
 

 

 

 

 

 

 

 

 
 

 

 

 

Title: Data-driven modeling of the bicalutamide dissolution from powder 
systems 
 
 
Author: Aleksander Mendyk, Adam Pacławski, Joanna Szafraniec-Szczęsny, 
Agata Antosik, Witold Jamróz, Marian Paluch i in.  
 
 
Citation style: Mendyk Aleksander, Pacławski Adam, Szafraniec-Szczęsny 
Joanna, Antosik Agata, Jamróz Witold, Paluch Marian i in. (2020). Data-
driven modeling of the bicalutamide dissolution from powder systems. "AAPS 
PharmSciTech" (2020, iss. 3, art. no. 111), doi 10.1208/s12249-020-01660-w 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/304700562?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Research Article

Data-Driven Modeling of the Bicalutamide Dissolution from Powder Systems
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Abstract. Low solubility of active pharmaceutical compounds (APIs) remains an
important challenge in dosage form development process. In the manuscript, empirical
models were developed and analyzed in order to predict dissolution of bicalutamide (BCL)
from solid dispersion with various carriers. BCL was chosen as an example of a poor water-
soluble API. Two separate datasets were created: one from literature data and another based
on in-house experimental data. Computational experiments were conducted using artificial
intelligence tools based on machine learning (AI/ML) with a plethora of techniques including
artificial neural networks, decision trees, rule-based systems, and evolutionary computations.
The latter resulting in classical mathematical equations provided models characterized by the
lowest prediction error. In-house data turned out to be more homogeneous, as well as
formulations were more extensively characterized than literature-based data. Thus, in-house
data resulted in better models than literature-based data set. Among the other covariates, the
best model uses for prediction of BCL dissolution profile the transmittance from IR spectrum
at 1260 cm−1 wavenumber. Ab initio modeling–based in silico simulations were conducted to
reveal potential BCL–excipients interaction. All crucial variables were selected automatically
by AI/ML tools and resulted in reasonably simple and yet predictive models suitable for
application in Quality by Design (QbD) approaches. Presented data-driven model
development using AI/ML could be useful in various problems in the field of pharmaceutical
technology, resulting in both predictive and investigational tools revealing new knowledge.

KEY WORDS: artificial intelligence; dissolution modeling; multivariate modeling; multi-scale modeling;
solubility enhancement.

INTRODUCTION

Active pharmaceutical ingredient (API) solubility and
dissolution rate in water are crucial factors governing API
bioavailability. Currently, about 40% of marketed API and
around 90% of drugs in development can be classified as
poorly soluble in water. It challenges formulation process and
could lead to difficulties with successful therapy (1). Formu-
lation development strategies of poorly soluble drugs include
particle size reduction, crystal modification, addition of
surfactants, preparation of solid dispersions, or lipid formu-
lations (2). API dissolution profile in time is a result of
complex interactions including a physical form of API,

presence and chemical character of excipients in the formu-
lation, and preparation process parameters as well.

Bicalutamide (BCL), a non-steroidal antiandrogen drug,
exhibits aqueous solubility as low as 3.7μg/mLand is well absorbed
following oral administration (3,4), which classifies BCL to class II
of the Biopharmaceutics Classification System (BCS) (5). Re-
searchers reported in the literature improved dissolution of the
powder systems with BCL by complexation with β-cyclodextrin
(6,7), preparation of solid dispersions using solvent evaporation
method (8–11), milling (12,13), hot melt extrusion (14,15), and
formation of co-amorphous systems (16). Desired dissolution
improvement was achieved by trial and error approach, applying
various qualitative, quantitative composition, and preparation
methods under different conditions. Pharmaceutical formulation
development and optimization based on the better understanding
of the process, API, and physicochemical properties of excipients
was proposed by regulatory agencies in the most recent guidelines
for industry (17,18). The reliable solution in such case is the
development of the empirical models based on a broad character-
istic of the process parameters and formulation composition.
Construction of the decent quality predictive models could be
therefore beneficial both from the practical and theoretical points
of view.
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To quantify and reveal such complex relationships,
multivariate data analysis methods need to be employed.
Among them, artificial intelligence machine learning (AI/
ML) tools are suitable solutions due to their capability of
automatic knowledge discovery and automated selection of
critical variables (19). The AI/ML tools work directly on the
available data building model without any assumptions with
use of the supervised learning paradigm: known states of the
system are related to their corresponding control parameters.
The inference built by AI/ML system might be a “black box”
hidden model—a typical example is artificial neural network
(20), where there is no knowledge of how the answers of the
system are inferred. There are also other types of models
developed with AI/ML like fuzzy systems (21), which might
be completely decomposed to the human-readable form. For
the latter, a very promising solution is genetic programming
belonging to the evolutionary computations and resulting in
mathematical formulas as final models (22,23).

