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The deconvolution problem to identify the critical protein targets behind drug sensi-
tivity profiling is an important part of drug development. It helps us to understand
the mechanism of action of anti-cancer drugs on the cell lines through protein tar-
gets in those cell lines. This problem can be formulated as a matrix deconvolution
problem, with two matrices for the cell-based drug sensitivity profiling and drug-
target interaction data, respectively. The model needs to be solved to identify the
vulnerability of the cell lines to inhibition of critical targets.

We used drug sensitivity data for 265 anti-cancer compounds over 990 cell models
taken from cancer patients and cultivated in the lab. Using the data on interaction
of these drugs with the protein targets, we used a novel method called TDSBS
(target deconvolution with semi-blind source separation) in order to determine the
critical targets for each cell model. The critical protein targets determined using
this method were found to be clinically relevant, as we could determine that the
driver genes have higher TDSBS values compared to the non-driver genes in the cell
models. In this thesis we demonstrate a general statistical model which can be used
to identify the protein targets which are inhibited by anti-cancer drugs in drug/cell
line sensitivity experiments.

Keywords: Target deconvolution, blind source separation, nonnegative matrix fac-
torization.
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1 Introduction

Cancer diseases of various types form one of the most significant reasons of death in
most countries. According to the World Health Organisation (WHO), cancer caused
an estimated 9.6 million deaths in 2018, corresponding to about 1 in 6 deaths glob-
ally. Therefore, cancer research is one of the key areas of medical and pharmaceutical
research world-wide.

This thesis deals with analysing data made available online by the Sanger In-
stitute, one of the leading institutes of genomic research. Our primary reference, a
research paper by F. Ioris et al [5], describes the many steps of the data collection
process and reports the results obtained from enormous data. In this pre-clinical
study the authors reported the mapping of cancer-driven mutations in 11,289 tumors
onto 1,001 human cancer cell lines and tested against 265 anti-cancer compounds.
Clinical trials are usually expensive and laborious, therefore pre-clinical data such
as the ones made available by the Sanger institute [21] are important because they
could increase the likelihood of success in clinical trials.

It is a natural and important question to analyse the mechanisms of how drug
treatments act on cancer cells. Deconvoluting the protein targets using the drug
sensitivity profiles (drug-target deconvolution) is important for understanding the
mode of action of those drugs which show potency on the cancer cells. This un-
derstanding is important for the drug development and repurposing applications.
Various models have been suggested for this purpose. See Terstappen et al. for a
review of a broad panel of experimental methods that can be applied to phenotype
based deconvolution of targets [35].

Yadav et al. [43] developed a method, called drug sensitivity score (DSS). The
DSS method integrates the dose-response relationships in high-throughput com-
pound testing studies, see Figure 1. This method could be used to identify the can-
cer sensitive drugs on various cell models. Later on, Szwajda et al. [32] developed a
method for target deconvolution which was both experimental and computational.
The approach, called kinase inhibition sensitivity score (KISS), maps the sensitivity
profiles of kinase inhibitor. Moreover, it uses the probability of kinase inhibitors
being crucial for the survival of cancer cells to rank them.

Overall, several models have been developed for deconvolution of the cancer cells
response to kinase inhibitors using computational approaches [11, 28, 37, 38].

In [42] a generalisation of the KISS method was developed for all the target
types, called target addiction score (TAS). It was tested over 107 cell models and
applied to primary leukemia patient cells.

Because of the current interest in so called precision medicine, it is important
to look for other, perhaps better methods for target deconvolution. Motivated by
these ideas, we will apply the TDSBS (target deconvolution with semi-blind source
separation) method on data by the Sanger Institute and compare it to TAS [42].
The TDSBS method is based on the algorithm implemented by van Benthem and
Keenan [2]. Blind source separation methods form a large class of methods mostly
used for engineering purposes such as pattern recognitions, signal analysis, computer
vision, and speech recognition [29]. The TDSBS method has not been formerly used
for cancer related data analysis.
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Figure 1: Schematic diagram for drug target deconvolution

The aforementioned data files studied in this thesis include the sensitivity profil-
ing for 265 anti-cancer drugs over 990 cell lines, and drug target interaction data for
those 265 drugs with 78 protein targets. The data files are incomplete in the sense
that some data values are missing. In order to overcome the problem of missing data
we will fill the missing values by values based on a statistical technique, a method
called imputation.

Finally we compare the cell-line target interaction results obtained by this method
with the corresponding results obtained by the TAS method. We also stratify the
TDSBS values by driver or non-driver genes for the cell models. The main results
are presented in Section 4.

