
Aki Hokkanen

Scalable Software Platform Architecture for the
Power Distribution Protection and Analysis

Vaasa 2020

School of Technology and Innovation
Software engineering, master’s thesis

2

Acknowledgement

This thesis was done for ABB Distribution Solutions. I want to thank everyone from

ABB who contributed to this thesis from the bottom of my heart especially my

instructor Ville Luoma. Naturally, I wish to extend the thank you to my supervisor

Teemu Mäenpää as well.

I want to take this opportunity to thank everyone I have met during my studies. All of

you have played a part along this road. We had a wonderful ride and I hope we can

continue this trip for years to come.

Lastly, I want to thank my family for their unwavering support from the first year of

kindergarten to this day. Mom, you finally achieved your toughest goal yet – your son is

a Master of Science.

Aki Hokkanen

10.3.2020

3

VAASAN YLIOPISTO
Teknillinen tiedekunta
Tekijä: Aki Hokkanen
Tutkielman nimi: Skaalautuva ohjelmistoalusta-arkkitehtuuri sähköverkon jakelun
 turvaamiseksi ja analysoimiseksi
Tutkinto: Diplomi-insinööri
Oppiaine: Ohjelmistotekniikka
Työn ohjaaja: DI Ville Luoma
Työn valvoja: KTT Teemu Mäenpää
Valmistumisvuosi: 2020 Sivumäärä: 74

TIIVISTELMÄ:

Tämä opinnäytetyö tutkii mikropalveluarkkitehtuurin etuja verrattuna perinteiseen monoliitti-
seen sovellusarkkitehtuuriin ja perinteisiin ympäristöihin. Mikropalveluarkkitehtuuri koostuu
useista palveluista, jotka palvelevat kukin yhtä tarkoitusta ja sovelluksen kaikki erilliset toimin-
not ovat omissa säilöissään, joita kutsutaan konteiksi. Kontit perustuvat Linux-ytimeen. Tämä
opinnäytetyö tehtiin ABB (ASEA Brown Boveri) Distribution Solutions -yritykselle yhden nykyisen
sovelluksen nykyaikaistamiseksi.

Tämän tutkielmamme päätavoite on kuvata siirtyminen monoliittisesta sovellusarkkitehtuurista
mikropalveluarkkitehtuuriin. Törmäsimme työn aikana kuitenkin ongelmiin, jotka estivät työn
läpimenon. Näistä ongelmista merkittävin oli monoliittisen sovelluksen korkea riippuvuuden
aste eri ohjelman osien välillä. Projektin lopputuloksen oli tarkoitus olla todiste konseptitason
ohjelmistosta. Sitä emme pystyneet toteuttamaan.

Käytimme toimintamallitutkimusta metodologiana ohjaamaan meitä päätöksenteossa. Valit-
simme toimintamallitutkimuksen työmme metodologiaksi, koska huomasimme sen tukevan in-
teraktiivista työskentelyä. Tämä sopi meidän tilanteeseemme erittäin hyvin, sillä olimme päivit-
täin ABB:n toimistolla tekemässä tätä tutkimusta. Toimintamallitutkimus tähtää ensisijaisesti
lopputulokseen, joka meidän tapauksessamme olisi ollut vanhan sovelluksen istutus uuteen ark-
kitehtuuriin.

Yksi tärkeimmistä tuloksistamme on, että onnistuimme määrittelemään kriittiset kysymykset,
joihin on puututtava ennen siirtymistä monoliittisesta arkkitehtuurista mikropalveluarkkiteh-
tuuriin. Näitä löydöksiä olivat vuosien aikana kertynyt teknologinen velka, epätäydellinen tieto
vanhasta sovelluksesta sekä järjestelmän sisäiset riippuvuudet. Nämä riippuvuudet muodosta-
vat merkittävän haasteen monoliitin uudelleen jäsentämisessä mikroarkkitehtuurin mukaiseksi.
Neljäntenä löydöksenä huomasimme, että käytettävissä olevia resursseja, kuten aika, asiantun-
tijat ja rahoitus, on oltava riittävästi tarkoituksenmukaisen tuloksen saavuttamiseksi.

Teoreettisena kontribuutiona tuotimme oman versiomme Action Design Research -menetel-
mään. Yhdistimme menetelmän kaksi ensimmäistä vaihetta siten, että samalla, kun asiakasor-
ganisaatio määritteli ongelmaa, tutkimusryhmämme tarjosi ongelmiin ratkaisuja. Näistä ratkai-
suista asiakasorganisaatio valitsi heille sopivimman. Tämä prosessi oli mahdollinen, koska kä-
vimme avointa jatkuvaa keskustelua ABB:n kehitysyksikön kanssa.

AVAINSANAT: mikropalveluarkkitehtuuri, konttiteknologia, virtualisointi, skaalautuvuus, Ac-
tion Design Research -metodologia

4

UNIVERSITY OF VAASA
School of Technology and Innovation
Author: Aki Hokkanen
Topic of the thesis: Scalable software platform architecture for the power
 distribution protection and analysis
Degree: Master of Science
Major of Subject: Software Engineering
Instructor: M.Sc. (Tech.) Ville Luoma
Supervisor: D.Sc. (Econ.) Teemu Mäenpää
Year of Completing the Thesis: 2020 Pages: 74

ABSTRACT:

This thesis explores the benefits of microservice architecture over traditional monolithic appli-
cation architecture and traditional environments for deploying software to the cloud or the
edge. The microservice architecture consists of multiple services that serve a single purpose and
all separate functions of the application are stored in their own containers. Containers are sep-
arate environments based on the Linux kernel. This thesis was done for ABB (ASEA Brown Boveri)
Distribution Solutions to modernize one of their existing applications.

The main goal of this thesis is to describe the transition from a monolithic application architec-
ture to a micro-service architecture. However, during the case study, we encountered problems
that prevented us from going through with the project. The most significant of these problems
was the high degree of dependence of the monolithic application between different parts of the
program. The end result of the project was to be a proof of concept-level software. We couldn't
achieve it.

We used design science as a methodology to guide us in decision-making. We chose Action De-
sign Research (ADR) as the methodology for our work because we found it supported interactive
work. This fits in very well with our situation as we were doing this research daily at the ABB’s
office. Design science primarily aims at the end result, which in our case would have been to
plant the old application in the new architecture.

One of our most important results is that we were able to identify critical issues that need to be
addressed before moving from monolithic to microservice architecture. These findings included
technological debt accumulated over the years, incomplete knowledge of the legacy application,
and internal system dependencies. These dependencies represent a significant challenge in re-
structuring the monolith to a microarchitecture. As a fourth finding, we found that the resources
available, such as time, experts and funding, must be sufficient to produce an appropriate result.

As a theoretical contribution, we produced our own version of the Action Design Research
Method. We combined the first two steps of the method so that while the customer organiza-
tion was defining the problem, our research team provided solutions to the problem. Of these
solutions, the client organization chose the one that suited them best. This process was possible
because we had an open and continuing discussion with ABB's development unit.

KEYWORDS: microservice architecture, container technology, virtualization, scalability, Ac-
tion Design Research -methodology

5

Table of Contents

1 Introduction 9

2 Microservice architectures 13

2.1 What is a service? 15

2.2 Benefits gained with microservice architecture 16

2.3 Communication between different services 20

2.4 Architectural change in our case study 21

2.5 Common pitfalls in transit 23

3 Virtualization architectures 25

3.1 Container Technologies 28

3.1.1 Docker 30

3.1.2 RKT 32

3.2 Edge computing 32

3.3 Cloud Technologies 34

4 Methodology 36

5 Path toward microservice architecture 41

5.1 Selection of the technologies 41

5.2 Methodology in action 46

5.2.1 First iteration – User interface 51

5.2.2 Second iteration – Document delivery 53

5.2.3 Final iteration 57

6 Results 59

7 Conclusions 63

References 66

6

Figures

FIgure 1. Example of a monolithic application’s stack (Seedotech, 2018). 14

Figure 2. Example of a microservice architecture (M&S Consulting, 2019). 16

Figure 3. Generic microservice architecture topology (Kang, 2019). 20

Figure 4. Monolithic software architecture in our case study based on an internal ABB

architecture diagram. .. 22

Figure 5. Highly dependent microservice architecture (Richards, 2016). 24

Figure 6. Virtual machine vs Linux container vs Non-Linux container (Erlandsson, 2019).

 .. 27

Figure 7. Docker container communication with Linux kernel (Yakimov, 2016). 30

Figure 8. Generic IaaS -architecture (Kozlovszky et al., 2013). 35

Figure 9. Action Design Research (ADR) process (based on Baskerville et al., 2018). . 39

Figure 10. CPU performance of bare-metal, Docker and Rkt (Xie et al., 2017). 44

Figure 11. CPU load and network performance (Xie et al., 2017). 45

Figure 12. Proposed architectural diagram of the proof of concept application. 47

Figure 13. Pattern transitioning to microservice architecture (Balalaie et al., 2016). . 50

Figure 14. User interface for the platform. ... 53

Figure 15.Graphs of an COMTRADE files current. ... 57

Figure 16. Final architecture of our case study. ... 58

Tables

Table 1. Comparison between monolithic and microservice architecture (Kalske et al.,

2017). .. 19

Table 2. Differences between virtual machines and containers (Bauer, 2018). 29

Table 3. Steps taken throughout the process. ... 40

Table 4. Docker versus Rkt comparison. ... 46

Table 5. Steps taken in practice to achieve to proof of concept. 56

7

Abbreviations

ABB ASEA Brown Boveri

ADR Action Design Research

API Application Programmable Interface

APPC App Container

AUFS originally: AnotherUnionFileSystem, currently: advanced
multi-layered unification filesystem

AWS Amazon Web Services

BTRFS B-Tree File System

COMTRADE Common format for Transient Data Exchange

CPU Central Processing Unit

CRUD Create, Read, Update and Delete

CTO Chief Technology Officer

FB Function Block

FLOC Fault Locator

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

IEC International Electrotechnical Commission

IEEE Institution of Electrical and Electronics Engineers

IEDs Intelligent Electronic Devices

IOT Internet of Things

IPC InterProcess Communication

JAR Java Archive

LTE Long Term Evolution

LXC Linux Containers

8

NAT Network Address Translation

NoSQL Not only SQL

OS Operating System

PSRCS Power Systems Relaying & Controls Committee

PID Process Identification

POC Proof of Concept

RAM Random Access Memory

REST Representational State Transfer

RTDB Real-time Data Base

SaaS Software as a Service

SQL Structured Query Language

UFS Unix File System

UTS Unix Time Sharing

VFS Virtual File System

VM Virtual Machine

WAR Web Application Resource or Web Application Archive

Wi-Fi Wireless Fidelity

9

1 Introduction

Software industry is going through massive evolutions currently and most of the

practices from the twentieth century have started to become outdated, since the

computing power of modern hardware is capable of outstanding performance (see for

example Ross & Feeny, 1999; Hirschheim & Klein, 2012). In the modern world, software

engineering is less about building one giant application, but rather it is trending towards

building an application that has multiple services. These services work autonomously to

increase fault-tolerance and reduce the resources spent on maintenance as individual

services cannot be broken by modifications done to other parts of the code. Companies

such as Netflix (Mauro, 2015) and Uber (Uber, 2019) have already adopted the

architectural change towards a microservice architecture and have reaped its benefits.

