are samplers that provide the functionality of sending HTTP and

TCP requests, respectively. Logic controllers, on the other hand, alter and control an

execution order of requests. For example, the If and Only once controllers belong to this

group [54].

4.2.1.2 An HTTP Cookie Manager

As previously discussed, cookies are widely used to implement session management. To

simplify configuration, JMeter provides an HTTP Cookie Storage Manager element,

which handles cookies during a load testing run. JMeter automatically extracts and stores

cookies from an application response, which are then appended to all subsequent requests.

As a result, each thread has its own session [54].

If an HTTP Cookie manager is not added to a test plan, the value must be extracted

manually from the first response and passed to the following requests. The extraction

process conducted on an example of a csrfToken is described below.

4.2.1.3 User Defined Variables and HTTP Request Defaults

To define constants and commonly referenced values such as a host URL address, User

Defined Variables (UDV) element is added to a test plan. A value is stored to a variable

and later referenced by its name using ${variableName} syntax. UDVs are shared

among all Thread Groups, and, once set, their value cannot be changed. In Figure 8, a

configured UDV element, that uses a test discussed in the next chapter, is presented.

Figure 8. A JMeter’s configured User Defined Variables component.

29

The HTTP Request Defaults element contains default values that are shared between all

HTTP Request Controllers. If no value is specified in a controller, the default will be the

value inherited from the element. For example, a server name or an IP address should be

specified in the HTTP Request Defaults element if most requests are targeting the same

server.

4.2.2 Listeners

There are various types of listeners available that allow a test plan to view the results of

the samplers’ requests and responses. For example, a commonly used View Results Tree

listener gathers details about all received responses, whereas the Aggregate Report

contains statistics for each request sent in a test. Based on the listener type, results can be

displayed in a tree, graph, or table mode [55].

4.2.3 Regular Expression Extractor

JMeter provides helper extractors to retrieve information from a response. There are

multiple built-in options available, such as a JavaScript Object Notation (JSON) extractor

and CSS Selector extractor. The choice of extractor is based on the type of data to be

parsed to obtain results. Extractors can be found from a Post Processor menu available

for an HTTP Request Sampler on a right-click of the mouse.

The Regular Expression Extractor is the only extractor used for this thesis. Below, using

this extractor, this thesis shows how a crsfToken is extracted from a response. This is

a routine procedure for any application in which a CSRF protection is not disabled for a

test run.

Vaadin-Security-Key is the name of the attribute that contains a generated CSRF token,

which can be extracted using a Universally Unique Identifier (UUID) pattern. By

combining this, a regular expression Vaadin-Security-Key":"([a-fA-F0-

9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-

F0-9]{12}){1}" identifies the token. To verify regex works, one can navigate to the

View Results Tree listener → Response Data→ Response body and paste the value into a

find input field by selecting the Regular Exp checkbox. If a pattern has matches, these

will be highlighted in green. A configured extractor is presented in Figure 9 below.

30

One can see that in the picture above, two other parameters are set: Templates and Match

No. The last one specifies which match by ordinal number should be stored into a variable

if there is more than one option that fulfills the criteria. As will be shown in the next

chapter, there are two values used during testing: 1 and -1. Value 1 guarantees that the

first found occurrence will be persisted, while -1 makes JMeter process all the variables

saving them in the form variableName_n. Any negative number could also be used

instead of -1.

Sometimes, there is a need to obtain multiple values from a request or response. Match

No. defines which match’s occurrence should be extracted. A Template pattern, in turn,

defines which groups should be derived. For example, used extensively in regular

expressions, the 1 template means that only the first group is stored.

4.3 Gatling

Gatling is a relatively new load and performance testing tool, which was first released in

2012. Built upon the Netty and Akka frameworks, it exploits asynchronous architecture

that facilitates simulating users via messages rather than dedicated threads. Thus,

compared to other load testing solutions, it is less resource-intensive, and more

simultaneous users can be simulated in the same set-up.

Gatling emphasizes the responsibility of a developer. The recording tool is minimalistic,

yet it provides basic functionality to capture requests and generate a simulation stub from

them. Further modifications are accomplished using Scala language in conjunction with

the Gatling’s domain-specific language. As a result of empowering the creation of tests

as code, Gatling has found significant support in the developers’ community. Th general

settings available for a recorder are described in the following subchapters.

Figure 9. Configured Regular Expression Extractor for a CRSF token.

31

4.3.1 Recording

The recorder is started by running recorder.bat (or .sh), which is executable from an

installation’s folder bin directory. Once the Graphical User Interface (GUI) is displayed,

it is possible to configure basic network configurations such as port and proxy, simulation

rules for redirects and static recourses, and filtering policies.

Gatling uses WhiteList and BlackList filters to define the requests that should be

captured or ignored by the recorder. Once a recording is finished, one can remove the

applied filters from a generated script. The recommended approach for fetching static

resources rather than capturing and re-playing requests is to let Gatling retrieve them by

selecting an Infer html resources checkbox. This way, Gatling will simulate a browser’s

behavior and fetch embedded files asynchronously.

4.3.2 A request building blocks

The fundamental unit of web application load testing is an HTTP request. In Gatling, it is

defined using the http(“Name of an action”) syntax, which is followed by an

HTTP method. Only two methods are used in the test created and described in the next

chapter: get and post. The latter one is used in most cases, despite navigating to the

/login and /logout pages.

An HTTP protocol utilized by scenarios is declared using an http object. A baseUrl

method takes the root URL of an application as a parameter. Any path that is later

specified in an HTTP request’s method will be relative to this parameter. The defined

protocol is passed to a scenario object via its .protocols(httpProtocol)

method.

There are numerous helper methods provided by the tool to simplify test creation. Since

introducing all of them is out of the scope of this thesis, only the crucial ones are

described, which are exec, check, and body.

As its name implies, an exec method is used to execute an action during a simulation,

which, in this case, is an HTTP request. The payload information is passed via a request’s

body method. There are multiple overloaded versions of the method available, which take

different input file formats depending on the use case. After a server has answered to a

request, there is usually a need to capture data from a received response. This is the use

32

case for a check method, which either verifies that the response is of an expected form or

extracts data of interest.

Gatling provides a saveAs(key) method to store retrieved results. A value is saved

into the user session and can be referenced later using what is familiar from a JMeter

syntax: ${key} [56].

4.3.3 Reports

Gatling does not require any additional configuration steps to get a visual representation

of results after a simulation run. An HTML file containing statistics is created for the

overall run and for each request separately. Gathered data is presented in both tabulated

and chart views. One can find min, max, and mean response times from the generated

report. Furthermore, active users over time and response time distribution charts provide

an in-depth overview of how an application behaves under a generated load. A developer

does not have to be heavily involved in the process, except for giving a unique name for

each request if she wants to ensure that statistics for both are not accumulated into one.

val httpProtocol = http

 .baseUrl("http://localhost:8080")

 .inferHtmlResources()

 .acceptHeader("*/*")

 .acceptEncodingHeader("gzip, deflate")

 .acceptLangua–geHeader("en-US,en;q=0.5")

 .userAgentHeader("Mozilla/5.0 (Windows NT 10.0; Win64; x64;

rv:66.0) Gecko/20100101 Firefox/66.0")

// User injection for the defined user scenario

setUp(userScenario.inject(

 rampUsers(150) during (15 seconds)))

.protocols(httpProtocol)

Figure 10. A protocol definition and set-up for a scenario

33

5 Load Test Implementation and testing

To achieve a meaningful outcome and to identify problematic modules from running a

load test, a test plan should be appropriately specified and documented. Metrics such as

the expected and the peak number of users must be defined. Ideally, tests should be run

in an environment equal or similar to a production one. Unfortunately, this happens quite

rarely. Typical justifications for this are the privacy of production data, which should be

depersonalized, and the inability to spin-up the same amount of running servers.

Nevertheless, it is vital to preserve the proportions of a production system and introduce

components such as cache servers or load balancers, if a system has them. However, this

does not happen often either, which generally leads to scalability and load performance

issues that are only revealed in production.

From the perspective of this thesis, it is not necessary to meet hardware requirements and

mimic a production build, but it is essential to design and plan a load test carefully. Yet,

anyone designing and executing load tests for real-life use case must also pay attention to

the physical set-up.

Based on the discussions in the previous chapters, the goal of this chapter is to answer the

first question of this thesis: “How does one perform load testing for a Vaadin Flow

application?”. This is done by designing and creating a test against a Flow-based

application. To do this, the first step of this chapter will be to outline the elements that set

Flow load testing apart from other web applications.

5.1 Overview

A load test against any web application that is built using a server-side framework, such

as Django (Python language) or Laravel (PHP), demands, at a minimum, the proper

handling of cookies, headers, cache, and embedded resources. Typically, load testing

tools retrieve and pass cookies automatically to the following requests. Gatling has this

feature enabled by default, and JMeter provides a configurator element that can be added

if needed. This simplifies testing of any cookie-enabled web application. Since both

JMeter and Gatling intercept HTTP traffic, the framework used to build a web app does

not bear any relevance to the tools. However, from a tester perspective, this is essential

since it defines the format of the request’s and response’s payloads.

34

A Flow application, as discussed above, has its own unique traits that are not conventional

to other apps. While any web application might have CSRF protection, there is no way

for a loading tool to know beforehand how, exactly, this is implemented, as this may vary

from one technology to another. Thus, a testing engineer can not necessarily re-use an

existing solution, such as regular expression, and must conform to a current application

under the test. Moreover, clientId, syncId, and pushId are Vaadin-specific

implementation details and this should be acknowledged during test creation. Extraction

of clientId and syncId is not handled automatically by tools; thus, it is a tester’s

responsibility to take care of the synchronization tokens. Lastly, AJAX techniques are

used in Flow to update a changed part of a page without its complete reload; therefore,

only the required data is transmitted.

In Chapter 4.1.1 a payload data that was sent on a button click was presented; a response

to it similar to the one in Figure 11:

From here, one can notice that syncId and clientId values are incremented by one

and that a new label element with a caption “Button clicked!” is attached.

Compared to other web applications, in the Flow app, a tester must ensure and verify that

• A csrfToken is extracted from the first server’s response and passed to all the

subsequent requests.

o If a user authentication mechanism is implemented, there might be three

CSRF tokens generated for a single browser session: before login, after a

user is authenticated, and after logging-out. Each must be extracted and

passed forward for a test to be functionable.

• Each consecutive request has synchronization token values incremented by one.

for(;;);[{"syncId":1,"clientId":1,"changes":[{"node":5,"type":"splic

e","feat":2,"index":1,"addNodes":[7]},{"node":6,"type":"attach"},{"n

ode":6,"type":"put","key":"text","feat":7,"value":"Button

clicked!"},{"node":7,"type":"attach"},{"node":7,"type":"put","key":"

tag","feat":0,"value":"label"},{"node":7,"type":"clear","feat":2},{"

node":7,"type":"splice","feat":2,"index":0,"addNodes":[6]}],"timings

":[1070,0]}]

 Figure 11. A response payload to a request presented in Chapter 4.1.1

35

• Each response is in the form of for(;;);[response JSON].

• An extraction post-processor is applied to the correct response.

o Information that might help reveal the element behind a node value is sent

only once the component is attached to a UI. Afterwards, only an integer

value is used in communication between a client and server to determine

an element.

• The correct syntax is used for extracting values from a response’s payload.

To elaborate on the last point, let’s assume that one wants to find an ID of a newly

attached label from the snippet in Figure 11 for a later re-use. If only one label is available

in the whole UI, then this is a straightforward task. We only need to find that element’s

node value, which has a “value”:”label” in its JSON. Unfortunately, it is rarely that

simple; therefore, we must acknowledge and take advantage of available information. A

caption “Button clicked!” is the only hint available and it is, thus, rational to start from

this. By inspecting the response, one will find the ID of a text node (6), but not the label’s

ID. Reviewing this further, we can see that a text node (6) is directly added to a label

element (7), which is what we are looking for. Knowing that any element can be attached

only to one parent at time, we can extract a parent’s ID, which is a label node value we

were seeking. Overall, the process goes as follows:

1. Extract a node value of a text element that contains a caption.

2. Find an element node’s value that contains the previous node inside the

addNodes array.

3. Extract that node value as an ID of an element.

This procedure will be described in greater detail for both JMeter and Gatling with

concrete regular expressions, which can be reused later by substituting one’s own values.

5.2 Prerequisites

There are no strict rules on how load testing against a Flow application must be

accomplished. In Figure 12, a possible procedure is defined. The order of some actions

can be changed without a negative impact on a test output. Nevertheless, the prerequisite

36

is that no action should be started before the previous one has succeeded. The method is

utilized in the next subchapters to show its applicability and the concrete steps for its

implementation.

5.2.1 Versions

By the time of writing this thesis, there are updated minor versions available for some of

the tools used during test creation. The latest stable versions should be used, since they

contain the most recent bug fixes, new features, and performance improvements. The tests

created and discussed below should be backwards compatible with newer versions of

Java, Gatling, and JMeter.

➢ Define a user scenario with a customer.

o Specify pick and average number of users.

➢ Configure proxy settings for Firefox browser.

➢ Record defined scenario using a load testing’s recording utility.

➢ Mandatory: Extract csrfToken.

o In case application has push enabled, then pushId must also be

extracted.

➢ Optional: Extract clientId and syncId.

➢ Optional: Extract and replace with session’s variables node values of the

vital elements.

➢ Optional: Supply log-in credentials from an external file.

➢ Inject decided number of users over defined period .

➢ Run the test.

➢ Analyze results.

Figure 12. The method to load test a Flow application

37

Gatling 3.0.3 officially supports OpenJDK 8 and 11, whereas JMeter 5.1.1 works with 8

or 9. Therefore, JDK version 1.8 is the only compatible option at the time of writing this

thesis and is used during development. The IDE of choice is IntelliJ IDEA, due to author’s

familiarity with the tool and its support for Scala development.

5.2.2 Browser proxy set-up

For a recorder to capture navigation, a proxy server must be set up to intercept the traffic

between a browser and a requested server. The port defined in the proxy settings of a

loading tool should match the one specified in the browser proxy setting. Firefox is

generally used to interact with an application during recording. Its settings for proxy can

be found under Options→ Network Settings. After a developer has configured a browser

and a load testing tool, she can start a test recording.

5.2.3 Regular expressions

Regular expressions(regexes) are extensively used throughout the tests as a body for a

Regular Expression Extractors. Regex is a searching pattern that is applied to a text to

match a character sequence. The regexes most used during the testing are listed and

described below.

• A dot . matches any character.

• A UUID pattern [a-fA-F0-9]{8}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-

[a-fA-F0-9]{12} [57] is used to extract a crsfToken. The number in curly

brackets {X} specifies how many characters should be matched. The information

in square brackets [] define a range for characters to be in. In this case, each

character can be any letter or digit. Another regex to extract a csrfToken is

[^”] +, which matches anything until ̀ ”` is encountered in non-greedy (stops right

after the first occurrence) mode.

• Respectively, a [0-9]+ expression matches any sequence of digits of length longer

than one. It is used extensively through the tests to extract the values of IDs’ such

as node, clientId, and serverId.

The examples above are usually part of a bigger regex. The part which should be extracted

and saved is placed inside the parentheses ().

38

5.2.4 Scenario

An application to be tested is provided by the FMI. It is used by meteorologists to assess

the accuracy of past weather predictions. Since it is designed for internal use only, the

maximum expected number of simultaneous users is 10. As the amount of expected traffic

is low, the application is deployed to a single server. A relatively simple deployment

scheme gives an opportunity to reliably reproduce the behavior of a system under test on

the author’s working machine.

There are three groups of users: verified

user, meteorologist, and admin, which

each have their own access to

privileges. Due to the space limitation

length of the thesis, only the tests

covering the meteorologist role are

presented and described. There are

multiple locales available for the app.

Scenarios were recorded and further

modified with the assumption that the

UI’s language is the default English.

The defined test scenario for the

application is presented in Figure 13. A

meteorologist has performed all the

actions.

An application must be started in

production mode, which ensures that all

built-in performance improvements

take place. Figure 13. Defined user scenario

39

A screenshot of the Tabulated results view is shown in Figure 14.

In the following sections, JMeter and Gatling implementations for the scenario defined

above are described.

5.3 JMeter implementation

The creation of a test starts by recording the user’s interaction with an application. A

browser is configured to listen to the port specified in the JMeter’s Recorder, which acts

as a proxy. During navigation on a web page, requests are saved under the Recording

controller component. After navigation in the UI is finished and the recorder is stopped,

a generated stub file for further development and modification is available. Development

happens in the same GUI.

