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TIIVISTELMÄ: 
 
Tämä opinnäytetyö tutkii mikropalveluarkkitehtuurin etuja verrattuna perinteiseen monoliitti-
seen sovellusarkkitehtuuriin ja perinteisiin ympäristöihin. Mikropalveluarkkitehtuuri koostuu 
useista palveluista, jotka palvelevat kukin yhtä tarkoitusta ja sovelluksen kaikki erilliset toimin-
not ovat omissa säilöissään, joita kutsutaan konteiksi. Kontit perustuvat Linux-ytimeen. Tämä 
opinnäytetyö tehtiin ABB (ASEA Brown Boveri) Distribution Solutions -yritykselle yhden nykyisen 
sovelluksen nykyaikaistamiseksi. 
 
Tämän tutkielmamme päätavoite on kuvata siirtyminen monoliittisesta sovellusarkkitehtuurista 
mikropalveluarkkitehtuuriin. Törmäsimme työn aikana kuitenkin ongelmiin, jotka estivät työn 
läpimenon. Näistä ongelmista merkittävin oli monoliittisen sovelluksen korkea riippuvuuden 
aste eri ohjelman osien välillä. Projektin lopputuloksen oli tarkoitus olla todiste konseptitason 
ohjelmistosta. Sitä emme pystyneet toteuttamaan.  
 
Käytimme toimintamallitutkimusta metodologiana ohjaamaan meitä päätöksenteossa. Valit-
simme toimintamallitutkimuksen työmme metodologiaksi, koska huomasimme sen tukevan in-
teraktiivista työskentelyä. Tämä sopi meidän tilanteeseemme erittäin hyvin, sillä olimme päivit-
täin ABB:n toimistolla tekemässä tätä tutkimusta. Toimintamallitutkimus tähtää ensisijaisesti 
lopputulokseen, joka meidän tapauksessamme olisi ollut vanhan sovelluksen istutus uuteen ark-
kitehtuuriin.  
 
Yksi tärkeimmistä tuloksistamme on, että onnistuimme määrittelemään kriittiset kysymykset, 
joihin on puututtava ennen siirtymistä monoliittisesta arkkitehtuurista mikropalveluarkkiteh-
tuuriin. Näitä löydöksiä olivat vuosien aikana kertynyt teknologinen velka, epätäydellinen tieto 
vanhasta sovelluksesta sekä järjestelmän sisäiset riippuvuudet. Nämä riippuvuudet muodosta-
vat merkittävän haasteen monoliitin uudelleen jäsentämisessä mikroarkkitehtuurin mukaiseksi. 
Neljäntenä löydöksenä huomasimme, että käytettävissä olevia resursseja, kuten aika, asiantun-
tijat ja rahoitus, on oltava riittävästi tarkoituksenmukaisen tuloksen saavuttamiseksi. 
 
Teoreettisena kontribuutiona tuotimme oman versiomme Action Design Research -menetel-
mään. Yhdistimme menetelmän kaksi ensimmäistä vaihetta siten, että samalla, kun asiakasor-
ganisaatio määritteli ongelmaa, tutkimusryhmämme tarjosi ongelmiin ratkaisuja. Näistä ratkai-
suista asiakasorganisaatio valitsi heille sopivimman. Tämä prosessi oli mahdollinen, koska kä-
vimme avointa jatkuvaa keskustelua ABB:n kehitysyksikön kanssa. 
 

AVAINSANAT: mikropalveluarkkitehtuuri, konttiteknologia, virtualisointi, skaalautuvuus, Ac-
tion Design Research -metodologia 
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ABSTRACT: 
 
This thesis explores the benefits of microservice architecture over traditional monolithic appli-
cation architecture and traditional environments for deploying software to the cloud or the 
edge. The microservice architecture consists of multiple services that serve a single purpose and 
all separate functions of the application are stored in their own containers. Containers are sep-
arate environments based on the Linux kernel. This thesis was done for ABB (ASEA Brown Boveri) 
Distribution Solutions to modernize one of their existing applications. 
 
The main goal of this thesis is to describe the transition from a monolithic application architec-
ture to a micro-service architecture. However, during the case study, we encountered problems 
that prevented us from going through with the project. The most significant of these problems 
was the high degree of dependence of the monolithic application between different parts of the 
program. The end result of the project was to be a proof of concept-level software. We couldn't 
achieve it. 
 
We used design science as a methodology to guide us in decision-making. We chose Action De-
sign Research (ADR) as the methodology for our work because we found it supported interactive 
work. This fits in very well with our situation as we were doing this research daily at the ABB’s 
office. Design science primarily aims at the end result, which in our case would have been to 
plant the old application in the new architecture. 
 
One of our most important results is that we were able to identify critical issues that need to be 
addressed before moving from monolithic to microservice architecture. These findings included 
technological debt accumulated over the years, incomplete knowledge of the legacy application, 
and internal system dependencies. These dependencies represent a significant challenge in re-
structuring the monolith to a microarchitecture. As a fourth finding, we found that the resources 
available, such as time, experts and funding, must be sufficient to produce an appropriate result. 
 
As a theoretical contribution, we produced our own version of the Action Design Research 
Method. We combined the first two steps of the method so that while the customer organiza-
tion was defining the problem, our research team provided solutions to the problem. Of these 
solutions, the client organization chose the one that suited them best. This process was possible 
because we had an open and continuing discussion with ABB's development unit. 
 
 

KEYWORDS: microservice architecture, container technology, virtualization, scalability, Ac-
tion Design Research -methodology 
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1 Introduction 

Software industry is going through massive evolutions currently and most of the 

practices from the twentieth century have started to become outdated, since the 

computing power of modern hardware is capable of outstanding performance (see for 

example Ross & Feeny, 1999; Hirschheim & Klein, 2012). In the modern world, software 

engineering is less about building one giant application, but rather it is trending towards 

building an application that has multiple services. These services work autonomously to 

increase fault-tolerance and reduce the resources spent on maintenance as individual 

services cannot be broken by modifications done to other parts of the code. Companies 

such as Netflix (Mauro, 2015) and Uber (Uber, 2019) have already adopted the 

architectural change towards a microservice architecture and have reaped its benefits. 

The cost of transferring data is reducing and the speed at which data can be transferred 

is increasing (Cisco, 2018; Cisco, 2019). This has enabled to redirect the processing of 

any given data from on premise solutions to for instance the cloud or the edge. Data 

gathering and processing volumes are increasing by huge margins currently and this 

provides companies with valuable data that has not been available previously. This has 

also impacted the companies working with electrical grids.  

This thesis is done for ABB’s Distribution Solutions. Distribution Solutions manufactures 

relays for high voltage / medium voltage substations in the electrical grid. These relays 

can gather a huge variety of data ranging from voltage to current and temperature in 

the relay. These measures provide critical information about the relays as a malfunction 

can cause debilitating damage to the grid. For this reason, a fault detection algorithm 

has been developed. It can identify faults in the grid and inform the operators where the 

fault is located. This reduces the time to repair the fault and get the grid up and running 

again. Currently, the software running in the substations is an application with a 

monolithic application architecture and part of this thesis aims to transit that 

architecture to a more modern architecture, specifically a microservice architecture. 

(ABB, 2018) 
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The research need for this thesis was found in the fact that the software has been run 

only in the substations. It has been run with industrial computers in the substations as 

well as within a virtual machine. The most obvious benefit of running the application 

outside of the substation would be the fact that software updates would be easier to 

deploy as the technicians could install them remotely rather than going on site. Another 

benefit of running in the cloud will be gained, with the transition from a monolithic 

application architecture to a microservice architecture. Obviously, not all the 

functionality can be moved away from the substations as some of the function blocks 

are very time sensitive, such as the overcurrent detection (Jokela, 2014). However, the 

fault locator algorithm is not as time sensitive. Thus, allowing us to create a proof of 

concept level solution. 

A modern way to create scalable architectures is by creating microservices. Each service 

is responsible for a single function of the whole application. This provides meaningful 

upside as an architecture compared to the old monolithic architecture that has been 

created in the past.  According to Namiot & Sneps-Sneppe (2014), a monolithic 

application is a file that is deployed as a united solution like a Web Application Archive 

(WAR) file for Java web applications. Internally it may have multiple services, but when 

inspected it acts as one. An application with monolithic architecture is scaled by running 

multiple identical copies of the application. The benefits for microservice architecture 

include but are not limited to the following concepts: Isolation for the application, which 

reduces the time to deploy new features; Creating a microservice architecture reduces 

the size of the codebase; Each team can take ownership of their own services. Thus, 

microservice architecture is providing autonomy to pick and choose the best 

technological tools to use for their services, be it language, framework or whatever else 

the team believes is necessary to get the job done in the most efficient way possible. 

(Newman, 2015; Fetzer, 2016; Alshuqayran, Ali & Evans, 2016; Amaral, Polo, Carrera, 

Mohomed, Unuvar & Steinder, 2015) 

Containers are commonly leveraged to achieve a microservice architecture (Amaral et al., 

2015). Containers can be thought as being a way to package your software into 



11 

something resembling a shipping container. These containers are one of the tools that 

enable developers to create and deploy code easier and faster than before. Additionally, 

they work independently so dependency issues do not arise like in more traditional 

development. “Works on my computer” -problem should not occur with containers as 

they can be thought as sort of black boxes. 

The purpose of this master’s thesis is two-folded. Firstly, the aim is to create a proof of 

concept (POC) level artefact that has a microservice architecture and containerized 

services. Secondly, the goal is to restructure the current monolithic application 

architecture to a modern microservice architecture. The research questions pertaining 

to this research are: 

1) Can a monolithic software be transformed into a microservice architecture? 