The cost of transferring data is reducing and the speed at which data can be transferred

is increasing (Cisco, 2018; Cisco, 2019). This has enabled to redirect the processing of

any given data from on premise solutions to for instance the cloud or the edge. Data

gathering and processing volumes are increasing by huge margins currently and this

provides companies with valuable data that has not been available previously. This has

also impacted the companies working with electrical grids.

This thesis is done for ABB’s Distribution Solutions. Distribution Solutions manufactures

relays for high voltage / medium voltage substations in the electrical grid. These relays

can gather a huge variety of data ranging from voltage to current and temperature in

the relay. These measures provide critical information about the relays as a malfunction

can cause debilitating damage to the grid. For this reason, a fault detection algorithm

has been developed. It can identify faults in the grid and inform the operators where the

fault is located. This reduces the time to repair the fault and get the grid up and running

again. Currently, the software running in the substations is an application with a

monolithic application architecture and part of this thesis aims to transit that

architecture to a more modern architecture, specifically a microservice architecture.

(ABB, 2018)

10

The research need for this thesis was found in the fact that the software has been run

only in the substations. It has been run with industrial computers in the substations as

well as within a virtual machine. The most obvious benefit of running the application

outside of the substation would be the fact that software updates would be easier to

deploy as the technicians could install them remotely rather than going on site. Another

benefit of running in the cloud will be gained, with the transition from a monolithic

application architecture to a microservice architecture. Obviously, not all the

functionality can be moved away from the substations as some of the function blocks

are very time sensitive, such as the overcurrent detection (Jokela, 2014). However, the

fault locator algorithm is not as time sensitive. Thus, allowing us to create a proof of

concept level solution.

A modern way to create scalable architectures is by creating microservices. Each service

is responsible for a single function of the whole application. This provides meaningful

upside as an architecture compared to the old monolithic architecture that has been

created in the past. According to Namiot & Sneps-Sneppe (2014), a monolithic

application is a file that is deployed as a united solution like a Web Application Archive

(WAR) file for Java web applications. Internally it may have multiple services, but when

inspected it acts as one. An application with monolithic architecture is scaled by running

multiple identical copies of the application. The benefits for microservice architecture

include but are not limited to the following concepts: Isolation for the application, which

reduces the time to deploy new features; Creating a microservice architecture reduces

the size of the codebase; Each team can take ownership of their own services. Thus,

microservice architecture is providing autonomy to pick and choose the best

technological tools to use for their services, be it language, framework or whatever else

the team believes is necessary to get the job done in the most efficient way possible.

(Newman, 2015; Fetzer, 2016; Alshuqayran, Ali & Evans, 2016; Amaral, Polo, Carrera,

Mohomed, Unuvar & Steinder, 2015)

Containers are commonly leveraged to achieve a microservice architecture (Amaral et al.,

2015). Containers can be thought as being a way to package your software into

11

something resembling a shipping container. These containers are one of the tools that

enable developers to create and deploy code easier and faster than before. Additionally,

they work independently so dependency issues do not arise like in more traditional

development. “Works on my computer” -problem should not occur with containers as

they can be thought as sort of black boxes.

The purpose of this master’s thesis is two-folded. Firstly, the aim is to create a proof of

concept (POC) level artefact that has a microservice architecture and containerized

services. Secondly, the goal is to restructure the current monolithic application

architecture to a modern microservice architecture. The research questions pertaining

to this research are:

1) Can a monolithic software be transformed into a microservice architecture?

2) What are the pitfalls and misconceptions of transitioning to a microservice

architecture found during this thesis?

In addition to the two main questions above, a sub-question was also formed during the

research:

3) Is it sensible to transit this monolithic application architecture to a microservice

architecture?

In the following two chapters we will be discussing the theory behind the different

virtualization architectures and technologies. Firstly, we shall discuss the microservice

architecture, as it is the modern way of creating an architecture that is robust and highly

scalable by leveraging containers. We will delve into different container technologies

and aim to highlight the different advantages and disadvantages of each separately.

After that the focus will shift on to the different platforms available to host the solution.

More specifically, the aim will be to assess different service providers and their products

to find the most suitable environment to run our services.

12

A description of used methodology will be given after the theory is introduced in this

master’s thesis. Design science was selected as a good starting point for this thesis as

the problem was introduced to by a third party. In addition, the thesis will be a

qualitative case study research which provides further assurance that design science

could be used as a methodology within this field of research. We have chosen to use

Action Design Research (ADR) (Baskerville, Baiyere, Gregor, Hevner & Rossi, 2018) as the

method of conducting the research as we were in constant collaboration with ABB’s

team.

The fifth chapter will describe the different technologies used in our proof of concept

and describe how the proof of concept was created. The reader will gain a deeper

understanding of the different iterations done during the creation of the proof of

concept and realize the most common pitfalls we encountered during this process. Most

importantly, we will try to guide the reader to the right path if s/he wishes to attempt

to recreate our experiments.

After the empirical study is explained in detail, it is time to analyse the results gained.

We will take a closer look at what we accomplished during the empirical study and show

the benefits of this research. Lastly, conclusions will be made on whether our research

is a success and if there is something we would like to change in hindsight.

13

2 Microservice architectures

A common way of creating an application in the past times was to create an application

where all its parts were in the same stack. This meant that the whole application is a

single unit. Commonly all the codebase was packaged into a single file like a JAR or WAR

file. The benefit of this is that the application is easy to test and deploy, but there are

two main reason why this architecture is becoming outdated: modifications to code take

a long time and a monolith only scales one dimensionally. (Messina, Rizzo, Storniolo &

Urso, 2016)

In general, a monolithic application stack is thought to consist of three different layers

(Premchand & Choudhry, 2018). These layers are application layer, business logic layer

and data access layer. The application layer in its simplest form is the user interface via

which the user of the application can interact with. Business logic layer provides the

functions that the user can do with the user interface like adding new users to the

application. Data access layer enables the user’s data to be modified, be saved into or

be deleted from a database. These three different layers work in cohesion and enable

the software to be used. They together also form a single instance to be replicated when

needed to improve the performance of the said application. Figure 1. describes a general

monolithic application stack.

14

FIgure 1. Example of a monolithic application’s stack (Seedotech, 2018).

Once the application goes through multiple versions and more functionality is

introduced during the lifecycle of the application, the likelihood of bugs creeping in to

the code increases. The codebase on the other hand keeps on growing thus making it

increasingly more difficult to find where the bug is located and therefore increasing the

time it takes to deploy new features to the code. Moreover, a certain functionality may

require more computing power than all the rest. However, since the codebase requires

all the code for the application to be executable, the entire codebase must be running

in multiple instances to scale up the application. This reduces efficiency of the system.

For example, let us inspect the stack of Figure 1. more in depth. We clearly have a block

that is meant for user management. However, once all the users are onboarded to the

system, the computing power required for the user management section of the code

decreases, while traffic to the movie management section of the stack. This either

creates a bottleneck of resources as not enough resources are available for the movie

management section or it creates waste as user management block is idle.

15

2.1 What is a service?

The above-mentioned scalability issue led to the creation of the concept of services.

James Lewis and Martin Fowler (2014) claim that microservice was invented in a

software architecture workshop in May of 2011. Services are individual parts of the

application that service a specific function of the application. For instance, one of the

services could be the user management service, which allows creation, reading,

updating and removing (CRUD) functions for accounts and the other service could be

the movie management service. These services operate autonomously and making

changes within one of them does not require modifications to other services. Each of

the services uses technologies deemed as lightweight, such as Hypertext Transfer

Protocol (HTTP) and Representational State Transfer (REST). Required business

capabilities are what define the services, each capability equates to a service.

Centralized management of services is left to the bare minimum. (Lewis & Fowler, 2014)

Figure 2. is an example of a microservice architecture and it describes the inner workings

of such an architecture. Each microservice is a single deployable entity and therefore

can be scaled up or down depending on the amount of usage of each service. All of the

services are packaged into their own separate containers. The user interface is one of

the containerized microservices. It allows the user to interact with the other containers.

The other microservices are core functions needed for the application to work. In our

case study we will have an architecture that consist of the user interface container, an

analytics container that does all of the analysis for the relays and a database to store the

files in. Our architecture would resemble the far-left side of the architecture described

in Figure 2.

16

Figure 2. Example of a microservice architecture (M&S Consulting, 2019).

2.2 Benefits gained with microservice architecture

There are few concrete improvements with microservice architecture compared to a

monolithic one according to Newman (2015), Fetzer (2016) and Alshuqayran et al.

(2016). These include (i) flexibility with different technologies to be used within each

service; (ii) service isolation, which leads to increase in service quality and security (iii)

service ownership enabling the service architecture structure to be moulded to fit the

team structure. Knoche & Hasselbring (2018) add to this list of benefits with the

reduction of the size of the codebase.

Flexibility gained by microservices is due to the separation of technologies used. As each

of the services is handled by a single team, they can choose amongst themselves, which

tool is the right one for the job. Within the same application multiple, multiple different

languages and frameworks can be utilized to achieve the greatest result through the

path of least resistance (Lewis & Fowler, 2014). Probably the easiest way of getting

perspective of this granted flexibility is to look at different data storage options. An easy

17

way to approach this subject is to compare Structured Query Language (SQL) and Not

only SQL (NoSQL). A modern application will ideally want to use both databases and

creating a microservice architecture will make it possible to do so. Relational databases

should be used when a fixed schema is required, such as the user database. NoSQL

databases are more suited towards databases where flexible schemas are preferred like

a shopping cart.

Service isolation is what enables the flexibility. It is generally granted using containers

that provide the bound context for each service. This provides both security as well as

quality. Security is enhanced as gaining access to a single service does not immediately

unlock the whole application for the malicious user. Service quality is improved as even

if one of the services crashes, it does not cripple the whole system. Additionally, the

containers provide a shorter restart time as the container images are smaller in size

compared to virtual machines (VM). We will delve deeper into containers in the next

section of this thesis. Furthermore, introducing new updates to the application does not

require the whole application to be built all over again, but rather only the service that

had the feature appended must be built again.

Service ownership is what enables this on the organizational side. This mandates the

creation of cross-functional teams (Lewis & Fowler, 2014) as each team must be able to

develop their service from the ground up all the way up to production. This leverages

Conway’s law that states the following (Conway, 1968, p. 1):

Any organization that designs a system (defined broadly) will produce a design
whose structure is a copy of the organization's communication structure.

Thus, leading to teams that can self-sufficiently develop and deploy their own services

and communication is needed only within the team therefore greatly increasing the

speed of deployment. The ownership of the service should not end once the

development is finished, but rather example should be taken from Amazon’s “you build

it, you run it” principle (Gray, 2006). In this interview, Vogels Chief Technology Officer

(CTO), of Amazon in 2006, describes how operational responsibilities given to

developers has increased the quality of service for Amazon. Vogel attributes this to the

18

customer feedback loop gained from the daily contact with the customers. In addition,

we believe that it also holds the developers accountable for their own code as they will

receive direct feedback for their own code. Developers will strive to deliver better code

as they feel more responsible of the quality of the code and because they want to avoid

negative feedback coming from the customers.

The benefits of microservices come with some costs added to them. According to

Kazanavičius & Mažeika (2019), microservice architecture adds complexity to the system

as it becomes a distributed one. Performance is also affected since communication will

happen over a network rather than internal calls.