Figure 14. The tested UI

40

All controllers of the generated requests should be visited and altered by selecting a

“Retrieve all Embedded resources” checkbox in the Advanced tab. This selection

acknowledges to JMeter that all static downloadable files must be retrieved within a

corresponding request during a test run. Initially, these requests were excluded from a test

plan by the recorder filter policy. Fetching static resources is a required step if one wants

to mimic user behavior as closely as possible.

A JMeter captured request’s payload is in a form similar to the one shown in Figure 16.

By inspecting the request, one can observe that a user has clicked an item with node

value 340 (item-click event has been fired), pressed the ctrl, and released the shift

keys. This is the only way to determine exactly which element has fired the event. As will

be explained later, it usually makes sense to extract IDs of the frequently used elements.

5.3.1 A CSRF token handling

As discussed previously, Vaadin has built-in CSRF protection. There are two ways to

handle this during application testing: either by disabling the protection or by extracting

{"csrfToken":"626843e3-5a31-4c24-a119-

30ed4009f5d9","rpc":[{"type":"publishedEventHandler","node":3

40,"templateEventMethodName":"setDetailsVisible","templateEve

ntMethodArgs":["16"]},{"type":"event","node":340,"event":"ite

m-

click","data":{"event.detail.screenY":451,"event.detail.metaK

ey":false,"event.detail.button":0,"event.detail.shiftKey":fal

se,"event.detail.screenX":4719,"event.detail.itemKey":"16","e

vent.detail.altKey":false,"event.detail.clientX":1776,"event.

detail.detail":1,"event.detail.clientY":322,"event.detail.ctr

lKey":true}}],"syncId":4,"clientId":4}

Figure 15. Configuration in "Advanced" tab for a request

Figure 16. Recorded request without modifications

41

the received csrfToken and substituting it dynamically for all the subsequent requests.

Since disabling the protection is a straightforward step, the second way- extraction- will

be used for this thesis. The token is derived by following the same steps as described in

the Regular Expression Extractor subchapter.

The token is generated on a server and sent back to a client within the first response.

Therefore, the extractor should be placed under the first request to a server. If a value is

saved into a variable called secKey, it can be referenced in subsequent requests using

the ${secKey}syntax. After that, all captured requests should be altered by replacing a

recorded token value with a variable reference. The modified request of navigating to a

Tabulated Results view is shown in Figure 17.

This is the only step that is required to execute the test successfully, though it will not

provide an in-depth insight into how an application works in production. Randomization

of data is needed to get a better overview. Otherwise, one can end up verifying that cache

is working correctly.

An application that employs authentication and authorization might invalidate the first

generated csrfToken and issue a new one, once a user has logged in. In this case, a

token should be obtained again by adding the same extractor under the log-in request.

5.3.2 Extracting an element’s node value

Before demonstrating how randomization can be accomplished, it is necessary to

introduce a method of obtaining an element’s node ID.

There are multiple ways to find and retrieve data from a response in JMeter. A Regular

Expression Extractor is one of the most convenient and powerful utilities to use when

processing Vaadin responses, as has been discussed in the previous chapter. Here, instead,

a logic for finding a correct regex is discussed.

A node attribute contains an ID, which uniquely identifies an element on a page. It is

used to keep track of changes between a server-side and a client-side state of the

{"csrfToken":"${secKey}","rpc":[{"type":"navigation",

"location":"tabulatedresults","link":1}],"syncId":${syncId},

"clientId":${clientId}}

Figure 17. Replaced csrfToken, syncId and clientId tokens

42

component. The attribute is sent to a client when the connected component is attached to

a UI. If an application’s UI remains unchanged after recording a test and the number of

simulated users is low, the captured node values will stay the same. If a developer is

confident that no modification will ever be introduced, she can skip the further

configuration presented below. Nevertheless, this makes a test vulnerable to any changes.

Adding even one component to the application will likely cause it to not work. Also, it

was observed that with a higher number of simulated users, a node value could change

between test runs. Therefore, it is suggested that an ID of an element is derived into a

variable to ensure a test’s stability and continuity. Later, the variable can be substituted

into requests acting upon the element.

5.3.2.1 Filter grids

The right side of the Tabulated Results view contains a group of filters. Selected values

are propagated to a query, which is used to fetch results from a backend. Each employed

filter (Producers, Parameters, Analysis hours, and Lead Time) is implemented using a

grid element. Selecting anything in one grid affects the available options in the subsequent

ones. Therefore, to pick an existing option in a filter, it is crucial to detect what new

choices are available after the preceding one is updated.

None of the grid elements have a unique value or identifier, which would help in

distinguishing each one and extracting its node id. Figure 18 shows a snippet of the

response, which contains a segment of the definition for the Producers grid. As one can

notice, there are no unique characteristics sent; thus, there is no reliable way to identify a

filter without additional data. In this case, available additional information is the name of

the grid rendered in a separate label.

{"node":340,"type":"attach"},{"node":340,"type":"put","key":"

tag","feat":0,"value":"vaadin-grid"}

{"node":340,"type":"attach"},{"node":340,"type":"put","key":"

tag","feat":0,"value":"vaadin-grid"}

Figure 18. A Snippet of the response with the "Producer" grid definition.

43

Each grid is added to a div, which also, has another child, namely - a label. This label

contains a text node, which is the filter’s name that is visible to a user. The described

hierarchy for the Producer grid is presented in Figure 19. All the filter grids are structured

in the same way.

The process of extracting a grid’s node value starts by identifying a text node, which has

a pair of “value”:“Producers” in its attribute list. Based on this, the label element

containing the text node is identified. A component can be added only once to a UI. It is

also known that div contains both the label and the grid. An addNodes array contains

the IDs of the div’s child elements. Therefore, the gridId can be retrieved from the

second position of the array, if the value in the first position matches the labelId. The

assumption made in this case is that the label is always positioned above the grid. Thus,

it is added first to the addNodes array.

There are three extractors needed for each grid to find its ID. Every next regex includes

a value extracted from a previous one, thus it must be applied in the correct order. Table

1 contains the names of created variables and regular expressions used to extract them

from the response.

Figure 19. Grid position inside div

44

5.3.2.2 syncId and clientId tokens

As was discussed in the previous chapter, Flow has a built-in synchronization mechanism

that relies on syncId and clientId values that are sent and received with every

request and response. There is usually no need to modify these tokens. Nonetheless, to

improve stability when the amount of generated requests is high, it is recommended that

one extract value from a previous response and to pass it to the next request.

JMeter UDVs are final; therefore, they cannot be used to store dynamic token values, but

variables created and modified using BeanShell PostProcessor can be changed. For this

reason, two PostProcessor elements were used to retrieve and pass tokens: Regular

Expression Extractor and BeanShell. The first one extracts the syncId value from a

response and turns it into the synchronizers_1 variable and turns the clientId

into synchronizers_2. The script that saves extracted variables into syncId and

clientId is presented in Figure 21, and regex configuration is presented in Figure 20.

Saving the synchronization tokens into syncId and clientId variables is an optional

step. Synchronizers_g1 and synchronizers_g2 generated variables can be

used directly instead, thus skipping the BeanShell script. However, the current solution

gives descriptive names to variables and simplifies the perception of a transformed

request’s payload. A more natural and straightforward way would be to add a separate

extractor for each token.

Name of created variable Regular expression

parameters_text "node":([0-9]+),"type":"put","key":"text",

"feat":[0-9]+,"value":"Parameters"

parameters_label "node":([0-9]+),"type":"splice","feat":[0-

9]+,"index":[0-9]+,"addNodes":

\[${parameters_text}\]

parameters_grid "addNodes":\[${parameters_label},([0-9]+)\]

Table 1. Regular expressions used to extract node ID of the "Producers" grid

45

All requests, except for the first one, were altered with variables’ references for syncId

and clientId values. A default value of 0 is left for the first request since a client

always opens the communication.

5.3.3 Randomizing and supplying data

An application under the test is dynamic - any user’s choice affects what information is

applicable and should be available. This means that previously fetched data is not

necessarily valid anymore.

Any time a user selects a new value in a field, a state of the application is changed. The

new state with the updated options for other fields is included in the response, which

should be parsed to extract them to be used later.

syncId= vars.get("synchronizers_g1");

clientId=vars.get("synchronizers_g2");

vars.put("syncId",syncId);

vars.put("clientId",clientId);

log.error("%%%%%%%%%%!!!!!!!!!!!!!!!!!!!!!fffffffffffffffffffffffffffff!!!!!!!!!!!!!!

!!!!!!!!!!%%%%%%%%%%%%");

syncId= vars.get("synchronizers_g1");

clientId=vars.get("synchronizers_g2");

vars.put("syncId",syncId);

vars.put("clientId",clientId);

log.error("%%%%%%%%%%!!!!!!!!!!!!!!!!!!!!!fffffffffffffffffffffffffffff!!!!!!!!!!!!!!

!!!!!!!!!!%%%%%%%%%%%%");

Figure 20. Configured Regular Expression extractor for syncId and clientId

Figure 21. BeanShell script for parsing and saving synchronization tokens into memory

46

Contrasting this, constant values such as credentials for logging-in are known beforehand

and can be supplied to the test before executing it. Since both approaches of acquiring

and passing data are used, a possible solution to each is presented.

5.3.3.1 Comma-separated values Data Set Configuration

One of the most popular ways to supply static data into a test is by consuming a Comma-

Separated Values (CSV) data source. Each row represents an entity in which a comma

separates its attributes. JMeter provides a convenient configuration of the element to

access CSV data called CSV Data Set Config. In this thesis, this is employed to provide a

username and password during log-in.

Credentials were stored in the credentials.csv file, in which each row contains

authorization details in a username, password form. A configuration component

for the file is presented in Figure 22. Variables defined in the Variable Names field can

be later referenced using the familiar ${username} syntax.

5.3.3.2 Dynamic data

A way of randomizing data is by using JMeter’s ${__Random(x,y} random number

generator function. The returned value is inside the specified [𝑥, 𝑦] range. This function

is used to randomly choose three producers. There are also multiple complementary

functions available such as RandomDate and RandomString.

All producers in the grid are known beforehand: it is a list of 18 authorities, which provide

input data for a system. An event.detail.itemKey attribute identifies each

Figure 22. Comma-separated values Data set configuration in JMeter

47

selection passed to a server on a click action. Its value is equal to a physical position of

an option. Therefore, exact names are irrelevant from a load test perspective. It is enough

to substitute any value in [1,18] to simulate a random choice.

Initially, the first option is always selected. To preserve this behavior, a range between

[2,18] is passed to a random generator. Default selection also ensures that there are some

choices always available in the next filter. Due to the enormous data source size and its

privacy, the local set-up only has part of the data available; thus, some parameters will

not produce any output. Furthermore, the same random number can be generated twice.

Consequently, the final configuration might have only one option selected, since clicking

an item twice deselects it.

 After the third producer has been chosen, all values available for the Parameters grid are

sent in the response, and three random parameters can be chosen. A request payload is

similar to the one in the Producers grid. The event.detail.itemKey for each

parameter ranges between the first parameter key and the sum of this key and the total

amount of parameters. In a mathematical form, this can be expressed as [𝑥, 𝑥 + ∑ 𝑦],

where x- is the value of the first key and y- is the number of available parameters.

 After these values are known, Java’s Random object’s nextInt method is used to

generate two parameters. The regular expressions used to extract the first key are

presented in Table 2.

48

Name of variable Regular Expression

availableParameters "node":([0-9]+),"type":"put","key":"text",

"feat":[0-9]+,"value":

"[^"]*(temperature|precipation|wind|sea){1

}[^"]*"

first_parameter_span "node":([0-9]+),"type":"splice","feat":[0-

9]+,"index":[0-

9]+,"addNodes":\[${availableParameters}

first_key_parameter "key":"([0-9]+)",("selected":true,)

?"_renderer_[0-

9]+":${first_parameter_span}

amountAvailableParam

eters

"node":([0-9]+),"type":"put","key":"text",

"feat":[0-9]+,"value":

"[^"]*(temperature| precipitation

|wind|sea){1}[^"]*"

All available parameters contain one of the keywords: temperature, precipitation, wind,

or sea. The availableParameters variable stores the first occurrence of any text

node that matches the requirement. Each is later appended to a span. An ID of the span

of the availableParameters value is stored in the first_parameter_span

variable. Then, the key for the first parameter is found based on this and is stored into the

first_key_parameter variable.

A regex is used again to catch the first available parameter and to find the total amount

of parameters, with the only difference being that Match No. is set to -1. The BeanShell

Postprocessor script used to generate two random parameters is presented in Figure 23.

Table 2. Regex expressions used to extract ID for the first available parameter id

int firstKe =

Integer.parseInt(vars.get("first_key_parameter"));

int availableAmout=

Integer.parseInt(vars.get("amountAvailableParameters_matchNr"

));

Random rand = new Random();

int n = rand.nextInt(availableAmout-1) + firstKe;

int m = rand.nextInt(availableAmout-1) + firstKe;

vars.put("first_parameter",String.valueOf(n));

vars.put("second_parameter",String.valueOf(m));

Figure 23. Generating two random parameters.

49

The first_parameter and second_parameter variables keep the generated

values.

Unfortunately, parameters are not always sent in the third response. If the second and

third producers have the same parameters available, then there is no update to the

Parameters grid, and values are sent only once within the second producer. To ensure

that this does not occur, the default parameters that were captured during the initial

recording are used, assuming that there are no parameters sent in the third response.

5.3.4 Output

Adding a complete JMeter test would take approximately 60 pages; therefore, the .jmx

file has been left out of the thesis. The full code can be found at the author’s Github

repository under anasmi/LoadTestingVaadin14 folder [58]. Furthermore, Appendix B

contains a screenshot of a configured Test plan and Thread Group element of the test.

After the transformations described in the previous subchapters are applied to all the

requests, a developer can execute the test. For example, the request presented at the

beginning of section 5.3 in Figure 16 is changed to the form shown in Figure 24.

Differences are outlined in bold.

The test was run three times with different number of users: 15, 50, and 300. Since the

maximum expected number of simultaneous users is 10, it is sufficient to verify that the

application can respond promptly to 15 users. Nevertheless, a more sophisticated case

with a ramp-up period for 50 and 300 users is also set-up. Simulating users at ramp-up

time implies that at any given moment the number of concurrent users can range from no

{"csrfToken":"${secKey}","rpc":[{"type":"publishedEventHandle

r","node":${producers_grid},"templateEventMethodName":"setDet

ailsVisible","templateEventMethodArgs":["${first_producer}"]}

,{"type":"event","node":${producers_grid},"event":"item-

click","data":{"event.detail.screenY":451,"event.detail.metaK

ey":false,"event.detail.button":0,"event.detail.shiftKey":fal

se,"event.detail.screenX":4719,"event.detail.itemKey":"${firs

t_producer}","event.detail.altKey":false,"event.detail.client

X":1776,"event.detail.detail":1,"event.detail.clientY":322,"e

vent.detail.ctrlKey":true}}],"syncId":${syncId},"clientId":${

clientId}}

{"csrfToken":"${secKey}","rpc":[{"type":"publishedEventHandle

r","node":${producers_grid},"templateEventMethodName":"setDet

ailsVisible","templateEventMethodArgs":["${first_producer}"]}

,{"type":"event","node":${producers_grid},"event":"item-

click","data":{"event.detail.screenY":451,"event.detail.metaK

ey":false,"event.detail.button":0,"event.detail.shiftKey":fal

se,"event.detail.screenX":4719,"event.detail.itemKey":"${firs

t_producer}","event.detail.altKey":false,"event.detail.client

X":1776,"event.detail.detail":1,"event.detail.clientY":322,"e

vent.detail.ctrlKey":true}}],"syncId":${syncId},"clientId":${

clientId}}

Figure 24. Request presented in Figure16 after alterations

50

users to the total number of users defined. Such a scenario mimics how an application is

used in the real-world.

It would be beneficial to increase the number of users and this should be done once the

test is executed in a proper testing environment. Unfortunately, due to limited capacity

and the CPU resources of the author’s computer, the number of users is limited. However,

it is still possible to analyze the application’s behavior under these conditions.

Before beginning the measurements, the test was run with 10 simultaneous users, to

warm-up the server. Among other things, this involves populating cache, which is empty

on start-up. The time this took was not measured, as it does not provide valuable insights

into the application’s performance.

The test script is started from a command line using the

jmeter -n -t fullPath\FMITabulatedResultsView_meteorologist.jmx -

l fullPath\output.jtl

command.