2) What are the pitfalls and misconceptions of transitioning to a microservice 

architecture found during this thesis? 

In addition to the two main questions above, a sub-question was also formed during the 

research: 

3) Is it sensible to transit this monolithic application architecture to a microservice 

architecture? 

In the following two chapters we will be discussing the theory behind the different 

virtualization architectures and technologies. Firstly, we shall discuss the microservice 

architecture, as it is the modern way of creating an architecture that is robust and highly 

scalable by leveraging containers. We will delve into different container technologies 

and aim to highlight the different advantages and disadvantages of each separately. 

After that the focus will shift on to the different platforms available to host the solution. 

More specifically, the aim will be to assess different service providers and their products 

to find the most suitable environment to run our services. 
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A description of used methodology will be given after the theory is introduced in this 

master’s thesis. Design science was selected as a good starting point for this thesis as 

the problem was introduced to by a third party. In addition, the thesis will be a 

qualitative case study research which provides further assurance that design science 

could be used as a methodology within this field of research. We have chosen to use 

Action Design Research (ADR) (Baskerville, Baiyere, Gregor, Hevner & Rossi, 2018) as the 

method of conducting the research as we were in constant collaboration with ABB’s 

team.  

The fifth chapter will describe the different technologies used in our proof of concept 

and describe how the proof of concept was created. The reader will gain a deeper 

understanding of the different iterations done during the creation of the proof of 

concept and realize the most common pitfalls we encountered during this process. Most 

importantly, we will try to guide the reader to the right path if s/he wishes to attempt 

to recreate our experiments. 

After the empirical study is explained in detail, it is time to analyse the results gained. 

We will take a closer look at what we accomplished during the empirical study and show 

the benefits of this research. Lastly, conclusions will be made on whether our research 

is a success and if there is something we would like to change in hindsight. 
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2 Microservice architectures 

A common way of creating an application in the past times was to create an application 

where all its parts were in the same stack. This meant that the whole application is a 

single unit. Commonly all the codebase was packaged into a single file like a JAR or WAR 

file. The benefit of this is that the application is easy to test and deploy, but there are 

two main reason why this architecture is becoming outdated: modifications to code take 

a long time and a monolith only scales one dimensionally. (Messina, Rizzo, Storniolo & 

Urso, 2016) 

In general, a monolithic application stack is thought to consist of three different layers 

(Premchand & Choudhry, 2018). These layers are application layer, business logic layer 

and data access layer. The application layer in its simplest form is the user interface via 

which the user of the application can interact with. Business logic layer provides the 

functions that the user can do with the user interface like adding new users to the 

application. Data access layer enables the user’s data to be modified, be saved into or 

be deleted from a database. These three different layers work in cohesion and enable 

the software to be used. They together also form a single instance to be replicated when 

needed to improve the performance of the said application. Figure 1. describes a general 

monolithic application stack.  
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FIgure 1. Example of a monolithic application’s stack (Seedotech, 2018). 

Once the application goes through multiple versions and more functionality is 

introduced during the lifecycle of the application, the likelihood of bugs creeping in to 

the code increases. The codebase on the other hand keeps on growing thus making it 

increasingly more difficult to find where the bug is located and therefore increasing the 

time it takes to deploy new features to the code. Moreover, a certain functionality may 

require more computing power than all the rest. However, since the codebase requires 

all the code for the application to be executable, the entire codebase must be running 

in multiple instances to scale up the application. This reduces efficiency of the system.  

For example, let us inspect the stack of Figure 1. more in depth. We clearly have a block 

that is meant for user management. However, once all the users are onboarded to the 

system, the computing power required for the user management section of the code 

decreases, while traffic to the movie management section of the stack. This either 

creates a bottleneck of resources as not enough resources are available for the movie 

management section or it creates waste as user management block is idle.  
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2.1 What is a service? 

The above-mentioned scalability issue led to the creation of the concept of services. 

James Lewis and Martin Fowler (2014) claim that microservice was invented in a 

software architecture workshop in May of 2011. Services are individual parts of the 

application that service a specific function of the application. For instance, one of the 

services could be the user management service, which allows creation, reading, 

updating and removing (CRUD) functions for accounts and the other service could be 

the movie management service. These services operate autonomously and making 

changes within one of them does not require modifications to other services. Each of 

the services uses technologies deemed as lightweight, such as Hypertext Transfer 

Protocol (HTTP) and Representational State Transfer (REST). Required business 

capabilities are what define the services, each capability equates to a service. 

Centralized management of services is left to the bare minimum. (Lewis & Fowler, 2014) 

Figure 2. is an example of a microservice architecture and it describes the inner workings 

of such an architecture. Each microservice is a single deployable entity and therefore 

can be scaled up or down depending on the amount of usage of each service. All of the 

services are packaged into their own separate containers. The user interface is one of 

the containerized microservices. It allows the user to interact with the other containers. 

The other microservices are core functions needed for the application to work. In our 

case study we will have an architecture that consist of the user interface container, an 

analytics container that does all of the analysis for the relays and a database to store the 

files in. Our architecture would resemble the far-left side of the architecture described 

in Figure 2. 
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Figure 2. Example of a microservice architecture (M&S Consulting, 2019). 

 

 

2.2 Benefits gained with microservice architecture 

There are few concrete improvements with microservice architecture compared to a 

monolithic one according to Newman (2015), Fetzer (2016) and Alshuqayran et al. 

(2016). These include (i) flexibility with different technologies to be used within each 

service; (ii) service isolation, which leads to increase in service quality and security (iii) 

service ownership enabling the service architecture structure to be moulded to fit the 

team structure. Knoche & Hasselbring (2018) add to this list of benefits with the 

reduction of the size of the codebase. 

Flexibility gained by microservices is due to the separation of technologies used. As each 

of the services is handled by a single team, they can choose amongst themselves, which 

tool is the right one for the job. Within the same application multiple, multiple different 

languages and frameworks can be utilized to achieve the greatest result through the 

path of least resistance (Lewis & Fowler, 2014). Probably the easiest way of getting 

perspective of this granted flexibility is to look at different data storage options. An easy 
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way to approach this subject is to compare Structured Query Language (SQL) and Not 

only SQL (NoSQL). A modern application will ideally want to use both databases and 

creating a microservice architecture will make it possible to do so. Relational databases 

should be used when a fixed schema is required, such as the user database. NoSQL 

databases are more suited towards databases where flexible schemas are preferred like 

a shopping cart. 

Service isolation is what enables the flexibility. It is generally granted using containers 

that provide the bound context for each service. This provides both security as well as 

quality. Security is enhanced as gaining access to a single service does not immediately 

unlock the whole application for the malicious user. Service quality is improved as even 

if one of the services crashes, it does not cripple the whole system. Additionally, the 

containers provide a shorter restart time as the container images are smaller in size 

compared to virtual machines (VM). We will delve deeper into containers in the next 

section of this thesis. Furthermore, introducing new updates to the application does not 

require the whole application to be built all over again, but rather only the service that 

had the feature appended must be built again. 

Service ownership is what enables this on the organizational side. This mandates the 

creation of cross-functional teams (Lewis & Fowler, 2014) as each team must be able to 

develop their service from the ground up all the way up to production. This leverages 

Conway’s law that states the following (Conway, 1968, p. 1): 

Any organization that designs a system (defined broadly) will produce a design 
whose structure is a copy of the organization's communication structure. 

Thus, leading to teams that can self-sufficiently develop and deploy their own services 

and communication is needed only within the team therefore greatly increasing the 

speed of deployment. The ownership of the service should not end once the 

development is finished, but rather example should be taken from Amazon’s “you build 

it, you run it” principle (Gray, 2006). In this interview, Vogels Chief Technology Officer 

(CTO), of Amazon in 2006, describes how operational responsibilities given to 

developers has increased the quality of service for Amazon. Vogel attributes this to the 
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customer feedback loop gained from the daily contact with the customers. In addition, 

we believe that it also holds the developers accountable for their own code as they will 

receive direct feedback for their own code. Developers will strive to deliver better code 

as they feel more responsible of the quality of the code and because they want to avoid 

negative feedback coming from the customers. 

The benefits of microservices come with some costs added to them. According to 

Kazanavičius & Mažeika (2019), microservice architecture adds complexity to the system 

as it becomes a distributed one. Performance is also affected since communication will 

happen over a network rather than internal calls. 

Microservices fit well in within the DevOps paradigm. Creating small and nimble services 

that flow through continuous delivery, integration and monitoring pipelines is what 

most concretely enables faster deployment and increases availability of applications 

(Balalaie, Heydarnoori & Jamshidi, 2016). According to Balalaie et al. (2016), 

development and operation teams have been separated traditionally. However, this 

might not in fact produce the best results. This is since development teams and 

operations teams work in very different frequency regarding the rate of changes. 

Development teams generally push out multiple updates, while operation teams tend 

to be more reserved to achieve a more stable release. Due to having two full sized teams 

running to deploy new updates, the sheer number of people taking part in the 

integration process is big thus resulting in a dire need of accurate communication. All 

these issues described above, lead to a slower deployment of software updates. 

DevOps enhanced with microservices can respond to many of the problematic situations 

caused by the conventional way of developing applications. Reduction in 

communication required between teams is the catalyst that drives faster deployment 

times as each team is only responsible for their own product and operations team is only 

responsible for delivering a pipeline for the deployment of new features on to the 

application, preferably with even automated testing integrated into the pipeline. 
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However, we will not explore DevOps further than this, since it is out of scope for this 

thesis. 