1.1 Cancer biology

Cancers arise by changes in the genome that cause alteration in the function of
cancer genes. Thereafter, cells start growing uncontrollably, do not die, get nutrients
from blood to support their modified cell biology, and accumulating in body organs
and form so called tumors, see [13]. Cancer cells can also invade distant organs
by entering the bloodstream or the lymphatic networkin a process which is called
metastasis, see [36].

Genetic materials consisting of chains of DNA control the normal behaviour of
each cell. The DNA sequence mutations can affect the normal function of protein
targets and cause cancer. Each cancer has a unique combination of mutations. Most
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mutations that develop during the life time of an individuals are errors happening
during multiplication of normal cells because of environmental risk factors and life
habits. Only 10% of the genetic mutations are inherited, for more details see [30].

We now explain the terms we use for cancer biology in this thesis.

• Cell lines. Testing all the anti-cancer compounds on humans is not feasible in
practice. Moreover, it is unethical to try new treatments without any evidence
that it is the best possibility of curing a patient. Therefore, we need an easy-
to-handle model to mirror the disease. Cell lines are one of the easiest models
that provide an accurate mirror. A number of cells are taken from a tumour
and subsequently grown in the laboratory [5]. The advantage of this method
is that cells grow as long as they get nutrients while they reflect the properties
of that cell in the tumour. The cell line mimic aspects of the disease biology
[31].

• The therapeutic window. The goal of a therapeutic intervention is to
determine which cells are diseased and kill them, while not influencing the
normal function of the other cells. An ideal drug would be the one which kills
all the bad cells and leaves the good ones unaffected. The therapeutic window
refers to the range of concentration where a drug kills the target cells but does
not impact the other cells [31].

• Cytotoxic drugs. Exposing the cancer cells to a toxic compound is the easiest
way to kill them. This is likely to have a negative impact on the other cells.
However, cancer cells grow more actively than the other cells, which makes
them more susceptible for these types of treatments. Therefore, a therapeutic
window exists for such treatments, for example in the case of chemotherapy.
[31].

• Targeted therapies. The targeted therapies turn off the abnormally active
proteins which contribute in the progression and spread of cancer. Targeted
therapies block tumor cell proliferation, and therefore often called cytostatic.

There are several differences between targeted therapies and cytotoxic drugs:

– Targeted therapies block the specific targets which are associated with
cancer, however cytotoxic drugs kill all fast-growing cells.

Targeted drugs are the backbone of precision medicine, a medicine which uses
the individual’s unique genetic background to treat the disease. For more
details see e.g. the article entitled ’Targeted Cancer Therapies’, published by
the National Cancer Institute [26].

• Cancer driver genes. The cancer-related genes have been classified as onco-
genes and tumor suppressor genes [40]. When a proto-oncogene, which helps
for the normal cell growth, mutates, it will become activated. Thereafter, the
cell starts growing uncontrollably, and could lead to cancer. This gene called
oncogene. Tumor suppressor genes are normal genes that control the division
of cells. When tumor suppressor genes are not functioning, cells will grow
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uncontrollably which could lead to cancer. The basic difference between tu-
mor suppressors and oncogenes is the fact that tumor suppressors cause cancer
when inactivated but the oncogenes lead to cancer when the proto-oncogenes
are activated.

Mutations which contribute to development or progression of a cancer are
called drivers, while mutations which a cancer may have caused and have no
functional impact on the cell are called passenger mutations. Driver genes are
usually activated oncogenes or tumor suppressor genes [31].

2 Drug sensitivity profiles and their preprocess-

ing

The data on drug sensitivity and the interaction of the drugs and targets analysed
in this thesis are available from the Genomics of Drug Sensitivity in Cancer (GDSC)
database of the Sanger Institute [21]. GDSC is the largest public resource for drug
sensitivity profiles on cell lines and their genomic and molecular characteristics. The
article [5] reports in a detailed way how these data were collected and analysed in
laboratory over a period of several decades. Below we explain the different steps of
data preprocessing.

• Drug responses over cancer cell lines: The data samples were obtained from
tumors in cancer patients and cultivated in laboratory. A total of 990 cell
lines were exposed to 256 drug compounds and their responses were recorded
generating 212,774 dose response curves. This high-throughput drug/cell line
screening was performed by the Cancer Genome Project at the Wellcome Trust
Sanger Institute (WTSI). The compounds used for screening include both
cytotoxic (n=19), not included in the analysis, targetted therapies (n=242),
and drugs which do not have specified functions (n=4).

Of particular interest is the survival fraction of the cells when the drug dose is
increased. This fraction is specific for a given drug and cell line pair. Naturally
if the dose is 0, the survival rate equals 1 and it usually approaches 0 when
the dose increases to some critical value. It is customary to consider the area
under this survival probability curve above the x-axis as a measure of the effect
of the treatment. This so called area-under-curve (AUC) value is between 0
and 1, see Figure 1. The AUC values allow us to draw conclusions about the
effect of drug treatments on the cell lines. If the AUC value is small, it means
that even small doses are enough to affect cell survival, which indicates a high
potency of the drug on the particular cell line. We used the 1−AUC values as
the measurement in our analyses. Figure 1 presents a schematic diagram of
the data as used in the analyses of this thesis.