Microservices fit well in within the DevOps paradigm. Creating small and nimble services

that flow through continuous delivery, integration and monitoring pipelines is what

most concretely enables faster deployment and increases availability of applications

(Balalaie, Heydarnoori & Jamshidi, 2016). According to Balalaie et al. (2016),

development and operation teams have been separated traditionally. However, this

might not in fact produce the best results. This is since development teams and

operations teams work in very different frequency regarding the rate of changes.

Development teams generally push out multiple updates, while operation teams tend

to be more reserved to achieve a more stable release. Due to having two full sized teams

running to deploy new updates, the sheer number of people taking part in the

integration process is big thus resulting in a dire need of accurate communication. All

these issues described above, lead to a slower deployment of software updates.

DevOps enhanced with microservices can respond to many of the problematic situations

caused by the conventional way of developing applications. Reduction in

communication required between teams is the catalyst that drives faster deployment

times as each team is only responsible for their own product and operations team is only

responsible for delivering a pipeline for the deployment of new features on to the

application, preferably with even automated testing integrated into the pipeline.

19

However, we will not explore DevOps further than this, since it is out of scope for this

thesis.

To sum up the differences between a monolithic application architecture and a

microservice architecture, we believe that Kalske, Mäkitalo & Mikkonen (2017)

summarized it best in the following Table 1.:

Table 1. Comparison between monolithic and microservice architecture (Kalske et al.,
2017).

Category Monolith Microservices

Time to market Fast in the beginning, slower
later as codebase grows.

Slower in the beginning, because
of the technical challenges that
microservices have. Faster later.

Refactoring Hard to do, as changes can af-
fect multiple places.

Easier and safe because changes
are contained inside the micro-
service.

Deployment The whole monolith has to be
deployed always.

Can be deployed in small parts,
only one service at a time.

Coding language Hard to change as codebase is
large. Requires big rewriting.

Language and tools can be se-
lected per service. Services are
small so changing is easy.

Scaling Scaling means deploying the
whole monolith.

Scaling can be done per service.

DevOps skills Does not require much as the
number of technologies is
limited.

Multiple different technologies,
a lot of DevOps skills required.

Understandability Hard to understand as com-
plexity is high. A lot of moving
parts.

Easy to understand as codebase
is strictly modular and services
use SRP.

Performance No communicational over-
head. Technology stack might
not support performance.

Communication adds overhead.
Possible performance gains be-
cause of technology choices.

20

2.3 Communication between different services

As we have established that each service is its own isolated entity, we have yet to define

the way they communicate with each other. This way is called an application

programmable interface (API), which is a standard way of different services to send

standardized messages between each other thus allowing a smooth transfer of data

between each of the services. API’s enable the inner workings of each service to stay

obscure, which enhances the security aspect of the services as well. Say, that an

individual gets access to one of the services, as each of the services only communicate

between each other via an API the access is only partial and therefore not as damaging

as it would have been for an application with a monolithic software architecture. Figure

3. describes the way traffic is directed to each of the microservices from the client (Kang,

2019).

Figure 3. Generic microservice architecture topology (Kang, 2019).

The client first provides credentials via identity provider after which it can process

requests made by the user via the API gateway to the different services in the

application.

21

2.4 Architectural change in our case study

Currently, the software architecture for our case study in ABB is as described in Figure

4. As of writing this research, it is monolithic and all functionality within the same block.

The objective is to separate the function library and function library service from the

rest and create a microservice of that part of the software. The driving forces for this

change are the ones listed earlier in this chapter, the main reasons being: faster

development cycles, easier maintenance during production and easier scalability both

vertically and horizontally.

The most important of these is easier maintenance during production, since it reduces

resources spent on a process that does not add value to the current software. Faster

development cycles add on top of the reduced time needed for maintenance in

increasing the efficiency of the development department. Lastly, easier scalability,

especially horizontally, enables development of a single service at a time. Thus, limiting

the effect of new patches on the old software. Currently, when new patches are

introduced, it affects the whole stack. However, with microservice architecture this can

be minimized to only concern the service under development. Vertical scaling will

become more important it the future, once the application is deployed into production.

We do not expect the traffic to ramp up just yet in the proof of concept phase.

22

Figure 4. Monolithic software architecture in our case study based on an internal ABB

architecture diagram.

The functionality starts from the connectivity package, which is directly linked to the

configuration interface. The configuration interface allows the user to configure the re-

lays and save them to the storage. At runtime, the configuration interface delivers the

configuration files to the execution engine that is responsible for running the applica-

tions. Applications access the libraries, which in turn access services to run. For this the-

sis, we will be focusing on the part that is now described under application 2 in the func-

tion library called the Fault Locator (FLOC) Function Block (FB). This is the fault locator

function block. Its job is to pinpoint the distance of the fault from the relay located in

the electrical substation. For the function to run, it seems like it only needs to access the

streams library and function library. These two should form their own services. The

streams library is responsible for the data streams that are produced by the relays. Each

relay is capable of recording data with a sampling rate measured with at the very least

23

in microseconds. This data is then saved to the real time data base (RTDB), which can be

accessed via the RTDB user interface client.

2.5 Common pitfalls in transit

The transit to microservices is a two-phase process. The first of which is splitting the

functionality of the monolithic application into smaller pieces, each piece being its own

service. The second phase is to restructure the monolithic database to fit the newly

created services. (Richards, 2016)

As stated previously, each service can have its own database if deemed necessary. This

grants the developer the benefit of choosing whether they want a relational database

or a NoSQL database in addition to creating the database exactly required for the

service. Thus, leading to lesser overhead. As all the different services are isolated, a

communication route must be defined. The most common way to achieve this is by using

REST APIs. They work in a predefined set of stateless operations. However, they

communicate over the network and thus, introduce a new set of potential problems.

According to Malavalli & Sathappan (2015), these problems include the following:

network reliability, latency, bandwidth and network security.

Drawing from this, it is generally thought as best practice to share nothing between the

different services. However, in practice this might not be efficient to uphold, but rather

share as little as possible (Richards, 2016). Adding to this, Richards (2016) defines an

example where sharing is beneficial. Running a service for security and authentication

introduces overhead reducing the reliability and performance of the whole application.

Therefore, it is more beneficial to have all the authentication related code wrapped into

a Java Archive (JAR) file to avoid constant excess remote calls. For specific purposes such

as this a shared functionality can be useful, but in most cases, it should be avoided. If

too many dependencies are allowed in to the system, it will create a situation as

described in Figure 5.

24

Figure 5. Highly dependent microservice architecture (Richards, 2016).

Dependency as high as this disrupts the notion of bounded context within microservice

architecture. Thus, being counter-productive to the idea that alterations to code in

microservice architecture are quick to test and deploy as each service is autonomous.

(Taibi & Lenarduzzi, 2018)

25

3 Virtualization architectures

In this chapter we will first describe the origin of virtualization. After which we will

compare the current industry standards, virtual machines and containers, with each

other and give a short introduction of two viable container solutions. Lastly, we will

introduce the most common environments to store these virtualized solutions, namely

cloud and edge.

Virtualization began in the 1960s (Garber, 2012). At first it meant the division of

mainframes into logical components, but since then the term has been expanded.

Nowadays, virtualization can be either hardware virtualization, desktop virtualization or

containerization. In this thesis we will briefly touch upon hardware virtualization by

explaining what virtual machines are, but then concentrate on containerization, as it is

the more current technology and better suits our needs.

A more traditional virtualization architecture is a virtual machine. Virtual machine is a

machine that runs on normal hardware and it has been segmented into smaller parts,

with the underlying hardware decoupled from the running software (Rosenblum &

Garfinkel, 2005). Virtual machines run a full operating system (OS) and if there are

multiple virtual machines on a single server a hypervisor is responsible for managing the

resources of the server (Dahlstedt, 2012). A hypervisor can either be software, firmware

or hardware that manages the virtual machines on the server. This server is referred to

as a host machine. Host machine delivers resources such as random access memory

(RAM) and central processing unit (CPU) to virtual machines. These resources are shared

between all the different virtual machines on the server and may be divided equally or

different virtual machines may be allocated with more resources than others if a certain

virtual machine requires more computing power.

Virtual machines that run on a host machine are referred to as guest machines (Reuben,

2007). Guest machines include everything that it needs to run on its own and can be

thought of as an individual computer, which just happens to run on a server that hosts

26

multiple guest machines. The most common components included in guest machines

are system binaries and libraries. Guest machines also have a hardware stack of their

own, which contains virtualized network adapters, storage and CPU. In layman’s terms,

this translates to the guest machine having its own full-fledged operating system as

stated above. So, when looking inside of a virtual machine it is just a normal computer,

but looking at the situation on a server level, it is an application that uses resources of

the host machine.

There are two practical ways running a virtual machine – a hosted hypervisor and a bare-

metal hypervisor. A hosted hypervisor means that it operates on top of the operating

system of the host machine e.g. a computer can run any operating system (OS) and have

a virtual machine running on it (Burckart, Ivory, Kaplinger, Kenna & Shook, 2013). This

way the virtual machine can not directly access the hardware, but rather through the

host operating system.

Hosted hardware reduces the impact of underlying hardware, since the virtual machine

is not responsible for drivers. Therefore, it can be run on a wider range of machines as

the host operating system only needs to communicate with the hardware. However, the

drawback of this is that the resource overhead increases as a separate operating system

is run in the stack.

Bare metal hypervisor is the opposite of a hosted hypervisor as the mentioned benefits

and disadvantages are reversed. The bare metal hypervisor reduces the overhead

compared to running the virtual machine on top of the host machine’s operating system

as it interacts directly with the hardware. In practice, this means that the hypervisor will

be installed directly to host machine’s server as the operating system (Burckart et al.,

2013). In this case the hypervisor will have its own device drivers and will interact with

each component of the server directly, including operations such as I/O, processing and

OS-specific tasks. The advantage of this is that it increases performance, scalability and

stability. The downside is that it will restrict the compatibility as hypervisors can only

27

support a limited number of components as not all the drivers can be preinstalled into

the hypervisor.

Containers on the other hand are much lighter than virtual machines (Li & Xia, 2016).

They usually leverage much smaller versions of the base software, thus reducing the

amount of disk space consumed. Containers are also used for a specific purpose and

they only carry out a single function rather than running a fully-fledged operating system

constantly. This is also demonstrated in Figure 6. (Erlandsson, 2019). Both the virtual

machine and a non-Linux based container platform require the use of a hypervisor to

run the docker engine. This increases the load on the servers compared to just running

the plain docker engine on top of the host Linux. By looking more carefully the reader

might recognize the fact that in Figure 6. the Host Linux and Guest Linux in fact operate

identically. Therefore, running containers more specifically Docker on a non-Linux

system is not really that efficient.

Figure 6. Virtual machine vs Linux container vs Non-Linux container (Erlandsson,
2019).

Virtualization of the software architecture provides a modular system that can be easily

scaled up or down depending on the need at any time. This reduces the deployment

time and makes it easier to alter the configuration when needed.

28

Next, we will compare the three different options depicted in Figure 6. with respect to

our case study; namely Virtual machines, Docker (Linux) and Docker (Non-Linux). For the

virtual machine it would mean that we deploy a virtual machine on to a server running

either in the cloud or an on-premise server. This virtual machine would then have its

own kernel and all other functions that a fully-fledged operating system running on

hardware would require. However, leveraging the Docker containers on a machine

running Linux operating system allows us to deploy all of our containers directly onto a

server running Docker engine as it is able to use the resources of the server natively.