The objective of this work was to present two indepen-
dent paths to develop predictive models: one based on the
literature data and another on the in-house laboratory data
only. Analysis of the developed models leads to a better
understanding of the factors influencing the dissolution
process of BCL from powder systems prepared using various
methods. It was therefore our secondary objective to
demonstrate how AI/ML tools are capable of finding hidden
relationships within vast data sets and merging various types
of information from different scientific domains into the one
consistent model.

METHODS

Overall Workflow

With empirical, data-driven approach for development of
the model of bicalutamide dissolution from powder systems,
we started our work with data acquisition stage followed by
data preprocessing and modeling with feature selection stage
(Fig. 1). Final models are built on the reduced input vector,
namely crucial variable set.

Data Sets

In the presented research, two independent data sets
were prepared. The first one was built based on available
literature data. The inclusion of a given formulation in the
database was based on the availability of the following
information found as essential for dissolution profile of
powder systems:

& The qualitative and quantitative compositions of
the powder system with bicalutamide as API,

& Preparation method of the formulation and its
parameters,

& Conditions of the dissolution test,
& Availability of the complete dissolution profile in
a tabular or graphical form.

The database consisted of 379 records for 51 powder
systems with bicalutamide with each described by 204 input
variables and one output variable representing the percent-
age of dissolved drug substance at the given sampling time.

The structure of the data set is presented in Table I. The
methods of the formulation preparation were encoded in the
form of consecutive natural numbers and an additional
variable, describing the process temperature expressed in
kelvins. There were six different formulation preparation
techniques encoded in the database: no method (pure API),
evaporation method, physical mixture, kneading method,
spray drying, and hot melt extrusion. The dissolution study
was described by the type of applied apparatus, rotational
speed of the paddle (USP Apparatus II), the percentage of
sodium lauryl sulfate (SLS) added to the medium, volume,
pH of the medium, and in vitro dissolution sampling time. Ten
different excipients encoded with molecular descriptors were
included into the database: colloidal silicon dioxide, β-
c y c l odex t r i n , 2 - hyd roxyp ropy l -β - c y c l ode x t r i n ,
hydroxypropylmethylcellulose (HPMC), lactose, microcrys-
talline cellulose (MCC), polyethylene oxide (PEO), sodium
lauryl sulfate (SLS), and triethyl citrate.

The second database was created based on in-house
experimental data. Laboratory experiments involved the
development of a set of binary and ternary powder systems
with bicalutamide as an example of poorly soluble API. In
comparison with the previous database, it was possible to
extend formulation description by characteristics of the

Fig. 1. Workflow diagram
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prepared formulations with differential scanning calorimetry
(DSC) and infrared spectroscopy (IR). Chemical compounds
were numerically encoded with molecular descriptors. Addi-
tionally, the description of polymeric excipients was enriched
with their average molecular weight, and for inorganic
compounds by the particle size (D50), specific surface area,
and pore volume. A total of 36 variables described DSC
results for each powder system. The IR spectra included in
the database contained 3350 records representing the trans-
mittance of the sample in the range of wavenumbers from 650
to 3999 cm−1. In total, the created database contained 3593
input variables and included 35 formulations for which the
full characterizations were performed (DSC and IR results).
The structure of the data set is presented in Table II.