There are two preprocessing steps which must be made before analysing the
data. The first step is to remove those drugs which have too heavy side effects
or are toxic to cells. They are called cytotoxic drugs. We also remove drugs
with undefined conditions meaning the drugs which are neither inhibiting nor
cytotoxic. In the next step we must deal with the problem that the drug
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cell line data are incomplete and about 19% of the data are missing. This
problem of missing data entries can be treated with imputation. We will
discuss imputation in subsequent sections. The dataset containing the drug
responses in the cell lines will be referred to as a mixed matrix. These data
can be represented by X = [xij]m×n, m = 990, n = 242, with the rows
corresponding to the cell lines and the columns standing for the different drug
compounds. Element xij is then the value of 1- AUC for cell line i and drug j.

• Drug target dataset: This dataset was originally a list of drugs with protein
targets for each drug. Drugs were either targeted (n=242), cytotoxic (n=19)
or without a defined impact. After removing the cytotoxic drugs, We mapped
these data to a binary matrix A = [aij]n×k, n = 242, k = 78. The rows
correspond to the drugs and the columns are the targets. In this matrix aij = 1
indicates that drug i is inhibiting the target j, and 0 otherwise. This matrix
will be referred to as the mixing matrix. It is partially known because of the
dual meaning of the zero entries. The interpretation of the zero entries for
each pair of the drug and target is that there is either no interaction between
them or the information about the interaction is missing.

3 Target addiction scoring (TAS)

The problem of drug target deconvolution for identifying key targets for cancer cells
has been studied by several authors. In the paper by B. Yadav, et al [42], the authors
implemented an experimental-computational approach which used polypharmaco-
logical effects of compounds in order to determine target addictions in cancer cell
lines. The authors used a high-throughput genome profiling and drug screening
data made available by Garnett et al. (2012) [7], including the AUC and IC50

(half-maximal inhibitory concentration) which are parameters for drug response,
see Figure 1. Moreover, they used drug target interaction data to model the mode
of action of drugs over targets. These data were taken from the Genomics of Drug
Sensitivity in Cancer (GDSC) database of the Sanger Institute [21]. Using a collec-
tion secondary and downstream targets from several resources, the primary targets
listed in this dataset were extended.

The computational method that Yadav et al. developed and used for the target
deconvolution is called target addiction score (TAS) [42]. It was implemented in
clinical and preclinical investigation over 107 cancer cell lines originated from vari-
ous tissues, with the observed drug response to the panel of 138 anti-cancer drugs.
This method estimates how sensitive is a cell to the inhibition of a particular pro-
tein target. Drug sensitivity score (DSS) was used as the primary drug response
parameter (Yadav et al., 2014 [43]). The IC50 and AUC values were also tested as
drug sensitivity metrics. The authors used distance-based congruence analysis to
compare the target addiction score values with genetic signatures. It was found that
when they used DSS metric in the TAS model it led to the best concordance. Using
AUC values in the TAS model also showed slightly improved concordance. But the
IC50 metric had an opposite trend in concordance.

TAS values are calculated by taking the average of the observed drug responses
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over all the nt compounds that inhibit the target protein t:

TASt =
nt∑
i=1

DRi

nt

, DR = Drug response .

In this method only the observed values for drug response contribute to the
calculation of the TAS value for each target and therefore there is no need to use
imputation methods to replace missing values. The implementation of the TAS
model is made available online. We had access also to the drug-response (DSS) and
drug target interaction data used in this paper, kindly provided by Dr Bhagwan
Yadav, Institute for Molecular Medicine Finland (FIMM).

4 Blind and semi-blind source separation

In many signal processing problems only measurements of the mixed signals are
known and the problem is how to build suitable projections to find the unmixed sig-
nals of interest. Blind Source Separation (BSS) belongs to a class of computational
data analysis techniques to estimate the source components from their mixtures. It
is called blind because we do not use any other information besides the mixtures [8].
See Figure 2 for the procedure of BSS.

Because of its simple mathematical form, the BSS method has been applied
widely for speech signal processing [1], communication systems [4], and processing
of biomedical signals [14], [17]. For other application of BSS see [20].