To sum up the differences between a monolithic application architecture and a 

microservice architecture, we believe that Kalske, Mäkitalo & Mikkonen (2017) 

summarized it best in the following Table 1.: 

Table 1. Comparison between monolithic and microservice architecture (Kalske et al., 
2017). 

Category Monolith Microservices 

Time to market Fast in the beginning, slower 
later as codebase grows. 

Slower in the beginning, because 
of the technical challenges that 
microservices have. Faster later. 

Refactoring Hard to do, as changes can af-
fect multiple places. 

Easier and safe because changes 
are contained inside the micro-
service. 

Deployment The whole monolith has to be 
deployed always. 

Can be deployed in small parts, 
only one service at a time. 

Coding language Hard to change as codebase is 
large. Requires big rewriting. 

Language and tools can be se-
lected per service. Services are 
small so changing is easy. 

Scaling Scaling means deploying the 
whole monolith. 

Scaling can be done per service. 

DevOps skills Does not require much as the 
number of technologies is 
limited. 

Multiple different technologies, 
a lot of DevOps skills required. 

Understandability Hard to understand as com-
plexity is high. A lot of moving 
parts. 

Easy to understand as codebase 
is strictly modular and services 
use SRP. 

Performance No communicational over-
head. Technology stack might 
not support performance. 

Communication adds overhead. 
Possible performance gains be-
cause of technology choices. 
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2.3 Communication between different services 

As we have established that each service is its own isolated entity, we have yet to define 

the way they communicate with each other. This way is called an application 

programmable interface (API), which is a standard way of different services to send 

standardized messages between each other thus allowing a smooth transfer of data 

between each of the services. API’s enable the inner workings of each service to stay 

obscure, which enhances the security aspect of the services as well. Say, that an 

individual gets access to one of the services, as each of the services only communicate 

between each other via an API the access is only partial and therefore not as damaging 

as it would have been for an application with a monolithic software architecture. Figure 

3. describes the way traffic is directed to each of the microservices from the client (Kang, 

2019). 

 
Figure 3. Generic microservice architecture topology (Kang, 2019).   

The client first provides credentials via identity provider after which it can process 

requests made by the user via the API gateway to the different services in the 

application.  
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2.4 Architectural change in our case study 

Currently, the software architecture for our case study in ABB is as described in Figure 

4. As of writing this research, it is monolithic and all functionality within the same block. 

The objective is to separate the function library and function library service from the 

rest and create a microservice of that part of the software. The driving forces for this 

change are the ones listed earlier in this chapter, the main reasons being: faster 

development cycles, easier maintenance during production and easier scalability both 

vertically and horizontally. 

The most important of these is easier maintenance during production, since it reduces 

resources spent on a process that does not add value to the current software. Faster 

development cycles add on top of the reduced time needed for maintenance in 

increasing the efficiency of the development department. Lastly, easier scalability, 

especially horizontally, enables development of a single service at a time. Thus, limiting 

the effect of new patches on the old software. Currently, when new patches are 

introduced, it affects the whole stack. However, with microservice architecture this can 

be minimized to only concern the service under development. Vertical scaling will 

become more important it the future, once the application is deployed into production. 

We do not expect the traffic to ramp up just yet in the proof of concept phase. 
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Figure 4. Monolithic software architecture in our case study based on an internal ABB 

architecture diagram. 

The functionality starts from the connectivity package, which is directly linked to the 

configuration interface. The configuration interface allows the user to configure the re-

lays and save them to the storage. At runtime, the configuration interface delivers the 

configuration files to the execution engine that is responsible for running the applica-

tions. Applications access the libraries, which in turn access services to run. For this the-

sis, we will be focusing on the part that is now described under application 2 in the func-

tion library called the Fault Locator (FLOC) Function Block (FB). This is the fault locator 

function block. Its job is to pinpoint the distance of the fault from the relay located in 

the electrical substation. For the function to run, it seems like it only needs to access the 

streams library and function library. These two should form their own services. The 

streams library is responsible for the data streams that are produced by the relays. Each 

relay is capable of recording data with a sampling rate measured with at the very least 
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in microseconds. This data is then saved to the real time data base (RTDB), which can be 

accessed via the RTDB user interface client. 

 

 

2.5 Common pitfalls in transit 

The transit to microservices is a two-phase process. The first of which is splitting the 

functionality of the monolithic application into smaller pieces, each piece being its own 

service. The second phase is to restructure the monolithic database to fit the newly 

created services. (Richards, 2016) 

As stated previously, each service can have its own database if deemed necessary. This 

grants the developer the benefit of choosing whether they want a relational database 

or a NoSQL database in addition to creating the database exactly required for the 

service. Thus, leading to lesser overhead. As all the different services are isolated, a 

communication route must be defined. The most common way to achieve this is by using 

REST APIs. They work in a predefined set of stateless operations. However, they 

communicate over the network and thus, introduce a new set of potential problems. 

According to Malavalli & Sathappan (2015), these problems include the following: 

network reliability, latency, bandwidth and network security. 

Drawing from this, it is generally thought as best practice to share nothing between the 

different services. However, in practice this might not be efficient to uphold, but rather 

share as little as possible (Richards, 2016). Adding to this, Richards (2016) defines an 

example where sharing is beneficial. Running a service for security and authentication 

introduces overhead reducing the reliability and performance of the whole application. 

Therefore, it is more beneficial to have all the authentication related code wrapped into 

a Java Archive (JAR) file to avoid constant excess remote calls. For specific purposes such 

as this a shared functionality can be useful, but in most cases, it should be avoided. If 

too many dependencies are allowed in to the system, it will create a situation as 

described in Figure 5. 
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Figure 5. Highly dependent microservice architecture (Richards, 2016). 

Dependency as high as this disrupts the notion of bounded context within microservice 

architecture. Thus, being counter-productive to the idea that alterations to code in 

microservice architecture are quick to test and deploy as each service is autonomous. 

(Taibi & Lenarduzzi, 2018) 
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3 Virtualization architectures 

In this chapter we will first describe the origin of virtualization. After which we will 

compare the current industry standards, virtual machines and containers, with each 

other and give a short introduction of two viable container solutions. Lastly, we will 

introduce the most common environments to store these virtualized solutions, namely 

cloud and edge. 

Virtualization began in the 1960s (Garber, 2012). At first it meant the division of 

mainframes into logical components, but since then the term has been expanded. 

Nowadays, virtualization can be either hardware virtualization, desktop virtualization or 

containerization. In this thesis we will briefly touch upon hardware virtualization by 

explaining what virtual machines are, but then concentrate on containerization, as it is 

the more current technology and better suits our needs. 

A more traditional virtualization architecture is a virtual machine. Virtual machine is a 

machine that runs on normal hardware and it has been segmented into smaller parts, 

with the underlying hardware decoupled from the running software (Rosenblum & 

Garfinkel, 2005). Virtual machines run a full operating system (OS) and if there are 

multiple virtual machines on a single server a hypervisor is responsible for managing the 

resources of the server (Dahlstedt, 2012). A hypervisor can either be software, firmware 

or hardware that manages the virtual machines on the server. This server is referred to 

as a host machine. Host machine delivers resources such as random access memory 

(RAM) and central processing unit (CPU) to virtual machines. These resources are shared 

between all the different virtual machines on the server and may be divided equally or 

different virtual machines may be allocated with more resources than others if a certain 

virtual machine requires more computing power.  

Virtual machines that run on a host machine are referred to as guest machines (Reuben, 

2007). Guest machines include everything that it needs to run on its own and can be 

thought of as an individual computer, which just happens to run on a server that hosts 
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multiple guest machines. The most common components included in guest machines 

are system binaries and libraries. Guest machines also have a hardware stack of their 

own, which contains virtualized network adapters, storage and CPU. In layman’s terms, 

this translates to the guest machine having its own full-fledged operating system as 

stated above. So, when looking inside of a virtual machine it is just a normal computer, 

but looking at the situation on a server level, it is an application that uses resources of 

the host machine. 

There are two practical ways running a virtual machine – a hosted hypervisor and a bare-

metal hypervisor. A hosted hypervisor means that it operates on top of the operating 

system of the host machine e.g. a computer can run any operating system (OS) and have 

a virtual machine running on it (Burckart, Ivory, Kaplinger, Kenna & Shook, 2013). This 

way the virtual machine can not directly access the hardware, but rather through the 

host operating system. 

Hosted hardware reduces the impact of underlying hardware, since the virtual machine 

is not responsible for drivers. Therefore, it can be run on a wider range of machines as 

the host operating system only needs to communicate with the hardware. However, the 

drawback of this is that the resource overhead increases as a separate operating system 

is run in the stack. 

Bare metal hypervisor is the opposite of a hosted hypervisor as the mentioned benefits 

and disadvantages are reversed. The bare metal hypervisor reduces the overhead 

compared to running the virtual machine on top of the host machine’s operating system 

as it interacts directly with the hardware. In practice, this means that the hypervisor will 

be installed directly to host machine’s server as the operating system (Burckart et al., 

2013). In this case the hypervisor will have its own device drivers and will interact with 

each component of the server directly, including operations such as I/O, processing and 

OS-specific tasks.  The advantage of this is that it increases performance, scalability and 

stability. The downside is that it will restrict the compatibility as hypervisors can only 
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support a limited number of components as not all the drivers can be preinstalled into 

the hypervisor. 

Containers on the other hand are much lighter than virtual machines (Li & Xia, 2016). 