Molecular Descriptors

Excipients included in the individual powder systems
were encoded with molecular descriptors defining their
structural and physicochemical properties. The calculations
were performed by MarvinSkech (ChemAxon, Hungary)
(24). Descriptors for chemical compounds with low molecular
weight were calculated based on an entire 3D model of the
molecule. In the case of high molecular weight polymers and
complex molecules (e.g., HPMC, MCC), the calculation of the
descriptors was carried out for a dimer of the representative
fragment of a chain of polymer. In the case of polymers
containing more than one type of building block, a dimer
model was prepared for each of them. The final value of the
descriptors took into account the molar ratio of the particular
components and their substituents.

Variable Selection

The size of provided input vectors may indicate its
redundant nature, which may have a negative impact on the
quality of the models and their generalization ability. The
selection of variables, which are critical for a given problem,
is an important step in the data-driven model development
process. The analysis of variables’ importance was performed
by using fscaret (25) package for the R environment (26),
which allows estimating the significance of individual vari-
ables based on their performance in a set of models provided
by the caret package. The software offers data preprocessing
and an initial reduction of variable vector, based on a
variance correlation matrix analysis. Besides, two measures
of model performance are introduced: root mean squared
error (RMSE) and mean squared error (MSE). In the current

research, four separate computational experiments have been
carried out to select significant variables, including the
possibility of preprocessing data and both available model
performance measurements.

Modeling

Data sets with reduced input vector were split according
to the 10-fold cross-validation method into the learning and
testing files. Models were trained on the larger part of data
(90%) and evaluated on the test data sets (10% of data). The
latter resulted in the estimation of generalization error
expressed as the average RMSE calculated over 10 repeti-
tions of this procedure each time with different parts of data
excluded to the test sets. In the presented work, we applied
various computational tools for predictive modeling: rule-
based systems, random forest, artificial neural networks, fuzzy
logic, and genetic programming. Each one of the
abovementioned tools processes data in the iterative manner,
thus accounting for the training process where the actual
model is built automatically on the provided data only.

Rule-Based Systems

Cubist (27) package for R environment allows building
models based on rule sets and linear regression equations.
One hundred different models were constructed for every
data set. Various models were created by modifying the
parameter specifying the maximum number of rules in the
model. Extrapolation and sample parameters had values of
100 and 0, respectively.

Random Forest

The randomForest (28) package allows building decision
tree models using the algorithm proposed by Leo Breiman
(29). Approximately 2000 models have been built and tested
for every input vector. The following set of parameters was
modified in every model:

& Number of randomly sampled variables for each
distribution was a set from 1 to 10,

& Number of end nodes in a given model took
values from 10 to 1000,

& Count of trees in the model varied from 10 to
1000.

Artificial Neural Networks

There were three different tools applied in the presented
work employed for building artificial neural network (ANN)
models. The first one monmlp (30) is based on expert
committees composed of many individual artificial neural
network models used for training nonlinear optimization
algorithm—nlm(). The algorithm design provides fast adjust-
ment of ANN weights. Approximately 1800 models were
prepared for a single input vector to be modeled with the
monmlp package. The individual model consisted of 2 hidden
layers composed of a total of 4 to 50 neurons. Hyperbolic
tangent and linear functions were applied as transition
functions for artificial neurons in hidden layers and output