The BSS is a statistical model to decompose the observed multivariate data.
The data could be either a linear or nonlinear mixture of unknown variables with
unknown mixing coefficients. In practice however, BSS methods make some as-
sumptions about either the sources or the mixing system, or both, in order to gain
traction on the problem. Furthermore, when we have partial knowledge about the
mixing process we could perform so called semi-blind source separation (SBSS). In-
corporating partial information about the mixing process into the model gives more
accurate solution and hence it could be easily interpreted for the applications [15].
When we know all of the sources, or the complete mixing matrix, we denote this as
supervised source separation (SSS) and note that separating the sources is relatively
trivial in this case.

In our deconvolution problem A ∗ S = X. If X is known but only partial infor-
mation from A is known, this partial information could be very useful for improving
the separation method. In this kind of problem one could use a semi-blind source
separation method (SBSS). SBSS takes the partial information from the mixing ma-
trix A into account in order to solve the deconvolution problem and estimate S. In
the application of this thesis, partial information in the mixing matrix refers to the
drug target interaction. The mixing matrix is a binary matrix. For each drug and
target pair if the value in the matrix is 1 it means that there is interaction between
that specific drug and target, but if the value is zero it has dual meanings, it could
either mean that there is no interaction between them, or the information about the
interaction between them is missing.
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Figure 2: Blind Source Separation Model. A group of unknown sources are mixed
together to produce a set of observed mixture signals. A source separation algorithm
(and its associated demixing operation) estimates the sources.

4.1 Nonnegative Matrix Factorization (NMF)

Depending on the nature and the assumptions of the problem, there are several ways
to use a source separation method for deconvolution problem. Some examples are
nonnegative matrix factorization (NMF) [22], [24], independent component analysis
(ICA) [34], principal componenet analysis (PCA) [16], singular value decomposition
(SVD), etc. In our problem the matrices have positive entries and therefore NMF is
a suitable method. NMF was first introduced in 1994 by Paatero and Tapper [27],
and popularised in an article by Lee and Seung [24] in 1999. It has become popular
because of its ability to automatically extract sparse and easily interpretable factors.
NMF is an approach for matrix decomposition that decomposes a nonnegative ma-
trix into two low rank nonnegative matrices. It has successfully found applications
in biological data mining, see [22].

If we have a nonnegative matrix X ∈ Rm×n, the standard NMF decomposes X
into two non-negative factors A ∈ Rm×k and S ∈ Rk×n, such that X ≈ AS. The
value of k is chosen according to the rule k < nm/(n + m). It is usually a tricky
task to choose the factorization rank k. One way to choose it is to try various values
of k and choose the one which performs best for our application. We used NMF
for two purposes. First, to impute the missing values. The choice of factorization
rank k for this purpose is explained in Section 4.1. Second, we used NMF for target
deconvolution. In that case the factorization rank was the same as the number of
targets k = 78. The methods to solve the NMF problem are iterative. One way to
solve it is the Alternating Least Square algorithm. The first step in this algorithm
is to determine an objective function. The objective function is a criterion for the
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goodness of approximation. In this algorithm the NMF problem can be formulated
as the following optimization problem:

min
A,S

||X − AS||2F = min
A,S

∑
i=1,..,m,j=1,..,n

(X − AS)2ij, subject to S ≥ 0 , A ≥ 0 . (1)

In our application, A stands for the drug target interaction matrix (mixing process),
X stands for the matrix of AUC values (mixed matrix), and S is the interaction
between cell lines and targets and is our source matrix. Here, ||.||2F denotes squared
Frobenius norm and the conditions S ≥ 0 , A ≥ 0 amount to S and A being both
entry-wise nonnegative. The Frobenius norm assumes the error E present in the
matrix X = AS + E to be normally distributed. The aim of this approach is to
minimize the error E and get the best estimate for the source matrix. Minimizing
the Gaussian error could be done by maximising the log-likelihood function [22]. The
k rows of S are viewed as new bases, whereas the k columns of A are regarded as the
coefficients for which the original samples are representable as linear combinations
of the bases. We consider S as a low dimensional representation of X because we
have k < m.

Most of the algorithms designed to solve (1) are using the method which keeps
one of the factors A or S fixed and optimizes over the other factor. The reason for
keeping one of the factors fixed is that the subproblem in one factor is convex; see
below for a justification. It is then a nonnegative least squares (NNLS) problem.
For example if we keep S fixed, we will need to solve minA≥0 ||X −AS||2F . We have

||X − AS||2F = tr((X − AS)(X − AS)T ) =

p∑
i=1

Ai(SS
T )AT

i − 2Ai(SX
T
i ) + ||Xi||2F ,

where Ai and Xi are the column vectors of A and X respectively. This optimization
problem is indeed convex for fixed X,S since Ai ↦→ (Xi−AiS)

2 is convex. Therefore
this problem can be decomposed into p independent NNLS problems in k variables.
Alternating Least Squares is appealing in several senses. At each iteration, it is mini-
mizing a convex function, meaning that there is a unique local and global minimum,
and it is easy to implement, since there are many least-squares routines publicly
available, see [9]. Another popular algorithm is called multiplicative update by Lee
and Seung [24].

