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Alienation of two general linear functional equations

Tomasz Szostok

Abstract. We study the alienation problem for two general linear equations i.e. we compare
the solutions of the system of equations{ ∑n

i=1 αif(pix + qiy) = 0∑m
j=1 βjg(sjx + tjy) = 0

with the solutions of the single equation

n∑
i=1

αif(pix + qiy) =
m∑

j=1

βjg(sjx + tjy).

To this end we introduce the notion of l-alienation—alienation in the class of monomial
functions of order l. We use our results among others to study the alienation properties of
two monomial functional equations.

Mathematics Subject Classification. 39B52, 39B72.

Keywords. Functional equations, Alienation, Linear equations, Polynomial functions.

1. Introduction

The alienation problem for functional equations was first studied by Dhombres
who in [1] introduced the following definition.

Definition 1. Let E1(f) = 0 and E2(f) = 0 be two functional equations for a
function f : X → Y , where X and Y are non-empty sets. The equations E1

and E2 are alien with respect to X and Y , if any solution f : X → Y of

E1(f) + E2(f) = 0

is a solution of the system {
E1(f) = 0
E2(f) = 0.
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Then the problem of alienation was studied by many authors, we cite here
just some of them [2–4,6,9,11,13,17], for the more detailed study of the history
and present state of this problem see [7].

In our considerations we use the notion of polynomial functions. Thus we
will recall some definitions and results connected with this topic. For details
see for example [14,15].

Let G,S be groups and let f : G → S be a function. The difference operator
with span h is given by

Δhf(x) = f(x + h) − f(x).

The iterates Δn
h are defined recursively,

Δ0
hf := f, Δn+1

h f := Δh(Δn
hf), n = 1, 2, . . . .

Using this operator, we define polynomial functions in the following way.

Definition 2. Let G,S be groups, then a function f : G → S is called a poly-
nomial function of order n if it satisfies the equality

Δn+1
h f(x) = 0,

for all x ∈ G.

The following theorem is also well known (see for example [14], Corollary
3.3).

Theorem 1. Let n be a positive integer and let G,S be abelian groups such
that S is torsion free and is divisible by n!. Then function f : G → S is a
polynomial function of order n if and only if for all i = 0, 1, . . . , n, there exists
a symmetric and i-additive function Ai : Gi → S such that

f(x) =
n∑

i=0

Ai(x, . . . .x), x ∈ G (1)

where 0-additive functions are understood to be constant functions.

The main tool used in this paper will be the following result of L. Székelyhidi.
In this theorem, we use the following definition

Definition 3. ([14], Definition 3.5 ) Let G,S be abelian groups, let n be a non-
negative integer. The function f : G → S is said to be of degree n if there
exist functions fi : G → S and homomorphisms ϕi.ψi : G → G such that
ϕ(g) ⊂ ψ(G), i = 1, 2, . . . , n + 1 and the equation

f(x) +
n+1∑
i=1

fi(ϕi(x) + ψi(y)) = 0, x, y ∈ G

holds.
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Theorem 2. ([14], Theorem 3.6) Let G,S be abelian groups, and suppose that
G is divisible, Let n be a nonnegative integer. The function f : G → S is of
degree n if and only if it is a polynomial function of order n.

For some generalizations of Theorem 2 see for example [12] or [16].

2. Two introductory results

Recently, several authors have dealt with alienation results with respect to
two linear equations. Namely, Z. Kominek and J. Sikorska proved that two
polynomial equations: Δnf(x) = 0 and Δmf(x) = 0 with different m,n are
alien whereas R. Ger dealt with the alienation problem of the Cauchy and
quadratic functional equations. First we provide a short proof of the result of
Kominek and Sikorska [10].

Proposition 1. Let G,H be abelian groups, let n > m be positive integers and
let H be torsion free and divisible by n!. Then functions f, g : G → H satisfy
equation

Δn
hf(x) = Δm

h g(x), x, h ∈ G (2)
if and only if f is a polynomial function of order n − 1 and g is a polynomial
function of order m − 1.