Table I. Structure of the Literature-Based Data Set

Variable no. Description

1 Content of excipient 1
2–98 Molecular descriptors of the excipient 1
99 Content of excipient 2
100–196 Molecular descriptors of the excipient 2
197–198 Formulation preparation method
199–204 Parameters of dissolution test
205 Dissolved amount of API after a particular time (%)
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layer, respectively. The number of iterations for individual
computing tasks ranged from 10 to 1000. The second tool
neuralnet (31) was designed to build multilayer artificial
neural networks. The learning process was powered by
classical backpropagation algorithm and various variants of
the resilient backpropagation algorithms. A single model was
constructed of 2 or 3 hidden layers, each containing from 3 to
30 neurons. Hyperbolic tangent (tanh) was used as an
activation function. Two error measurements were applied:
constant error (CE) and the sum of squared errors (SSE).
Roughly 1000 models were built for each input vector.
Another tool, the h2o package, was used for simulation of
multilayered neural networks with many hidden layers, thus
introducing deep learning approach. A single model was
composed of 2 to 8 hidden layers and the total number of
neurons varied from 4 to 438. Learning time was set from
1000 to 107 iterations. The hyperbolic tangent was used as an
activation function for all neurons in the ANNs. The total
number of trained models exceeded 2500 for each input
vector.

Fuzzy Systems

The fugeR (32) package enables the development of
fuzzy systems using genetic algorithms. The individual
parameters describing the model structure and learning
algorithms varied in the following way:

& Maximum number of rules (maxRules): 10–50,
& Maximum number of variables for each rule
(maxVarPerRule): 1–20,

& Number of generations: 100–500,
& Population size: 50–500,
& Number of singletons for the output value
(labelsMF): 5–15,

& Percentage of inherited chromosomes (elitism):
10–100%

The total number of created and tested models was over
2500 for a single input vector.

Genetic Programming

The rgp (33) package enables the use of genetic
programming (GP) methods to create models representing a

given problem. During the simulated evolution process, rgp
develops automatically various mathematical equations of
which the most predictive ones constitute the final solution.
The form of easy-to-read mathematical equation significantly
simplifies their analysis. Two different evolutionary algo-
rithms were applied:

& The generational evolutionary multi-objective
optimization algorithm,

& Archive-based Pareto tournament multi-
objective optimization algorithm.

Every computational experiment was divided into 100
steps of evolution, with 5,000,000 iterations each. Population
size was set to 500. Maximum chromosome length defining
the degree of complexity of the solution varied from 10 to
100. Additionally, three error measures were applied to
determine the performance of models in the evolution
process: root mean squared error (RMSE), mean squared
error (MSE), and a sum of squared errors (SSE).

Ab Initio Modeling

ORCA software (34) was used for in silico modeling of
IR spectra. Vibrational analysis was carried out using a
density functional theory (DFT) on the B3LYP level with 6-
311G basis set enhanced with one set of first polarization
functions on all atoms (d,p) atom-pairwise dispersion correc-
tion, auxiliary valence triple-zeta basis set with “new”
polarization functions (def2-TZVP), Becke-Johnson damping
(D3BJ), and conductor-like polarizable continuum model
(CPCM) with water as a solvent. Two-molecule systems were
analyzed with the ORCA clustering approach. Before the
DFT calculations, the geometries of all molecules were
optimized in a two-stage approach: first by conformational
analysis and then with the PM3 method. The XYZ files for
ORCAwere prepared with Marvin Sketch (24). BCL and two
carriers, namely polyvinylpyrrolidone (PVP) and macrogol
(PEG), were studied alone and as two-molecule systems
(BCL + carrier). Due to the high demand of DFT for
computational resources, PVP was presented as a dimer and
PEG as oligomer equivalent to PVP dimer in the number of
atoms. Results from ORCA simulations were analyzed with
Avogadro open-source software, where spectrum area of

Table II. Structure of the In-House Data Set

Variable no. Description

1 Content of excipient 1
2 Average molecular weight of the polymer
3–100 Molecular descriptors of the excipient 1
101 Content of excipient 2
102–104 Additional characteristic of inorganic compounds: D50, specific surface area, and pore volume
105–202 Molecular descriptors of the excipient 2
203–238 DSC characteristic of the powder system
239–3588 IR characteristic of the powder system
3589–3592 Formulation preparation method characteristic
3593 Time
3594 Dissolved amount of API after a particular time (%)
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interest was chosen and structural elements of chemical
compounds responding to particular frequencies identified.