4.2 Missing value imputation using NMF

In the AUC dataset, about 19% of values are missing. This could be either because
they were not screened or did not pass quality control and were hence not released.
The missing data has negative impact on the performance of the data analysis. One
method which is used frequently for processing missing values is imputation. There
are many different ways to estimate the missing values in a dataset. The first step
is to identify the missing patterns in the dataset. In our AUC dataset the missing
values are missing completely at random (MCAR), because the missing values were
present simply because the drug responses were not screened for reasons not related
to any drug or cell line features. For the pattern of missing values in the AUC values
see Figure 3.
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Figure 3: The missing pattern for the AUC values, rows correspond to 242 drugs
and columns correspond to 990 cell lines

We describe three approaches for processing the data with missing values. The
first one is to choose a subset of the data with no missing values, however, we
may lose some information as the missing AUC values may be diverse and play an
important role in the following analysis. The second method replaces the missing
values with simple numerical methods of the AUC values, such as their mean or
mode or imputed by zero. Despite this method requiring a lot of computations, it
could introduce a rather large error for the analysis. This approach would also result
in lots of same values which is not realistic. The third method involves imputing
the missing values using their estimated values based on the observed entries in the
dataset. Recent studies indicate that this method has a better imputation accuracy
[12].

We use a novel method for imputing missing values using Nonnegative Matrix
Factorization (NMF) [23]. Compared to the other imputation methods, the advan-
tage of this method is that it uses all the observed entries for imputing a single
missing value, and therefore it captures complex dependency among the observed
entries.

First we need to determine the factorization rank k for which we will apply the
NMF method. In order to determine the factorization rank k we deleted some of
the entries randomly from the AUC values and then imputed by NMF with different
choices of k. These imputed entries were next compared to their observed values,
and the k that gave the smallest error was our choice. For our problem k = 4 was the
best choice for the factorization rank which gave the smallest error using normalized
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root mean squared error measure (NRMSE), see Figure 4. NRMSE is a measure
to evaluate the similarity between the original data X and imputed data X

′
. The

NRMSE value is calculated by taking the root mean squared difference between the
original X and estimated values X ′ of the missing entries, divided by the root mean
squared original values in these entries:

NRMSE =

√
mean((X −X ′)2)

mean(X2)

N
R
M
SE

Rank

Figure 4: Determining the optimal rank k in NMF using imputation, four repli-
cations are indicated by different colors. In the modified dataset, 20% of data is
replaced by missing values.

Algorithm for imputation:

• Step 1. We denote the matrix with missing values by X. We define a weight
matrix w with the same dimensions as X. All entries of this weight matrix w
are equal to one, except those corresponding to missing values in X which are
set to be zero.

• Step 2. Decompose X = A ∗ S, using LS-NMF, by the weight function as
defined in Step 1.

• Step 3. Form A ∗ S again to obtain X this time without missing values.

• Step 4. The result can be used to impute the missing values.
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Before the actual imputation, in order to assess the accuracy of this imputation
algorithm, we first tested it on the AUC dataset. The data were transformed into a
complete matrix by removing all cell lines containing at least one missing value. We
generated missing values completely at random (MCAR) in the dataset. Different
missing value rates (q=5− 95%) were used. Missing values were generated 20 times
for each missing value rate q, see Figure 5.
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Figure 5: The testing procedure was repeated for a range of missing value rates
(q = 5− 95%)

We evaluated the accuracy of the imputation method using the normalized root
mean squared error measure (NRMSE). If we impute the missing values by zero,
the NRMSE value will be equal to one, which will give a convenient reference error
level for our imputation method. As we see in Figure 6, the accuracy of imputation
decreases when the missing value rate is increasing.

4.3 Target deconvolution by semi-blind source separation
(TDSBS)

In our deconvolution problem A ∗ S = X, A = [aij]242×78 is the drug/target matrix,
X = [xij]242×990 is the drug/cell line matrix, and S = [sij]78×990 is the target/cell
line matrix which will show the critical targets for each cell line. The matrix A will
act as the mixing process in our source separation problem. This binary matrix is
known only partially, therefore, in order to solve this problem we can use a semi-
blind source separation method. The matrix X is a continuous drug response matrix
containing the 1−AUC values. About 19% of these data were missing and imputed
using the method discussed in Section 4.2. Given A and X we aim to estimate S.
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19.3%

Figure 6: Ability of the NMF method to reproduce the original AUC value mea-
surements. This plot shows the mean NRMSE values over 20 replicates of missing
dataset. Dotted lines indicate the percentage at which NRMSE value is 1

We used the Fast Combinatorial Nonnegative Least-Squares model to solve this
problem. The method was introduced in [2] where the authors presented a new
NNLS solution algorithm for the constrained least squares problem. For large ob-
servation vectors, their algorithm reduced the computational burden of the NNLS
problems. For the details of this algorithm see Figure 7.