Thus, reducing the overhead of the system. Therefore, if we were to deploy Docker on

a non-Linux environment, we would have to run it in a virtual machine which has Linux

installed, which would decrease the efficiency of the system.

As of writing this thesis, the software we are modernizing has already been deployed

into a virtual machine as a monolithic application. However, there are multiple reasons

to move towards a microservice architecture. These are for example reduced impact of

patching the system and increasing the scalability of the system.

3.1 Container Technologies

The main idea of containers is akin to virtual machines. Container’s goal is to create a

unit that contains the application and its dependencies that can be run anywhere. In

addition to the isolation, containers and virtual machines both leverage virtualization

techniques to allow more efficient use of computing power, when considering cost

efficiency and energy consumption. The differences can be found in the architecture.

The main difference when considering virtual machines and containers is that virtual

machines provide hardware virtualizations, while containers virtualize the operating-

system. This is done by abstracting the “user space”.

29

While virtual machines package the kernel and virtual hardware, containers only

package the user space. Every container has its own dedicated space that is isolated

from the rest of the containers. This enables multiple containers to be run on a single

host machine, since all the operating system level architecture is shared between the

different containers. Only things that are container specific and created separately for

each container are the binaries and libraries. This is the main thing that makes

containers so lightweight. Table 2. explains the differences between containers and

virtual machines in a less verbose manner.

Table 2. Differences between virtual machines and containers (Bauer, 2018).

Virtual machines Container

Heavyweight (Image sizes in GB) Lightweight (Image sizes in MB)

Limited performance Close to native performance

Each VM runs its own OS All containers share the host OS

Hardware-level virtualization OS virtualization

Startup time in minutes Startup time in milliseconds

Allocates required memory Memory allocation defined in
namespaces

Fully isolated, more secure Process-level isolation, might expose
security vulnerabilities

Next, we will go over the different container technologies that we will evaluate for our

proof of concept. We will give a short introduction to each of the different technologies

used. The following products will be introduced: Docker and Rkt.

30

3.1.1 Docker

Docker (Docker, 2019) was first released in 2011 but debuted to public in 2013. It is a

container service that allows developers to bundle software, libraries and configuration

files. It uses namespaces to isolate applications from the underlying operating system.

At first it leveraged Linux Containers (LXC), but later they released their own engine

called Docker engine that has been written with Go programming language. The core

concepts of Docker in addition to namespaces are control groups (cgroups as described

in Figure 7.) and the union file system (Bernstein, 2014; Docker documentation, 2019;

Liu & Zhao, 2014).

Figure 7. Docker container communication with Linux kernel (Yakimov, 2016).

In Figure 7. the relationship between the Linux kernel and the Docker container is

described. The Docker container uses libcontainer to communicate with the Linux kernel

to access its namespaces and cgroups functionality.

Docker has five different namespaces available for the developer to provide isolation for

their containers. The namespaces are Process ID namespace (PID namespace), the

31

networking namespace (net namespace), InterProcess communication namespace (IPC

namespace), mount namespace (mnt namespace) and Unix timesharing system (uts

namespace). (Liu & Zhao, 2014).

The PID namespace allows each process to have its own process ID. Networking

namespace provides the process its own network artefacts like routing table, iptables

and loopback interface. IPC namespace provides isolation for mechanisms like

semaphore, message queues and shared memory segments. Mount namespace gives

each container its own mountpoint and finally Unix timesharing system namespace

allows the different containers to view and change their assigned hostnames (Dua, Raja

& Kakadia, 2014).

Linux control groups are a functionality similar as in the Linux kernel (Docker

documentation, 2019). They are meant for the system administration and control needs.

Control groups allow processes to be arranged into a hierarchy, which enables the user

to set limits for resource usage such as for the consumption of memory and processing

priority. This can be used to freeze running processes like batch processing and continue

a later time depending on the state of the hard drive i.e. where the free space is located

for the hard drive. Control groups are a hierarchal, treelike data structure. The child

process inherits certain attributes from its parent. The root of the tree is a process called

init.

Union file systems, or UnionFS, are file systems that operate by creating layers, making

them very lightweight and fast. Docker uses union file systems to provide the building

blocks for containers. Docker can make use of several union file system variants

including: AnotherUnionFileSystem (AUFS), B-Tree File System (BTRFS), Virtual File

System (VFS), and DeviceMapper (Liu & Zhao, 2014).

32

3.1.2 RKT

Rkt is a container engine that has been developed by CoreOS. Its basic idea is the same

as Dockers as they both are used to spin up containers. The main difference with Rkt

when compared to Docker is that Rkt’s interface is just a single executable file (Rkt

documentation, 2019).

Rkt can also be easily integrated with existing init systems such as Systemd and advanced

clustering environments. It is an open standard application container or otherwise

known as App Container (APPC). Rkt is also able to run Docker containers. The reason

Rkt can be easily integrated into the init system is that it does not have a centralized

daemon.

Security is also one of the advantages when comparing Rkt to Docker. This is because

Rkt contains a permission split function. It is designed to avoid unnecessary operations

to run with root privileges. In addition, default signature verification and other advanced

features for security considerations are provided (Xie, Wang & Wang, 2017).

3.2 Edge computing

As more and more items such as cars, beverage automates, toasters and for the

purposes of this thesis relays are connected to the internet, the amount of data

transferred grows and the bandwidth requirements increase linearly with the amount

of data transferred. As data transfer is limited to the speed of light, the need to reduce

the distance from device to cloud increases to reduce the amount of time it takes for a

request from the user to be completed. This is the reason why edge computing is gaining

traction in the field. Edge computing means that rather than sending all the data to be

processed in the cloud most of it is processed “locally” or to be more specific, on the

edge of the network. Therefore, it is called “edge computing” (Li & Wang, 2018).

33

Reducing the amount of data transferred to the cloud also has the benefit of reducing

the distance travelled, which directly reduces the amount of time spent waiting for the

data to arrive. The delay from the time sent to the time received is called latency and it

is measured in milliseconds. While milliseconds seem like a small fraction of time and

speed of light is extremely fast, the amount of time spent waiting compounds as the

amount of traffic is increasing constantly. According to Cisco Global Cloud Index, the

amount of Internet of Things (IoT) data sent this year alone is predicted to reach 507.5

zettabytes (Cisco Systems, 2018). For reference, one zettabyte is one trillion gigabytes.

Factoring in that the size of a single IoT request is usually no larger than a couple of

megabytes, one can quickly start to comprehend the number of requests done annually

and then multiplying it with the latency and the total time spent waiting is gargantuan.

For the scope of this thesis however, the more impactful benefit of the edge is the fact

that with pre-processing done on site, we do not have to send all the data to cloud. That

reduces the amount of data we must store to cloud and thus, reducing the costs.

Additionally, if we had to send everything we can gather from the relays of our

substations, the amount of bandwidth required would have been impractical.

The two most recognized issues with edge computing are large scale geographic

distribution of the computing infrastructure and the dynamic nature of edge devices.

Most of the cases where edge computing is incorporated is an IoT application, where

sensors read data such as voltage. (Giang, Lea, Blackstock & Leung, 2018). In the case

for this thesis, it is exactly that. However, these challenges do not in fact concern us yet.

For now, we are contempt with just inspecting a single substation as its own entity and

therefore the devices or sensors we encounter within any given entity do not spread

into a large geographic area. This means that all the devices reporting to the edge

computer are within a few meters of the actual device. The most apparent disadvantage

when devices are spread is that they communicate over a heterogeneous network

through different ways of communication (for example Wireless Fidelity (Wi-Fi), Long

Term Evolution (LTE), Wired, etc.) and there are both static and dynamic endpoints with

34

different reachability (for example direct Internet Protocol (IP) addresses vs behind a

Network Address Translation (NAT)). For us the communication protocol is fixed to

IEC61850 and the endpoints are static, and all share the same reachability as they are

within the same network (Giang et al., 2018).

The other problem currently with edge devices is that they are usually highly dynamic.

Load fluctuations and context changes like change in location are constantly happening.

This causes variation that can be hard to optimize since load balancing and dynamic

scaling is not that easy to create with edge resources due to them not being centralized

and readily available like cloud computing resources. (Giang et al., 2018). Then again, as

our load can be thought as Boolean in nature as we only perform a fixed number of tasks

in the edge, this concern is not of great importance pertaining to our situation. We do

not have to worry about load balancing since we can accurately guess the amount of

load we will ever see.

3.3 Cloud Technologies

Cloud computing has become an industry standard in the past ten years. Cloud

computing is just buying server space from a centralized location provided by a cloud

service provider. However, most companies order something to complement the server

space. This is usually done as a service. It can be anything ranging from Infrastructure-

as-a-Service (IaaS) to Software-as-a-Service (SaaS) (Liu, 2010).

IaaS is the closest to just buying up server space and placing it on your premises. The

crucial difference is that in IaaS the servers are in the cloud service providers data center

and the cloud service provider also takes care of the maintenance of the servers. Below

is a picture of a generic IaaS -architecture (Kozlovszky, Törőcsik, Schubert & Póserné,

2013).

35

Figure 8. Generic IaaS -architecture (Kozlovszky et al., 2013).

SaaS on the other hand means that the client purchases a working software that is

hosted in a data center and an instance of the software is generated for the client. The

client can access the instance with its own credentials. The benefit of these as-a-Service

deals is that the client only pays whatever it decides to use leading to lesser costs for

the client, easier scalability as more server capacity can be attained either automatically

as traffic increases or with just a click of a button to deploy another server core to their

instance. In addition, the cloud is more stable as an environment compared to an om-

premise solution since cloud service providers have highly available and redundant data

centers available.

In general, clouds can be divided into three different types: private, public and hybrid.

Private clouds are segregated instances, which host just the data of a single entity (for

example a corporation). Private clouds provide the benefit of a more secure

environment and a higher level of control. Public clouds on the other hand are usually

owned by businesses that offer their services to many different entities and just limit

the user access with accounts. Hybrid clouds are a mix of both the private and public

clouds. (Atlam, Alenezi, Alharthi, Walters & Wills, 2017).

36

4 Methodology

Design science research (DSR) has increased its relevancy in information systems studies

in the last 20 years (Hevner, vom Brocke & Maedche, 2019). The main objective of design

science research is to enable new capabilities for humans and organizations by designing

novel artefacts represented by constructs, models, methods and instantiations (Hevner,

March, Park & Ram, 2004; Peffers, Tuunanen, Rothenberger & Chatterje, 2008; Gregor

& Hevner, 2013). In general, the aim of design science research is to provide a set of

rules to help one design a new process or an artefact.

According to Hevner et al. (2019), design science research is positioned ideally for

contributing to both research and practice within the field of digital innovation as it

focuses directly on the design and deployment of innovative artefacts. Currently, ABB

runs all the algorithms within the relays. Our objective is to create a novel approach for

ABB to run the algorithms in an edge or cloud environment. Therefore, we believe it is

accurate to talk of a digital innovation within the scope of ABB. Hevner et al. (2019) state

that design science research projects not only produce a novel digital innovation

artefact, but additionally they should produce the required processes and procedures

for the deployment and use of the artefact in the problem context.