The -n option instructs JMeter to be started in non-GUI mode, -t is followed by a full path

to test location, and -l is a path where sample results are stored to.

The table below summarizes the results of executing the defined scenario for three target

groups. In all cases, the longest response time was for the Login request and the fastest

was for the Logout.

Number

of users

Started

during

(seconds)

Minimum response

time

Maximum

response time

Error

rate

15 1 1 (logout) 1773 (Login) 0%

50 10 0(logout) 2512 (Login) 0%

300 200 0 (logout, picking

lead times)

1920(Login) 0%

Table 3. Summary of JMeter captured responses

51

After completing the execution, the generated output.jtl file was imported into JMeter to

analyze the results. The importing is done by using the Listeners component via the path

Test plan→ Add→ Listeners→Summary Report → Read from file.

A JMeter generated report for 50 users is presented in the figure below.

Figure 25. JMeter reported results when running 50 users

52

5.4 Gatling implementation

The fastest way to set up a base for a Gatling test is to record a user’s activity in a web

app. This will, at a minimum, ensure that the correct headers for each request are captured

and added. This approach was also utilized here. Yet, compared to JMeter, after recording

an initial stub, there is no way to modify a generated .scala file using the recording’s GUI.

Any IDE, preferably supporting Scala, could be used to further alter the script. All

required steps, which were presented in the previous subchapter, such as token

extractions, should also be applied to a Gatling’s test.

The final test script is composed of Scala’s object classes. Based on the scenario, six

objects are defined, and each describes a singular independent action. The actions are:

LoginAndNavigate, ChooseProducers, ChooseParameters,

ChooseLeadTime, FetchResultsGrid, and LogOut.

Arranging a test as a chain of independent decoupled tasks makes it conform to a

Selenium’s page object pattern. While this is not obligatory, it significantly improves its

maintenance and readability.

Before analyzing the implementation details, it is useful to first introduce the common

structures used throughout the test. These are summarized, with a brief description of the

purpose, in the table below.

Structure Purpose

 s"$parametersURL" One of Scala’s string interpolation

methods. References a variable

defined previously.

val userScenario =

scenario("Meterologist").exec(LoginAndNavigate.loginAndNaviga

te,

 ChooseProducers.chooseProducers,

 ChooseParameters.chooseParameters,

 ChooseLeadTime.chooseLeadTime,

 FetchResultsGrid.fetchResultsGrid,

 LogOut.logOut)

Figure 26. Scenario definition via objects

53

var first_key_leadTime="328"

(raw""""key":"([0-

9]+)",("selected":true":$first_spa

n""".r).findFirstMatchIn(response)

match {

 case Some(m) =>

 first_key_leadTime =

m.group(1)

 case None =>

 println("An id is not found

for the first key lead. Using

default 328")

}

1. String interpolation using raw

guarantees that characters are

not escaped [59].

2. Regex is defined via .r and

findFirstMatchIn takes a

string as input in which to look

for occurrences [60].

session("producersResponse").as[St

ring]

Obtaining a value called

“producersReponse” from a session

and casting it to String.

Table 4. Common code snippets used in Gatling test

5.4.1 Payloads

In a recorded simulation, a request’s payload is saved in a file, which is passed to a request

via its body method using RawFileBody(payload_file) as an argument. To be

able to substitute dynamic values into a request’s body, its content should be saved and

feed as an ElFileBody or passed as a StringBody instead. Bodies of these types

can be parsed by a Gatling Expression Language (EL) engine [61]. As the name implies,

StringBody takes a string as an argument, whereas ELFIleBody takes a file. The

latter one will be mostly used for passing payload to a request, for readability and clarity

reasons. In Figure 27, a snippet of the original code is presented, saved by a recorder

where RawFileBody should be replaced with an ELFileBody.

.exec(http("request_2")

 .post("/?v-r=uidl&v-uiId=0")

 .headers(headers_2)

.body(RawFileBody(

 "FMITabulatedViewMeteorologist_0002_request.txt")))

Figure 27. A request payload passed as a RawFileBody

54

5.4.2 A CSRF token handling

After the files’ format passed to a .body method has been changed, the text stored in

these files can be altered to use variables. A check method presented in the figure below

is called upon a Login request to retrieve csrfToken.

The same regex, as in the JMeter script, is used to extract a token value. After the value

has been stored to a variable secKey, it can be referenced in a request’s body using a

familiar ${secKey} syntax. As discussed before, this is the only required step to get a

load test simulation running.

As may be expected, by the end of this chapter, after all the adjustments are applied, a

request payload in both Gatling and JMeter will look the same.

5.4.3 Extracting clientId and syncId

The parameterization of synchronization tokens is not required, yet it improves the

stability and reliability of a simulation; thus, it is preferable to undertake this step.

Similarly to csrfToken extraction, obtaining syncId and clientId can be

achieved using regular expressions.

A regex function takes as a parameter a regular expression that matches a

synchronization token. An extracted value can be reused later if it is persisted in a session

using a saveAs method. For synchronization tokens, a chain of extracting and persisting

a value is stored into two immutable Scala variables: syncIdRegex and

clientIdRegex for each token, respectively. Each is passed as a parameter to a

check method, which is called on an HTTP request. Figures 29 and 30 exemplify the

regular expression definition and usage described above.

.exec(http("Login")

 .post("/login")

 .headers(headers_1)

 .formParam("username", "${username}")

 .formParam("password", "${password}")

 .check(regex("""Vaadin-Security-Key":"([a-fA-F0-9]{8}-[a-fA-

F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-

9]{12})""").saveAs("secKey"))

)

Figure 28. Extraction of a csrfToken

55

5.4.4 Feeders and random data

Since the generated script is a Scala file, it is possible to randomize data using the Scala

programming language directly. For instance, producers’ values can be assigned using

familiar syntax from Java 2+ Random.nextInt(17).

There are multiple ways to supply data to a request. Feeder is one utility used to provide

credentials for a login request. The login request presented in Figure 28 takes its form

values from a credentials.csv file, which is supplied to the scenario using the

feed(csv("credentials.csv").circular) method. Contrary to JMeter, the

supplied file has a header row, which defines the variables’ names username,

password that will be referenced later using a formParam method. A circular

method instructs Gatling to iterate over the file again when it reaches the end; otherwise,

the test will exit abruptly.

5.4.5 Setting session variables

Under some circumstances, a response may not contain a value, which a regex extractor

component is trying to extract. This generally happens if there are no updates to the client

caused by a request. In the test scenario, lead times options become available only after

choosing parameters, which are also randomly appointed. Therefore, it is not possible to

val syncIdRegex= regex("""syncId":([0-

9]+)""").saveAs("syncId")

val clientIdRegex= regex("""clientId":([0-

9]+)""").saveAs("clientId")

.exec(http("request_3")

 .post(s"$parametersURL")

 .headers(headers_2)

.body(ElFileBody("FMITabulatedViewMeteorologist_0003_request.t

xt"))

 .check(syncIdRegex)

 .check(clientIdRegex)

)

Figure 29. Definition of regular expressions for syncId and clientId tokens

Figure 30. Capturing synchronization tokens from a request

56

know the final permutations of values in advance. Moreover, some of the possible

matches do not yield any changes.

If no new lead times options become available after a parameter selection, the test will

exit abruptly. To avoid a failing test and to continue its execution, lead time variables

with pre-defined values are added to a session’s object. These default values are the ones

initially captured during recording. There is no guarantee that all of them are available in

the current run; however, if they are not, a server will log a warning and continue

accepting new requests.

Figure 31 contains a snippet that is responsible for assigning values if none were defined

previously. Like Java’s String class object, a session is an immutable object. Similarly,

either all applied changes must be chained, and the modified object returned, or, after

each modification, the session must be stored into an intermediate object, which is finally

returned. Otherwise, all the changes disappear.

5.4.6 Debugging and Generating load

Debugging is a process that can be used when trying to identify the root cause of a failure

during development. In Gatling, the easiest way to verify if a variable has the expected

value is to log it using an exec method. It has an overloaded version that takes the

Expression function as a parameter. For instance, to print a session’s variable value,

the code below can be used.

//If no lead times were added when choosing parameters, use

default values

.doIf(session=>session("first_key_leadTime").asOption[String]

.isEmpty){

 exec(session=>

 session.setAll(

 "first_key_leadTime" ->328,

 "second_key_leadTime"->330,

 "fifth_key_leadTime"-> 332

)

)

 }

Figure 31. Setting default values for the lead times using session object

57

Once the test is finalized, it can be executed under different usage scenarios. Gatling

provides a fluent API to specify the number of users to be generated. Ramp-up time,

delay, and simultaneous number of users is just some of the information offered by the

tool. For example, one of the injections used by Gatling script is

setUp(scn.inject(atOnceUsers(1))).protocols(httpProtocol).

Most of the requests presented above belong to a LoginAndNavigate action. A

snippet from the final object with all modifications applied is presented in the Figure

below. The full created test and its response payloads can be found in Appendix C.

.exec{

 session=>

 println(session("variable").as[String])

 session

 }

Figure 32. Printing information for debug purposes

58

//Login and navigate to a "Tabulated Results View" page

object LoginAndNavigate{

 val loginAndNavigate=exec(http("Get /")

 .get("/")

 .headers(headers_0)

)

 .exec(initProducersId)

 .pause(5)

 .feed(csvFeederCredentials)

 .exec(http("Login")

 .post("/login")

 .headers(headers_1)

 //Set credentials from a csv file

 .formParam("username", "${username}")

 .formParam("password", "${password}")

 .check(regex("""Vaadin-Security-Key":"([a-fA-F0-9]{8}-

[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-

9]{12})""").saveAs("secKey"))

)

 .pause(1)

 .exec(http("request_2")

 .post(s"$parametersURL")

 .headers(headers_2)

.body(ElFileBody("FMITabulatedViewMeteorologist_0002_request.

txt"))

 .check(syncIdRegex)

 .check(clientIdRegex)

)

 .pause(0,3)

 .exec(http("request_3")

 .post(s"$parametersURL")

 .headers(headers_2)

.body(ElFileBody("FMITabulatedViewMeteorologist_0003_request.

txt"))

 .check(syncIdRegex)

 .check(clientIdRegex)

)

}

Figure 33. LoginAndNavigate object

59

5.4.7 Output

By default, after test execution, results are automatically assembled into an index.hml file.

The generated page contains the Statistics table and various charts that visualize the user,

response, and request characteristics, such as time distribution. A developer can open the

page in any software capable of parsing HTML files. A regular web browser is the

obvious choice.

As shown in the test script, no separate requests were specified for fetching embedded

resources relying on inferHtmlResources functionality. Nevertheless, for a user’s

convenience, Gatling has added them to the Statics table. Due to its large size, only one

is presented below. From there, a tester can find the maximum and minimum response

times for any request with its overall success rate.

From the gathered results, it is self-evident that, except for downloading static files, the

requests that on average take the most time to complete are Choosing producers and

Tabulated results view. Since navigation to a new page presumes fetching a significant

amount of information to re-draw a view and selecting a new producer implies database

querying, this is an expected outcome.

All values presented in this thesis are relative, as running the test again might report a

mismatched result. If the reported values are of the same range, this is an acceptable

fluctuation.

60

Along with the visual reports, Gatling also prints global information into a console during

and after test execution. The screenshot of the output for the scenario with 50 simulated

users run is shown in Figure 35. Given that 50 users start in an interval of 10 secs, 100%

of requests are answered in less than 800ms. As seen in the generated Statistics table,

fetching static resources is the most consuming action. However, this is not reflected in

Figure 34. Statistics table generated by Gatling tool after test execution

61

the printed summary, as download happens asynchronously and does not prevent user

interaction.

The results for all three runs are summarized in Table 5.

Number

of users

Started

during

(seconds)

Minimum response

time

Maximum response

time

Error

rate

15 1 1(Login) 778(Login redirect) 0%

50 10 0(Logout redirect) 1042(Fetching static

resources)

0%

300 200 0(Logout redirect) 2368 (Fetching static

resources)

0%

Table 5. Gatling run summary info

The static resources mentioned in the table are index.js, bootstrap.min.css, and signin.css.

5.4.8 Comparing outputs

JMeter and Gatling report different results for a maximum response time metric. Gatling

measures each request’s response time separately, even for a static resource. JMeter, on

the other hand, does not split the time of fetching a static resource from a request causing

Figure 35. Global information provided by Gatling after the execution of the second scenario is completed

62

it. This meant that the Login request was reported as being the one that took the longest

time to respond to.

Therefore, while it seems that the tools are reporting conflicting results, this is not the

case. Each of them is just treating the requests differently, but for both the Login phase

takes the longest time.

5.5 Application memory consumption

Above, the response times for three different user load scenarios were measured and

discussed response times. Both the reported results from Gatling and JMeter were

presented. The next step is to evaluate the memory consumption.

There are two essential questions to consider when investigating memory requirements

imposed by an application. The first one is estimating how much memory an application

requires in its idle state (when all variables are initialized, but there is no load). The second

question is what the approximate size of a user session is. To acquire these values, the

Gatling test with a simple modification described below is run twice for 20 and 55 users.

Overall, computation happens as follows:

1. Deploy an application to a server and simulate, for example, 20 users to initialize

variables and warm-up a JVM.

2. Trigger Garbage Collector multiple times and after it has run, write down a

memory consumption size. The captured value is a minimum memory size that

the application requires.

3. Disable a log-out part from a test. This will ensure sessions remain in memory

after test is exited.

4. Simulate 55 users over 10 seconds. *

5. After execution is finished, trigger GC multiple times.

6. Write down the current memory consumption.

7. Calculate an approximate application’s session size as
𝑓𝑖𝑛𝑎𝑙−𝑖𝑑𝑙𝑒

𝑢𝑠𝑒𝑟𝑠
 , where final is

a memory utilization value captured at step 6, idle is the memory required in the

application’s idle state, and users is the number of generated users at step 4 (55).

63

* For more accurate results, one should increase the number of users and decrease the ramp-up period.

Unfortunately, due to limitations of CPU and the memory on the author’s computer, the results presented

here are approximate.

Disabling a log-out part is a strict requirement; otherwise, a session is invalidated, and

the garbage is collected by a JVM. Since ramp-up time is short, total time execution is

less than a session timeout; thus, all 55 sessions remain in memory after a test has

finished.

After performing the steps outlined above, a measured session size is approximately 16,4

MB, which is large. Usually, this size range between 200-800 KB. The following

calculation,
0.98 𝐺𝐵−0.08 𝐺𝐵

55
≈ 0.0164 𝐺𝐵 = 16,4 𝑀𝐵 was done, in which 0.08 GB is the

memory consumption by the application in the idle state, and 0.98 GB is the captured size

with 55 sessions in memory.

To find a root cause for this large size, one user was simulated to find what classes remain

in memory and the number of their instances. Analyzation has been performed using the

JProfiler tool. All JVM classes such as String and byte[] were filtered out, as they

do not provide any in-depth insights. By analyzing the remaining classes, one could see

that , per one user, there were 921 instances of a class called ListSelectMenu, which

contains multiple grids and calls itself numerous times. After refactoring it to two separate

classes, session size dropped to 545 KB, which is a tremendous difference. This change

has also been included in a newer version of the software.

Final session size estimation is done utilizing both JMeter and Gatling. The results are

reported in the table below.

 JMeter Gatling

Memory consumption in

idle state

0.08 GB 0.08 GB

Memory consumption

after 55 users are

simulated

0.11 GB 0.11 GB

Session size 0.545 MB 0.545 MB

Table 6. Session’s size measurement results

64

A screenshot of a Memory tab of the JProfiler tool, where spikes and memory

consumption dynamics are illustrated, is presented in Figure 36. Vertical lines 1, 2, and 3

indicate three states:

1. Before test execution.

2. Right after the test has finished.

3. After GC has run a couple of times and 55 sessions are remaining in memory.

The difference between the third and second state is caused by removing unreached

objects from the memory. Since none of the users have logged out yet, their related

sessions remain in memory. This makes it possible to estimate a session size, as described

above.

Another way to access a session’s size is to run the same test without the log-out part for

a small number of users – for example five- and write down the memory consumption.

Then, this process should be repeated for a considerably increased number - for example,

1,000 users- and the size should be captured. Calculation happens by subtracting the first

value from the second and dividing the obtained result by the number of simulated users

[62].

Figure 36. Memory consumption over test execution

65

5.6 Integrating tests into maven

It is suggested that the testing process should be automated to receive feedback on an

application performance early and proactively react to it. Automation can be

accomplished by configuring maven to execute integration tests as a part of a build

process. The recommended approach is to create a maven profile for an integration-

test and verify phases. The configured profile can be enabled in multiple ways. Here,

a profiler’s ID, which is passed as an argument, is used. The syntax for the maven

command looks like this: mvn verify -PprofileID.