Proof. Writing (2) explicitly, we get

f(x + nh) −
(

n

1

)
f(x + (n − 1)h) + · · · + (−1)nf(x)

= g(x + mh) −
(

m

1

)
g(x + (m − 1)h) + · · · + (−1)mg(x). (3)

Since n > m, all arguments of g appear on the left hand side as arguments of
f. This means that we can rearrange (3) and get

((−1)nf + (−1)mg)(x) +
(

(−1)n−1

(
n

1

)
f + (−1)m−1

(
m

1

)
g

)
(x + h)

+ · · · +
(

(−1)n−m

(
n

m

)
f +

(
m

m

)
g

)
(x + mh)

+(−1)n−m−1

(
n

m + 1

)
f(x + (m + 1)h) + · · · + f(x + nh) = 0. (4)

Now, our sum contains exactly n+1 terms and it is enough to substitute x−nh
in place of x to get from Theorem 2 that f is a polynomial function of order
at most n − 1 i.e. Δn

hf(x) = 0. Consequently, using (2) we get Δm
h g(x) = 0

which finishes the proof. �
Similarly, it is possible to get an alienation result for the quadratic and

additive functional equations which was obtained by Ger in [5].
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Proposition 2. Let G and H be abelian groups such that H is torsion free and
divisible by 2. Functions f, g : G → H satisfy equation

f(x + y) + g(x + y) + g(x − y) = f(x) + f(y) + 2g(x) + 2g(y) (5)

if and only if

f(x) = a(x) + c

and

g(x) = q(x) − c

2
where function a is additive, q is quadratic and c ∈ H is some constant.

3. The general case

In this section we will not restrict ourselves to concrete equations, we will work
with two general linear equations. We will include here also the proofs of some
known facts to keep the paper as self contained as possible. To use all the
tools needed in our approach we need the assumption that the domain and
codomain of our functions are abelian and divisible groups. Such structures are
simply linear spaces over Q. However in some of the results presented below
it is not essential that the constants involved are rational. Therefore we will
work on linear spaces over some field which contains rationals.

Remark 1. Suppose that H,K are fields such that Q ⊂ H,K, let X,Y be linear
spaces, respectively over the fields H,K, let n,m ∈ N and let the functions
fi : X → Y, i = 1, . . . , n be of the form

fi(x) = ai + Fi,1(x) + Fi,2(x, x) + · · · + Fi,m(x, . . . , x︸ ︷︷ ︸
m

), i = 1, . . . , n

where ai ∈ Y, i = 1, . . . , n are some constants and functions Fi,j : Xj → Y are
j-additive and symmetric. If

fi,j(x) := Fi,j(x . . . , x), i = 1, . . . , n; j = 1, . . . , m,

fi,0 := ai

pi, qi ∈ H are given and functions f1, . . . , fn satisfy
n∑

i=1

fi(pix + qiy) = 0, x, y ∈ X (6)

then for all j ∈ {0, . . . , m} the system of functions f1,j , . . . , fn,j also satisfies
(7).

Indeed, for every rational number r we have

fi,j(rx) = rjfi,j(x).
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Now, it is enough to take any r ∈ Q and substitute rx, ry in places of x, y,
respectively. Then we get

n∑
i=1

m∑
j=0

rjfi,j(pix + qiy) = 0, x, y ∈ X

i.e.
m∑

j=0

rj
n∑

i=1

fi,j(pix + qiy) = 0, x, y ∈ X.

This equality is satisfied for every rational number r, thus all the expressions
standing at different powers of r must separately be equal to zero. It means
that for each j the functions f1,j , . . . , fn,j satisfy our equation.

Lemma 1. Suppose that H,K are fields so that Q ⊂ H,K, let X,Y be linear
spaces, respectively over the fields H,K, let αi ∈ K, pi, qi ∈ Q and let l be any
positive integer. Then the following conditions are equivalent to each other:

i) equation
n∑

i=1

αif(pix + qiy) = 0 (7)

is satisfied by some nonzero monomial function of order l,
ii) (7) is satisfied by all monomial functions of order l,

iii)
∑n

i=1 αip
k
i ql−k

i = 0, for each k ∈ {0, . . . , l}.