The aim of the practical part is to create a proof of concept level architectural design of

algorithms running in an edge or cloud environment to increase the scalability of the

platform and reduce the maintenance costs when patching the system, which aligns

with the statement of March & Storey (2008) saying that novelty and utility of

constructed artefacts are the corner stones of contributions in design science research.

To accompany their sentiments Weber (2010, p. 2) claims the following:

“The focus of an IT artifact lies on the problem itself. It is finished when it satisfies
the requirements of all stakeholders and solves the relevant problem. On the one

hand, it is necessary to understand why an IT artifact works or does not work
while on the other hand it is necessary to understand how the IT artifact was

created. “

37

We will conclude that the work provided in the next chapters will be sufficient after all

relevant parties, such as representatives from ABB, agree to it with the proper

documentation to describe how our proposed artefact works.

There are numerous of different methods for conducting a design science research

project. The first one was created by Nunamaker Jr, Chen & Purdin in 1990 in which they

introduced systems development as a possible way to conduct information systems

research. This is considered as a good first step towards defining design science for

information systems research, but it demonstrated a clear lack of theoretical or scientific

outputs (Baskerville, Baiyere, Gregor, Hevner & Rossi, 2018).

Walls, Widmeyer & El Sawy in 1992 and March & Smith in 1995 continued to pursue

from the work of Nunamaker et al. (1990) by proposing kernel theories to amend the

deficiencies in the works of Nunamaker et al. (1990). In 2002, Markus, Majchrzak &

Gasser presented a concrete design and a theory that to this day are still valid design

methods. Following the work of Markus et al. (2002), Hevner et al. (2004) established

principles of canonical design research. Peffers et al. (2008) in turn created a process

outline for design science research. Finally, Kuechler and Vaishnavi in 2008 came up with

a high-level design process, that according to them most DSR methods follow

(Baskerville et al., 2018).

Baskerville et al. (2018) adapted the model created by Kuechler and Vaishnavi (2008)

and for our intents and purposes their model fit well. The adapted model of Baskerville

et al. (2018) is presented in Figure 9. It consists of five steps: Awareness of problem,

Suggestion, Development, Evaluation and Conclusion. Awareness of problem and

Suggestion outline the initial issue and propose a suggested mean of solving it. In

Development phase an artefact is created, and it will start producing data for analysis.

Once development is finished, evaluation of the created artefact is done with the data

produced by the artefact. During Development and Evaluation phases circling back

towards Awareness of problem can be done if needed to redefine problems that may

arise during development or evaluation. Finally, conclusions are drawn after evaluation

38

has been completed and passed. Next, we will give a more detailed explanation how

these steps work in the design and development of our artefact.

Each passing of the process is to be thought of as a sprint and it should provide a part of

the solution. It starts with the client (ABB in our case) defining a set of limitations and

goals according to their needs, id est Awareness of problem -phase. This is in our opinion

the most important phase of the process since it provides us the framework to complete

the project.

Suggestion phase is our chance of present our solution to the client based on the

limitations and goals set in the Awareness of the problem -phase. In theory these are

separate steps, but in our opinion having an open discussion during the Awareness of

the problem -phase and suggesting ideas based on the limitations and goals provided

for more interaction between the client and us and therefore a deeper understanding

of the problem at hand.

During the Development phase it is on us to create the solution based on the framework

decided in the first two steps of the process. If problems are to arise during development

the discourse is to be open and priority toward the client. It is hard to predict future

pitfalls during the Awareness of the problem and Suggestion phases and therefore

circumscription might have to be done during the Development phase rotating back to

the Awareness of the problem -phase. This is the reason open discourse between us,

and the client is essential even during the Development phase.

If, however no problems arise during development, the next phase is us presenting our

solution to the client for evaluation. Here it is vital that the client gives feedback on the

developed artefact. If the artefact is not up to the standards of the client, the next option

is to go back to defining the problem more specifically. However, if no problems are

detected it is time to conclude the process and deliver the lessons learned during the

process. If there are still sprints left to complete the entire artefact, then a new iteration

39

of the ADR process is run from the start. The other option is to conclude the project for

good.

In the next chapter we will give a more practical example on how we implemented the

ADR process into our project. Figure 9. describes the progress through the ADR process.

Figure 9. Action Design Research (ADR) process (based on Baskerville et al., 2018).

Finally, Table 3. describes the steps taken during each step of the process.

40

Table 3. Steps taken throughout the process.

ADR Step Actions in this study

Awareness of Problem Held meetings with ABB to discuss the limitations and goals

for the process. The goal is to set clear targets on the end

product after each sprint.

Suggestion Done in unison with Awareness of Problem -phase. Clear

suggestions given during the Awareness of Problem -phase

to meet the requirements for future phases. The final

suggestion was presented in the last of our meetings.

Development Development was done individually, while having constant

communication with the development team of ABB to

discuss problems leading to circumscription.

Evaluation Once we deemed development for iteration was ready to be

presented, we held a meeting with ABB to demonstrate what

we had achieved. When requirements were met, we moved

to conclude the sprint.

Conclusion Concluding the sprint and moving forward to the next sprint.

41

5 Path toward microservice architecture

In this chapter we will go through the selection process of the technologies. We selected

six different criteria to evaluate the two different container platforms. We also set a

maximum point limit for each criterion. As there were only two viable container

platforms to choose from, we decided that we would split the amount of points given

within the criterion based on performance.

After analysing the different technology options, we will present the steps we took

during the development of the artefact. To guide us through the process we relied

heavily on the ADR method presented in the previous chapter. However, we altered it

slightly to more reflect the workflow of ABB.

5.1 Selection of the technologies

Initially we were planning to evaluate different container technologies and cloud

technologies, but during the process of developing the container platform we realized

we could not get a fully functional platform. Thus, we decided it was not evaluate the

different cloud platform options.

We selected to review the container technologies with the following criteria: overall use,

ease of use, academic research, security, performance and licensing. The results of this

review can be found in Table 4. at the end of this section.

At first, we discussed how to grade the technologies according to the selected criteria.

It was important to assess the different options for technology to grant us the best

probability of completing the proof of concept. We decided to use a grading totaling to

maximum points of 100. After that we agreed the maximum grade for each of the

criteria. We agreed that the academic research is a strong and most important factor

while choosing the technology and therefore we emphasized that criterion most. Thus,

we gave it the maximum points of 30. Second most important criteria were overall use

42

and security, because these are important criteria for ABB as well. For these we gave the

maximum points of 20. Ease of use, performance and licensing were graded all with the

same scale of ten, because these were deemed to have the least impact on the proof of

concept.

Overall use is representing the actual usage of each technology. This criterion is based

on the Google search results by checking the number of sites returned by searching

“Docker” and “Rkt”. Gathered data clearly illustrates that Docker is currently the market

leader in container technologies. The actual parity between Docker and Rkt is much

greater than 3:1, but Rkt was given favour as it is still a less mature product and might

not have reached a critical mass yet to be fully adopted by the industry. A simple Google

search with the words “Docker” and “Container” returns 29,5 million results, while “Rkt”

and “Container” only returns 253 000 results as per today. However, the industry

perception does matter and therefore we chose to value it at a scale of 20 of which

Docker gained 15 and Rkt 5 points.

Ease of use encompasses quite a few factors. Firstly, the sharing of images was one

aspect. Docker Inc. provides a service to hold private docker images for a small monthly

fee, while CoreOS does not. Additionally, it is generally accepted that Docker has a lower

bar for entry when it comes to the two different platforms. Ease of use criterion is for

convenience rather than a showstopper, so it was set at a scale on 10 points. Docker

was graded at 7 points and Rkt at 3 points.

Academic research on this area was limited, but from the sources (Xie et al., 2017) we

found Docker was favoured. However, as we could not find enough of reliable sources

from academic studies, we only gave Docker a slight edge in this criterion. In addition to

academic research we found a corroborating research study conducted Forrester Inc.

The Forrester New Wave Enterprise Container Platform, Q4 2018 Report further

supported the claims of the academic research of Docker slightly topping Rkt. However,

we would like to remind, that Forrester Inc. is not an academic source and therefore the

results of their study should not be considered as a de facto truth. As this is an academic

43

research, it should also be reflected in the scale as well. A weight of 30 points was set

for this criterion. As Docker seemed to edge out in front by just a marginal advantage,

we graded it with 17 points and Rkt with 13 respectively.

In regards, to security Rkt was developed to address the severe security issues that once

were apparent in Docker. The most common objection against Docker was that it runs

containers with root privileges. This is not the case anymore as Docker has been

addressing these security issues. According to Xie et al. (2017) overall the Rkt platform

is more secure than Docker due to it running less of the operations as root due to

permission split function and on other advanced features for security. We think that

security is an important factor to consider, when comparing new technologies so we

gave it a scale of 20 and Rkt was granted 15 of those 20 points, which leaves Docker with

only 5.

The following criterion is performance. The scientific study measuring Rkt and Docker

against bare metal performance was conducted by Xie et al. in 2017. They measured

the CPU performance with a Y-cruncher. Y-cruncher is a commonly used program to

measure CPU performance.

44

Figure 10. CPU performance of bare-metal, Docker and Rkt (Xie et al., 2017).

From Figure 10. can be seen that Docker performs slightly better than Rkt. However, the

difference in CPU performance time is negligible. Regarding CPU performance Docker

and Rkt appear to be practically equal and thus, this should not be a major factor when

choosing a container platform. Therefore, we graded performance with the scale of ten.

Figure 11. demonstrates the amount of CPU cycles needed to transmit and receive the

data as measured by Xie et al. (2017). For measurement they used a Linux command

“perf stat -a”. Both containers add significant overhead, but when compared against

each other the differences again are rather insignificant. However, it is to be noted that

Docker once again comes slightly ahead of Rkt.

45

Figure 11. CPU load and network performance (Xie et al., 2017).

All in all, the difference in performance are rather insignificant, but as Docker managed

to improve slightly on Rkt’s values we deemed it necessary to give Docker a grade of six,

which means that Rkt gained a grade of four.

Lastly, we discuss of the issue of licensing. The main difference between Docker and Rkt

with respect to licensing is that Docker is a commercial product, while Rkt is an

opensource product. It is common for businesses to buy commercial products, since

security vulnerabilities will be patched with utmost haste. It is to be noted that even

opensource products are patched in a timely manner nowadays as well, because a vast

amount of people contributes to the development of the product as an open source

community. The reason ABB values opensource projects is the fact that the code is

accessible for ABB’s developers. In the scope of this thesis, we deem the licensing issue

irrelevant. However, we decided to still discuss it in this thesis as it might be relevant in

the future or at least in projects to come and it should not be left out of consideration.

46

Due to the irrelevancy we will grade both with a grade of five. Thus, the scale for this

criterion is ten.

We have gathered a summary of all the set points in Table 4. The final evaluation stands

that Docker received 55 points while Rkt gathered 45 points. For this reason, Docker was

chosen as our desired platform.

Table 4. Docker versus Rkt comparison.

Criteria Max. points Docker points Rkt points

overall use 20 15 5

ease of use 10 7 3

research 30 17 13

security 20 5 15

performance 10 6 4

licensing 10 5 5

total 100 55 45

5.2 Methodology in action

As explained previously, we decided to use ADR as a method for conducting our

research. We thought it was a solid process to follow for our development as we were

in constant communication with ABB’s development team. As explained in the previous

chapter, ADR is an iterative process and each iteration consists of five phases that are

Awareness of the problem, Suggestion, Development, Evaluation and Conclusion.