Integration tests in a maven project are executed by the failsafe plugin, which, among

other things, allows for the configuration of names and location of the tests. Running

integration tests against an application presumes that the application is previously

deployed to a web server. As the application being tests is a spring-boot application, a

spring-boot-maven-plugin plugin is used to start and stop an application server.

Otherwise, one can use a jetty-maven plugin. In the plugin’s <execution> tag, during

the pre-integration-test phase, a server is started. The server is stopped by a

goal defined inside the post-integration-test phase. Both JMeter and Gatling

provide maven plugins that simplify test configurations.

Tests are located under the

gatling and jmeter directories

inside a project’s src/test folder.

The CSV file used for a feeder

in the Gatling test should be

located under the

src/test/resources directory

[63]; otherwise, the file is not

found by Gatling, and the test

execution is aborted. A

resources directory under the gatling folder contains the requests’ payloads. Each payload

is stored into a separate .txt file. A hierarchy of the test folder is shown in Figure 37.

The complete XML snippet for a <profile> set-up from a pom.xml can be found in

Appendix D.

Figure 37. Structure of a src/test folder

66

6 Discussion

As the results have shown, the defined test scenario was overly sophisticated as it tried to

take too much into account. A better way to complete the test scenario would be to create

multiple smaller tests. In this chapter, some of the findings and a discussion of the

implemented and executed scenario are presented. Furthermore, future paths and

alternatives to the proposed solution are discussed, and the decisions made for this thesis

are considered.

The findings presented here are universal, as they are issues that most professionals would

have to tackle as they perform initial performance testing for a flow application.

6.1 Assuring randomness and finding node id’s in the test scenario

Guaranteeing randomness required the manipulation of many parameters. It would be

enough to randomly choose only one Producer and one Lead Time attribute to simulate

similar behavior. Contradictorily, in the current implementation, various permutations of

the available options produced different scenarios each time, which resulted in variable

responses’ payloads. For example, if choosing the third parameter did not update the

available options of the Lead Times grid, then its response would not contain any values

that could be extracted. In this scenario, JMeter ignores lacking values and continues

execution. A developer, in turn, can substitute default values if none are found. Gatling,

on the other hand, fails if there are no matches found during extraction. A fail-fast

approach necessitates, first, verification that there are enough parameters returned before

processing them and, second, execution of the same block of code for all three requests.

This complicates code significantly.

To uniquely identify an element on a page the framework uses node attributes. Since it

depends on a UI hierarchy, the value is vulnerable to its changes. If a tester has access

to the code, a better approach would be to assign an ID to the element using a setId

method provided by the framework. Once set, an additional JSON item will be sent

during the attach event of the element in a response’s payload. The snippet is similar to

that in Figure 38:

67

The same process for extracting the ID using Regular Expressions can be utilized. The

major benefit of this when compared to the current approach is the simplicity in

identifying an element without the need to look for additional helpers, such as its

caption.

6.2 Debugging

Another inevitable part of creating a test is debugging. Examples of debugging include

trying to identify a cause for an incorrect response or a missing value. Debugging in

JMeter is straightforward, as response or request payloads can be viewed directly in the

GUI under the View Results Tree component. For instance, if a referenced variable is not

available in the session, JMeter will parse a reference statement as a String instead.

Thus, one will know right away that there is a missing key-value pair. With Gatling, the

process is a bit more complicated. First, a user must enable logging and set it either to the

DEBUG or TRACE level. Once enabled, all statements are written directly into a console,

from where the test is started. As quite a lot of information is written, this also implies

that output needs to be stored in a separate file for processing.

On the contrary, verifying that script works as intended is easier in Gatling. A test

execution fails if an expected value is not found from a response body. For example, when

an internal error happens on a server-side due to an issued request, a response does not

contain a clientId value. Therefore, a request fails during a

.check(clientIdRegex)extraction, which indicates that something went wrong,

since each response should include one. JMeter, on the other hand, requires an additional

response assertion component. Figure 39 shows a response indicating an internal error.

 {

 "node": 13,

 "type": "put",

 "key": "id",

 "feat": 3,

 "value": "idDefined"

 }

Figure 38. Part of the JSON for an element with defined id

68

Another one of Gatling’s advantages is a flexible API for injecting users, which includes

methods like atOnceUsers, nothingFor, and rampUsers. These methods make

it easy to mimic nearly any real-user iteration scenario. JMeter, on the other hand, allows

developers only to set a ramp-up period and the number of users to simulate. In this case,

an interval between users launching is always the same.

Sometimes developers working on the same task cannot reproduce an error reliably on

another machine. If this occurs, the first thing to check is usually the version compatibility

of installed software. For example, during the testing phase, Firefox was upgraded to

version 67. Starting from Firefox 67, one has to set the

network.proxy.allow_hijacking_localhost

to true to incept traffic, if a tested app is running on the localhost [64]. Otherwise,

specifying the exact IP address solves the issue.

Overall, it is easier to start with JMeter rather than Gatling, since nearly everything can

be configured in its GUI. There are a lot of online tutorials for this, as JMeter has been

functioning for 20 years. However, is a more complicated action needs to be simulated,

the configuration becomes harder and less evident. Gatling is more convenient for a

sophisticated use case, since some settings can be configured using Scala directly in a

script. Below, the most prominent errors and limitations of these tools, which were also

encountered during the test build, are analyzed.

6.3 JMeter

Creating a test with JMeter is a straightforward task, as a lot of examples are available

online. For a developer unfamiliar with Scala, most of the issues faced are due to the lack

of knowledge of the language needed to perform some tasks.

for(;;);[{"changes":{},"resources":{},"locales":{},"meta":{"a

ppError":{"caption":"Internal

error","url":null,"message":"Please notify the

administrator.
Take note of any unsaved data, and <u>click

here</u> or press ESC to

continue.","details":null}},"syncId":-1}]

Figure 39. A response with an `Internal error` message

69

For example, trying to use an intSum function such as

${__intSum(${anyIntVariable}, 10)} inside a regex extractor throws a

NumberFormatException, since anyIntVariable variable is stored as string, but

an integer value is expected. Consequently, a BeanShell script must be added to firstly

parse value and only then store it back into the variable. Therefore, instead of using the

${__intSum({availableLeadTimes_1},1)} method directly for finding the

first lead time, a BeanShell Postprocessor element has to be used instead. Its code is

presented in Figure 40.

JMeter does not provide any separate statistics on fetched static resources, summing

retrieval time with a request, which caused its load. While this might not be a big issue,

it would be beneficial to see what additional requests were issued, and for which

resources.

6.4 Gatling

For this thesis, Gatling has been mostly utilized to perform additional measurements. It

was used, for example, to simulate users during the phase of estimating a session size.

Using Gatling at this phase was more convenient than JMeter, since specifying the

number of injected users and the ramp-up period is very flexible. Also, starting a script

from a console is convenient as the immediate statistics of passed or failed request were

available to a tester. Nevertheless, the initial configuration and start-up were more

demanding than with JMeter.

6.4.1 Recording

During recording, many requests were stored and passed as resources to other requests.

Gatling’s official documentation states that the resources method is used to simulate

browser behavior, where static resources are fetched in parallel. No explanation or

clarification can be found for why some of the Flow requests are captured and treated as

resources. One possible reason is that a request is sent nearly simultaneously with the

previous one.

int firstKey=

Integer.parseInt(vars.get("availableLeadTimes_1")) + 1;

vars.put("availableLeadTimes_1","" +firstKe);

Figure 40. Parsing string to integer

70

Unfortunately, this does not correspond to the nature of a Flow application, where each

request is a separate unit. The most vital consequence of the incorrect recording is

desynchronization of syncId and clientId tokens as each request must have a value

from a previous response. All misinterpreted requests were re-implemented with an exec

block, which required even more adjustments than a generated test.

6.4.2 Test execution

Integrating the created Gatling test into a maven-based project to run during

integration-test phase on a Windows machine is more complex than a developer

might anticipate. In the case of the tests run as a part of this thesis, the difficulties were

caused by a verbose error:

 Could not exec java: Cannot run program "C:\Program

Files\Java\jdk1.8.0_91\jre\bin\java.exe": CreateProcess

error=206, The filename or extension is too long.

The error occurs right after the inclusion of Gatling dependencies into the profile. After

spending multiple days trying to solve the problem by reading GitHub tickets,

StackOverflow questions, and moving the application to another directory structure, it

turned out that the error was caused by adding gatling plugin as a dependency. Removing

it made the test executable.

6.5 Push

The application used for testing does not use push to send data to clients asynchronously;

thus, a client always initiates communication. Only one-way communication has

simplified testing. In case an application is push enabled, there are multiple ways to

handle asynchronous communication. However, nearly each one of them requires some

adjustments or compromises when building a test:

• If polling is used, there is no need to perform additional steps when recording a

scenario, since only XHR requests are sent to check if there are any updates

available. Polling works with both Gatling and JMeter automatically.

• Long-polling is not supported by Gatling nor by JMeter, but it can be implemented

in the latter using the Parallel Controller extension. However, it is recommended

71

that during testing, one switch to another protocol, as there is no way to simulate

behavior reliably.

• WebSockets connection cannot be recorded by Gatling currently [65], but it can

be simulated using the ws element directly in a .scala file. JMeter does not

support WebSockets at all, although there are multiple extensions available on the

market to mimic connection. Therefore, it is recommended that Gatling is used

for load testing, if an application has WebSockets based push enabled.

• If WebSockets + XHR based push is adopted, a request is sent via the XHR channel

and a response via WebSockets.

6.6 Alternatives

As was established in the previous chapter, to make a test as stable as possible, many

node IDs should be extracted. Parameterization of IDs ensures that even if a structure of

a UI layout change - for example, if a new component is added - a test is still functional.

A SmartMeter.io tool, which is a build on top of JMeter that enhances its functionality by

adding some missing features, claims that this process can be automated by letting a

Recorder named tool take care of that [66]. Unfortunately, this tool is proprietary and

requires an expensive license. Another option that extends JMeter and brings additional

enhancements and features to it is BlazeMeter. This does not provide any additional

support for a Flow application specifically but might improve the development

experience.

In the Vaadin directory, there is an add-on called LoadTestDriver, developed by Johannes

Tuikkala that makes it possible to create a scalability test from a TestBench test [67].

TestBench is a UI testing library built by Vaadin Ltd., which, among other things,

implements helpful test wrappers for the Vaadin elements. The add-on’s functionality is

built on top of Selenium and Gatling, and a developer can declare settings for a scalability

test via the Java API. This is an excellent alternative for any developer who wants to get

started quickly without familiarizing herself with load testing tools and Vaadin internals.

6.7 Future work

This thesis emphasized the server-side performance of web applications. Performance

was examined by generating load on a server, where the web application is deployed to.

72

Simulating users’ activity helps, for example, in identifying bottlenecks in database

queries and revealing the requests that take the longest to respond to. Furthermore, with

the help of a profiler, a root cause can be determined. This work could be extended by

considering the client-side performance, measuring rendering time of UI elements. The

topic has not been considered in this thesis as it should be considered separately and Flow

is a server-side framework; nevertheless, it would be the next natural step.

The created tests themselves could be improved even further by replacing all node IDs

with variables. This would ensure that - if elements presented during recording and their

state, such as a caption value, are immune - tests can be reused repeatedly, even with a

modified hierarchy of a UI. Extracting a node attribute is often not a trivial task since

some elements do not have any caption or identifier to rely on, and thus workarounds

would most likely be introduced.

Another step would be to create tests for a push-enabled application. Limitations and

obstacles that one might face for planning and implementation were discussed earlier.

However, it would be beneficial to present a working set-up. Gatling’s official

documentation contains a comprehensive example with a WebSocket protocol [68].

Mimicking a hardware environment as close as possible is the most important next step.

Reproducing a set-up includes setting up databases and an application’s server on

independent servers. Generating a load from a separate computer is necessary in this case.

Unfortunately, in this research, it was not possible to do so due to the privacy of data

utilized by the application and the limited scope of the thesis.

73

7 Conclusion

In this thesis, the performance of a server-side web application created with the Vaadin

Flow Framework was analyzed. The main contribution of the thesis is a defined procedure

for load testing an application built with the framework. The method gives a utility to

ensure that performance requirements, which were set for an application, are fulfilled. To

prove its applicability, an executable test following the method was implemented using

two widely utilized load testing tools: Gatling and JMeter. An application provided by

FMI was employed as a target system during a test creation and execution. Since it has

real use and is already in production, it was a perfect choice for this thesis.

The same use case scenario was simulated for 15, 50, and 300 users, to investigate and

leverage the knowledge of the system performance. The reported results of JMeter and

Gatling were different, but, on a closer inspection, it became obvious that this was due to

reporting capabilities of the tools. Overall, it was found that the Login phase requests took

the longest to process. Also, it was shown that higher utilization of the application implies

longer response times on the facilities. Therefore, one should carefully plan deployment

set-up based on the number of expected users.

Various hardware and software performance improvement techniques were discussed to

support the planning. Among them, a load balancer and additional cache memory were

reviewed as mechanisms for enhancing responsiveness. To improve the availability of

applications, they are usually deployed on multiple servers. Based on the literature

review, it was shown that a sticky sessions feature of load balancers is the best alternative

when a Vaadin application is served from multiple places. Yet, while additional tools

might improve the overall performance of a system, one must remember the responsibility

of developers. For instance, memory leaks as a result of incorrect resource handling are a

consequence of a bug introduced by a developer.

As well as creating and running a test, the session size and memory consumption were

estimated. Due to a strangely large result, further investigations were conducted. Based

on the analysis, a simple fix was implemented to cut down a session size. The result was

that the memory requirements imposed by a session were 10 times smaller. The

application’s memory utilization was followed in the JProfiler tool. It was unexpected

74

that I would reveal or fix any issue, yet the outcome once again proves the value of

software testing.

Quite often, scalability and load testing terms are used interchangeably. While they have

been treated separately in the thesis, one could still benefit from presented information

performing a scalability assessment. For example, defined regular expressions for unique

payload traits of the framework can be used again later. The documented attributes

include nodeId, which associates an element’s state between a server and a client,

synchronization tokens syncId and clientId , which coordinate between server and

client, and csrfToken, which is implemented as a defence mechanism against CSRF

attacks.

There are many ways to continue from here, some of which were discussed in Chapter 6.

The thesis has mostly covered the server-side performance issues and enhancement since

Vaadin is a server-side framework. Therefore, a closer look at the client-side influence

on performance is needed.

The proposed method implies the manual assembling of a test. It might be a difficult task

for a developer, who has never had testing experience. To bridge this gap, alternative

solutions such as LoadTestDriver add-on in Vaadin directory and SmartMeter.io might

be utilized.

75

References

[1] Netcraft, "January 2019 Web Server Survey," 24 01 2019. [Online]. Available:

https://news.netcraft.com/archives/2019/01/24/january-2019-web-server-

survey.html. [Accessed 21 03 2019].

[2] M. Wall, "How long will you wait for a shopping website to load?," 19 08 2016.

[Online]. Available: https://www.bbc.com/news/business-37100091. [Accessed 21

03 2019].

[3] M. L. Abbott and M. T. Fisher, The Art of Scalabilty. Scalable Web Architecture,

Processes, and Organizations for the Modern Enterprise, Crawfordsville: Pearson

Education,Inc., 2015.

[4] I. Molyneaux, The Art of Application Performance Testing: Help for

Programmers and Quality Assurance, O'Reilly Media, 2009.

[5] J. Gray and D. P.Siewiorek Gray, "High-availability computer systems,"

Computer, vol. 9, no. 24, pp. 39-48, September 1991.

[6] M. D. Hill, "What is Scalability?," ACM SIGARCH Computer Architecture News,

vol. 18, no. 4, pp. 18-21, December 1990.

[7] M. Rouse, "Scalability," April 2006. [Online]. Available:

https://searchdatacenter.techtarget.com/definition/scalability. [Accessed 24 04

2019].

[8] W. Kenton, "Scalability," 9 April 2019. [Online]. Available:

https://www.investopedia.com/terms/s/scalability.asp. [Accessed 24 04 2019].

[9] M. L. Abbott and M. T. Fisher, Scalability rules. Principles for scaling web sites,

Rawfordsville: Pearson Education, Inc., 2017.

[10] HAProxy, "Starter Guide.Quick introduction to load balancing and load

balancers," 11 02 2019. [Online]. Available: http://cbonte.github.io/haproxy-

dconv/1.8/intro.html. [Accessed 24 04 2019].