Kim et al (2007) [18] introduced a novel formulation of sparse NMF using the
algorithm implemented by van Benthem and Keenan, 2004 [2]. They showed that
using the alternating non-negativity-constrained least squares method this new for-
mulation could lead to a convergent sparse NMF algorithm. Gaujoux [6] developed
this algorthim to be fitted in the R package ’NMF’ as function ’fcnnls’. We used
’fcnnls’ which solves (1) for the drug/cell line matrix X and the drug/target matrix
A of dimension 242× 990 and 242× 78 respectively. It estimates the target/cell line
matrix S = [sij]78×990 using the algorithm shown in Figure 7.

4.4 Comparison of TDSBS and TAS

We applied the TDSBS method on our dataset, in order to identify critical protein
targets in the 990 cancer cell lines by 242 targeted anti-cancer drugs. This approach
uses the observed drug response profile (1-AUC values) which is a continuous matrix,
and the interaction of those drugs with the protein targets which is a binary matrix.
The TDSBS method estimates the target/cell line matrix, which is a continuous
matrix. The estimated matrix gives a ranking for protein targets by their functional
importance in the given cancer cell line.

We also used the TAS method on our data using the R package implemented
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Figure 7: The fast combinatorial algorithm for the solution of least squares problem
AS = X, subject to the non-negativity constraint S ≥ 0. [3]

(In our application X = S and B = X ).

by Yadav. et.al [42]. The correlation plots over the cell lines with no missing AUC
values, e.g. ’ALL-PO’, show that the there is positive correlation between TDSBS
and TAS values. As the TAS values increase, TDSBS values also tend to increase.
However, it is not a perfect relationship. If we look at a specific TAS value, say 0.4,
we see that there is a range of TDSBS values associated with it. We conclude that
some protein targets with low TDSBS values have higher TAS values. However, the
general tendency that TDSBS and TAS values increase together is unquestionably
present, see Figure 8.

When we choose the cell lines with some missing AUC values for the correlation
plot, e.g. ’MEL-HO’, the correlation is still positive, but for some protein targets,
TDSBS method gives a larger value than TAS, see Figure 9. Looking specifically
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those targets we observe cancer driver genes based on mutation data. For example
looking at the MEL-HO cell line with 66% of missing drug responses, the driver
gene ’BRAF’ was determined by the TDSBS method to be critical for this cell line,
but its value by TAS method was zero. We expect the driver genes to have high
TDSBS/TAS values for each cell line. The high TAS/TDSBS values for each pair of
cell line and target indicates that specific cell line is vulnerable to inhibition of the
target. The reason for this is that, we are including 1−AUC values in the model,
and high values indicate that specific drug has shown high potency over the cell line.

TD
SB
S

Figure 8: Correlation between TDSBS and TAS values for the cell line ’ALL-PO’.
There are no missing AUC values for this cell line.

4.5 Validation of TDSBS

In the GDSC project of Sanger database, there are list of driver and non-driver
genes for each cell line. We have used this information to validate our results, about
critical targets for each cell line.

To understand whether the TDSBS values could determine cancer driver genes,
we compared the driver and non-driver genes by their TDSBS values. In order
to assess this comparison we selected a subset of 80 cell lines from the target/cell
line matrix estimated by the TDSBS method. Next we extracted the list of all the
genes mutated in those 80 cell lines from the ”Catalogue of Somatic Mutations in
Cancer (COSMIC) cell lines project” http://cancer.sanger.ac.uk/cell_lines.
We next created a binary matrix for each cell line and its targets. In the matrix ones
represent the driver genes and zeros represent the non-driver genes. Using these two
matrices we stratified the TDSBS values by driver and non-driver genes. The main
conclusion visualised in Figure 10 is that the TDSBS values for the driver genes
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Figure 9: Correlation between TDSBS and TAS values for the cell line ’MEL-HO’.
66% of the AUC values are missing for this cell line. The red colored target ’BRAF’
is a driver gene for which the TDSBS value is higher than TAS value.

over 80 cell lines are higher than for non-driver genes. Although the difference is
not statistically significant, there is a clear pattern to support this conclusion.

We also performed the same analysis for the TAS values of the cell lines and
targets, see Figure 11. This figure shows the difference of the TAS values between
two categories of driver and non-driver genes. We used student t-test to assess the
group differences. Based on the p-values which we obtained the difference was not
statistically significant, but the patterns show that the driver genes have higher
TDSBS/TAS values compared to non-driver genes.