RESULTS

Models Built Based on the Literature Data Set

The analysis of the variables importance based on fscaret
results allowed the reduction of the original input vector
dimension. As a result, ten new input vectors containing from
7 to 24 input variables were given for further investigation.
Afterwards, the database was split to generate pairs of
learning-testing sets according to the procedure of 10-fold
cross-validation, and the full dissolution profile of
bicalutamide was treated as a single data block. The
generalization error of the constructed models varied from
11.09 to 19.33. The best predictive model was created with rgp
package using the genetic programming methods. RMSE
error and R2 for the model were 11.09 and 0.85 respectively.
The worst performing models obtained by multilayer artificial
neural networks were created with neuralnet. Rule-based
systems and random forest models performed well with
RMSE error above 13.0 and R2 close to 0.80. The best
model results in Eq. 1. It predicts the amount of bicalutamide
dissolved after a given time (Qt) based on six input variables:
quantitative composition of the powder system, three
molecular descriptors of the excipient, preparation method,
and time of measurement. The summary results of the best
performing models for individual CI tool are presented in
Table III. The final 6 input variables were the result of further
input vector reduction performed by rgp tools on the 12-
element input vector.

Q %½ � ¼ ln X1 �X12 þX12 þ C7ð Þ � X3 þ e−C8 �X2
� �� ��

ln X1 �X12 � X9−C3ð Þ � ln C2 �X9ð Þ þ C1ð Þln X9 þ eX5−C4
� �þ C5 �X12 þ C6

� �

ð1Þ

where:

C1–C7 Constants
X1 Excipient 1 content (m/m%)
X2 Single bond count
X3 Smallest ring size
X5 Maximal projection radius
X9 Formulation method
X12 In vitro dissolution sampling time (min)
Qt Bicalutamide dissolved after given time (%)

Models Built Based on In-house Data

The database created based on in-house data contained
over 3500 input variables. On the basis of the ranking of
variables created by the fscaret program, ten new input
vectors including 7 to 24 crucial variables have been created.
The prediction error of the models designed with different
methods varied from 4.18 to 17.11 (Table IV). The worst
performing models obtained with neuralnet package exhibited
RMSE and R2 of 17.11 and 0.52, respectively. Models
constructed with fugeR package show satisfactory

predictions with RMSE = 10.89 and R2 = 0.81. The best
model was obtained with genetic programming methods,
and it is reflected in Eq. 2. Prediction error RMSE for the
model was below 4.5, and R2 was over 0.95. The equation
predicting the amount of dissolved bicalutamide uses six
variables: quantitative composition of the formulation, IR
transmittance of the sample at 1260 cm−1, preparation
method, process temperature, number of cycles (in the case
of the milling process), and in vitro dissolution sampling time.
In the case of rgp, similarly for the literature data, the 20-
input vector was automat ica l ly reduced to the
abovementioned 6 crucial variables.

Q %½ � ¼ X
9
16
1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X18 þ esin sin

ffiffiffiffiffiffi
X17

pð Þð Þ
q

�X 1
8
20 � e

sin sin X12 �
ffiffiffiffiffi
X17

p
�X20−C1ð Þð Þ

16

e
sin sin sin X17ð Þð ÞþX1 �X2

12ð Þ
16 þsin X12 �e

sin
ffiffiffiffi
X1

p
�X12ð Þ�X17

� �
16 þsin

ffiffiffiffiffi
X17

pð Þ
4 þsin X1 �X12 �e

sin X12ð Þ� �
16 þ

þX16 �X
1
4
20 � e

sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X18

p
�
ffiffiffiffiffi
X20

p
þesin X12ð ÞþX1

p� �
2 þsin

ffiffiffiffiffiffi
X17

pð Þ
ð2Þ

where:

C1 Constant
X1 Excipient content
X12 IR transmittance of the sample at wavenumber

1260 cm−1,
X16 Preparation method
X17 Process temperature
X18 Number of milling cycles
X20 In vitro dissolution sampling time
Qt Bicalutamide dissolved after given time (X20)

Table III. Performance of Predictive Models Builds Based on
Literature Data and Selected 12-Element Input Vector

CI tool RMSE R2

Cubist 13.04 0.82
neuralnet 19.33 0.62
fugeR 15.43 0.75
h2o 14.32 0.77
rgp 11.09 0.85

Table IV. Performance of Predictive Models Constructed Based on
In-house Data Based on the 20-Element Input Vector

CI tool RMSE R2

Cubist 12.44 0.72
randomForest 11.21 0.79
h2o 13.13 0.70
neuralnet 17.11 0.52
rgp 4.18 0.97
fugeR 10.89 0.81
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Model Validation

After models were developed and tested according to the
applied cross-validation method, additional powder systems
were produced and characterized in the laboratory. Newly
collected data were applied as a validation data set for the best
model (Eq. 2), which delivered additional information about
model predictive capability. The validation data set encoded 11
powder systems among which one record represented
bicalutamide processed by the milling process, whereas ten
records were binary powder systems with BCL and polymers or
inorganic substances used as excipients. In total, 6 different
excipients were used in the production process in which 3
(vinylpyrrolidone-vinyl acetate copolymer, colloidal silica, and
magnesium aluminometasilicate) were not present in the
original data set. Powder systems were produced using super-
critical carbon dioxide, solvent evaporation, or milling process.
RMSE and determination coefficient for the validation data set
were equal to 9.89 and 0.92 respectively. Comparisons between
predicted and experimental dissolution profiles were presented
in Fig. 2a and b. Results presented in Fig. 2b refer to the powder
system composed of vinylpyrrolidone-vinyl acetate copolymer
and BCL in 1 to 2 mass ratio produced by the milling process.
Dissolution profiles presented in Fig. 2a concern formulations
prepared using the evaporation process and contained 50% of
magnesium aluminometasilicate and 50% of BCL. It is note-
worthy that both presented formulations contain excipients that
were not present in the original database on which the model
was developed and yet the model predicted properly whole
dissolution profiles for BCL binary powder systems both with
polymer and inorganic compounds used as excipients.

Ab Initio Modeling

The studies with DFT modeling resulted in IR spectra
calculated for several systems: BCL, PVP, PEG and BCL-
PVP, BCL-PEG binary systems. Based on the wavenumber of
1260 cm−1 selected by our rgp model (Eq. 2), we analyzed the
pattern of vibrations visualized with Avogadro software. An
example of Avogadro-based visualization is presented in
Fig. 3. When analyzing Fig. 3, it is evident that most of the
vibrations at 1260 cm−1 are observed in the PVP chain.

DISCUSSION

The comparative analysis of the models obtained for two
prepared databases led to observation of the lower prediction
errors for models created with in-house laboratory data. This is not
surprising as multicenter data are usually characterized by a larger
variability coming from different conditions of various laboratories
and equipment. The best models for both databases were obtained
using genetic programming methods. Mathematical equations
developed automatically by rgp package predicted the amount of
bicalutamide dissolved at a given time point with satisfactory
accuracy. In both cases, models use six input variables and differ in
the number of constants and structure. Both equations (Eq. 1 and
Eq. 2) use quantitative compositionof powder systems, information
on the type of preparation method, and in vitro dissolution
sampling time. According to the common knowledge in the field,
this is a very sensible behavior of the AI/ML tools as they properly
recognized variability in the qualitative and quantitative