[11] M. Anderson, "What is Load Balancing?," 14 02 2017. [Online]. Available:

https://www.digitalocean.com/community/tutorials/what-is-load-balancing#how-

does-the-load-balancer-choose-the-backend-server. [Accessed 30 03 2019].

[12] T. Willy, "Making applications scalable with Load Balancing," 19 11 2006.

[Online]. Available: http://wtarreau.blogspot.com/2006/11/making-applications-

scalable-with-load.html. [Accessed 29 05 2019].

76

[13] NGINX, "What Is Load Balancing?," [Online]. Available:

https://www.nginx.com/resources/glossary/load-balancing/. [Accessed 30 03

2019].

[14] NGINX, "What Is Round-Robin Load Balancing?," [Online]. Available:

https://www.nginx.com/resources/glossary/round-robin-load-balancing/.

[Accessed 22 04 2019].

[15] IBM Knowledge center, "Caching strategies," [Online]. Available:

https://www.ibm.com/support/knowledgecenter/en/SS73R8_9.4.0/

com.ibm.help.wms.perf.doc/c_FND_PM_CachingStrategies.html. [Accessed 12

04 2019].

[16] Mozilla, "HTTP Caching," 21 03 2019. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching. [Accessed 12 04

2019].

[17] Heroku Inc., "Increasing Application Performance with HTTP Cache Headers," 20

02 2019. [Online]. Available: https://devcenter.heroku.com/articles/

increasing-application-performance-with-http-cache-headers. [Accessed 12 04

2019].

[18] M. Hofmann and L. Beaumont, in Content Networking, Elsevier Inc, 2005, pp. 53-

79.

[19] K. Chandra, "Chapter 7: Load Balancing Caches," in Load Balancing Servers,

Firewalls, and Caches, John Wiley & Sons, Inc., 2002, pp. 99-107.

[20] Varnish, "Varnish Documentation 6.2.0," [Online]. Available: https://varnish-

cache.org/docs/6.2/index.html. [Accessed 24 04 2019].

[21] NGINX, "NGINX official page," [Online]. Available: https://www.nginx.com/.

[Accessed 24 04 2019].

[22] Codeahoy, "Caching Strategies and How to Choose the Right One," 11 August

2017. [Online]. Available: https://codeahoy.com/2017/08/11

/caching-strategies-and-how-to-choose-the-right-one/. [Accessed 25 04 2019].

[23] Amazon Web Services, Inc, "Database Caching Strategies Using Redis," May

2017. [Online]. Available: https://d0.awsstatic.com/whitepapers/Database/

database-caching-strategies-using-redis.pdf. [Accessed 25 04 2019].

[24] Redis, "Introduction to Redis," [Online]. Available:

https://redis.io/topics/introduction. [Accessed 25 01 2020].

[25] Microsoft, "Administer a Report Server Database (SSRS Native Mode)," 14 03

2017. [Online]. Available: https://docs.microsoft.com/en-us/sql/reporting-

77

services/report-server/administer-a-report-server-database-ssrs-native-

mode?view=sql-server-ver15. [Accessed 25 01 2020].

[26] Google Guava, "Guava CachesExplained," [Online]. Available:

https://github.com/google/guava/wiki/CachesExplained. [Accessed 25 04 2019].

[27] cache2k, "cache2k – High Performance Java Caching," [Online]. Available:

https://cache2k.org/. [Accessed 25 04 2019].

[28] Memcached, "Memcached overview," [Online]. Available:

https://github.com/memcached/memcached/wiki/Overview. [Accessed 25 04

2019].

[29] B. Rajkumar, P. Mukaddim and V. Athena, "Content Delivery Networks," in

Content Delivery Networks: State of the Art, Insights,and Imperatives, Berlin,

Springer, 2008, pp. 3-33.

[30] Oracle, "Chapter 2. The Structure of the Java Virtual Machine," 21 08 2018.

[Online]. Available: https://docs.oracle.com/javase/specs/jvms/se11/html/jvms-

2.html#jvms-2.5.2. [Accessed 23 04 2019].

[31] Sun Microsystems, "Memory Management in the Java HotSpot™ Virtual

Machine," 2006.

[32] Oracle, "The try-with-resources Statement," [Online]. Available:

https://docs.oracle.com/javase/tutorial/essential/exceptions

/tryResourceClose.html. [Accessed 23 04 2019].

[33] B. Goetz, "Part III. Liveness, Performance, and Testing," in Java Concurrency in

Practice, Westford, Pearson Education, Inc., 206, pp. 203-274.

[34] Pivotal, "Spring Boot Features. Configure a Datasource," [Online]. Available:

https://docs.spring.io/spring-boot/docs/2.2.0.M2/reference/html/spring-boot-

features.html#boot-features-configure-datasource. [Accessed 27 05 2019].

[35] Vaadin Ltd., "Vaadin Flow," 2016. [Online]. Available:

https://github.com/vaadin/flow. [Accessed 29 04 2019].

[36] Vaadin Ltd., "Introduction to Vaadin Flow," 2019. [Online]. Available:

https://vaadin.com/docs/v13/flow/introduction/introduction-overview.html.

[Accessed 26 04 2019].

[37] Atmosphere, "Atmosphere Github page," [Online]. Available:

https://github.com/Atmosphere/atmosphere. [Accessed 26 04 2019].

[38] R. Mordani, "Java™ Servlet Specification," Sun microsystems, December 2009.

[Online]. Available: https://download.oracle.com/otn-pub/jcp/servlet-3.0-fr-eval-

oth-JSpec/servlet-3_0-final-

78

spec.pdf?AuthParam=1556528312_b9d9deee2fcecbf992a76b67fc8ff87e.

[Accessed 29 04 2019].

[39] WEBCOMPONENTS.ORG, "Web Components Specifications," [Online].

Available: https://www.webcomponents.org/specs. [Accessed 28 04 2019].

[40] E. Bidelman, "Shadow DOM v1: Self-Contained Web Components," [Online].

Available: https://developers.google.com/web/fundamentals/web-

components/shadowdom. [Accessed 28 04 2019].

[41] E. Bidelman, "HTML's New Template Tag," 26 February 2013. [Online].

Available: https://www.html5rocks.com/en/tutorials/webcomponents/template/.

[Accessed 28 04 2019].

[42] whatwg.org, "HTML Living Standart," 15 April 2019. [Online]. Available:

https://html.spec.whatwg.org/multipage/scripting.html#the-template-element/.

[Accessed 28 04 2019].

[43] Vaadin Ltd., "Creating a Simple Component Using the Template API," [Online].

Available: https://vaadin.com/docs/v13/flow/polymer-templates

/tutorial-template-basic.html. [Accessed 03 05 2019].

[44] MDN Web Docs, "Using Custom Elements," [Online]. Available:

https://developer.mozilla.org/en-

US/docs/Web/Web_Components/Using_custom_elements. [Accessed 21 05

2019].

[45] WHATWG Community, "HTML Living Standart.Custom Elements," [Online].

Available: https://html.spec.whatwg.org/multipage/custom-elements.html

#custom-elements. [Accessed 24 05 2019].

[46] A. Deveria, "Can I use ES6?," [Online]. Available:

https://caniuse.com/#search=ES6. [Accessed 10 10 2019].

[47] M. Contributors, "Polyfill," 30 08 2019. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Glossary/Polyfill. [Accessed 10 10

2019].

[48] J. Jansson, "Do Vaadin apps scale?," 27 07 2018. [Online]. Available:

https://medium.com/jens-jansson/do-vaadin-apps-scale-a0ce4dfefec6. [Accessed

21 05 2019].

[49] L. Åstrand, "Session Replication in the World of Vaadin," February 2019.

[Online]. Available: https://vaadin.com/blog/session-replication-in-the-world-of-

vaadin. [Accessed 29 04 2019].

[50] OWASP, "Cross-Site Request Forgery prevention cheat sheet," [Online].

Available: https://github.com/OWASP/CheatSheetSeries/blob/master/cheatsheets

79

/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.md. [Accessed 29 04

2019].

[51] Vaadin Ltd., "ServerRpcHandler.java," [Online]. Available:

https://github.com/vaadin/flow/blob/master/flow-server/src/main/

java/com/vaadin/flow/server/communication/ServerRpcHandler.java#L309.

[Accessed 06 05 2019].

[52] L. Åstrand, "CSRF token passed in GET request," 28 02 2017. [Online].

Available: https://github.com/vaadin/framework/issues/8700

#issuecomment-282957085. [Accessed 29 09 2019].

[53] H. Edwin, "What are the best Performance Testing Tools?," 01 08 2018. [Online].

Available: https://techcommunity.microsoft.com/t5/TestingSpot-Blog/What-are-

the-best-Performance-Testing-Tools/ba-p/367774. [Accessed 28 05 2019].

[54] Apache JMeter, "User Manual. Component Reference," [Online]. Available:

http://jmeter.apache.org/usermanual/component_reference.html

#HTTP_Cookie_Manager. [Accessed 10 05 2019].

[55] Apache JMeter, "Elements of a Test Plan," [Online]. Available:

https://jmeter.apache.org/usermanual/test_plan.html. [Accessed 13 05 2019].

[56] Gatling Corp, "Checks. Saving," [Online]. Available:

https://gatling.io/docs/current/http/http_check#saving. [Accessed 23 05 2019].

[57] A. Scheller, "UUID regex," 04 02 2015. [Online]. Available:

https://adamscheller.com/regular-expressions/uuid-regex/. [Accessed 24 05 2019].

[58] A. Smirnova, "JMeter script file," 13 02 2020. [Online]. Available:

https://github.com/anasmi/LoadTestingVaadin14/blob/master

/FMITabulatedResultsView_meteorologist.jmx. [Accessed 13 02 2020].

[59] J. Suereth, "String interpolation," [Online]. Available: https://docs.scala-

lang.org/overviews/core/string-interpolation.html. [Accessed 20 11 2019].

[60] R. E. PATTERNS. [Online]. Available: https://docs.scala-lang.org/tour/regular-

expression-patterns.html. [Accessed 20 11 2019].

[61] Gatling Corp, "HTTP Request Body," [Online]. Available:

https://gatling.io/docs/current/http/http_request/#http-request-body-elfile.

[Accessed 23 05 2019].

[62] J. Lehtinen, "Session Size With WebApplicationContext > 10MBs," 22 11 2010.

[Online]. Available: https://vaadin.com/forum/thread/255090/session-size-with-

webapplicationcontext-10mbs. [Accessed 14 11 2019].

80

[63] Gatling Corp, "File Based Feeders," [Online]. Available:

https://gatling.io/docs/current/session/feeder/#file-based-feeders. [Accessed 12 10

2019].

[64] "Proxy settings for localhost not obeyed unless

network.proxy.allow_hijacking_localhost is set," 03 2019. [Online]. Available:

https://bugzilla.mozilla.org/show_bug.cgi?id=1535581. [Accessed 15 08 2019].

[65] S. Landelle, "Recorder: Record WebSocket Upgrade requests as ws.connect," 31

10 2018. [Online]. Available: https://github.com/gatling/gatling/issues/3595.

[Accessed 21 11 2019].

[66] M. Krutak, "Testing performance of Vaadin apps: step by step tutorial," 10 08

2017. [Online]. Available: https://www.smartmeter.io/blog/testing-performance-

of-vaadin-apps-tutorial. [Accessed 10 18 2019].

[67] J. Tuikkala, "LoadTestDriver add-on," 17 10 2019. [Online]. Available:

https://vaadin.com/directory/component/loadtestdriver-add-on/overview.

[Accessed 18 10 2019].

[68] Gatling Corp, "WEBSOCKET," [Online]. Available:

https://gatling.io/docs/3.0/http/websocket/. [Accessed 27 10 2019].

[69] J. Barr, "New Elastic Load Balancing Feature: Sticky Sessions," 7 April 2010.

[Online]. Available: https://aws.amazon.com/blogs/aws/new-elastic-load-

balancing-feature-sticky-sessions/. [Accessed 24 04 2019].

[70] Oracle, "JDK 11 Release Notes," [Online]. Available:

https://www.oracle.com/technetwork/java/javase/11-relnote-issues-5012449.html.

[Accessed 25 04 2019].

[71] AdoptOpenJDK, "Prebuilt OpenJDK Binaries for Free!," [Online]. Available:

https://adoptopenjdk.net/index.html. [Accessed 27 04 2019].

[72] Vaadin Ltd, "Server Push Configuration," [Online]. Available:

https://vaadin.com/docs/v13/flow/advanced/tutorial-push-configuration.html.

[Accessed 26 04 2019].

A-1

Appendix A A custom element from an HTML Template

A.1 CustomDiv.html

import {PolymerElement,html} from '@polymer/polymer/polymer-

element.js';

import '@polymer/paper-input/paper-input.js';

class CustomDiv extends PolymerElement {

 static get template() {

 return html`

 <style>

 .displayColumn {

 display: flex;

 flex-direction: column;

 background-color: antiquewhite;

 }

 </style>

 <div id="customDivContainer" class="displayColumn">

 <paper-input id="inputId" label="Put your name here!">

 </paper-input>

 <button style="width:120px" on-click="handleClick">

 Alert the name!</button>

 </div>`;

 }

 static get is() {

 return 'custom-div';

 }

 handleClick(){

 alert(this.$.inputId.value)

 }

}

customElements.define(CustomDiv.is, CustomDiv);

A-2

A.2 MainView.java

A.3 CustomDiv

import com.vaadin.flow.component.Tag;

import com.vaadin.flow.component.dependency.HtmlImport;

import com.vaadin.flow.component.polymertemplate.PolymerTemplate;

import com.vaadin.flow.templatemodel.TemplateModel;

@Tag("custom-div")

@HtmlImport("src/CustomDiv.html")

public class CustomDiv extends

 PolymerTemplate<CustomDiv.CustomDivModel> {

 public interface CustomDivModel extends TemplateModel {

 }

}

import com.vaadin.flow.component.button.Button;

import com.vaadin.flow.component.html.Label;

import com.vaadin.flow.component.orderedlayout.VerticalLayout;

import com.vaadin.flow.router.Route;

@Route("")

public class MainView extends VerticalLayout {

 public MainView() {

 Button button = new Button("Vaadin Button",

 event -> add(new Label("Clicked")));

 CustomDiv customDiv=new CustomDiv();

 add(customDiv);

 add(button);

 }

}

B-1

Appendix B A configured JMeter’s Test Plan

C-1

Appendix C Scala script created for a Gatling test

C.1 Test script

import scala.concurrent.duration._

import io.gatling.core.Predef._

import io.gatling.http.Predef._

import io.gatling.jdbc.Predef._

import scala.util.Random

import scala.collection.mutable.ListBuffer

class FMITabulatedViewIT extends Simulation {

 val baseURL="http://localhost:8080"

 val parametersURL="?v-r=uidl&v-uiId=0"

 //s"$postURL"

 val httpProtocol = http

 .baseUrl(s"$baseURL")

 .inferHtmlResources()

 .disableAutoReferer

 .acceptHeader("*/*")

 .acceptEncodingHeader("gzip, deflate")

 .acceptLanguageHeader("en-US,en;q=0.5")

 .doNotTrackHeader("1")

 .userAgentHeader("Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:66.0)

Gecko/20100101 Firefox/66.0")

 val headers_0 = Map(

 "Accept" ->

"text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8",

 "Upgrade-Insecure-Requests" -> "1")

 val headers_1 = Map(

 "Accept" ->

"text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8",

 "Referer" -> s"$baseURL/login",

 "Upgrade-Insecure-Requests" -> "1")

 val headers_2 = Map(

C-2

 "Content-type" -> "application/json; charset=UTF-8",

 "Referer" -> s"$baseURL")

 val headers_4 = Map(

 "Content-type" -> "application/json; charset=UTF-8",

 "Referer" -> s"$baseURL/tabulatedresults")

 val headers_25 = Map(

 "Accept" ->

"text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8",

 "Referer" -> s"$baseURL/tabulatedresults",

 "Upgrade-Insecure-Requests" -> "1")

 val initProducersId = exec((session) => {

 session.setAll(

 "first_producer" -> (2+ Random.nextInt(17)),

 "second_producer" -> (2+ Random.nextInt(17)),

 "third_producer"-> (2+ Random.nextInt(17))

)

 })

 val csvFeederCredentials=csv("credentials.csv").circular

 //Used in .check to retrive syncId and clientId to propagate to the

next request

 val syncIdRegex= regex("""syncId":([0-9]+)""").saveAs("syncId")

 val clientIdRegex= regex("""clientId":([0-9]+)""").saveAs("clientId")