The problem was defined as follows: ABB has a software that is written with a monolithic

application architecture that is used to monitor the electrical substations. There were

several motivational factors involved that drove ABB towards the change to

microservice architecture. Firstly, maintaining monolithic software is difficult. Secondly,

47

scaling an application with monolithic architecture is not efficient. Lastly, ABB’s

customers generally want to buy their products, because of the added value provided

by their intellectual property rather than just the hardware solutions.

The two first factors have been described in depth in previous chapters. The last factor

is an issue of product development. The objective was to create an application that could

communicate with hardware regardless of hardware vendor. Because IEC 61850 and

Common format for Transient Data Exchange (COMTRADE) are strictly defined data

exchange standards, they enable this objective.

Our task was to separate one of the functions from the monolithic legacy application,

more specifically, the fault locator algorithm. Then transform it to a containerized

microservice with a browser-based user interface. We saw three distinct iterations

required to complete the project. The three different phases are the web service,

document delivery and the fault locator applications itself. Figure 12. describes our

proposed microservice architecture.

Figure 12. Proposed architectural diagram of the proof of concept application.

We saw the need for three different containers as procedurally there are three different

phases to get the algorithm to run. First the user engages with the web user interface

48

by selecting the algorithm they wish to run. After that, the user is prompted to provide

the files needed to run the chosen algorithm. In the case of the fault locator algorithm,

the required files are the Common format for Transient Data Exchange for power

systems (COMTRADE) -file and the configuration file. Once the files have been stored

within the document delivery container, the algorithm can be run in the third container

returning the results back to the web user interface. To get a deeper understanding of

the inner workings of the fault locator algorithm and the files, we would like to refer the

reader to explore the IEC 61850 -documentation as the algorithm itself is out of scope

for this thesis and rather used as an example to prove that microservice architecture can

be achieved.

It could be argued that the document delivery container should be within the web user

interface container. However, we think that keeping the data separated from the web

facing interface is beneficial. In the future, we plan on using the same document delivery

container for multiple different algorithms, so the isolation here enables easier updates

on the application as well. Lastly, we want to set up a NoSQL document store as our

document database, because it enables us to store all our files in a single container

rather than setting up a relational database, defining a table and columns. On the other

hand, if we at some point need a relational database and we have set up the document

delivery inside the web user interface -container, it will be much harder for us to

implement the new database.

We agreed upon the three containers and decided that each of the containers was to be

built in a sprint that was two weeks long. Altogether, we decided that the development

would take six weeks to complete. We decided to proceed in the order of in which the

process would appear to the user. In other words, we would start with the user

interface, then move to the document delivery container and lastly, we would complete

the development by containerizing the fault locator -algorithm. Each of these sprints

should result in a completion of the ADR process for us to call the sprint a success. The

first step of the process however, was to setup an environment that supports the

development.

49

To start we decided to setup a constant delivery and integration pipeline. To achieve

that, we decided to use Travis CI (Travis CI, 2019). Travis CI is a constant integration

platform that will allow us to deploy code directly to Amazon Webservices (AWS)

(Amazon Web Services, 2019) or any other cloud provider. However, we decided to go

with Amazon webservices, because of the ease of use. The benefit of using Travis CI is

most definitely the fact that we can automate tests for the code to be run upon

deployment. Furthermore, if all the tests pass it will directly upload them to AWS and in

this case GitHub as well for version control.

GitHub (GitHub, 2019) is an opensource version control service that developers can use

to store code and use as a version control tool. GitHub is widely used in organisations.

The reason we selected GitHub, rather than GitLab, which is meant for enterprises, is

the fact that our work will not be a commercial product but is only for a proof of concept.

We also highly suggest that when our work is taken deployed as a major release then it

will be moved into ABB’s GitLab.

On AWS we used elastic beanstalk (Amazon Web Services Elastic Beanstalk, 2019), which

is perfect for our use case as it provides easy scalability for our service and we can

directly deploy code through Travis CI. The benefit of elastic beanstalk is that it supports

most of the common languages and servers. Additionally, it automatically handles

factors regarding deployment such as capacity provisioning, load balancing, auto-scaling

and application health monitoring. Thus, granting us a stable service. It could be argued,

that this step was taken too soon. However, we are strongly of the opinion that things

should be done right from the outset and not left until it is desperately needed. The

pattern seen in Figure 13. by Balalaie et al. (2016) for transitioning to microservice

architecture supports this claim.

50

Figure 13. Pattern transitioning to microservice architecture (Balalaie et al., 2016).

The first order of business for their pattern is to setup the continuous integration to

support the constant development. For this thesis, only the first two rows of the pattern

are relevant, since we do not have the resources to produce a fully developed

application. After continuous integration was setup, the development process was ready

to start.

The integrated development environments used for development were JetBrains’ tools

(Jetbrains, 2019) for the Python code. For the JavaScript code we used Microsoft’s Visual

Studio (Microsoft, 2019). These were just chosen based upon personal preference and

should not alter the results in any shape.

51

Above we have described all the setup we did before we started the development work

with iterations. In the next chapters, we will represent the actual process of transitioning

to the microservice architecture from the monolithic architecture.

5.2.1 First iteration – User interface

At first, we set forth to complete the web service as we deemed it was the easiest of the

three components to complete and required no knowledge of the legacy system. Thus,

we could complete the user interface and meanwhile keep our eyes and ears open for

any and all silent knowledge we could gather from the development team about the

fault locator algorithm.

Based on the discussions we had with ABB, regarding the awareness of the problem, the

web service had no specific requirements for technology or appearance. Therefore, we

were able to choose the technologies we deemed best fit for the issue at hand. We

consulted ABB about the technologies we are going to suggest using and they had no

objections.

We decided to create the user interface using Python’s Django framework. This decision

was partly made since we had prior knowledge of Django and realised it would provide

us with all the functionality we needed for the service. Django also has built-in databases

and admin panels that would make the administration of users easier during production.

This is a clear benefit, since the administrators would not have to get involved with the

source code, but they could rather accomplish all the tasks with a graphical user

interface provided for them. Additionally, in the far future, once the application starts

scaling horizontally, it would also highlight the benefit of being able to choose which

ever language or framework is best suited for the job. This is because we suspect that

future applications will be developed in JavaScript.

52

The development of the user interface went very smoothly, and we did not encounter

any major issues during the whole time as was expected. As this was just for a proof of

concept level application, we created a mock-up of the user interface with only the

necessary components and links between the pages. We did not use a lot of time to

refine the user interface to look as good as we possibly could, but rather made it

functional. However, one thing to note, the user interface is responsive, meaning that it

scales based on the size of monitor the user it is viewing it from. We made this possible

by using Bootstrap (Bootstrap, 2019). Bootstrap is a framework that has a plethora of

readymade functions that allow the developer to setup grids in which content can be

placed within the user interface. We settled for a grid with three columns and made one

of the columns link to the document delivery container.

Once we completed the first version of the user interface, we presented it to ABB, and

they deemed it would suffice for now. Figure 14. depicts the designed user interface.

53

Figure 14. User interface for the platform.

The user interface was adapted from Bootstraps documentation Album example

(Bootstrap Album, 2019), but customized a bit to fit the brand of ABB.

Thus, we were able to conclude the first iteration of the action design research and were

able to move on to the next iteration. This would start to cross over to the fault locator

algorithms side as the next phase would be to implement the database to store the files

for the algorithm to use.

5.2.2 Second iteration – Document delivery

For the second iteration, we once again had no technological restrictions regarding

frameworks or languages to be used. However, the main limitation regarding the

document delivery container was that once the files are imported the output of the

substation must be selectable manually. This is for error handling, because it is possible

54

that the COMTRADE file has no outputs defined or they are defined incorrectly. No other

requirements were defined.

For the fault locator algorithm to run it requires two separate files from which it gathers

the data needed. These files are the configuration file that defines the configuration of

the relay and the COMTRADE file, which is the standardized file format defined by Power

Systems Relaying & Controls Committee (PSRCS), which is part of the Institution of

Electrical and Electronics Engineers (IEEE) Power & Energy Society. The COMTRADE -file

is produced by the Intelligent Electronic Devices (IEDs), which in our case is the

electronic protective relay, within the electrical substation. The IEDs monitor the

different characteristics of the electricity flowing through them such as current, voltage,

power and frequency. With digital signal processing the IEDs can detect fault on

conditions and on occurrence the IEDs produce a COMTRADE -file to report the fault

data. The COMTRADE -file can then be used by analytics tools to calculate information

about the occurred fault, such as the location of the fault with the fault locator

algorithm. With the configuration and COMTRADE -files we can accurately deduce in

which of the outputs and how far from the substation the fault is located.

To start this sprint, we held meetings with the developers from ABB and discussed

possible solutions for the problem. We came up with a solution that presumed that the

fault locator algorithm would be an independent component that could be run similarly

than you would run a program from the command line. Also, the files it needed could

be provided in a similar way as you would provide arguments for a function. This would

make it simple for us to build a document delivery container in which to store the

documents needed. Once the documents would be delivered, we could easily mount the

fault locator container with the document delivery container to enable the use of the

fault locator algorithm.

During the suggestion meetings it turned out that this in fact would not be possible due

to two reasons: the underlying system itself is not compatible with Linux containers and

the function itself is dependent on about 90% of the whole monolithic system. The

55

evaluation on the spot was that making the application Linux compatible would be at

least six months of work. However, the scope of the research and allocated resources

made it not feasible for us to pursue this option. This caused us to halt the process and

evaluate our options.

We came back to the table with the initial idea to run the whole application within a .net

container. This would solve our compatibility issues with Linux containers and a

Microsoft based application. However, we were faced with yet another issue. The legacy

application was not compatible with any of the version of the .net core available

container images.

The other setback we faced was the matter of the highly dependent monolithic

application architecture. The fault locator in fact did not operate as a single function to

be called, but rather it was a collection of small calculations that required nearly all the

legacy application to run. This, as referenced in chapter 2.5 of this thesis, made the

decomposition of the monolithic application unpractical. From Figure 13. it can be seen,

that according to Balalaie et al. (2016) this prevents us from moving onward with their

pattern.

Since we could not provide a meaningful suggestion to solve either of the reported

issues with our resources in a timely matter, we could not move forth to development.

Once more we convened to discuss the problem but both sides thought that the

obstacles in front could not be overcome. However, we still are of the opinion that the

value of microservice architecture leveraging containers is there. So, we decided that

we would provide a functional application that could be used to demonstrate the

functionality of containers.

56

Table 5. Steps taken in practice to achieve to proof of concept.

Problem Proposed solution Result

Web based user interface

to ease the use.

User interface to be

created with Python’s

Django framework.

Accepted and completed.

Document delivery

container to store files to

be used for the fault

locator.

Creation of the database

container to store the

files.

Accepted, but

development halted,

because severe issue

pinpointed.

Fault locator algorithm

could not be run as an

isolated function.

Containerize the whole

application.

Rejected as no further

value would be gained and

additionally compatibility

was a question.

Compatibility issues

detected during

suggestion meeting.

Modernize the

architecture to be

compatible.

Decided not to move

forward as the resources

needed were far greater

than was available.

Fault Locator algorithm

required too many

dependencies from the

legacy code. Thus, not

feasible to transform it to

a microservice.

Create a simplified version

of the original project

without the Fault Locator

algorithm.

Accepted and completed.