compositions, technological parameters of preparation of powder
systems, and even the assay conditions. It is also noteworthy that
since we used multiple input single output (MISO) modeling
systems, then the time variable is essential to represent the whole
dissolution profile as it is encoded in the database via several data
records. The time variablewas foundas themost important input in
both models. Despite the plethora of AI/ML tools used in this
study, we were focused mostly on the equations developed by rgp.
The main reason is that they turned out to be the most successful
models in the task of prediction of BCL dissolution from binary
systems. However, another point in favor of rgp is model
transparency and relative simplicity in comparisonwith the random
forests with thousands of decision trees or artificial neural networks
with their hidden layers. The latter term was conceived to
emphasize ANNs as black boxes. It is literally impossible to trace
the decision path of fully trained ANN processing signals through
their hidden layers. Transparency of a classicalmathematicalmodel
provides means for its validation in the future—the procedure that
is required from the pharmaceutical industry by every regulatory
agency worldwide. In other words, all the above used AI/ML tools
were employed from the empirical point of view to find out what
might be the best possible predictability level in the analyzed
problem and then, if possible, a tool with the most transparent, so-
called white box, solution was chosen as the final one. This is the
essence of a data-driven approach where the data and problem
definition play a key role and the modeling tools are employed on
the principle of the best possible predictability without prior
assumptions of their mode and/or mechanisms of operation.
Fortunately, it turned out that in our case the best models in terms
of predictability were the most transparent ones.

Equation 1 developed for literature-based data employs
three molecular descriptors calculated with the use of Marvin
software to represent numerically excipients. Equation 2 does
not include any of such molecular descriptors: it uses the
information from IR spectrum at 1260 cm−1 instead. An
important fact is that Eq. 2 was developed on our in-house data
with the initial set of input variables containing both Marvin
calculated molecular descriptors and measured IR spectra.
However, no spectroscopic information was available for the
data set based on literature. The feature selection procedure
automatically discarded molecular descriptors in favor of
spectroscopic information providing input vector with superior
predictive ability when fitted to Eq. 2. Thus, the IR spectra used
by our models could be regarded as a substitute to themolecular
descriptors of excipients and employed empirically for a
predictive model of BCL dissolution in water. It is another
demonstration of a data-driven approach with autonomous
decision ability of AI/ML tools. Moreover, it proves that AI/ML
integrates smoothly various domains of knowledge into the
consistent model even though technological properties and IR
spectra seem to be far from each other as scientific fields. When
faced with different types of data, AI/ML is capable of judgment
of data relevance to the analyzed problem providing means for
the detection of crucial variable sets tailored not only to the
problem itself but to the available information about the
analyzed problem as well. In order to justify and at least
partially understand this decision of AI/ML, we performed ab
initio modeling of chosen binary systems and their elements
alone to simulate IR spectra and perform vibrational analysis
with focus on the selected wavenumber 1260 cm−1. The latter is
only loosely associated with C–F bonds and does not point to
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any other characteristic group (35). Since BCL contains four
fluoride atoms, it is an indirect confirmation of possible
interaction of BCL with carriers; however, no specific mecha-
nism was revealed. Instead of looking for the particular
molecular groups responsible for this wavelength selection, we
observed the whole pattern of vibrations calculated by
ORCA software. Looking through the results of vibrational
analysis of BCL-PVP, BCL-PEG vs. BCL, and PVP and PEG
alone, we found that no vibrations at 1260 ± 1 cm−1 were
calculated either for BCL, PVP, or PEG alone. However, both
binary systems, i.e., BCL-PVP and BCL-PEG, exhibited such
vibrational effects. This is therefore another indication of the
interaction between BCL and carrier that AI systems found to
be distinctive for prediction of dissolution rate of BCL.
Moreover, when analyzing vibrational pattern of BCL-PVP vs.
BCL-PEG, it was found that in the case of PCL-PVP, most
vibrations occur in the carrier molecule, whereas for the BCL-
PEG system, the BCL molecule was mostly responsible for the
vibrational effect of the whole system. This corresponds to the
behavior of solid dispersion systems described earlier by
Szafraniec et al. (12), where complete amorphization of BCL