 //"Target group" combobox. Default value 312

 val targetCB=regex(""""node":([0-

9]+),"type":"put","key":"label","feat":1,"value":"Target group"""")

.saveAs("targetGroupCB")

 //Parameters grid:

 val parameterTextNode=regex(""""node":([0-

9]+),"type":"put","key":"text","feat":[0-

9]+,"value":"Parameters"""").saveAs("parameters_text")

 val parameters_label=regex(""""node":([0-9]+),"type":"splice",

"feat":[0-9]+,"index":[0-9]+,"addNodes":\[${parameters_text}\]""")

.saveAs("parameters_label")

 val parameters_grid=regex(""""addNodes":\[${parameters_label},([0-

9]+)\]""").saveAs("parameters_grid")

 //Producers grid:

C-3

 val producerTextNode=regex(""""node":([0-9]+),"type":"put",

"key":"text","feat":[0-9]+,"value":"Producers"""")

.saveAs("producers_text")

 val producers_label=regex(""""node":([0-

9]+),"type":"splice","feat":[0-9]+,"index":[0-

9]+,"addNodes":\[${producers_text}\]""") .saveAs("producers_label")

 val producers_grid=regex(""""addNodes":\[${producers_label},([0-

9]+)\]""").saveAs("producers_grid")

 //Analysis grid:

 val analysisTextNode=regex(""""node":([0-9]+),"type":"put",

"key":"text","feat":[0-9]+,"value":"Analysis hours"""")

.saveAs("analysis_text")

 val analysis_label=regex(""""node":([0-

9]+),"type":"splice","feat":[0-9]+,"index":[0-

9]+,"addNodes":\[${analysis_text}\]""") .saveAs("analysis_label")

 val analysis_grid=regex(""""addNodes":\[${analysis_label},([0-

9]+)\]""") .saveAs("analysis_grid")

 //Lead Times grid:

 val leadTimesTextNode=regex(""""node":([0-

9]+),"type":"put","key":"text","feat":[0-9]+,"value":"Lead

times"""").saveAs("leadTimes_text")

 val leadTimes_label=regex(""""node":([0-

9]+),"type":"splice","feat":[0-9]+,"index":[0-

9]+,"addNodes":\[${leadTimes_text}\]""") .saveAs("leadTimes_label")

 val leadTimes_grid=regex(""""addNodes":\[${leadTimes_label},([0-

9]+)\]""").saveAs("leadTimes_grid") //Value in recording was 325

 val searchTextNode=regex(""""node":([0-9]+),"type":"put",

"key":"text","feat":[0-9]+,"value":"Search"""").saveAs("search_text")

 val search_button=regex(""""node":([0-9]+),"type":"splice","feat":[0-

9]+,"index":0,"addNodes":\[${search_text}]""")

 //Available parameters

 val availableParameters=regex(""""node":([0-

9]+),"type":"put","key":"text","feat":[0-9]+,"value":"[^"]*

(temperature|precipitation|wind|sea){1}[^"]*"""")

.saveAs("availableParameters")

 val first_parameter_span=regex(""""node":([0-9]+),"type":"splice",

"feat":[0-9]+,"index":[0-9]+,"addNodes":\[${availableParameters}""")

.saveAs("first_parameter_span")

C-4

 val first_key_parameter=regex(""""key":"([0-9]+)",("selected":true,)

?"_renderer_[0-9]+":${first_parameter_span}""")

.saveAs("first_key_parameter")

 //Log-out button id inside a context-menu

 val logout_contextmenu_item=regex(""""node":([0-9]+),"type":"put",

"key":"tag","feat":[0-9]+,"value":"vaadin-context-menu-item"""")

.saveAs("logout_contextmenu_item")

 val contextmenu_logout=regex(""""node":([0-

9]+),"type":"put","key":"opened-

changed"""").saveAs("contextmenu_logout")

 val totalAmountParametersS=""""node":([0-

9]+),"type":"put","key":"text", "feat":[0-

9]+,"value":"[^"]*(temperature|precipation|wind|sea){1}[^"]* """".r

 val allAvailableLeadTimes=""""node":([0-

9]+),"type":"put","key":"text", "feat":[0-9]+,"value":"([0-

9]{1,3})"""".r

 //Select 3 lead times: First

 val availableLeadTimes=regex(""""node":([0-

9]+),"type":"put","key":"text","feat":[0-9]+,"value":"([0-

9]{1,3})"""").findAll.saveAs("availableLeadTimes")

 val availableLeadTimesCountIn=regex(""""node":([0-

9]+),"type":"put","key":"text","feat":[0-9]+,"value":"([0-

9]{1,3})"""").count.in(1,150)

 val availableLeadTimes_first=regex(""""node":([0-9]+),"type":"put",

"key":"text","feat":[0-9]+,"value":"([0-9]{1,3})"""").find(1)

.saveAs("availableLeadTimes_1")

 val availableLeadTimes_second=regex(""""node":([0-9]+),"type":"put",

"key":"text","feat":[0-9]+,"value":"([0-9]{1,3})"""").find(2)

.saveAs("availableLeadTimes_2")

 val availableLeadTimes_fifth=regex(""""node":([0-9]+), "type":"put",

"key":"text","feat":[0-9]+,"value":"([0-9]{1,3})"""").find(5)

.saveAs("availableLeadTimes_5")

 val availableLeadTimes_first_span =regex(""""node":([0-9]+),

"type":"splice","feat":[0-9]+,"index":[0-9]+,"addNodes":

\[${availableLeadTimes_1}\]""").saveAs("availableLeadTimes_1_span")

 val availableLeadTimes_second_span=regex(""""node":([0-9]+),

C-5

"type":"splice","feat":[0-9]+,"index":[0-9]+, "addNodes":

\[${availableLeadTimes_2}\]""").saveAs("availableLeadTimes_2_span")

 val availableLeadTimes_fifth_span=regex(""""node":([0-9]+),

"type":"splice","feat":[0-9]+,"index":[0-9]+, "addNodes":

\[${availableLeadTimes_5}\]""").saveAs("availableLeadTimes_5_span")

 //Instead of extracting a key for a lead time separately, one can

increment a span's value by one. Though this is a more reliable way

 val first_key_leadTime=regex(""""key":"([0-9]+)",

("selected":true,)?"_renderer_[0-9]+"

:${availableLeadTimes_1_span}""")

 .saveAs("first_key_leadTime")//328

 val second_key_leadTime=regex(""""key":"([0-9]+)",("selected":true,)

?"_renderer_[0-9]+":${availableLeadTimes_2_span}""")

 .saveAs("second_key_leadTime")//330

 val fifth_key_leadTime=regex(""""key":"([0-9]+)",("selected":true,)

?"_renderer_[0-9]+":${availableLeadTimes_5_span}""")

 .saveAs("fifth_key_leadTime")//332

 //Login and navigate to the "Tabulated Results View" page

 object LoginAndNavigate{

 val loginAndNavigate=exec(http("Get /")

 .get("/")

 .headers(headers_0))

 .exec(initProducersId)

 .pause(5)

 .feed(csvFeederCredentials)

 .exec(http("Login")

 .post("/login")

 .headers(headers_1)

 //Set credentials from a csv file

 .formParam("username", "${username}")

 .formParam("password", "${password}")

 .check(regex("""Vaadin-Security-Key":"([a-fA-F0-9]{8}-[a-fA-

F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{4}-[a-fA-F0-9]{12})""")

.saveAs("secKey")))

 .pause(1)

 .exec(http("request_2")

 .post(s"$parametersURL")

 .headers(headers_2)

C-6

.body(ElFileBody("FMITabulatedViewMeteorologist_0002_request.txt"))

 .check(syncIdRegex)

 .check(clientIdRegex)

)

 .pause(0,3)

 .exec(http("request_3")

 .post(s"$parametersURL")

 .headers(headers_2)

.body(ElFileBody("FMITabulatedViewMeteorologist_0003_request.txt"))

 .check(syncIdRegex)

 .check(clientIdRegex)

)

 .pause(2)

 .exec(http("Navigate to 'Tabulated results view'")

 .post(s"$parametersURL")

 .headers(headers_4)

.body(ElFileBody("FMITabulatedViewMeteorologist_0004_request.txt"))

 //Extract node id's for the most relevant components

 // that are used in the script

 .check(syncIdRegex)

 .check(clientIdRegex)

 .check(targetCB,

 parameterTextNode,

 parameters_label,

 parameters_grid,

 producerTextNode,

 producers_label,

 producers_grid,

 analysisTextNode,

 analysis_label,

 analysis_grid,

 leadTimesTextNode,

 leadTimes_label,

 leadTimes_grid,

 searchTextNode,

 search_button)

C-7

)

 .exec(http("request_5")

 .post(s"$parametersURL")

 .headers(headers_4)

.body(ElFileBody("FMITabulatedViewMeteorologist_0005_request.txt"))

 .check(syncIdRegex)

 .check(clientIdRegex)

)

 .pause(4)

 }

//Choose three random data producers and extract 2 random parameters

 object ChooseProducers{

 val chooseProducers=exec(http("Choose 1.st producer")

 .post(s"$parametersURL")

 .headers(headers_4)

.body(ElFileBody("FMITabulatedViewMeteorologist_0006_request.txt"))

 .check(syncIdRegex)

 .check(clientIdRegex))

 .exec(http("Components update after choosing 1.st producer")

 .post(s"$parametersURL")

 .headers(headers_4)

.body(ElFileBody("FMITabulatedViewMeteorologist_0007_request.txt"))

 .check(syncIdRegex)

 .check(clientIdRegex))

 .pause(1)

 .exec(http("Choose 2.nd producer")

 .post(s"$parametersURL")

 .headers(headers_4)

.body(ElFileBody("FMITabulatedViewMeteorologist_0008_request.txt"))

 .check(syncIdRegex)

 .check(clientIdRegex))

 .exec(http("Components update after choosing 2.st producer")

 .post(s"$parametersURL")

 .headers(headers_4)

C-8

.body(ElFileBody("FMITabulatedViewMeteorologist_0009_request.txt"))

 .check(syncIdRegex)

 .check(clientIdRegex))

 .exec(http("request_10")

 .post(s"$parametersURL")

 .headers(headers_4)

.body(ElFileBody("FMITabulatedViewMeteorologist_0010_request.txt"))

 .check(syncIdRegex)

 .check(clientIdRegex))

 .pause(1)

 .exec(http("Choose 3.rd producer")

 .post(s"$parametersURL")

 .headers(headers_4)

.body(ElFileBody("FMITabulatedViewMeteorologist_0011_request.txt"))

 .check(availableParameters)

 .check(first_parameter_span)

 .check(first_key_parameter)

 //Saving the whole response to a string called

 //"producersResponse"

 .check(bodyString.saveAs("producersResponse"))

 .check(syncIdRegex)

 .check(clientIdRegex))

 //Creating two random parameters

 .exec{

 session=>{

 //Find total amount of received parameters

 //in the last response

 val amount = totalAmountParametersS.

 findAllIn(session("producersResponse").as[String])

 .length

 //Find a key value for the first meet parameter

 val firstKeyParamete r= session("first_key_parameter")

 .as[Int];

 //Parameters are in range from

 //[firstKeyParameter, firstKeyParameter+amount];

 //Selectining two random ones from this range.

C-9

 //Random function returns value in range [0,amount)

 val firstParameter= Random.nextInt(amount) +

 firstKeyParameter

 val secondParameter= Random.nextInt(amount) +

 firstKeyParameter

 session.set("firstParameter",firstParameter)

 .set("secondParameter",secondParameter)

 }}

 .exec(http("request_12")

 .post("/?v-r=uidl&v-uiId=0")

 .headers(headers_4)

.body(ElFileBody("FMITabulatedViewMeteorologist_0012_request.txt"))

 .check(syncIdRegex)

 .check(clientIdRegex))

 .pause(2)

 }

 //Choose two random parameters defined in previous step and define 3

//lead times

 object ChooseParameters{

 val chooseParameters=

 //Choose first parameter&confirmUpdate

 exec(http("Choose first parameter")

 .post(s"$parametersURL")

 .headers(headers_4)

.body(ElFileBody("FMITabulatedViewMeteorologist_0013_request.txt"))

 .check(bodyString.saveAs("parametersResponseFirst"))

 .check(syncIdRegex)

 .check(clientIdRegex))

 .exec(http("request_14")

 .post(s"$parametersURL")

 .headers(headers_4)

.body(ElFileBody("FMITabulatedViewMeteorologist_0014_request.txt"))

 .check(syncIdRegex)

 .check(clientIdRegex))

 .pause(1)

 //Choose second parameter & confirm update

C-10

 .exec(http("Choose second parameter")

 .post(s"$parametersURL")

 .headers(headers_4)

.body(ElFileBody("FMITabulatedViewMeteorologist_0015_request.txt"))

 .check(syncIdRegex)

 .check(clientIdRegex)

 .check(bodyString.saveAs("parametersResponse"))

 .check(availableLeadTimes)

 //Amount of returned available lead times can be also 0 or 1.

 //In this case skip actions and use values defined in previous

 //step.

 .check(checkIf("${availableLeadTimes(2).exists()}")

 (availableLeadTimes_first),

 checkIf("${availableLeadTimes(2).exists()}")

 (availableLeadTimes_second),

 checkIf("${availableLeadTimes(2).exists()}")

 (availableLeadTimes_fifth),

 checkIf("${availableLeadTimes(2).exists()}")

 (availableLeadTimes_first_span),

 checkIf("${availableLeadTimes(2).exists()}")

 (availableLeadTimes_second_span),

 checkIf("${availableLeadTimes(2).exists()}")

 (availableLeadTimes_fifth_span),

 checkIf("${availableLeadTimes(2).exists()}")

 (first_key_leadTime),

 checkIf("${availableLeadTimes(2).exists()}")

 (second_key_leadTime),

 checkIf("${availableLeadTimes(2).exists()}")

 (fifth_key_leadTime))

 //If there are 3 available lead times in response to the selection

 //of second parameter, then use those

 //Otherwise, parse the first response of parameter selection and

 //pick the values from there

 //If there are no values in either of responses, then select

 //default values captured during recording.

 // Might not actually do anything, but makes test stable

).doIf(session=>

allAvailableLeadTimes.findAllIn(session("parametersResponseFirst")

C-11

.as[String]).length >5

 && session("first_key_leadTime").asOption[String].isEmpty){

 //If there are more than 5 lead times available in the first

//response and none were found in the second one, then:

 exec(session => {

 //Get saved response as a string to use in following regex

 val response=session("parametersResponseFirst").as[String]

 val availLeadTimes=new ListBuffer[String]()

 //Since extracted values are saved as first group, below

//modifications are needed

 allAvailableLeadTimes.findAllIn(response).matchData foreach{

 m=> availLeadTimes+=m.group(1)

 }

 val firstLead= availLeadTimes(0)

 val secondLead=availLeadTimes(2)

 val fifthLead=availLeadTimes(5)

 //Defing spans and keys; the value assigned prior is the one

//captured during recording

 //Defining first key

 var first_span = "1303"

 ((raw""""node":([0-9]+),"type":"splice","feat":[0-9]+,

 "index":[0-9]+,"addNodes":\[$firstLead\]""").r)

 .findFirstMatchIn(response) match{

 case Some(m)=>

 first_span=m.group(1)

 case None =>

 println("A span element for the first Lead Time

 label is not found")

 }

 var first_key_leadTime="328"

 (raw""""key":"([0-9]+)",("selected":true,)?"_

 renderer_[0-9]+":$first_span""".r)

 .findFirstMatchIn(response) match {

 case Some(m) =>

 first_key_leadTime = m.group(1)

 case None =>

 println("An id is not found for the first key lead.

 Using default 328")

 }

C-12

 //Defining second key

 var second_span="1309"

 ((raw""""node":([0-9]+),"type":"splice","feat":[0-9]+,

 "index":[0-9]+,"addNodes":\[$secondLead\]""").r)

 .findFirstMatchIn(response) match {

 case Some(m) =>

 second_span = m.group(1)

 case None =>

 println("A span element for the second Lead Time

 label is not found")

 }

 var second_key_leadTime="330"

 (raw""""key":"([0-9]+)",("selected":true,)?"_

 renderer_[0-9]+":$second_span""".r)

 .findFirstMatchIn(response) match {

 case Some(m) =>

 second_key_leadTime = m.group(1)

 case None =>

 println("An id is not found for the second key lead.