5 Concluding remarks

The TDSBS model applied here is a computational target deconvolution method
which provides a novel approach to the target deconvolution problem. This was
used to identify critical targets for different cancer types or primary cell models.
This thesis also applied a novel method for imputing missing values, which has a
high precision for data where missing values are missing completely at random and
if the proportion of missing values is less than 20%.

The computational target deconvolution method could help in understanding
the mechanism of action of anti-cancer drugs and therefore be useful for drug de-
velopment processes and repurposing applications. The targets which were found
to be critical for the cell lines were concordant only in part with the information
about the driver genes extracted for each cell model. This suggests that the com-
putational methods for target deconvolution provide complimentary information
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TDSBS values by driver and non-driver genes over 80 cell lines 

Figure 10: Stratification of target/cell line values by driver and non-driver genes
(TDSBS)

Non-driver genes Driver genes

TAS values by driver and non-driver genes over 80 cell lines 

Figure 11: Stratification of target/cell line values by driver and non-driver genes
(TAS)

compared with the genomic-only-based target deconvolution approaches (see [7]).
However, additional genomic information could be used to validate the results of
the computational methods.
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The imputation method which we used depends on the pattern of missingness.
In our data the missing values were missing completely at random (MCAR). One
could study the precision of this imputation method for different patterns of miss-
ingness and compare with the other conventional missing value imputation methods.
Looking at Figures 11 and 10 we observe several outliers for non-driver genes. This
could be because the outlier genes were not identifiable with the genome-only-based
data, but they were critical. One could also use the genome-wide gene expression
data from the Sanger institute and study whether those target genes that have high
TDSBS score but are classified as non-drivers have higher gene expression in the
same cell line where it was found important by the TDSBS analysis, compared to
the other genes classified as non-drivers across all the other cell lines.

We also remark that the drug screening at the Sanger institute is an ongoing
project, and drug response data have been developing further since we extracted
the data for the analysis of thesis. Therefore, it would be worthwhile to analyse the
latest data from the institute and compare with the results of this thesis.

In order to predict the effect of anti-cancer drugs, wide range of mathematical
methods have been developed. Tang. J et al., developed a method for target in-
hibition inference which uses maximisation and minimisation averaging (TIMMA)
[33]. They used the TIMMA method in order to identify the selective target com-
binations for specific cancer cells using large scale drug response profiles and drug
target interaction. It would be interesting to compare our method with their target
deconvolution approach.

In this thesis we used AUC values as drug response metric in target deconvo-
lution. However one could also use other drug response metrics e.g. IC50 or DSS
values and compare the results. It would be interesting to see how our results as
presented in Figure 10 would change if we only used previously reported somatic
mutations or verified mutations.
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# Data preparation and visualization

# Programmer: Parisa Hariri

# 2018.9

# Load the required packages:

library(gplots)

library(xlsx)

#Heat map for drug/ cell line data

setwd("Path/Data")

# Read the AUC values table: 990*265

TableS4B <- read.xlsx2("TableS4B.xlsx", 1, startRow = 6, header = T,

colIndex = seq(2, 267, 1),check.names=FALSE,

colClasses = c(’character’, rep(’numeric’, 265)))

# Clean and prepare data for the heatmap

TableS4Bm <- t(as.matrix(TableS4B))

# Data manipulation for the figure

TableS4Bm <- t(as.matrix(TableS4B[ , -1]))

#TableS4Bm <- TableS4Bm[, ncol(TableS4Bm):1]

#Missing values to 1.01 - for coloring purposes

TableS4Bm[is.na(TableS4Bm)] <- 1.01

TableS4Bmtas<- TableS4Bm

#colnames(TableS4Bmtas)<- colnames(TableS4Bmtas, prefix="cellline")

# Own colors palettes

my.colors1 <- colorRampPalette(c("blue", "white"))

my.colors2 <- colorRampPalette(c("white"))

my.colors3 <- colorRampPalette(c("white", "red"))

my.colors4 <- colorRampPalette(c("gray"))

# Generates 84 colors from the color ramp -

#in this case slowly from blue to white:

color.df1 <- data.frame(COLOR_VALUE = seq(0, 0.83, 0.01),

color.name = my.colors1(84))
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color.df2 <- data.frame(COLOR_VALUE = seq(0.84, 0.93, 0.01),

color.name = my.colors2(10)) #Just white

color.df3 <- data.frame(COLOR_VALUE = seq(0.94, 1, 0.01),

color.name = my.colors3(7)) #From white to red

color.df4 <- data.frame(COLOR_VALUE = 1.01,

color.name = my.colors4(1))