was confirmed only for BCL-PVP solid dispersions due to the
stabilizing effect of PVP over BCL. Bicalutamide unique
behavior in the amorphous state was later explained by Rams-
Baron et al. (36) with amide-imidic tautomerization effect. In
none of the above in-depth physicochemical investigations of
BCL amorphization, such IR wavenumber of 1260 cm−1 was
identified as important for the observed phenomena. Thus,
modeling with AI/ML tools turned out to be complementary to
the classical, mechanistic analysis pointing out to the unforeseen
spectroscopic region as relevant to the BCL dissolution pattern
from solid dispersions. Additionally, it is noteworthy to mention
that even though results of DSC analysis were initially
introduced to the original data set, they were completely
discarded in the final models. It leads to the conclusion that
thermal analysis and its parameters, e.g., glass transition point
(Tg), do not exhibit quantitative relationships with BCL
dissolution patterns. This conclusion is consistent with the
findings of Szafraniec et al. (10) of the mechanism responsible
for promotion of dissolution rate and extent of BCL in BCL-
poloxamer (PLX) solid dispersions, which is not based
completely on amorphization but on the solubilizing effect of

Fig. 2. Predicted and observed dissolution profiles of BCL from
various powder systems: a formulation composed of magnesium
aluminometasilicate and BCL in 1:1 mass ratio and produced using
evaporation process; b powder system composed of vinylpyrrolidone-
vinyl acetate copolymer and BCL in 1:2 mass ratio and produced using
milling process
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PLX over BCL as well. Since BCL-PLX systems were present in
the analyzed data set, AI/ML decided to select crucial variables
covering various physical mechanisms enhancing BCL dissolu-
tion from solid dispersions and it turned out to be IRwavelength
at 1260 cm−1. From the practical point of view, the selected IR
wavelength of 1260 cm−1 might be used as a diagnostic tool for
solid dispersion performance. Therefore, spectroscopic
assessment enables the means for in-line measurements
employed for manufacturing process control. It goes alongside
with the modern strategies of Quality by Design (QbD) and
process analytical technologies (PAT), where the quality of the
product is controlled during the manufacturing process; and
based on predictive modeling, suitable corrective actions are
taken to prevent manufacturing out-of-specification products.
Use of IR spectra is feasible in such applications due to the
speed of spectrum acquisition and capability of application in
the solid state, thus suitable for many pharmaceutical unit
processes. Although AI/ML models are developed in the
iterative mode requiring substantial amount of time to process
data, their further use does not suffer from such burden—the
result is calculated instantaneously.Moreover, ourmathematical
formulas developed with GP could be processed by any regular
IT/ICT infrastructure which makes their implementation simple
and inexpensive. All the abovementioned features make the
presented approach a suitable way of QbD implementation for
future smart factories, where automated decision-making will be
essential for effective manufacturing process.

CONCLUSION

The presented work resulted in a comparison of predictive
models for bicalutamide dissolution based on either literature or
in-house experimental data. Not surprisingly, both sources of

data resulted in different models with different crucial variables
selected. The IR spectra available for in-house data were found
useful to be surrogates of molecular descriptors in predicting
BCL dissolution pattern. The use of IR spectra is promising for
the in-line measurements suitable for the application of QbD/
PAT strategies in manufacturing solid dispersions. Application
of spectral information for predictive modeling of BCL dissolu-
tion pattern is possible due to the data-driven approach
performed without mechanistic assumptions and therefore
resulting in non-standard findings expanding current knowledge
of key factors controlling observed physical phenomena.
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are included in the article's Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material
is not included in the article's Creative Commons licence and
your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Fig. 3. Results of vibrational analysis of BCL with PVP at the
wavenumber of 1260 cm−1. Green arrows display force vectors
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