However, we still are of the opinion that the value of microservice architecture

leveraging containers is there so we decided that we would provide a functional

application that could be used to demonstrate the functionality of containers.

57

5.2.3 Final iteration

We decided together with ABB to make a simple application that demonstrates that

communication between containers can be achieved. We shared the understanding that

the requirements for this was to create an architecture with two containers. One to hold

the user interface and the other to analyse COMTRADE files and return the name of the

relay if it is defined.

For the analysis of the COMTRADE -files we decided to use David Parrini’s opensource

COMTRADE -file Python module (Parrini, 2019) and containerize it. It is able to parse the

.cfg and .dat files that are delivered when an error occurs. With matplotlib we were able

to draw graphs from these files that show the current (see Figure 15.).

Figure 15. Graphs of an COMTRADE files current.

Parrini’s module can plot different graphs from the COMTRADE files. In Figure 15., we

plotted two currents IA and IB just to show the functionality of the module.

Figure 16. describes the overall architecture of the application. All together it has two

different containers, specifically the user interface and COMTRADE containers. The user

58

interface container holds the web-based user interface shown in Figure 14. In addition

to holding the user interface, it also stores the files uploaded by the user. This allows us

to separate functionality and provide isolation. Additionally, when new functionality is

added in the future it enables the files to be used in the other containers as well. We

concluded that importing the files to a database would not provide any added value,

since the files could in fact just be saved into the container itself.

The COMTRADE container holds the COMTRADE python module (Parrini, 2019), which

allows us to parse the COMTRADE files. An example of the output returned by the

COMTRADE container is shown in Figure 15. This functionality was layered on top of the

initial requirement, but we can also get the container to return the name of the relay,

which was our initially intended functionality.

The Algorithms added in the future depicts how following algorithms can be

incorporated into the current architecture. This becomes relevant if the transit to

microservice architecture will be completed after this thesis. This architecture model

enables the scalability of the application to the fullest as explained in the previous

chapters.

Figure 16. Final architecture of our case study.

59

6 Results

We were not able to develop the initial idea of this thesis to the proof of concept level.

However, we think that even though the development could not be completed we have

still achieved to answer the questions we set out to answer. In this part of the thesis we

will go over the research questions, but in addition to that we will try to give more

context what went wrong and how to avoid these issues in the future.

The first research question was framed: “Can a monolithic software be transformed into

a microservice architecture?” In short, the answer is most definitely, but upon reflection

done in hindsight the smarter question might be: “When is transforming a monolithic

application architecture into a microservice architecture smart?” This is in fact the more

important question. Upon reviewing all the articles relating to microservices referred in

this thesis, the reader might get a sense of microservice architecture being the perfect

tool for every job. However, if anything our work proves that sometimes there is wisdom

found in ways past. We would like to propose a prerequisites list that must be in order

before thinking about transit to microservice architecture:

- Minimal technological debt acquired during the years

- Know the legacy application in depth

- Avoid systems that are highly dependent

- Do not rush it, it will take time and resources.

What we mean with the technological debt is that make sure the application is running

in the most recent of versions for everything used within. Otherwise, one will most likely

be facing compatibility issues especially soon, since containers are still fairly new

technology the versions predating them are most likely not supported. In the future, this

60

might be less of an issue if the older versions are still maintained. However, we would

still strongly recommend on trying to eliminate all the debt accrued.

There are multiple reasons why monolithic application came before microservice

architecture, for example computational and network speed limitations. However, one

key factor is also the fact that monolithic architectures are less complex. Distributing the

code into isolated environments that only communicate between each other through

API’s increases the complexity of the system. Therefore, implanting a new developer

into a research project meant to redesign an old architecture that they are completely

unfamiliar with increases the likelihood of errors. At the very least it increases the

difficulty of the already complex process even more.

If possible, avoid systems that are highly dependent. However, if the system requires a

microservice architecture either for scalability or other reasons, the first step to take is

to make sure that the two issues mentioned before are in order. Thus, allowing for

containerizing of the whole application. This per se is not much, but it is a good first step

into getting familiar with containerization and microservice architecture. However, in

our case we deemed it obsolete to go forth with containerizing the whole application in

a single container, since we could not find any additional value since the application had

been run in virtualized environments prior to this thesis.

The high dependency also led to the problem we faced was that the algorithm could not

run without most of the components of the system. Even if we were able to decompose

the monolith, we would have had to separate the auxiliary calculations into separate

containers. This would have increased the application’s overhead and led to an overall

reduction in system performance. Thus, we concluded that it would not provide any

further value.

Transitioning to a microservice architecture is a huge undertaking and should not be

thought of as anything less. Resources needed will probably be greater than initially

forecasted, since most likely unforeseen circumstances will result into obstacles that will

61

hinder the transition process. During the development process, we in fact found a study

that had undertaken a similar endeavour as ours. One thing to note however, the scale

of their application was even bigger than ours. This study was conducted by Knoche &

Hasselbring (2018) in which they present a successful transition to microservice

architecture from a monolithic application architecture. As of publishing their paper

their project had been running for nearly four years and by that point, they themselves

called it almost completed. This should provide an example of what sort of timeframe is

to be expected with a project of this scope.

The last paragraph relates directly to the second research question as well which was

“What are the pitfalls and misconceptions of transitioning to a microservice architecture

found during this thesis?” That being the resources required to successfully carry out the

project from start to finish. We drastically underestimated the time and other resources

required for this project as should be clear by the study done by Knoche & Hasselbring

(2018). Unfortunately, we only came across this case study in the latter part of our own

research. Had we found this study earlier in our own research we probably might have

pivoted in to a different angle of research.

Yet again we arrive in the issue of high dependency. As stated previously, one of the

most common misconceptions regarding the microservice architectures is the limitation

set by the dependencies within the system. In our case, it resulted in a total halt in

development as we could not provide meaningful results.

All together, we think that the list mentioned previously about the prerequisites for

transitioning to a microservice architecture sums up all the pitfalls we encountered

during our development.

In addition to the pitfalls we encountered, another pitfall that would most like have been

encountered further in the development than we reached is the susceptibility to partial

failures. This cannot occur in monolithic applications, since the whole application fails if

62

part of it fails. However, in distributed it is important to handle failures gracefully and

not let the whole system die if a service goes down.

Lastly, we would like to address our sub-question for this thesis. In retrospect, while we

do see the advantages microservice architecture has over the monolithic architecture,

especially since physically the devices themselves are distributed with great lengths

between each substation, we do not think at this time that it is sensible use of resources

to transit this application to a microservice architecture. The most significant reason for

this is the high dependency of the application. However, like stated previously we do

see the benefit in moving to a microservice architecture and if that is the desire, we

think that all together it might be smarter to build the application from the ground up.

63

7 Conclusions

Even though we did not manage to provide a working proof of concept level application

to ABB we believe that we managed to demonstrate the basic principles and highlight

the pitfalls one is likely to encounter when moving from a monolithic application

architecture to a microservice architecture.

In our opinion the two most relevant findings of this study were the adjustment of the

ADR process to combine the Awareness of problem and Suggestion phases together and

the list of prerequisites that have to be in order before attempting to transit to a

microservice architecture.

The prerequisites list is a good reference when thinking about going towards a

microservice architecture as these issues we highlighted are probably the first obstacles

future projects will encounter as well. Our results clearly indicate that this is by no means

a light undertaking and other research presented in this thesis support this claim.

Having an open communication during Awareness of problem and Suggestion phases

allowed us to do them simultaneously and in collaboration with the development team.

This also clearly reduced the time it took us to understand the underlying problems we

were facing with the development. Thus, we would propose future research done with

Action Design Research to try if combining the first two phases produces positive results

to them as well.

Furthermore, regarding the question of communication and knowledge transfer. ABB is

globally operating in 100 countries and ABB’s Distribution Solutions is operating in half

of them. Software development is decentralized resulting in fragmented development

teams all working towards the same goals, but in completely different practices. Thus,

leading to potential issues regarding communication and in-depth knowledge of the

created software. Therefore, it would be beneficial to develop processes that support

shared communication and understanding of the overall application. Moving forward

64

we would propose ABB looking into reassuring that knowledge transfer is constant and

the enterprise architecture is well defined. With enterprise architecture we mean a

topological description how all the components developed in decentralized teams

operate with each other.

As theoretical contributions, we believe that once all of the deficiencies have been dealt

with a solid base towards transit to microservice architecture can be done. This can be

also generalized and others willing to embark on this transit should also account for the

list of prerequisites. Additionally, we are strongly of the opinion that the combination of

the first two phases of the ADR method provided us with a clear way of moving forward

and we noticed a reduction in wasted time. However, this was possible only because of

the willingness for open communication from the client organization.

The main contribution of the community of practice, namely ABB, is the concrete

application we developed. It illustrates the benefits that microservices and containers

can bring to an organization. The code was delivered to ABB and if they choose it can be

used as a base to continue with the proof of concept, once the problems described in

the previous chapters have been eliminated.

At this moment we would not encourage ABB to pursue microservice architecture for

the selected software’s codebase. While we do recognize the benefits granted by it, the

effort and resources required exceed the benefits gained. We propose that if

microservice architecture is truly desired, building a new solution should be the most

straightforward approach. Obviously, reusing parts of the original software should be

considered wherever applicable.

The limitations for this thesis are at least the following. The list of prerequisites is most

likely incomplete. Other issues could have risen if any other application would have been

chosen or we would have been able to continue further into the research. Thus, this

leads to us into another limitation, which is the limited resources, mainly time, available

for this case study. Another limitation to this thesis is that we were limited with

65

resources to verify our results on the issue regarding selection of the technologies,

especially when it comes to Rkt.

To elaborate on the future research mentioned earlier in this chapter. A solid way to

verify the experiences we gained, future research could measure the difference in time

spent between the regular ADR process and when the Awareness of the Problem and

Suggestion phases were combined.

Another interesting line of future research would be to create two simultaneously

running projects for the same application. One of the projects would try to modernize

certain functionality of the application, while the other project would develop the same

functionality from scratch. Thus, providing valuable information whether modernizing a

legacy is efficient.

Still one interesting future study could be to recreate the experiment with Rkt and see

if the results are like ours. Additionally, the comparison presented in this thesis between

Docker and Rkt could be verified.

66

References

ABB. (2018). Managing Relion IEDs Protection and control IED manager PCM600

Retrieved 2.12.2019 from

https://search.abb.com/library/Download.aspx?DocumentID=1MRS756483&Lang

uageCode=en&DocumentPartId=LoRes&Action=Launch.

Alshuqayran, N.; Ali, N.; & Evans, R. (2016, November). A Systematic Mapping Study

in Microservice Architecture. In (2016 IEEE 9th International Conference on Service-

Oriented Computing and Applications (SOCA), 44-51.

Amaral, M.; Polo, J.; Carrera, D.; Mohomed, I.; Unuvar, M.; & Steinder, M. (2015,

September). Performance Evaluation of Microservices Architectures using

Containers. In 2015 IEEE 14th International Symposium on Network Computing and

Applications, 27-34.

Amazon Web Services. (2019). Retrieved November 27, 2019 from

aws.amazon.com

Amazon Web Services. (2019). AWS Elastic Beanstalk. Retrieved November 27, 2019

from https://aws.amazon.com/elasticbeanstalk/

Atlam, H. F.; Alenezi, A.; Alharthi, A.; Walters, R. J.; & Wills, G. B. (2017, June).