They usually leverage much smaller versions of the base software, thus reducing the 

amount of disk space consumed. Containers are also used for a specific purpose and 

they only carry out a single function rather than running a fully-fledged operating system 

constantly. This is also demonstrated in Figure 6. (Erlandsson, 2019). Both the virtual 

machine and a non-Linux based container platform require the use of a hypervisor to 

run the docker engine. This increases the load on the servers compared to just running 

the plain docker engine on top of the host Linux. By looking more carefully the reader 

might recognize the fact that in Figure 6. the Host Linux and Guest Linux in fact operate 

identically. Therefore, running containers more specifically Docker on a non-Linux 

system is not really that efficient. 

 

Figure 6. Virtual machine vs Linux container vs Non-Linux container (Erlandsson, 
2019). 

Virtualization of the software architecture provides a modular system that can be easily 

scaled up or down depending on the need at any time. This reduces the deployment 

time and makes it easier to alter the configuration when needed.  
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Next, we will compare the three different options depicted in Figure 6. with respect to 

our case study; namely Virtual machines, Docker (Linux) and Docker (Non-Linux). For the 

virtual machine it would mean that we deploy a virtual machine on to a server running 

either in the cloud or an on-premise server. This virtual machine would then have its 

own kernel and all other functions that a fully-fledged operating system running on 

hardware would require. However, leveraging the Docker containers on a machine 

running Linux operating system allows us to deploy all of our containers directly onto a 

server running Docker engine as it is able to use the resources of the server natively. 

Thus, reducing the overhead of the system. Therefore, if we were to deploy Docker on 

a non-Linux environment, we would have to run it in a virtual machine which has Linux 

installed, which would decrease the efficiency of the system.  

As of writing this thesis, the software we are modernizing has already been deployed 

into a virtual machine as a monolithic application. However, there are multiple reasons 

to move towards a microservice architecture. These are for example reduced impact of 

patching the system and increasing the scalability of the system. 

 

3.1 Container Technologies 

The main idea of containers is akin to virtual machines. Container’s goal is to create a 

unit that contains the application and its dependencies that can be run anywhere. In 

addition to the isolation, containers and virtual machines both leverage virtualization 

techniques to allow more efficient use of computing power, when considering cost 

efficiency and energy consumption. The differences can be found in the architecture. 

The main difference when considering virtual machines and containers is that virtual 

machines provide hardware virtualizations, while containers virtualize the operating-

system. This is done by abstracting the “user space”.  
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While virtual machines package the kernel and virtual hardware, containers only 

package the user space. Every container has its own dedicated space that is isolated 

from the rest of the containers. This enables multiple containers to be run on a single 

host machine, since all the operating system level architecture is shared between the 

different containers. Only things that are container specific and created separately for 

each container are the binaries and libraries. This is the main thing that makes 

containers so lightweight. Table 2. explains the differences between containers and 

virtual machines in a less verbose manner. 

Table 2. Differences between virtual machines and containers (Bauer, 2018). 

Virtual machines Container 

Heavyweight (Image sizes in GB) Lightweight (Image sizes in MB) 

Limited performance Close to native performance 

Each VM runs its own OS All containers share the host OS 

Hardware-level virtualization OS virtualization 

Startup time in minutes Startup time in milliseconds 

Allocates required memory Memory allocation defined in 
namespaces 

Fully isolated, more secure Process-level isolation, might expose 
security vulnerabilities 

Next, we will go over the different container technologies that we will evaluate for our 

proof of concept. We will give a short introduction to each of the different technologies 

used. The following products will be introduced: Docker and Rkt. 
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3.1.1 Docker 

Docker (Docker, 2019) was first released in 2011 but debuted to public in 2013. It is a 

container service that allows developers to bundle software, libraries and configuration 

files. It uses namespaces to isolate applications from the underlying operating system. 

At first it leveraged Linux Containers (LXC), but later they released their own engine 

called Docker engine that has been written with Go programming language. The core 

concepts of Docker in addition to namespaces are control groups (cgroups as described 

in Figure 7.) and the union file system (Bernstein, 2014; Docker documentation, 2019; 

Liu & Zhao, 2014).  

 
Figure 7. Docker container communication with Linux kernel (Yakimov, 2016). 

In Figure 7. the relationship between the Linux kernel and the Docker container is 

described. The Docker container uses libcontainer to communicate with the Linux kernel 

to access its namespaces and cgroups functionality. 

Docker has five different namespaces available for the developer to provide isolation for 

their containers. The namespaces are Process ID namespace (PID namespace), the 
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networking namespace (net namespace), InterProcess communication namespace (IPC 

namespace), mount namespace (mnt namespace) and Unix timesharing system (uts 

namespace). (Liu & Zhao, 2014). 

The PID namespace allows each process to have its own process ID. Networking 

namespace provides the process its own network artefacts like routing table, iptables 

and loopback interface. IPC namespace provides isolation for mechanisms like 

semaphore, message queues and shared memory segments. Mount namespace gives 

each container its own mountpoint and finally Unix timesharing system namespace 

allows the different containers to view and change their assigned hostnames (Dua, Raja 

& Kakadia, 2014). 

Linux control groups are a functionality similar as in the Linux kernel (Docker 

documentation, 2019). They are meant for the system administration and control needs. 

Control groups allow processes to be arranged into a hierarchy, which enables the user 

to set limits for resource usage such as for the consumption of memory and processing 

priority. This can be used to freeze running processes like batch processing and continue 

a later time depending on the state of the hard drive i.e. where the free space is located 

for the hard drive. Control groups are a hierarchal, treelike data structure. The child 

process inherits certain attributes from its parent. The root of the tree is a process called 

init. 

Union file systems, or UnionFS, are file systems that operate by creating layers, making 

them very lightweight and fast. Docker uses union file systems to provide the building 

blocks for containers. Docker can make use of several union file system variants 

including: AnotherUnionFileSystem (AUFS), B-Tree File System (BTRFS), Virtual File 

System (VFS), and DeviceMapper (Liu & Zhao, 2014). 

 

 



32 

3.1.2 RKT 

Rkt is a container engine that has been developed by CoreOS. Its basic idea is the same 

as Dockers as they both are used to spin up containers. The main difference with Rkt 

when compared to Docker is that Rkt’s interface is just a single executable file (Rkt 

documentation, 2019). 

Rkt can also be easily integrated with existing init systems such as Systemd and advanced 

clustering environments. It is an open standard application container or otherwise 

known as App Container (APPC). Rkt is also able to run Docker containers. The reason 

Rkt can be easily integrated into the init system is that it does not have a centralized 

daemon. 

Security is also one of the advantages when comparing Rkt to Docker. This is because 

Rkt contains a permission split function. It is designed to avoid unnecessary operations 

to run with root privileges. In addition, default signature verification and other advanced 

features for security considerations are provided (Xie, Wang & Wang, 2017). 

 

 

3.2 Edge computing 

As more and more items such as cars, beverage automates, toasters and for the 

purposes of this thesis relays are connected to the internet, the amount of data 

transferred grows and the bandwidth requirements increase linearly with the amount 

of data transferred. As data transfer is limited to the speed of light, the need to reduce 

the distance from device to cloud increases to reduce the amount of time it takes for a 

request from the user to be completed. This is the reason why edge computing is gaining 

traction in the field. Edge computing means that rather than sending all the data to be 

processed in the cloud most of it is processed “locally” or to be more specific, on the 

edge of the network. Therefore, it is called “edge computing” (Li & Wang, 2018). 
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Reducing the amount of data transferred to the cloud also has the benefit of reducing 

the distance travelled, which directly reduces the amount of time spent waiting for the 

data to arrive. The delay from the time sent to the time received is called latency and it 

is measured in milliseconds. While milliseconds seem like a small fraction of time and 

speed of light is extremely fast, the amount of time spent waiting compounds as the 

amount of traffic is increasing constantly. According to Cisco Global Cloud Index, the 

amount of Internet of Things (IoT) data sent this year alone is predicted to reach 507.5 

zettabytes (Cisco Systems, 2018).  For reference, one zettabyte is one trillion gigabytes. 

Factoring in that the size of a single IoT request is usually no larger than a couple of 

megabytes, one can quickly start to comprehend the number of requests done annually 

and then multiplying it with the latency and the total time spent waiting is gargantuan.  

For the scope of this thesis however, the more impactful benefit of the edge is the fact 

that with pre-processing done on site, we do not have to send all the data to cloud. That 

reduces the amount of data we must store to cloud and thus, reducing the costs. 

Additionally, if we had to send everything we can gather from the relays of our 

substations, the amount of bandwidth required would have been impractical.  

The two most recognized issues with edge computing are large scale geographic 

distribution of the computing infrastructure and the dynamic nature of edge devices. 

Most of the cases where edge computing is incorporated is an IoT application, where 

sensors read data such as voltage. (Giang, Lea, Blackstock & Leung, 2018). In the case 

for this thesis, it is exactly that. However, these challenges do not in fact concern us yet.  

For now, we are contempt with just inspecting a single substation as its own entity and 

therefore the devices or sensors we encounter within any given entity do not spread 

into a large geographic area. This means that all the devices reporting to the edge 

computer are within a few meters of the actual device. The most apparent disadvantage 

when devices are spread is that they communicate over a heterogeneous network 

through different ways of communication (for example Wireless Fidelity (Wi-Fi), Long 

Term Evolution (LTE), Wired, etc.) and there are both static and dynamic endpoints with 
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different reachability (for example direct Internet Protocol (IP) addresses vs behind a 

Network Address Translation (NAT)). For us the communication protocol is fixed to 

IEC61850 and the endpoints are static, and all share the same reachability as they are 

within the same network (Giang et al., 2018). 