Proof. First we assume that i) is satisfied and we show iii). Let f(x) =
F (x, . . . , x) where F : X l → Y is l-additive and symmetric. Then

n∑
i=1

αif(pix + qiy) =
n∑

i=1

αi

l∑
k=0

pk
i ql−k

i

(
l

k

)
F (x, . . . , x︸ ︷︷ ︸

k

, y, . . . , y︸ ︷︷ ︸
l−k

). (8)

Similarly as in Remark 1, all expressions of the same degree with respect to x
must sum up to zero. Thus for every k ∈ {0, . . . , l}, we have

n∑
i=1

αip
k
i ql−k

i F (x, . . . , x︸ ︷︷ ︸
k

, y, . . . , y︸ ︷︷ ︸
l−k

) = 0.

Substituting here x in place of y and using the assumption f �= 0, we get
n∑

i=1

αip
k
i ql−k

i = 0

as claimed.
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In the next part of the proof we show that iii) implies ii). Let f(x) =
F (x, . . . , x) be any monomial function of order l. Using (3) in (8) we get

n∑
i=1

αif(pix + qiy) = 0.

i.e. f is a solution of (7).
Finally, the implication ii) ⇒ i) is obvious. �

In the next lemma we show that in many cases the solutions of equation
n∑

i=1

αif(pix + qiy) =
m∑

i=1

βig(sjx + tjy). (9)

must be polynomial functions.

Lemma 2. Suppose that H,K are fields such that Q ⊂ H,K, let X,Y be linear
spaces, respectively over the fields H,K, let αi, βj ∈ K \ {0}, i = 1, . . . , n, j =
1 . . . , m be some constants and let pi, qi, sj , tj ∈ H, i = 1, . . . , n, j = 1 . . . , m.
Finally, let functions f, g : X → Y satisfy Eq. (9). If there exists i0 ∈
{1, . . . , n} such that for j ∈ {1, . . . , m}, we have∣∣∣∣pi0 sj

qi0 tj

∣∣∣∣ �= 0 (10)

and ∣∣∣∣pi0 pi

pi0 qi

∣∣∣∣ �= 0 (11)

for i = 1, . . . , n; i �= i0 then f must be a polynomial function of order at
most k − 1, where k is the maximal number of pairwise independent pairs
(pi, qi), (sj , tj).

Further if, additionally, for some (sj0 , tj0) we have∣∣∣∣ sj0 sj

tj0 tj

∣∣∣∣ �= 0 (12)

for j = 1, . . . , m; j �= j0 then also g must be a polynomial function of order at
most k − 1.

Proof. If pio
= 0 then we interchange x with y in (9) and we may use Theorem

2 directly. Now assume that pi0 �= 0 and put x̃ = x−qi0y

pi0
in place of x in (9).

After this substitution we get

pi0 x̃ + qi0y = x

and

pix̃ + qiy = pi
x − qi0y

pi0

+ qiy =
pi

pi0

x +
piqi0 − qipi0

pi0

y.
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Using (11), we can see that the coefficient standing here at y is different from
zero. Similarly

six̃ + tiy = si
x − qi0y

pi0

+ tiy =
si

pi0

x +
siqi0 − tipi0

pi0

y,

and from (10) we know that again the coefficient of y is not equal to zero i.e.
we may use again Theorem 2 to prove that f is a polynomial function. If there
are some linearly dependent pairs among (pi, qi), (sj , tj) then we group the
occurrences of f and g containing these coefficients into new functions so that
we achieve the optimal estimation of the order.

Now we will deal with function g. If (12) is satisfied then we have two
possibilities.

1. If for all i = 1, . . . , n we have∣∣∣∣ sj0 pi

tj0 qi

∣∣∣∣ �= 0 (13)

then we proceed similarly as in the first part of the proof and we show
that g must be a polynomial function.

2. The second possibility is that for some i1, . . . , ir∣∣∣∣ sj0 piν

tj0 qiν

∣∣∣∣ = 0, ν = 1, . . . , r. (14)

In this case we consider the expression

βj0g(sj0x + tj0y) +
r∑

ν=1

αiν
f(piν

x + qiν
y)

which in view of (14) may be written as a function of sj0x + tj0y. Then we
show that this new function is a polynomial function. Finally from the first
part of the proof we know that f is a polynomial function thus g also must be
a polynomial function. �

Now we give some simple examples of equations which will illustrate the
possibilities described in Lemma 2.