#Gray for the missing values

color.df <- rbind(color.df1, color.df2, color.df3, color.df4)

# Take only the colors, as that is only needed:

cols1 <- as.character(color.df[,2])

# Plot with aforementioned colors

(used similar coloring than the excel file; can be easily changed)

image(z = TableS4Bm, col = cols1, xaxt = ’n’, yaxt = ’n’,

xlab = "Sample names", ylab = "Drug names", frame.plot = F)

# Delete drugs with cytotoxic action from TableS4B (read in above)

# Read the drug target dataset

TableS1F <- read.xlsx2("TableS1F.xlsx", 1, startRow = 3, header = T)

TableS1Fcyto <- TableS1F[which(TableS1F$Action == "cytotoxic"), ]

TableS1Ftarg <- TableS1F[which(TableS1F$Action == "targeted"), ]

# TableS4B with no drugs with cytotoxic action

TableS4Bnotoxic <- TableS4B[, (colnames(TableS4B) %in%

TableS1Fcyto$Name == F)]

write.xlsx(TableS4Bnotoxic, ".../TableS4Bnotoxic.xlsx")

# TableS4B keeping only drugs with targeted action

TableS4Btargeted <- TableS4B[, (colnames(TableS4B) %in%

TableS1Ftarg$Name == T)]

write.xlsx(TableS4Btargeted, ".../TableS4Btargeted.xlsx")

saveRDS(TableS4Btargeted, file = ".../TableS4Btargeted.rds")

#Deleted columns - drugs with cytotoxic action

#(just to confirm that everything’s ok):

#TableS4Btoxic <- TableS4B[, colnames(TableS4B) %in% TableS1Fcyto$Name]

# Missing patterns of the AUC values data for the targeted drugs:
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Mis_t4<- TableS4Btargeted

Mis_t4[is.na(Mis_t4)]<-1

Mis_t4[Mis_t4!=1]<-0

table(rowSums(Mis_t4, na.rm = TRUE))

prop.table(table(rowSums(Mis_t4, na.rm = TRUE)))

# transpose all but the first column (name)

df.aree <- as.data.frame(t(TableS4Btargeted))

str(df.aree) # Check the column types

vis_miss(df.aree, show_perc_col= FALSE)
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#This code is to estimate the imputation accuracy using NRMSE

#Read the AUC values data without missing values

pqorder<-readRDS(".../AUCnomiss.rds")

library(mice)

library(NMF)

miss3<- function(y,n){

t<-y

NA_values <- sample(length(y), n*0.01*length(y))

x <- y

# Now a trick: as fixed dummy value (because NA values break other stuff)

x[ NA_values ] <- 123456789

# run ls-nmf using weights that cancel out the missing values

w <- matrix(1, nrow(x), ncol(x))

w[ NA_values ] <- 0

yn <- nmf(x, 4, ’ls-nmf’, weight = w)

# The result can be used to input missing values

x[ NA_values ] <- fitted(yn)[ NA_values ]

nrmse1<-sqrt(mean((x[NA_values] -

t[NA_values])^2))/sqrt(mean(t[NA_values]^2))

return(nrmse1)

}

# Now repeat for n=5:95

for(n in seq(5, 95, 5)){

print(mean(replicate(2, miss3(y, n))))

}

#Initialise d

d = NULL

for(n in seq(5, 50, 5)){

t<-replicate(20, my_miss(j, n))

tt<-as.matrix(t)

colnames(tt) <- c("value")

ttt<-cbind(it=n,tt)

d <- rbind(d, ttt)}

# Check the rank
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plot(-1, xlim =c(5,50), ylim =c(0,1), xlab = "Percentage of missing values",

ylab = "NRMSE")

cols <-c(’deepskyblue’,’orange’,’firebrick1’,’chartreuse3’);

for(col in cols)

{ind <-sample(length(A), n*0.01*length(A));

A2 <- A;

A2[ind] <- NA;

err <-sapply(X=1:20, FUN =function(k) {z <-nmf(A2, k);

sqrt(mean((with(z, W%*%H)[ind]-A[ind])^2))/sqrt(mean(A[ind]^2));});

}
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# This code is to estimate the target cell line matrix using NMF

library(NMF)

#Read AUC values matrix for which the missing values have been imputed

Myauc<-readRDS(".../AUCvalues.rds")

Myauc1<-Myauc

#attributes(Myauc1)$class <- "matrix"

Myauc2<-t(Myauc1)

#############################################

#NMF

#Myaucnomis2<-Myaucnomis1[,1,drop=FALSE]

#attributes(Myaucnomis2)$class <- "matrix"

lsnmf0<-fcnnls(Mydt,aucorder, pseudo=TRUE)

lsnmf01<-lsnmf0$x

#############################################
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