 Using default 330")

 }

 //Defining fifth key

 var fifth_span= "1319"

 ((raw""""node":([0-9]+),"type":"splice","feat":[0-9]+,

 "index":[0-9]+,"addNodes":\[$fifthLead\]""").r)

 .findFirstMatchIn(response) match {

 case Some(m) =>

 fifth_span = m.group(1)

 case None =>

 println("A span element for the fifth Lead Time label

 is not found")

 }

 var fifth_key_leadTime="332"

 (raw""""key":"([0-9]+)",("selected":true,)?"_

 renderer_[0-9]+":$fifth_span""".r)

 .findFirstMatchIn(response) match {

 case Some(m) =>

 fifth_key_leadTime = m.group(1)

C-13

 case None =>

 println("An id is not found for the first key lead.

 Using a default value 332")

 }

 session.setAll(

 "first_key_leadTime" ->first_key_leadTime,

 "second_key_leadTime"->second_key_leadTime,

 "fifth_key_leadTime"-> fifth_key_leadTime

)

 })

 }

 //If no lead times were added when choosing parameters,

 use default values

.doIf(session=>session("first_key_leadTime").asOption[String].isEmpty)

{

 exec(session=>

 session.setAll(

 "first_key_leadTime" ->328,

 "second_key_leadTime"->330,

 "fifth_key_leadTime"-> 332

)

)

 }

 .exec(http("request_16")

 .post(s"$parametersURL")

 .headers(headers_4)

.body(ElFileBody("FMITabulatedViewMeteorologist_0016_request.txt"))

 .check()

 .check(syncIdRegex)

 .check(clientIdRegex))

 .pause(3)

 }

//Picking 3 lead times defined in previous step

 object ChooseLeadTime{

 val chooseLeadTime=

 //Select first lead-time

C-14

 exec(http("Select 1.st lead time")

 .post(s"$parametersURL")

 .headers(headers_4)

.body(ElFileBody("FMITabulatedViewMeteorologist_0017_request.txt"))

 .check(syncIdRegex)

 .check(clientIdRegex))

 //Select second lead-time

 .exec(http("Select 2.nd lead time")

 .post(s"$parametersURL")

 .headers(headers_4)

.body(ElFileBody("FMITabulatedViewMeteorologist_0018_request.txt"))

 .check(syncIdRegex)

 .check(clientIdRegex))

 //Select 5.th lead-time

 .exec(http("Select 5.th lead time")

 .post(s"$parametersURL")

 .headers(headers_4)

.body(ElFileBody("FMITabulatedViewMeteorologist_0019_request.txt"))

 .check(syncIdRegex)

 .check(clientIdRegex))

 .pause(2)

 }

//Fetching data into final Grid after filters are set

object FetchResultsGrid{

 val fetchResultsGrid=

 exec(http("Click Search button")

 .post(s"$parametersURL")

 .headers(headers_4)

.body(ElFileBody("FMITabulatedViewMeteorologist_0020_request.txt"))

 .check(syncIdRegex)

 .check(clientIdRegex))

 .exec(http("request_21")

 .post(s"$parametersURL")

 .headers(headers_4)

C-15

.body(ElFileBody("FMITabulatedViewMeteorologist_0021_request.txt"))

 .check(syncIdRegex)

 .check(clientIdRegex))

 .pause(2,5)

 .exec(http("Scroll Grid")

 .post(s"$parametersURL")

 .headers(headers_4)

.body(ElFileBody("FMITabulatedViewMeteorologist_scrollGrid_request.txt

"))

 .check(syncIdRegex)

 .check(clientIdRegex))

 .exec(http("Update confirmed in scrolled Grid")

 .post(s"$parametersURL")

 .headers(headers_4)

.body(ElFileBody("FMITabulatedViewMeteorologist_scrollGridUpdate_reque

st.txt"))

 .check(syncIdRegex)

 .check(clientIdRegex))

 .pause(0,4)

 }

 //A log-out action

object LogOut{

 val logOut=

 exec(http("Click context-menu button ${username}")

 .post(s"$parametersURL")

 .headers(headers_4)

.body(ElFileBody("FMITabulatedViewMeteorologist_0022_request.txt"))

 .check(logout_contextmenu_item)

 .check(contextmenu_logout)

 .check(syncIdRegex)

 .check(clientIdRegex))

 .exec(http("Open log-out context-menu")

 .post(s"$parametersURL")

 .headers(headers_4)

.body(ElFileBody("FMITabulatedViewMeteorologist_0023_request.txt"))

 .check(syncIdRegex)

 .check(clientIdRegex)

C-16

)

 .exec(http("Click 'Log-out button' in Context-menu")

 .post(s"$parametersURL")

 .headers(headers_4)

.body(ElFileBody("FMITabulatedViewMeteorologist_0024_request.txt"))

 .check(syncIdRegex)

 .check(clientIdRegex)

)

 //Navigate to log-out page

 .exec(http("/logout")

 .get("/logout")

 .headers(headers_25))

 }

//Scenario definition

val userScenario=

scenario("Meterologist").exec(LoginAndNavigate.loginAndNavigate,

 ChooseProducers.chooseProducers,

 ChooseParameters.chooseParameters,

 ChooseLeadTime.chooseLeadTime,

 FetchResultsGrid.fetchResultsGrid,

 LogOut.logOut)

 // User injection for the defined user scenario

 setUp(userScenario.inject(

 // atOnceUsers(4),

 rampUsers(300) during (200 seconds))

).protocols(httpProtocol)

}

C.2 Bodies

File name Request body

FMITabulated

ViewMeteorolo

gist0002_reque

st.tx

{"csrfToken":"${secKey}","rpc":[{"type":"event","node

":87,"event":"value-

changed","data":{}},{"type":"event","node":34,"event"

:"value-

changed","data":{}},{"type":"event","node":33,"event"

C-17

:"value-

changed","data":{}},{"type":"event","node":32,"event"

:"value-

changed","data":{}},{"type":"event","node":31,"event"

:"value-

changed","data":{}},{"type":"event","node":14,"event"

:"value-

changed","data":{}},{"type":"event","node":13,"event"

:"value-

changed","data":{}},{"type":"event","node":12,"event"

:"value-

changed","data":{}},{"type":"event","node":11,"event"

:"value-

changed","data":{}},{"type":"mSync","node":87,"featur

e":1,"property":"value","value":""},{"type":"publishe

dEventHandler","node":16,"templateEventMethodName":"s

etDetailsVisible","templateEventMethodArgs":[null]},{

"type":"publishedEventHandler","node":16,"templateEve

ntMethodName":"sortersChanged","templateEventMethodAr

gs":[[]]},{"type":"publishedEventHandler","node":45,"

templateEventMethodName":"setDetailsVisible","templat

eEventMethodArgs":[null]},{"type":"publishedEventHand

ler","node":45,"templateEventMethodName":"sortersChan

ged","templateEventMethodArgs":[[]]},{"type":"publish

edEventHandler","node":56,"templateEventMethodName":"

setDetailsVisible","templateEventMethodArgs":[null]},

{"type":"publishedEventHandler","node":56,"templateEv

entMethodName":"sortersChanged","templateEventMethodA

rgs":[[]]},{"type":"publishedEventHandler","node":67,

"templateEventMethodName":"setDetailsVisible","templa

teEventMethodArgs":[null]},{"type":"publishedEventHan

dler","node":67,"templateEventMethodName":"sortersCha

nged","templateEventMethodArgs":[[]]},{"type":"publis

hedEventHandler","node":78,"templateEventMethodName":

"setDetailsVisible","templateEventMethodArgs":[null]}

,{"type":"publishedEventHandler","node":78,"templateE

ventMethodName":"sortersChanged","templateEventMethod

Args":[[]]},{"type":"publishedEventHandler","node":16

,"templateEventMethodName":"confirmUpdate","templateE

C-18

ventMethodArgs":[0]},{"type":"publishedEventHandler",

"node":45,"templateEventMethodName":"confirmUpdate","

templateEventMethodArgs":[0]},{"type":"publishedEvent

Handler","node":56,"templateEventMethodName":"confirm

Update","templateEventMethodArgs":[0]},{"type":"publi

shedEventHandler","node":67,"templateEventMethodName"

:"confirmUpdate","templateEventMethodArgs":[0]},{"typ

e":"publishedEventHandler","node":78,"templateEventMe

thodName":"confirmUpdate","templateEventMethodArgs":[

0]},{"type":"mSync","node":34,"feature":1,"property":

"filter","value":""},{"type":"mSync","node":34,"featu

re":1,"property":"invalid","value":false},{"type":"mS

ync","node":34,"feature":1,"property":"opened","value

":false},{"type":"mSync","node":33,"feature":1,"prope

rty":"filter","value":""},{"type":"mSync","node":33,"

feature":1,"property":"invalid","value":false},{"type

":"mSync","node":33,"feature":1,"property":"opened","

value":false},{"type":"mSync","node":32,"feature":1,"

property":"filter","value":""},{"type":"mSync","node"

:32,"feature":1,"property":"invalid","value":false},{

"type":"mSync","node":32,"feature":1,"property":"open

ed","value":false},{"type":"mSync","node":31,"feature

":1,"property":"value","value":""},{"type":"mSync","n

ode":14,"feature":1,"property":"filter","value":""},{

"type":"mSync","node":14,"feature":1,"property":"inva

lid","value":false},{"type":"mSync","node":14,"featur

e":1,"property":"opened","value":false},{"type":"mSyn

c","node":13,"feature":1,"property":"invalid","value"

:false},{"type":"mSync","node":13,"feature":1,"proper

ty":"opened","value":null},{"type":"mSync","node":12,

"feature":1,"property":"invalid","value":false},{"typ

e":"mSync","node":12,"feature":1,"property":"opened",

"value":null},{"type":"mSync","node":11,"feature":1,"

property":"value","value":""}],"syncId":0,"clientId":

0}

FMITabulated

ViewMeteorolo

{"csrfToken":"${secKey}","rpc":[{"type":"event","node

":87,"event":"value-

changed","data":{}},{"type":"event","node":31,"event"

C-19

gist_0003_requ

est.txt

:"value-

changed","data":{}},{"type":"event","node":11,"event"

:"value-

changed","data":{}}],"syncId":${syncId},"clientId":${

clientId}}

FMITabulated

ViewMeteorolo

gist_0004_requ

est.txt

{"csrfToken":"${secKey}","rpc":[{"type":"navigation",

"location":"tabulatedresults","link":1}],"syncId":${s

yncId},"clientId":${clientId}}

FMITabulated

ViewMeteorolo

gist_0005_requ

est.txt

{"csrfToken":"${secKey}","rpc":[{"type":"event","node

":369,"event":"value-

changed","data":{}},{"type":"event","node":323,"event

":"value-

changed","data":{}},{"type":"event","node":${targetGr

oupCB},"event":"value-

changed","data":{}},{"type":"mSync","node":369,"featu

re":1,"property":"invalid","value":false},{"type":"pu

blishedEventHandler","node":314,"templateEventMethodN

ame":"setDetailsVisible","templateEventMethodArgs":[n

ull]},{"type":"publishedEventHandler","node":314,"tem

plateEventMethodName":"sortersChanged","templateEvent

MethodArgs":[[]]},{"type":"publishedEventHandler","no

de":319,"templateEventMethodName":"setDetailsVisible"

,"templateEventMethodArgs":[null]},{"type":"published

EventHandler","node":319,"templateEventMethodName":"s

ortersChanged","templateEventMethodArgs":[[]]},{"type

":"publishedEventHandler","node":${leadTimes_grid},"t

emplateEventMethodName":"setDetailsVisible","template

EventMethodArgs":[null]},{"type":"publishedEventHandl

er","node":${leadTimes_grid},"templateEventMethodName

":"sortersChanged","templateEventMethodArgs":[[]]},{"

type":"publishedEventHandler","node":330,"templateEve

ntMethodName":"setDetailsVisible","templateEventMetho

dArgs":[null]},{"type":"publishedEventHandler","node"

:330,"templateEventMethodName":"sortersChanged","temp

lateEventMethodArgs":[[]]},{"type":"publishedEventHan

dler","node":${parameters_grid},"templateEventMethodN

C-20

ame":"setDetailsVisible","templateEventMethodArgs":[n

ull]},{"type":"publishedEventHandler","node":${parame

ters_grid},"templateEventMethodName":"sortersChanged"

,"templateEventMethodArgs":[[]]},{"type":"publishedEv

entHandler","node":${producers_grid},"templateEventMe

thodName":"setDetailsVisible","templateEventMethodArg

s":[null]},{"type":"publishedEventHandler","node":${p

roducers_grid},"templateEventMethodName":"sortersChan

ged","templateEventMethodArgs":[[]]},{"type":"publish

edEventHandler","node":389,"templateEventMethodName":

"setDetailsVisible","templateEventMethodArgs":[null]}

,{"type":"publishedEventHandler","node":389,"template

EventMethodName":"sortersChanged","templateEventMetho

dArgs":[[]]},{"type":"publishedEventHandler","node":3

14,"templateEventMethodName":"confirmUpdate","templat

eEventMethodArgs":[0]},{"type":"publishedEventHandler

","node":319,"templateEventMethodName":"confirmUpdate

","templateEventMethodArgs":[0]},{"type":"publishedEv

entHandler","node":325,"templateEventMethodName":"con

firmUpdate","templateEventMethodArgs":[0]},{"type":"p

ublishedEventHandler","node":330,"templateEventMethod

Name":"confirmUpdate","templateEventMethodArgs":[0]},

{"type":"publishedEventHandler","node":${parameters_g

rid},"templateEventMethodName":"confirmUpdate","templ

ateEventMethodArgs":[0]},{"type":"publishedEventHandl

er","node":340,"templateEventMethodName":"confirmUpda

te","templateEventMethodArgs":[0]},{"type":"published

EventHandler","node":389,"templateEventMethodName":"c

onfirmUpdate","templateEventMethodArgs":[0]},{"type":

"mSync","node":368,"feature":1,"property":"checked","

value":false},{"type":"mSync","node":365,"feature":1,

"property":"checked","value":true},{"type":"mSync","n

ode":362,"feature":1,"property":"checked","value":fal

se},{"type":"mSync","node":323,"feature":1,"property"

:"filter","value":""},{"type":"mSync","node":323,"fea

ture":1,"property":"invalid","value":false},{"type":"

mSync","node":323,"feature":1,"property":"opened","va

lue":false},{"type":"mSync","node":${targetGroupCB},"

feature":1,"property":"filter","value":""},{"type":"m

C-21

Sync","node":${targetGroupCB},"feature":1,"property":