Example 1. Equation

f(x + y) − f(x) − f(y) = 2g(x + y) − g(x)

has only polynomial solutions because of the term f(y) on the left hand side,
and because of the linear independence of the coefficients of the arguments of
g.

Equation

f(x + y) − f(x) − f(y) = g(x + y) − g(x) − g(y)

has solutions f, g which are not polynomial (f − g must be additive) because
there is no occurrence of f or g with coefficients linearly independent from all
the others—this shows that the assumptions (10) and (11) cannot be omitted.
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The function f occurring in

f(x + y) − f(x) − f(y) = g(x − y) − g(y − x)

must be polynomial [(10) and (11) are satisfied] but g is not necessarily a
polynomial function. Namely, any pair (f, g) where f is additive and g is even
satisfies this equation. This shows that the (12) is necessary to guarantee for
function g to be a polynomial function.

Remark 2. It may also happen that the assumptions of Lemma 2 are not satis-
fied and the solutions of a given equation are polynomial functions. Equation

f(x + y) − f(x) − f(y) = 2g(x + y) − g(x) − g(y)

has only polynomial solutions. Indeed, after some rearrangement

(f − 2g)(x + y) − (f − g)(x) − (f − g)(y) = 0

we can see that both f − 2g and f − g are polynomial functions. Then g =
f −g−(f −2g) and f = 2(f −g)−(f −2g) are also polynomial functions, since
a linear combination of polynomial functions gives a polynomial function.

As we can see, in many cases functions satisfying (9) must be polynomial.
Moreover we know from Remark 1 that the monomial summands of solutions
of a given equation also satisfy this equation. Therefore we will study the
alienation of linear functional equations in the class of monomial functions of
a fixed order. We will use the expression l-alienation if the monomial summands
of f and g of the order l alienate. A more precise statement is given by the
following definition.

Definition 4. Suppose that H,K are fields such that Q ⊂ H,K, let X,Y
be linear spaces, respectively over the fields H,K, let αi, βj ∈ K \ {0}, i =
1, . . . , n, j = 1 . . . , m be some constants and let pi, qi, sj , tj ∈ H, i = 1, . . . , n,
j = 1 . . . , m. If the solutions f, g : X → Y of the system of equations

n∑
i=1

αif(pix + qiy) = 0 (15)

and
m∑

j=1

βjg(sjx + tjy) = 0 (16)

are different from the solutions of Eq. (9) in the class of monomial functions
of order l then we say that Eqs. (15) and (16) are not l-alien. In the opposite
case we say that these two equations are l-alien.

We begin with a lemma which gives us some relation between the monomial
solutions f, g of (9).
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Lemma 3. Suppose that H,K are fields such that Q ⊂ H,K, let X,Y be linear
spaces, respectively over the fields H,K, let αi, βj ∈ K \ {0}, i = 1, . . . , n, j =
1 . . . , m be some constants and let pi, qi, sj , tj ∈ Q, i = 1, . . . , n, j = 1 . . . , m.
Let l be a positive integer, let k ∈ {0, . . . , l}, let F,G : X l → Y be l-additive
and symmetric functions and let the functions f, g : X → Y given by the
formulas: f(x) = F (x, . . . , x), g(x) = G(x, . . . , x) satisfy Eq. (9). If

ak,l =
n∑

i=1

αip
k
i ql−k

i (17)

and

bk,l =
m∑

j=1

βjs
k
j tl−k

j , (18)

then
ak,lf(x) = bk,lg(x), x ∈ X. (19)

Proof. Using the forms of f and g, we may write (9) in the form
n∑

i=1

l∑
k=0

(
l

k

)
αip

k
i ql−k

i F (x, . . . , x︸ ︷︷ ︸
k

, y, . . . , y︸ ︷︷ ︸
l−k

)