The other problem currently with edge devices is that they are usually highly dynamic. 

Load fluctuations and context changes like change in location are constantly happening. 

This causes variation that can be hard to optimize since load balancing and dynamic 

scaling is not that easy to create with edge resources due to them not being centralized 

and readily available like cloud computing resources. (Giang et al., 2018). Then again, as 

our load can be thought as Boolean in nature as we only perform a fixed number of tasks 

in the edge, this concern is not of great importance pertaining to our situation. We do 

not have to worry about load balancing since we can accurately guess the amount of 

load we will ever see.  

 

 

3.3 Cloud Technologies 

Cloud computing has become an industry standard in the past ten years. Cloud 

computing is just buying server space from a centralized location provided by a cloud 

service provider. However, most companies order something to complement the server 

space. This is usually done as a service. It can be anything ranging from Infrastructure-

as-a-Service (IaaS) to Software-as-a-Service (SaaS) (Liu, 2010).  

IaaS is the closest to just buying up server space and placing it on your premises. The 

crucial difference is that in IaaS the servers are in the cloud service providers data center 

and the cloud service provider also takes care of the maintenance of the servers. Below 

is a picture of a generic IaaS -architecture (Kozlovszky, Törőcsik, Schubert & Póserné, 

2013). 
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Figure 8. Generic IaaS -architecture (Kozlovszky et al., 2013). 

SaaS on the other hand means that the client purchases a working software that is 

hosted in a data center and an instance of the software is generated for the client. The 

client can access the instance with its own credentials. The benefit of these as-a-Service 

deals is that the client only pays whatever it decides to use leading to lesser costs for 

the client, easier scalability as more server capacity can be attained either automatically 

as traffic increases or with just a click of a button to deploy another server core to their 

instance. In addition, the cloud is more stable as an environment compared to an om-

premise solution since cloud service providers have highly available and redundant data 

centers available. 

In general, clouds can be divided into three different types: private, public and hybrid. 

Private clouds are segregated instances, which host just the data of a single entity (for 

example a corporation). Private clouds provide the benefit of a more secure 

environment and a higher level of control. Public clouds on the other hand are usually 

owned by businesses that offer their services to many different entities and just limit 

the user access with accounts. Hybrid clouds are a mix of both the private and public 

clouds. (Atlam, Alenezi, Alharthi, Walters & Wills, 2017). 
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4 Methodology 

Design science research (DSR) has increased its relevancy in information systems studies 

in the last 20 years (Hevner, vom Brocke & Maedche, 2019). The main objective of design 

science research is to enable new capabilities for humans and organizations by designing 

novel artefacts represented by constructs, models, methods and instantiations (Hevner, 

March, Park & Ram, 2004; Peffers, Tuunanen, Rothenberger & Chatterje, 2008; Gregor 

& Hevner, 2013).  In general, the aim of design science research is to provide a set of 

rules to help one design a new process or an artefact. 

According to Hevner et al. (2019), design science research is positioned ideally for 

contributing to both research and practice within the field of digital innovation as it 

focuses directly on the design and deployment of innovative artefacts. Currently, ABB 

runs all the algorithms within the relays. Our objective is to create a novel approach for 

ABB to run the algorithms in an edge or cloud environment. Therefore, we believe it is 

accurate to talk of a digital innovation within the scope of ABB. Hevner et al. (2019) state 

that design science research projects not only produce a novel digital innovation 

artefact, but additionally they should produce the required processes and procedures 

for the deployment and use of the artefact in the problem context. 

The aim of the practical part is to create a proof of concept level architectural design of 

algorithms running in an edge or cloud environment to increase the scalability of the 

platform and reduce the maintenance costs when patching the system, which aligns 

with the statement of March & Storey (2008) saying that novelty and utility of 

constructed artefacts are the corner stones of contributions in design science research.  

To accompany their sentiments Weber (2010, p. 2) claims the following:  

“The focus of an IT artifact lies on the problem itself. It is finished when it satisfies 
the requirements of all stakeholders and solves the relevant problem. On the one 

hand, it is necessary to understand why an IT artifact works or does not work 
while on the other hand it is necessary to understand how the IT artifact was 

created. “ 
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We will conclude that the work provided in the next chapters will be sufficient after all 

relevant parties, such as representatives from ABB, agree to it with the proper 

documentation to describe how our proposed artefact works. 

There are numerous of different methods for conducting a design science research 

project. The first one was created by Nunamaker Jr, Chen & Purdin in 1990 in which they 

introduced systems development as a possible way to conduct information systems 

research. This is considered as a good first step towards defining design science for 

information systems research, but it demonstrated a clear lack of theoretical or scientific 

outputs (Baskerville, Baiyere, Gregor, Hevner & Rossi, 2018).  

Walls, Widmeyer & El Sawy in 1992 and March & Smith in 1995 continued to pursue 

from the work of Nunamaker et al. (1990) by proposing kernel theories to amend the 

deficiencies in the works of Nunamaker et al. (1990). In 2002, Markus, Majchrzak & 

Gasser presented a concrete design and a theory that to this day are still valid design 

methods. Following the work of Markus et al. (2002), Hevner et al. (2004) established 

principles of canonical design research. Peffers et al. (2008) in turn created a process 

outline for design science research. Finally, Kuechler and Vaishnavi in 2008 came up with 

a high-level design process, that according to them most DSR methods follow 

(Baskerville et al., 2018).  

Baskerville et al. (2018) adapted the model created by Kuechler and Vaishnavi (2008) 

and for our intents and purposes their model fit well. The adapted model of Baskerville 

et al. (2018) is presented in Figure 9. It consists of five steps: Awareness of problem, 

Suggestion, Development, Evaluation and Conclusion. Awareness of problem and 

Suggestion outline the initial issue and propose a suggested mean of solving it. In 

Development phase an artefact is created, and it will start producing data for analysis. 

Once development is finished, evaluation of the created artefact is done with the data 

produced by the artefact. During Development and Evaluation phases circling back 

towards Awareness of problem can be done if needed to redefine problems that may 

arise during development or evaluation. Finally, conclusions are drawn after evaluation 
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has been completed and passed. Next, we will give a more detailed explanation how 

these steps work in the design and development of our artefact. 

Each passing of the process is to be thought of as a sprint and it should provide a part of 

the solution. It starts with the client (ABB in our case) defining a set of limitations and 

goals according to their needs, id est Awareness of problem -phase. This is in our opinion 

the most important phase of the process since it provides us the framework to complete 

the project. 

Suggestion phase is our chance of present our solution to the client based on the 

limitations and goals set in the Awareness of the problem -phase. In theory these are 

separate steps, but in our opinion having an open discussion during the Awareness of 

the problem -phase and suggesting ideas based on the limitations and goals provided 

for more interaction between the client and us and therefore a deeper understanding 

of the problem at hand. 

During the Development phase it is on us to create the solution based on the framework 

decided in the first two steps of the process. If problems are to arise during development 

the discourse is to be open and priority toward the client. It is hard to predict future 

pitfalls during the Awareness of the problem and Suggestion phases and therefore 

circumscription might have to be done during the Development phase rotating back to 

the Awareness of the problem -phase. This is the reason open discourse between us, 

and the client is essential even during the Development phase. 

If, however no problems arise during development, the next phase is us presenting our 

solution to the client for evaluation. Here it is vital that the client gives feedback on the 

developed artefact. If the artefact is not up to the standards of the client, the next option 

is to go back to defining the problem more specifically.  However, if no problems are 

detected it is time to conclude the process and deliver the lessons learned during the 

process. If there are still sprints left to complete the entire artefact, then a new iteration 
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of the ADR process is run from the start. The other option is to conclude the project for 

good. 

In the next chapter we will give a more practical example on how we implemented the 

ADR process into our project. Figure 9. describes the progress through the ADR process.  

 
Figure 9. Action Design Research (ADR) process (based on Baskerville et al., 2018). 

 

Finally, Table 3. describes the steps taken during each step of the process. 
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Table 3. Steps taken throughout the process. 

ADR Step Actions in this study 

Awareness of Problem Held meetings with ABB to discuss the limitations and goals 

for the process. The goal is to set clear targets on the end 

product after each sprint. 

Suggestion Done in unison with Awareness of Problem -phase. Clear 

suggestions given during the Awareness of Problem -phase 

to meet the requirements for future phases. The final 

suggestion was presented in the last of our meetings. 

Development Development was done individually, while having constant 

communication with the development team of ABB to 

discuss problems leading to circumscription. 

Evaluation Once we deemed development for iteration was ready to be 

presented, we held a meeting with ABB to demonstrate what 

we had achieved. When requirements were met, we moved 

to conclude the sprint. 

Conclusion Concluding the sprint and moving forward to the next sprint. 
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5 Path toward microservice architecture  

In this chapter we will go through the selection process of the technologies. We selected 

six different criteria to evaluate the two different container platforms. We also set a 

maximum point limit for each criterion. As there were only two viable container 

platforms to choose from, we decided that we would split the amount of points given 

within the criterion based on performance.  

After analysing the different technology options, we will present the steps we took 

during the development of the artefact. To guide us through the process we relied 

heavily on the ADR method presented in the previous chapter. However, we altered it 

slightly to more reflect the workflow of ABB. 

 

5.1 Selection of the technologies 

Initially we were planning to evaluate different container technologies and cloud 

technologies, but during the process of developing the container platform we realized 

we could not get a fully functional platform. Thus, we decided it was not evaluate the 

different cloud platform options. 