"invalid","value":false},{"type":"mSync","node":${tar

getGroupCB},"feature":1,"property":"opened","value":f

alse}],"syncId":${syncId},"clientId":${clientId}}

FMITabulated

ViewMeteorolo

gist_0006_requ

est.txt

{"csrfToken":"${secKey}","rpc":[{"type":"publishedEve

ntHandler","node":${producers_grid},"templateEventMet

hodName":"setDetailsVisible","templateEventMethodArgs

":["${first_producer}"]},{"type":"event","node":${pro

ducers_grid},"event":"item-

click","data":{"event.detail.screenY":568,"event.deta

il.metaKey":false,"event.detail.button":0,"event.deta

il.shiftKey":false,"event.detail.screenX":3688,"event

.detail.itemKey":"${first_producer}","event.detail.al

tKey":false,"event.detail.clientX":1005,"event.detail

.detail":1,"event.detail.clientY":326,"event.detail.c

trlKey":true}}],"syncId":${syncId},"clientId":${clien

tId}}

FMITabulated

ViewMeteorolo

gist_0007_requ

est.txt

{"csrfToken":"${secKey}","rpc":[{"type":"event","node

":323,"event":"value-

changed","data":{}},{"type":"event","node":${targetGr

oupCB},"event":"value-

changed","data":{}},{"type":"publishedEventHandler","

node":${parameters_grid},"templateEventMethodName":"s

etRequestedRange","templateEventMethodArgs":[0,50]},{

"type":"publishedEventHandler","node":${parameters_gr

id},"templateEventMethodName":"confirmUpdate","templa

teEventMethodArgs":[1]},{"type":"publishedEventHandle

r","node":330,"templateEventMethodName":"setRequested

Range","templateEventMethodArgs":[0,50]},{"type":"pub

lishedEventHandler","node":330,"templateEventMethodNa

me":"confirmUpdate","templateEventMethodArgs":[1]},{"

type":"publishedEventHandler","node":${leadTimes_grid

},"templateEventMethodName":"setRequestedRange","temp

lateEventMethodArgs":[0,50]},{"type":"publishedEventH

andler","node":${leadTimes_grid},"templateEventMethod

Name":"confirmUpdate","templateEventMethodArgs":[1]},

C-22

{"type":"publishedEventHandler","node":314,"templateE

ventMethodName":"setRequestedRange","templateEventMet

hodArgs":[0,50]},{"type":"publishedEventHandler","nod

e":314,"templateEventMethodName":"confirmUpdate","tem

plateEventMethodArgs":[1]}],"syncId":${syncId},"clien

tId":${clientId}}

FMITabulated

ViewMeteorolo

gist_0008_requ

est.txt

{"csrfToken":"${secKey}","rpc":[{"type":"publishedEve

ntHandler","node":${producers_grid},"templateEventMet

hodName":"setDetailsVisible","templateEventMethodArgs

":["${second_producer}"]},{"type":"event","node":${pr

oducers_grid},"event":"item-

click","data":{"event.detail.screenY":706,"event.deta

il.metaKey":false,"event.detail.button":0,"event.deta

il.shiftKey":false,"event.detail.screenX":3673,"event

.detail.itemKey":"${second_producer}","event.detail.a

ltKey":false,"event.detail.clientX":990,"event.detail

.detail":1,"event.detail.clientY":464,"event.detail.c

trlKey":true}}],"syncId":${syncId},"clientId":${clien

tId}}

FMITabulated

ViewMeteorolo

gist_0009_requ

est.txt

{"csrfToken":"${secKey}","rpc":[{"type":"event","node

":323,"event":"value-

changed","data":{}},{"type":"event","node":${targetGr

oupCB},"event":"value-

changed","data":{}},{"type":"publishedEventHandler","

node":${leadTimes_grid},"templateEventMethodName":"se

tRequestedRange","templateEventMethodArgs":[0,100]},{

"type":"publishedEventHandler","node":${parameters_gr

id},"templateEventMethodName":"confirmUpdate","templa

teEventMethodArgs":[2]},{"type":"publishedEventHandle

r","node":330,"templateEventMethodName":"confirmUpdat

e","templateEventMethodArgs":[2]},{"type":"publishedE

ventHandler","node":${leadTimes_grid},"templateEventM

ethodName":"confirmUpdate","templateEventMethodArgs":

[2]},{"type":"publishedEventHandler","node":314,"temp

lateEventMethodName":"confirmUpdate","templateEventMe

C-23

thodArgs":[2]}],"syncId":${syncId},"clientId":${clien

tId}}

FMITabulated

ViewMeteorolo

gist_0010_requ

est.txt

{"csrfToken":"${secKey}","rpc":[{"type":"publishedEve

ntHandler","node":${leadTimes_grid},"templateEventMet

hodName":"confirmUpdate","templateEventMethodArgs":[3

]}],"syncId":${syncId},"clientId":${clientId}}

FMITabulated

ViewMeteorolo

gist_0011_requ

est.txt

{"csrfToken":"${secKey}","rpc":[{"type":"publishedEve

ntHandler","node":${producers_grid},"templateEventMet

hodName":"setDetailsVisible","templateEventMethodArgs

":["${third_producer}"]},{"type":"event","node":${pro

ducers_grid},"event":"item-

click","data":{"event.detail.screenY":639,"event.deta

il.metaKey":false,"event.detail.button":0,"event.deta

il.shiftKey":false,"event.detail.screenX":3693,"event

.detail.itemKey":"${third_producer}","event.detail.al

tKey":false,"event.detail.clientX":1010,"event.detail

.detail":1,"event.detail.clientY":397,"event.detail.c

trlKey":true}}],"syncId":${syncId},"clientId":${clien

tId}}

FMITabulated

ViewMeteorolo

gist_0012_requ

est.txt

{"csrfToken":"${secKey}","rpc":[{"type":"event","node

":323,"event":"value-

changed","data":{}},{"type":"event","node":${targetGr

oupCB},"event":"value-

changed","data":{}},{"type":"publishedEventHandler","

node":${parameters_grid},"templateEventMethodName":"c

onfirmUpdate","templateEventMethodArgs":[3]},{"type":

"publishedEventHandler","node":330,"templateEventMeth

odName":"confirmUpdate","templateEventMethodArgs":[3]

},{"type":"publishedEventHandler","node":${leadTimes_

grid},"templateEventMethodName":"confirmUpdate","temp

lateEventMethodArgs":[4]},{"type":"publishedEventHand

ler","node":314,"templateEventMethodName":"confirmUpd

ate","templateEventMethodArgs":[3]}],"syncId":${syncI

d},"clientId":${clientId}}

C-24

FMITabulated

ViewMeteorolo

gist_0013_requ

est.txt

{"csrfToken":"${secKey}","rpc":[{"type":"publishedEve

ntHandler","node":${parameters_grid},"templateEventMe

thodName":"setDetailsVisible","templateEventMethodArg

s":["${firstParameter}"]},{"type":"event","node":${pa

rameters_grid},"event":"item-

click","data":{"event.detail.screenY":534,"event.deta

il.metaKey":false,"event.detail.button":0,"event.deta

il.shiftKey":false,"event.detail.screenX":3774,"event

.detail.itemKey":"${firstParameter}","event.detail.al

tKey":false,"event.detail.clientX":1091,"event.detail

.detail":1,"event.detail.clientY":292,"event.detail.c

trlKey":true}}],"syncId":${syncId},"clientId":${clien

tId}}

FMITabulated

ViewMeteorolo

gist_0014_requ

est.txt

{"csrfToken":"${secKey}","rpc":[{"type":"event","node

":323,"event":"value-

changed","data":{}},{"type":"event","node":${targetGr

oupCB},"event":"value-

changed","data":{}},{"type":"publishedEventHandler","

node":330,"templateEventMethodName":"confirmUpdate","

templateEventMethodArgs":[4]},{"type":"publishedEvent

Handler","node":${leadTimes_grid},"templateEventMetho

dName":"confirmUpdate","templateEventMethodArgs":[5]}

,{"type":"publishedEventHandler","node":314,"template

EventMethodName":"confirmUpdate","templateEventMethod

Args":[4]}],"syncId":${syncId},"clientId":${clientId}

}

FMITabulated

ViewMeteorolo

gist_0015_requ

est.txt

{"csrfToken":"${secKey}","rpc":[{"type":"publishedEve

ntHandler","node":${parameters_grid},"templateEventMe

thodName":"setDetailsVisible","templateEventMethodArg

s":["${secondParameter}"]},{"type":"event","node":${p

arameters_grid},"event":"item-

click","data":{"event.detail.screenY":703,"event.deta

il.metaKey":false,"event.detail.button":0,"event.deta

il.shiftKey":false,"event.detail.screenX":3758,"event

.detail.itemKey":"${secondParameter}","event.detail.a

ltKey":false,"event.detail.clientX":1075,"event.detai

l.detail":1,"event.detail.clientY":461,"event.detail.

C-25

ctrlKey":true}}],"syncId":${syncId},"clientId":${clie

ntId}}

FMITabulated

ViewMeteorolo

gist_0016_requ

est.txt

{"csrfToken":"${secKey}","rpc":[{"type":"event","node

":323,"event":"value-

changed","data":{}},{"type":"event","node":${targetGr

oupCB},"event":"value-

changed","data":{}},{"type":"publishedEventHandler","

node":330,"templateEventMethodName":"confirmUpdate","

templateEventMethodArgs":[5]},{"type":"publishedEvent

Handler","node":${leadTimes_grid},"templateEventMetho

dName":"confirmUpdate","templateEventMethodArgs":[6]}

,{"type":"publishedEventHandler","node":314,"template

EventMethodName":"confirmUpdate","templateEventMethod

Args":[5]}],"syncId":${syncId},"clientId":${clientId}

}

FMITabulated

ViewMeteorolo

gist_0017_requ

est.txt

{"csrfToken":"${secKey}","rpc":[{"type":"publishedEve

ntHandler","node":${leadTimes_grid},"templateEventMet

hodName":"setDetailsVisible","templateEventMethodArgs

":["${first_key_leadTime}"]},{"type":"event","node":$

{leadTimes_grid},"event":"item-

click","data":{"event.detail.screenY":582,"event.deta

il.metaKey":false,"event.detail.button":0,"event.deta

il.shiftKey":false,"event.detail.screenX":3702,"event

.detail.itemKey":"${first_key_leadTime}","event.detai

l.altKey":false,"event.detail.clientX":1019,"event.de

tail.detail":1,"event.detail.clientY":340,"event.deta

il.ctrlKey":true}}],"syncId":${syncId},"clientId":${c

lientId}}

FMITabulated

ViewMeteorolo

gist_0018_requ

est.txt

{"csrfToken":"${secKey}","rpc":[{"type":"publishedEve

ntHandler","node":${leadTimes_grid},"templateEventMet

hodName":"setDetailsVisible","templateEventMethodArgs

":["${second_key_leadTime}"]},{"type":"event","node":

${leadTimes_grid},"event":"item-

click","data":{"event.detail.screenY":659,"event.deta

il.metaKey":false,"event.detail.button":0,"event.deta

il.shiftKey":false,"event.detail.screenX":3660,"event

.detail.itemKey":"${second_key_leadTime}","event.deta

C-26

il.altKey":false,"event.detail.clientX":977,"event.de

tail.detail":1,"event.detail.clientY":417,"event.deta

il.ctrlKey":true}}],"syncId":${syncId},"clientId":${c

lientId}}

FMITabulated

ViewMeteorolo

gist_0019_requ

est.txt

{"csrfToken":"${secKey}","rpc":[{"type":"publishedEve

ntHandler","node":${leadTimes_grid},"templateEventMet

hodName":"setDetailsVisible","templateEventMethodArgs

":["${fifth_key_leadTime}"]},{"type":"event","node":$

{leadTimes_grid},"event":"item-

click","data":{"event.detail.screenY":737,"event.deta

il.metaKey":false,"event.detail.button":0,"event.deta

il.shiftKey":false,"event.detail.screenX":3659,"event

.detail.itemKey":"${fifth_key_leadTime}","event.detai

l.altKey":false,"event.detail.clientX":976,"event.det

ail.detail":1,"event.detail.clientY":495,"event.detai

l.ctrlKey":true}}],"syncId":${syncId},"clientId":${cl

ientId}}

FMITabulated

ViewMeteorolo

gist_0020_requ

est.txt

{"csrfToken":"${secKey}","rpc":[{"type":"event","node

":305,"event":"click","data":{"event.shiftKey":false,

"event.metaKey":false,"event.detail":1,"event.ctrlKey

":false,"event.clientX":1108,"event.clientY":592,"eve

nt.altKey":false,"event.button":0,"event.screenY":834

,"event.screenX":3791}}],"syncId":${syncId},"clientId

":${clientId}}

FMITabulated

ViewMeteorolo

gist_0021_requ

est.txt

{"csrfToken":"${secKey}","rpc":[{"type":"publishedEve

ntHandler","node":389,"templateEventMethodName":"conf

irmUpdate","templateEventMethodArgs":[1]}],"syncId":$

{syncId},"clientId":${clientId}}

FMITabulated

ViewMeteorolo

gist_scrollGrid

_request.txt

{"csrfToken":"${secKey}","rpc":[{"type":"publishedEve

ntHandler","node":389,"templateEventMethodName":"setR

equestedRange","templateEventMethodArgs":[0,100]}],"s

yncId":${syncId},"clientId":${clientId}}

C-27

FMITabulated

ViewMeteorolo

gist_scrollGrid

Update_reques

t.txt

{"csrfToken":"${secKey}","rpc":[{"type":"publishedEve

ntHandler","node":389,"templateEventMethodName":"conf

irmUpdate","templateEventMethodArgs":[2]}],"syncId":$

{syncId},"clientId":${clientId}}

FMITabulated

ViewMeteorolo

gist_0022_requ

est.txt

{"csrfToken":"${secKey}","rpc":[{"type":"event","node

":120,"event":"click","data":{"event.shiftKey":false,

"event.metaKey":false,"event.detail":1,"event.ctrlKey

":false,"event.clientX":1220,"event.clientY":15,"even

t.altKey":false,"event.button":0,"event.screenY":257,

"event.screenX":3903}},{"type":"event","node":120,"ev

ent":"vaadin-context-menu-before-

open"}],"syncId":${syncId},"clientId":${clientId}}

FMITabulated

ViewMeteorolo

gist_0023_requ

est.txt

{"csrfToken":"${secKey}","rpc":[{"type":"event","node

":${contextmenu_logout},"event":"opened-

changed"},{"type":"event","node":${contextmenu_logout

},"event":"opened-

changed"},{"type":"mSync","node":${contextmenu_logout

},"feature":1,"property":"opened","value":true}],"syn

cId":${syncId},"clientId":${clientId}}

FMITabulated

ViewMeteorolo

gist_0024_requ

est.txt

{"csrfToken":"${secKey}","rpc":[{"type":"event","node

":${logout_contextmenu_item},"event":"click","data":{

"event.shiftKey":false,"event.metaKey":false,"event.d

etail":1,"event.ctrlKey":false,"event.clientX":1200,"

event.clientY":47,"event.altKey":false,"event.button"

:0,"event.screenY":289,"event.screenX":3883}},{"type"

:"event","node":${contextmenu_logout},"event":"opened

-

changed"},{"type":"mSync","node":${contextmenu_logout

},"feature":1,"property":"opened","value":false}],"sy

ncId":${syncId},"clientId":${clientId}}

D-1

Appendix D Profile for integration tests

<!--RUNNING JMeter integration tests-->

<profile>

 <id>integrationTest</id>

 <dependencies>

 <!--Gatling Dependencies-->

 <dependency>

 <groupId>io.gatling</groupId>

 <artifactId>gatling-core</artifactId>

 <version>${gatling.version}</version>

 </dependency>

 <dependency>

 <groupId>io.gatling</groupId>

 <artifactId>gatling-app</artifactId>

 <version>${gatling.version}</version>

 </dependency>

 <!—Needed to generate reports -->

 <dependency>

 <groupId>io.gatling.highcharts</groupId>

 <artifactId>gatling-charts-highcharts</artifactId>

 <version>${gatling.version}</version>

 </dependency>

 </dependencies>

 <build>

 <plugins>

 <!--To run integration tests -->

 <plugin>

 <artifactId>maven-failsafe-plugin</artifactId>

 <version>2.22.0</version>

 <executions>

 <execution>

 <goals>

 <!--Runs Integration tests-->

 <goal>integration-test</goal>

<!--running integration tests, you should invoke Maven with the `mvn

verify` rather than trying to invoke the integration-test phase

D-2

directly, as otherwise the `post-integration-test` phase will not be

executed.-->

 <goal>verify</goal>

 </goals>

 <configuration>

 <includes>

 <include>**/*IT.java</include>

 <include>**/*It.java</include>

<include>**/FMITabulatedResultsView_meteorologist.jmx</include>

 </includes>

 <excludes>

 <exclude>**/*UT.java</exclude>

 <exclude>**/*UT.java</exclude>

 </excludes>

 </configuration>

 </execution>

 </executions>

 </plugin>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-maven-plugin</artifactId>

 <configuration>

 <wait>100000</wait>

 <maxAttempts>18</maxAttempts>

 </configuration>

 <executions>

 <!--Start-up -->

 <execution>

 <id>start-spring-boot</id>

 <phase>pre-integration-test</phase>

 <goals>

 <goal>start</goal>

 </goals>

 </execution>

 <!--Tear down-->

 <execution>

 <id>stop-spring-boot</id>

 <phase>post-integration-test</phase>

 <goals>

D-3

 <goal>stop</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 <!--Add JMeter plugin-->

 <plugin>

 <groupId>com.lazerycode.jmeter</groupId>

 <artifactId>jmeter-maven-plugin</artifactId>

 <version>2.1.0</version>

 <executions>

 <execution>

 <id>jmeter-tests</id>

 <goals>

 <goal>jmeter</goal>

 </goals>

 <phase>integration-test</phase>

 </execution>

 </executions>

 </plugin>

<!--GATLING https://gatling.io/docs/2.3/extensions/maven_plugin Maven

plugin-->

 <plugin>

 <groupId>io.gatling</groupId>

 <artifactId>gatling-maven-plugin</artifactId>

 <version>${gatling.version}</version>

 <configuration>

<resourcesFolder>src/test/gatling/resources</resourcesFolder>

 <simulationsFolder>src/test/gatling</simulationsFolder>

 </configuration>

 <!-- Runs within maven verify phase-->

 <executions>

 <execution>

 <goals>

 <goal>test</goal>

 </goals>

 </execution>

 </executions>

D-4

 </plugin>

 </plugins>

 </build>

</profile>