Integration of Cloud Computing with Internet of Things: Challenges and Open

Issues. In 2017 IEEE International Conference on Internet of Things (iThings) and

IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical

and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 670-675.

67

Balalaie, A.; Heydarnoori, A.; & Jamshidi, P. (2016). Microservices Architecture

Enables DevOps: Migration to a Cloud-Native Architecture. IEEE Software, 33(3),

42-52.

Baskerville, R.; Baiyere, A.; Gregor, S.; Hevner, A.; & Rossi, M. (2018). Design Science

Research Contributions: Finding a Balance between Artifact and Theory. Journal of

the Association for Information Systems, 19(5), 3.

Bauer, R. (2018). What’s the Diff: VMs vs Containers. Retrieved 4.12.2019 from

https://www.backblaze.com/blog/vm-vs-containers/

Bernstein, D. (2014). Containers and Cloud: From LXC to Docker to Kubernetes. IEEE

Cloud Computing, 1(3), 81-84.

Bootstrap. (2019). Retrieved November 27, 2019 from https://getbootstrap.com/

Bootstrap. (2019). Album example. Retrieved 5.12.2019 from

https://getbootstrap.com/docs/4.3/examples/album/

Burckart, E. J.; Ivory, A. J.; Kaplinger, T. E.; Kenna, S. J.; & Shook, A. K. (2013). U.S.

Patent No. 8,601,129. Washington, DC: U.S. Patent and Trademark Office.

Cisco Systems. (2018). Global Cloud Index retrieved November 27, 2019 from

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/global-

cloud-index-gci/white-paper-c11-738085.html.

Cisco Systems. (2019). Cisco Visual Networking Index retrieved December 2, 2019

from https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-

networking-index-vni/white-paper-c11-741490.html.

Conway, M. E. (1968). How Do Committees Invent. Datamation, 14(4), 28-31.

68

Dahlstedt, J. (2012). U.S. Patent No. 8,156,492. Washington, DC: U.S. Patent and

Trademark Office.

Docker documentation. (2019). retrieved November 27, 2019 from

https://docs.docker.com/

Dua, R.; Raja, A. R.; & Kakadia, D. (2014, March). Virtualization vs Containerization

to Support PaaS. In 2014 IEEE International Conference on Cloud Engineering, 610-

614.

Erlandsson, Z. (2019). Suitability of OCR Engines in Information Extraction Systems:

a Comparative Evaluation. Degree project in computer science and engineering. KTH

Royal Institute of Technology, School of Electrical Engineering and Computer

Science. Stockholm, Sweden

Fetzer, C. (2016). Building Critical Applications using Microservices. IEEE Security &

Privacy, 14(6), 86-89.

Garber, L. (2012). The Challenges of Securing the Virtualized

Environment. Computer, 45(1), 17-20.

Giang, N. K.; Lea, R.; Blackstock, M.; & Leung, V. C. (2018, July). Fog at the Edge:

Experiences Building an Edge Computing Platform. In 2018 IEEE International

Conference on Edge Computing (EDGE), 9-16.

GitHub. (2019). Retrieved November 27, 2019 from github.com.

Gray, J. (2006). A conversation with Werner Vogels. ACM Queue, 4(4), 14-22.

Gregor, S.; & Hevner, A. R. (2013). Positioning and Presenting Design Science

Research for Maximum Impact. MIS Quarterly, 37(2), 337-355.

69

Hevner, A.; March, S. T.; Park, J.; & Ram, S. (2004). Design Science Research in

Information Systems. MIS Quarterly, 28(1), 75-105.

Hevner, A.; vom Brocke, J.; & Maedche, A. (2019). Roles of Digital Innovation in

Design Science Research. Retrieved November 4, 2019 from

https://link.springer.com/article/10.1007/s12599-018-0571-z..

Hirschheim, R.; & Klein, H. K. (2012). A Glorious and Not-So-Short History of the

Information Systems Field. Journal of the association for Information

Systems, 13(4), 188.

Jokela, V. (2014). Sähköasemadatan Laajamittainen Analysointi. Retrieved

December 2, 2019 from https://dspace.cc.tut.fi/dpub/handle/123456789/22621

Jetbrains. (2019). Retrieved November 27, 2019 from

https://www.jetbrains.com/pycharm/

Kalske, M.; Mäkitalo, N.; & Mikkonen, T. (2017, June). Challenges When Moving

from Monolith to Microservice Architecture. In International Conference on Web

Engineering, 32-47. Springer, Cham.

Kang, Brandon. (Jan 29, 2019). Generic Microservice Architecture Topology.

Medium. Retrieved November 27, 2019 from

https://medium.com/@sangjinn/how-to-manage-api-in-the-msa-microservices-

architecture-world-2c4ec90c677e, 11.11.2019

Kazanavičius, J.; & Mažeika, D. (2019, April). Migrating Legacy Software to

Microservices Architecture. In 2019 Open Conference of Electrical, Electronic and

Information Sciences (eStream), 1-5. IEEE.

70

Knoche, H.; & Hasselbring, W. (2018). Using Microservices for Legacy Software

Modernization. IEEE Software, 35(3), 44-49.

Kozlovszky, M.; Törőcsik, M.; Schubert, T.; & Póserné, V. (2013, May). IaaS type

Cloud infrastructure assessment and monitoring. In 2013 36th International

Convention on Information and Communication Technology, Electronics and

Microelectronics (MIPRO), 249-252. IEEE.

Kuechler, B.; & Vaishnavi, V. (2008). On Theory Development in Design Science

Research: Anatomy of a Research Project. European Journal of Information

Systems, 17(5), 489-504.

Lewis J.; & Fowler M. (Mar 2014). Microservices. Retrieved November 27, 2019

from martinfowler.com/articles/microservices.html.

Li, Y.; & Wang, S. (2018, July). An Energy-Aware Edge Server Placement Algorithm

in Mobile Edge Computing. In 2018 IEEE International Conference on Edge

Computing (EDGE), 66-73.

Li, Y.; & Xia, Y. (2016, December). Auto-scaling web applications in hybrid cloud

based on docker. In 2016 5th International Conference on Computer Science and

Network Technology (ICCSNT), 75-79. IEEE.

Liu, D.; & Zhao, L. (2014, December). The research and implementation of cloud

computing platform based on docker. In 2014 11th International Computer

Conference on Wavelet Active Media Technology and Information Processing

(ICCWAMTIP), 475-478. IEEE.

Liu, G. (2010, April). Research on independent SaaS platform. In 2010 2nd IEEE

International Conference on Information Management and Engineering, 110-113.

IEEE.

71

Malavalli, D.; & Sathappan, S. (2015, November). Scalable Microservice Based

Architecture For Enabling DMTF Profiles. In 2015 11th International Conference on

Network and Service Management (CNSM), 428-432. IEEE.

Mauro, T. (2015, February). Nginx — Adopting Microservices at Netflix: Lessons for

Architectural Design [Online] Retrieved 13.11.2019 from

https://www.nginx.com/blog/microservices-atnetflix-architectural-best-practices/

March, S. T.; & Smith, G. F. (1995). Design and natural science research on

information technology. Decision Support Systems, 15(4), 251-266.

March, S. T.; & Storey, V. C. (2008). Design Science in the Information Systems

Discipline: An Introduction to the Special Issue on Design Science Research. MIS

Quarterly, 32(4), 725-730.

Markus, M. L.; Majchrzak, A.; & Gasser, L. (2002). A Design Theory for Systems That

Support Emergent Knowledge Processes. MIS Quarterly, 26(3), 179-212.

Messina, A.; Rizzo, R.; Storniolo, P.; & Urso, A. (2016). A Simplified Database Pattern

for the Microservice Architecture. In The Eighth International Conference on

Advances in Databases, Knowledge, and Data Applications (DBKDA), 35-40.

Microsoft. (2019). Retrieved November 27, 2019 from

https://visualstudio.microsoft.com/

M&S Consulting. (2019). Oracle Cloud DevOps and Cloud Native Applications.

Retrieved November 27, 2019 from https://www.mandsconsulting.com/oracle-

cloud-devops-and-cloud-native-applications/ 11.11.2019

Namiot, D.; & Sneps-Sneppe, M. (2014). On Micro-services

Architecture. International Journal of Open Information Technologies, 2(9), 24-27.

72

Newman, S. (2015). Building Microservices: Designing Fine-Grained Systems.

O'Reilly Media, Inc.

Nunamaker Jr, J. F.; Chen, M.; & Purdin, T. D. (1990). Systems Development in

Information Systems Research. Journal of Management Information Systems, 7(3),

89-106.

Parrini, D. (2019). Python COMTRADE. Retrieved 25.12.2019 from

https://github.com/dparrini/python-comtrade/commits/master/README.md

Peffers, K.; Tuunanen, T.; Rothenberger, M.A.; & Chatterje, S. (2007). A Design

Science Research Methodology for Information Systems Research, Journal of

Management Information Systems, 24(3), 45-77. doi:10.2753/MIS0742-

1222240302

Premchand, A.; & Choudhry, A. (2018, February). Architecture Simplification at

Large Institutions using Micro Services. In 2018 International Conference on

Communication, Computing and Internet of Things (IC3IoT) (pp. 30-35). IEEE.

Reuben, J. S. (2007). A Survey on Virtual Machine Security. Helsinki University of

Technology, 2(36).

Richards, M. (2016). Microservices AntiPatterns and Pitfalls. O'Reilly Media.

Retrieved November 27, 2019 from

https://theswissbay.ch/pdf/_to_sort/O'Reilly/microservices-antipatterns-and-

pitfalls.pdf 12.11.2019

Rkt documentation. (2019). Retrieved November 27, 2019 from:

https://coreos.com/rkt/docs/latest/ 12.11.2019

73

Rosenblum, M.; & Garfinkel, T. (2005). Virtual machine monitors: Current

technology and future trends. Computer, 38(5), 39-47.

Ross, J. W.; & Feeny, D. F. (1999). The Evolving Role of the CIO. Retrieved November

27, 2019 from https://dspace.mit.edu/bitstream/handle/1721.1/2758/SWP-4089-

43797710-CISR-308.pdf

Seedotech, R. (2018). Monolithic vs Microservice Architecture. Retrieved November

27, 2019 from https://medium.com/@raycad.seedotech/monolithic-vs-

microservice-architecture-e74bd951fc14 11.11.2019

Taibi, D.; & Lenarduzzi, V. (2018). On the Definition of Microservice Bad Smells. IEEE

software, 35(3), 56-62.

Travis CI. (2019). Retrieved November 27, 2019 from https://travis-ci.org/

Uber documentation. (2019). Retrieved November 27, 2019 from

https://eng.uber.com/tag/microservice/ 13.11.2019

Walls, J. G.; Widmeyer, G. R.; & El Sawy, O. A. (1992). Building an Information

System Design Theory for Vigilant EIS. Information Systems Research, 3(1), 36-59.

Weber, S. (2010). Design Science Research: Paradigm or Approach? AMCIS 2010

Proceedings 214.

Xie, X. L.; Wang, P.; & Wang, Q. (2017, July). The performance analysis of Docker

and rkt based on Kubernetes. In 2017 13th International Conference on Natural

Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), 2137-2141.

IEEE.

74

Yakimov, B. (2016). Containerization with Docker. Retrieved 25.12.2019 from

https://itgix.com/blog/post/containerization-with-docker/