We selected to review the container technologies with the following criteria: overall use, 

ease of use, academic research, security, performance and licensing. The results of this 

review can be found in Table 4. at the end of this section.  

At first, we discussed how to grade the technologies according to the selected criteria. 

It was important to assess the different options for technology to grant us the best 

probability of completing the proof of concept. We decided to use a grading totaling to 

maximum points of 100. After that we agreed the maximum grade for each of the 

criteria. We agreed that the academic research is a strong and most important factor 

while choosing the technology and therefore we emphasized that criterion most. Thus, 

we gave it the maximum points of 30.  Second most important criteria were overall use 
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and security, because these are important criteria for ABB as well. For these we gave the 

maximum points of 20. Ease of use, performance and licensing were graded all with the 

same scale of ten, because these were deemed to have the least impact on the proof of 

concept. 

Overall use is representing the actual usage of each technology. This criterion is based 

on the Google search results by checking the number of sites returned by searching 

“Docker” and “Rkt”. Gathered data clearly illustrates that Docker is currently the market 

leader in container technologies. The actual parity between Docker and Rkt is much 

greater than 3:1, but Rkt was given favour as it is still a less mature product and might 

not have reached a critical mass yet to be fully adopted by the industry. A simple Google 

search with the words “Docker” and “Container” returns 29,5 million results, while “Rkt” 

and “Container” only returns 253 000 results as per today. However, the industry 

perception does matter and therefore we chose to value it at a scale of 20 of which 

Docker gained 15 and Rkt 5 points. 

Ease of use encompasses quite a few factors. Firstly, the sharing of images was one 

aspect. Docker Inc. provides a service to hold private docker images for a small monthly 

fee, while CoreOS does not. Additionally, it is generally accepted that Docker has a lower 

bar for entry when it comes to the two different platforms. Ease of use criterion is for 

convenience rather than a showstopper, so it was set at a scale on 10 points. Docker 

was graded at 7 points and Rkt at 3 points. 

Academic research on this area was limited, but from the sources (Xie et al., 2017) we 

found Docker was favoured. However, as we could not find enough of reliable sources 

from academic studies, we only gave Docker a slight edge in this criterion. In addition to 

academic research we found a corroborating research study conducted Forrester Inc. 

The Forrester New Wave Enterprise Container Platform, Q4 2018 Report further 

supported the claims of the academic research of Docker slightly topping Rkt. However, 

we would like to remind, that Forrester Inc. is not an academic source and therefore the 

results of their study should not be considered as a de facto truth. As this is an academic 
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research, it should also be reflected in the scale as well. A weight of 30 points was set 

for this criterion. As Docker seemed to edge out in front by just a marginal advantage, 

we graded it with 17 points and Rkt with 13 respectively. 

In regards, to security Rkt was developed to address the severe security issues that once 

were apparent in Docker. The most common objection against Docker was that it runs 

containers with root privileges. This is not the case anymore as Docker has been 

addressing these security issues. According to Xie et al. (2017) overall the Rkt platform 

is more secure than Docker due to it running less of the operations as root due to 

permission split function and on other advanced features for security. We think that 

security is an important factor to consider, when comparing new technologies so we 

gave it a scale of 20 and Rkt was granted 15 of those 20 points, which leaves Docker with 

only 5. 

The following criterion is performance. The scientific study measuring Rkt and Docker 

against bare metal performance was conducted by Xie et al. in 2017.  They measured 

the CPU performance with a Y-cruncher. Y-cruncher is a commonly used program to 

measure CPU performance. 
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Figure 10. CPU performance of bare-metal, Docker and Rkt (Xie et al., 2017). 

From Figure 10. can be seen that Docker performs slightly better than Rkt. However, the 

difference in CPU performance time is negligible. Regarding CPU performance Docker 

and Rkt appear to be practically equal and thus, this should not be a major factor when 

choosing a container platform. Therefore, we graded performance with the scale of ten. 

Figure 11. demonstrates the amount of CPU cycles needed to transmit and receive the 

data as measured by Xie et al. (2017). For measurement they used a Linux command 

“perf stat -a”. Both containers add significant overhead, but when compared against 

each other the differences again are rather insignificant. However, it is to be noted that 

Docker once again comes slightly ahead of Rkt. 
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Figure 11. CPU load and network performance (Xie et al., 2017). 

All in all, the difference in performance are rather insignificant, but as Docker managed 

to improve slightly on Rkt’s values we deemed it necessary to give Docker a grade of six, 

which means that Rkt gained a grade of four.  

Lastly, we discuss of the issue of licensing. The main difference between Docker and Rkt 

with respect to licensing is that Docker is a commercial product, while Rkt is an 

opensource product. It is common for businesses to buy commercial products, since 

security vulnerabilities will be patched with utmost haste. It is to be noted that even 

opensource products are patched in a timely manner nowadays as well, because a vast 

amount of people contributes to the development of the product as an open source 

community. The reason ABB values opensource projects is the fact that the code is 

accessible for ABB’s developers. In the scope of this thesis, we deem the licensing issue 

irrelevant. However, we decided to still discuss it in this thesis as it might be relevant in 

the future or at least in projects to come and it should not be left out of consideration. 
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Due to the irrelevancy we will grade both with a grade of five. Thus, the scale for this 

criterion is ten. 

We have gathered a summary of all the set points in Table 4. The final evaluation stands 

that Docker received 55 points while Rkt gathered 45 points. For this reason, Docker was 

chosen as our desired platform.  

Table 4. Docker versus Rkt comparison. 

Criteria Max. points Docker points Rkt points 

overall use 20 15 5 

ease of use 10 7 3 

research 30 17 13 

security 20 5 15 

performance 10 6 4 

licensing 10 5 5 

total 100 55 45 

 

5.2 Methodology in action 

As explained previously, we decided to use ADR as a method for conducting our 

research. We thought it was a solid process to follow for our development as we were 

in constant communication with ABB’s development team. As explained in the previous 

chapter, ADR is an iterative process and each iteration consists of five phases that are 

Awareness of the problem, Suggestion, Development, Evaluation and Conclusion.  

The problem was defined as follows: ABB has a software that is written with a monolithic 

application architecture that is used to monitor the electrical substations. There were 

several motivational factors involved that drove ABB towards the change to 

microservice architecture. Firstly, maintaining monolithic software is difficult.  Secondly, 
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scaling an application with monolithic architecture is not efficient. Lastly, ABB’s 

customers generally want to buy their products, because of the added value provided 

by their intellectual property rather than just the hardware solutions. 

The two first factors have been described in depth in previous chapters. The last factor 

is an issue of product development. The objective was to create an application that could 

communicate with hardware regardless of hardware vendor. Because IEC 61850 and 

Common format for Transient Data Exchange (COMTRADE) are strictly defined data 

exchange standards, they enable this objective.   

Our task was to separate one of the functions from the monolithic legacy application, 

more specifically, the fault locator algorithm. Then transform it to a containerized 

microservice with a browser-based user interface. We saw three distinct iterations 

required to complete the project. The three different phases are the web service, 

document delivery and the fault locator applications itself. Figure 12. describes our 

proposed microservice architecture. 

 
Figure 12. Proposed architectural diagram of the proof of concept application. 

We saw the need for three different containers as procedurally there are three different 

phases to get the algorithm to run. First the user engages with the web user interface 
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by selecting the algorithm they wish to run. After that, the user is prompted to provide 

the files needed to run the chosen algorithm. In the case of the fault locator algorithm, 

the required files are the Common format for Transient Data Exchange for power 

systems (COMTRADE) -file and the configuration file. Once the files have been stored 

within the document delivery container, the algorithm can be run in the third container 

returning the results back to the web user interface. To get a deeper understanding of 

the inner workings of the fault locator algorithm and the files, we would like to refer the 

reader to explore the IEC 61850 -documentation as the algorithm itself is out of scope 

for this thesis and rather used as an example to prove that microservice architecture can 

be achieved. 

It could be argued that the document delivery container should be within the web user 

interface container. However, we think that keeping the data separated from the web 

facing interface is beneficial. In the future, we plan on using the same document delivery 

container for multiple different algorithms, so the isolation here enables easier updates 

on the application as well. Lastly, we want to set up a NoSQL document store as our 

document database, because it enables us to store all our files in a single container 

rather than setting up a relational database, defining a table and columns. On the other 

hand, if we at some point need a relational database and we have set up the document 

delivery inside the web user interface -container, it will be much harder for us to 

implement the new database. 

We agreed upon the three containers and decided that each of the containers was to be 

built in a sprint that was two weeks long. Altogether, we decided that the development 

would take six weeks to complete. We decided to proceed in the order of in which the 

process would appear to the user. In other words, we would start with the user 

interface, then move to the document delivery container and lastly, we would complete 

the development by containerizing the fault locator -algorithm. Each of these sprints 

should result in a completion of the ADR process for us to call the sprint a success. The 

first step of the process however, was to setup an environment that supports the 

development. 
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To start we decided to setup a constant delivery and integration pipeline. To achieve 

that, we decided to use Travis CI (Travis CI, 2019). Travis CI is a constant integration 

platform that will allow us to deploy code directly to Amazon Webservices (AWS) 

(Amazon Web Services, 2019) or any other cloud provider. However, we decided to go 

with Amazon webservices, because of the ease of use. The benefit of using Travis CI is 

most definitely the fact that we can automate tests for the code to be run upon 

deployment. Furthermore, if all the tests pass it will directly upload them to AWS and in 

this case GitHub as well for version control. 

GitHub (GitHub, 2019) is an opensource version control service that developers can use 

to store code and use as a version control tool. GitHub is widely used in organisations. 

The reason we selected GitHub, rather than GitLab, which is meant for enterprises, is 

the fact that our work will not be a commercial product but is only for a proof of concept. 

We also highly suggest that when our work is taken deployed as a major release then it 

will be moved into ABB’s GitLab. 

On AWS we used elastic beanstalk (Amazon Web Services Elastic Beanstalk, 2019), which 

is perfect for our use case as it provides easy scalability for our service and we can 

directly deploy code through Travis CI. The benefit of elastic beanstalk is that it supports 

most of the common languages and servers. Additionally, it automatically handles 

factors regarding deployment such as capacity provisioning, load balancing, auto-scaling 

and application health monitoring. Thus, granting us a stable service. It could be argued, 

that this step was taken too soon. However, we are strongly of the opinion that things 

should be done right from the outset and not left until it is desperately needed. The 

pattern seen in Figure 13. by Balalaie et al. (2016) for transitioning to microservice 

architecture supports this claim. 
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Figure 13. Pattern transitioning to microservice architecture (Balalaie et al., 2016). 

The first order of business for their pattern is to setup the continuous integration to 

support the constant development. For this thesis, only the first two rows of the pattern 

are relevant, since we do not have the resources to produce a fully developed 

application. After continuous integration was setup, the development process was ready 

to start.  

The integrated development environments used for development were JetBrains’ tools 

(Jetbrains, 2019) for the Python code. For the JavaScript code we used Microsoft’s Visual 

Studio (Microsoft, 2019). These were just chosen based upon personal preference and 

should not alter the results in any shape. 
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Above we have described all the setup we did before we started the development work 

with iterations. In the next chapters, we will represent the actual process of transitioning 

to the microservice architecture from the monolithic architecture. 

 

5.2.1 First iteration – User interface 

At first, we set forth to complete the web service as we deemed it was the easiest of the 

three components to complete and required no knowledge of the legacy system. Thus, 

we could complete the user interface and meanwhile keep our eyes and ears open for 

any and all silent knowledge we could gather from the development team about the 

fault locator algorithm.  

Based on the discussions we had with ABB, regarding the awareness of the problem, the 

web service had no specific requirements for technology or appearance. Therefore, we 

were able to choose the technologies we deemed best fit for the issue at hand. We 

consulted ABB about the technologies we are going to suggest using and they had no 

objections. 

We decided to create the user interface using Python’s Django framework. This decision 

was partly made since we had prior knowledge of Django and realised it would provide 

us with all the functionality we needed for the service. Django also has built-in databases 

and admin panels that would make the administration of users easier during production. 

This is a clear benefit, since the administrators would not have to get involved with the 

source code, but they could rather accomplish all the tasks with a graphical user 

interface provided for them. Additionally, in the far future, once the application starts 

scaling horizontally, it would also highlight the benefit of being able to choose which 

ever language or framework is best suited for the job. This is because we suspect that 

future applications will be developed in JavaScript.  
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The development of the user interface went very smoothly, and we did not encounter 

any major issues during the whole time as was expected. As this was just for a proof of 

concept level application, we created a mock-up of the user interface with only the 

necessary components and links between the pages. We did not use a lot of time to 

refine the user interface to look as good as we possibly could, but rather made it 

functional. However, one thing to note, the user interface is responsive, meaning that it 

scales based on the size of monitor the user it is viewing it from. We made this possible 

by using Bootstrap (Bootstrap, 2019). Bootstrap is a framework that has a plethora of 

readymade functions that allow the developer to setup grids in which content can be 

placed within the user interface. We settled for a grid with three columns and made one 

of the columns link to the document delivery container. 

Once we completed the first version of the user interface, we presented it to ABB, and 

they deemed it would suffice for now. Figure 14. depicts the designed user interface. 
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Figure 14. User interface for the platform. 

The user interface was adapted from Bootstraps documentation Album example 

(Bootstrap Album, 2019), but customized a bit to fit the brand of ABB.  

Thus, we were able to conclude the first iteration of the action design research and were 

able to move on to the next iteration. This would start to cross over to the fault locator 

algorithms side as the next phase would be to implement the database to store the files 

for the algorithm to use. 

 

5.2.2 Second iteration – Document delivery 

For the second iteration, we once again had no technological restrictions regarding 

frameworks or languages to be used. However, the main limitation regarding the 

document delivery container was that once the files are imported the output of the 

substation must be selectable manually. This is for error handling, because it is possible 
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that the COMTRADE file has no outputs defined or they are defined incorrectly. No other 

requirements were defined. 

For the fault locator algorithm to run it requires two separate files from which it gathers 

the data needed. These files are the configuration file that defines the configuration of 

the relay and the COMTRADE file, which is the standardized file format defined by Power 

Systems Relaying & Controls Committee (PSRCS), which is part of the Institution of 

Electrical and Electronics Engineers (IEEE) Power & Energy Society. The COMTRADE -file 

is produced by the Intelligent Electronic Devices (IEDs), which in our case is the 

electronic protective relay, within the electrical substation. The IEDs monitor the 

different characteristics of the electricity flowing through them such as current, voltage, 

power and frequency. With digital signal processing the IEDs can detect fault on 

conditions and on occurrence the IEDs produce a COMTRADE -file to report the fault 

data. The COMTRADE -file can then be used by analytics tools to calculate information 

about the occurred fault, such as the location of the fault with the fault locator 

algorithm. With the configuration and COMTRADE -files we can accurately deduce in 

which of the outputs and how far from the substation the fault is located. 

To start this sprint, we held meetings with the developers from ABB and discussed 

possible solutions for the problem. We came up with a solution that presumed that the 

fault locator algorithm would be an independent component that could be run similarly 

than you would run a program from the command line. Also, the files it needed could 

be provided in a similar way as you would provide arguments for a function. This would 

make it simple for us to build a document delivery container in which to store the 

documents needed. Once the documents would be delivered, we could easily mount the 

fault locator container with the document delivery container to enable the use of the 

fault locator algorithm. 

During the suggestion meetings it turned out that this in fact would not be possible due 

to two reasons: the underlying system itself is not compatible with Linux containers and 

the function itself is dependent on about 90% of the whole monolithic system. The 
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evaluation on the spot was that making the application Linux compatible would be at 

least six months of work. However, the scope of the research and allocated resources 

made it not feasible for us to pursue this option.  This caused us to halt the process and 

evaluate our options. 

We came back to the table with the initial idea to run the whole application within a .net 

container. This would solve our compatibility issues with Linux containers and a 

Microsoft based application. However, we were faced with yet another issue. The legacy 

application was not compatible with any of the version of the .net core available 

container images.  

The other setback we faced was the matter of the highly dependent monolithic 

application architecture. The fault locator in fact did not operate as a single function to 

be called, but rather it was a collection of small calculations that required nearly all the 

legacy application to run. This, as referenced in chapter 2.5 of this thesis, made the 

decomposition of the monolithic application unpractical. From Figure 13. it can be seen, 

that according to Balalaie et al. (2016) this prevents us from moving onward with their 

pattern. 

Since we could not provide a meaningful suggestion to solve either of the reported 

issues with our resources in a timely matter, we could not move forth to development. 

Once more we convened to discuss the problem but both sides thought that the 

obstacles in front could not be overcome. However, we still are of the opinion that the 

value of microservice architecture leveraging containers is there. So, we decided that 

we would provide a functional application that could be used to demonstrate the 

functionality of containers. 
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Table 5. Steps taken in practice to achieve to proof of concept. 

Problem Proposed solution Result 

Web based user interface 

to ease the use. 

User interface to be 

created with Python’s 

Django framework. 

Accepted and completed. 

Document delivery 

container to store files to 

be used for the fault 

locator. 

Creation of the database 

container to store the 

files. 

Accepted, but 

development halted, 

because severe issue 

pinpointed. 

Fault locator algorithm 

could not be run as an 

isolated function. 

Containerize the whole 

application. 

Rejected as no further 

value would be gained and 

additionally compatibility 

was a question. 

Compatibility issues 

detected during 

suggestion meeting. 

Modernize the 

architecture to be 

compatible. 

Decided not to move 

forward as the resources 

needed were far greater 

than was available. 

Fault Locator algorithm 

required too many 

dependencies from the 

legacy code. Thus, not 

feasible to transform it to 

a microservice. 

Create a simplified version 

of the original project 

without the Fault Locator 

algorithm. 

Accepted and completed. 

However, we still are of the opinion that the value of microservice architecture 

leveraging containers is there so we decided that we would provide a functional 

application that could be used to demonstrate the functionality of containers. 
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5.2.3 Final iteration 

We decided together with ABB to make a simple application that demonstrates that 

communication between containers can be achieved. We shared the understanding that 

the requirements for this was to create an architecture with two containers. One to hold 

the user interface and the other to analyse COMTRADE files and return the name of the 

relay if it is defined. 

For the analysis of the COMTRADE -files we decided to use David Parrini’s opensource 

COMTRADE -file Python module (Parrini, 2019) and containerize it. It is able to parse the 

.cfg and .dat files that are delivered when an error occurs. With matplotlib we were able 

to draw graphs from these files that show the current (see Figure 15.). 

 

Figure 15. Graphs of an COMTRADE files current. 

Parrini’s module can plot different graphs from the COMTRADE files. In Figure 15., we 

plotted two currents IA and IB just to show the functionality of the module. 

Figure 16. describes the overall architecture of the application. All together it has two 

different containers, specifically the user interface and COMTRADE containers. The user 
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interface container holds the web-based user interface shown in Figure 14. In addition 

to holding the user interface, it also stores the files uploaded by the user. This allows us 

to separate functionality and provide isolation. Additionally, when new functionality is 

added in the future it enables the files to be used in the other containers as well. We 

concluded that importing the files to a database would not provide any added value, 

since the files could in fact just be saved into the container itself.  

The COMTRADE container holds the COMTRADE python module (Parrini, 2019), which 

allows us to parse the COMTRADE files. An example of the output returned by the 

COMTRADE container is shown in Figure 15. This functionality was layered on top of the 

initial requirement, but we can also get the container to return the name of the relay, 

which was our initially intended functionality. 

The Algorithms added in the future depicts how following algorithms can be 

incorporated into the current architecture. This becomes relevant if the transit to 

microservice architecture will be completed after this thesis. This architecture model 

enables the scalability of the application to the fullest as explained in the previous 

chapters. 

 

Figure 16. Final architecture of our case study. 
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6 Results 

We were not able to develop the initial idea of this thesis to the proof of concept level. 

However, we think that even though the development could not be completed we have 

still achieved to answer the questions we set out to answer. In this part of the thesis we 

will go over the research questions, but in addition to that we will try to give more 

context what went wrong and how to avoid these issues in the future. 

The first research question was framed: “Can a monolithic software be transformed into 

a microservice architecture?” In short, the answer is most definitely, but upon reflection 

done in hindsight the smarter question might be: “When is transforming a monolithic 

application architecture into a microservice architecture smart?” This is in fact the more 

important question. Upon reviewing all the articles relating to microservices referred in 

this thesis, the reader might get a sense of microservice architecture being the perfect 

tool for every job. However, if anything our work proves that sometimes there is wisdom 

found in ways past. We would like to propose a prerequisites list that must be in order 

before thinking about transit to microservice architecture: 

- Minimal technological debt acquired during the years 

- Know the legacy application in depth 

- Avoid systems that are highly dependent 

- Do not rush it, it will take time and resources. 

What we mean with the technological debt is that make sure the application is running 

in the most recent of versions for everything used within. Otherwise, one will most likely 

be facing compatibility issues especially soon, since containers are still fairly new 

technology the versions predating them are most likely not supported. In the future, this 
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might be less of an issue if the older versions are still maintained. However, we would 

still strongly recommend on trying to eliminate all the debt accrued.   

There are multiple reasons why monolithic application came before microservice 

architecture, for example computational and network speed limitations. However, one 

key factor is also the fact that monolithic architectures are less complex. Distributing the 

code into isolated environments that only communicate between each other through 

API’s increases the complexity of the system. Therefore, implanting a new developer 

into a research project meant to redesign an old architecture that they are completely 

unfamiliar with increases the likelihood of errors. At the very least it increases the 

difficulty of the already complex process even more. 

If possible, avoid systems that are highly dependent. However, if the system requires a 

microservice architecture either for scalability or other reasons, the first step to take is 

to make sure that the two issues mentioned before are in order. Thus, allowing for 

containerizing of the whole application. This per se is not much, but it is a good first step 

into getting familiar with containerization and microservice architecture. However, in 

our case we deemed it obsolete to go forth with containerizing the whole application in 

a single container, since we could not find any additional value since the application had 

been run in virtualized environments prior to this thesis. 

The high dependency also led to the problem we faced was that the algorithm could not 

run without most of the components of the system. Even if we were able to decompose 

the monolith, we would have had to separate the auxiliary calculations into separate 

containers. This would have increased the application’s overhead and led to an overall 

reduction in system performance. Thus, we concluded that it would not provide any 

further value. 

Transitioning to a microservice architecture is a huge undertaking and should not be 

thought of as anything less. Resources needed will probably be greater than initially 

forecasted, since most likely unforeseen circumstances will result into obstacles that will 
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hinder the transition process. During the development process, we in fact found a study 

that had undertaken a similar endeavour as ours. One thing to note however, the scale 

of their application was even bigger than ours. This study was conducted by Knoche & 

Hasselbring (2018) in which they present a successful transition to microservice 

architecture from a monolithic application architecture. As of publishing their paper 

their project had been running for nearly four years and by that point, they themselves 

called it almost completed. This should provide an example of what sort of timeframe is 

to be expected with a project of this scope.  

The last paragraph relates directly to the second research question as well which was 

“What are the pitfalls and misconceptions of transitioning to a microservice architecture 

found during this thesis?” That being the resources required to successfully carry out the 

project from start to finish. We drastically underestimated the time and other resources 

required for this project as should be clear by the study done by Knoche & Hasselbring 

(2018). Unfortunately, we only came across this case study in the latter part of our own 

research. Had we found this study earlier in our own research we probably might have 

pivoted in to a different angle of research. 

Yet again we arrive in the issue of high dependency. As stated previously, one of the 

most common misconceptions regarding the microservice architectures is the limitation 

set by the dependencies within the system. In our case, it resulted in a total halt in 

development as we could not provide meaningful results.  

All together, we think that the list mentioned previously about the prerequisites for 

transitioning to a microservice architecture sums up all the pitfalls we encountered 

during our development. 

In addition to the pitfalls we encountered, another pitfall that would most like have been 

encountered further in the development than we reached is the susceptibility to partial 

failures. This cannot occur in monolithic applications, since the whole application fails if 
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part of it fails. However, in distributed it is important to handle failures gracefully and 

not let the whole system die if a service goes down.  

Lastly, we would like to address our sub-question for this thesis. In retrospect, while we 

do see the advantages microservice architecture has over the monolithic architecture, 

especially since physically the devices themselves are distributed with great lengths 

between each substation, we do not think at this time that it is sensible use of resources 

to transit this application to a microservice architecture. The most significant reason for 

this is the high dependency of the application. However, like stated previously we do 

see the benefit in moving to a microservice architecture and if that is the desire, we 

think that all together it might be smarter to build the application from the ground up.  
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7 Conclusions 

Even though we did not manage to provide a working proof of concept level application 

to ABB we believe that we managed to demonstrate the basic principles and highlight 

the pitfalls one is likely to encounter when moving from a monolithic application 

architecture to a microservice architecture. 

In our opinion the two most relevant findings of this study were the adjustment of the 

ADR process to combine the Awareness of problem and Suggestion phases together and 

the list of prerequisites that have to be in order before attempting to transit to a 

microservice architecture. 

The prerequisites list is a good reference when thinking about going towards a 

microservice architecture as these issues we highlighted are probably the first obstacles 

future projects will encounter as well. Our results clearly indicate that this is by no means 

a light undertaking and other research presented in this thesis support this claim. 

Having an open communication during Awareness of problem and Suggestion phases 

allowed us to do them simultaneously and in collaboration with the development team. 

This also clearly reduced the time it took us to understand the underlying problems we 

were facing with the development. Thus, we would propose future research done with 

Action Design Research to try if combining the first two phases produces positive results 

to them as well. 

Furthermore, regarding the question of communication and knowledge transfer. ABB is 

globally operating in 100 countries and ABB’s Distribution Solutions is operating in half 

of them. Software development is decentralized resulting in fragmented development 

teams all working towards the same goals, but in completely different practices. Thus, 

leading to potential issues regarding communication and in-depth knowledge of the 

created software. Therefore, it would be beneficial to develop processes that support 

shared communication and understanding of the overall application. Moving forward 
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we would propose ABB looking into reassuring that knowledge transfer is constant and 

the enterprise architecture is well defined. With enterprise architecture we mean a 

topological description how all the components developed in decentralized teams 

operate with each other. 

As theoretical contributions, we believe that once all of the deficiencies have been dealt 

with a solid base towards transit to microservice architecture can be done. This can be 

also generalized and others willing to embark on this transit should also account for the 

list of prerequisites. Additionally, we are strongly of the opinion that the combination of 

the first two phases of the ADR method provided us with a clear way of moving forward 

and we noticed a reduction in wasted time. However, this was possible only because of 

the willingness for open communication from the client organization.  

The main contribution of the community of practice, namely ABB, is the concrete 

application we developed. It illustrates the benefits that microservices and containers 

can bring to an organization. The code was delivered to ABB and if they choose it can be 

used as a base to continue with the proof of concept, once the problems described in 

the previous chapters have been eliminated. 

At this moment we would not encourage ABB to pursue microservice architecture for 

the selected software’s codebase. While we do recognize the benefits granted by it, the 

effort and resources required exceed the benefits gained. We propose that if 

microservice architecture is truly desired, building a new solution should be the most 

straightforward approach. Obviously, reusing parts of the original software should be 

considered wherever applicable.  

The limitations for this thesis are at least the following. The list of prerequisites is most 

likely incomplete. Other issues could have risen if any other application would have been 

chosen or we would have been able to continue further into the research. Thus, this 

leads to us into another limitation, which is the limited resources, mainly time, available 

for this case study. Another limitation to this thesis is that we were limited with 
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resources to verify our results on the issue regarding selection of the technologies, 

especially when it comes to Rkt. 

To elaborate on the future research mentioned earlier in this chapter. A solid way to 

verify the experiences we gained, future research could measure the difference in time 

spent between the regular ADR process and when the Awareness of the Problem and 

Suggestion phases were combined. 

Another interesting line of future research would be to create two simultaneously 

running projects for the same application. One of the projects would try to modernize 

certain functionality of the application, while the other project would develop the same 

functionality from scratch. Thus, providing valuable information whether modernizing a 

legacy is efficient. 

Still one interesting future study could be to recreate the experiment with Rkt and see 

if the results are like ours. Additionally, the comparison presented in this thesis between 

Docker and Rkt could be verified. 
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