=
l∑

k=0

(
l

k

) m∑
i=1

βis
k
i tl−k

i G(x, . . . , x︸ ︷︷ ︸
k

, y, . . . , y︸ ︷︷ ︸
l−k

). (20)

Thus for every k ∈ {0, . . . , l} we have
n∑

i=1

αip
k
i ql−k

i F (x, . . . , x︸ ︷︷ ︸
k

, y, . . . , y︸ ︷︷ ︸
l−k

)

=
m∑

i=1

βis
k
i tl−k

i G(x, . . . , x︸ ︷︷ ︸
k

, y, . . . , y︸ ︷︷ ︸
l−k

). (21)

Now it is enough to take y = x in the above equality, to get (19). �

In the next theorem we present the general solution of Eq. (9) in the class
of monomial functions of a given order.

Theorem 3. Let l, n,m be any positive integers, Suppose that H,K are fields
such that Q ⊂ H,K, let X,Y be linear spaces, respectively over the fields
H,K, let αi, βj ∈ K \ {0}, i = 1, . . . , n, j = 1 . . . , m be some constants, let
pi, qi, sj , tj ∈ Q, i = 1, . . . , n, j = 1 . . . , m and let functions f, g be defined on
X and take values in Y. For al,k, bl,k given by (17) and (18) we define the sets
Al, Bl by the formulas:

Al := {k ∈ {0, . . . , l} : ak,l �= 0} (22)
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and

Bl := {k ∈ {0, . . . , l} : bk,l �= 0}. (23)

The following assertions hold true.

1. If Al = Bl = ∅ then Eq. (9) is satisfied by every pair (f, g) of monomial
functions of order l.

2. If Al �= ∅, Bl = ∅ and the monomial functions f, g of order l, satisfy (9)
then f = 0. Conversely, every pair (0, g) where g is monomial function
of order l is a solution of (9).

3. If Al = ∅, Bl �= ∅ and the monomial functions f, g of order l, satisfy (9)
then g = 0. Conversely, every pair (f, 0) where g is monomial function
of order l is a solution of (9).

4. If Al, Bl �= ∅, Al �= Bl and monomial functions f, g of order l, satisfy (9)
then f = g = 0.

5. If Al, Bl �= ∅ and Al = Bl then:
(i) if there exists c such that ak,l

bk,l
= c for all k ∈ Al then the solutions

of (9) in the class of monomial functions of order l are of the form
(f, cf) where f is any monomial function of order l.

(ii) if ak

bk
is not constant on Al and the monomial functions f, g of order

l, satisfy (9) then f = g = 0.

Proof. To prove the first statement observe that from Lemma 1 we know that,
in the case Al = Bl = ∅, all monomial functions of order l satisfy (7) and (16).
This means that all pairs of monomial functions (f, g) satisfy (9).

Now assume that Al �= ∅ and Bl = ∅. Then for some k we have ak,l �= 0
and bk,l = 0. In view of Lemma 3 this yields f = 0. On the other hand Bl = ∅
means that all monomial functions of order l satisfy (16). Thus the pair (0, g)
where g is any monomial function of order l satisfies (9).

The third assertion is completely analogous to the second one and, there-
fore, the proof in this case is not needed.

Assume now that Al, Bl �= ∅, and Al �= Bl. Let for example exist k such
that ak,l �= 0 and bk,l = 0. Then from Lemma 3 we get f = 0. However if f = 0
then from (9) we get that g satisfies (16) and, since Bl �= ∅ we have bk,l �= 0
for some k. In view of Lemma 1, this means that g = 0.

In the remaining part of the proof we assume that Al, Bl �= ∅ and Al = Bl.
If for some c we have

ak,l

bk,l
= c, k ∈ Al

then from Remark 3 we know that g(x) = cf(x). Using this form of g in (9),
we obtain a linear equation with one unknown function f. Using Lemma 1 it
is easy to see that this equation is satisfied by all monomial functions.
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Finally, consider the case where ak,l

bk,l
is not constant. Then there exist k1, k2

and c1, c2 such that
ak1,l

bk1,l
= c1

and
ak2,l

bk2,l
= c2.

In view of Remark 3 and from the above equalities we get

g(x) = c1f(x) and g(x) = c2f(x). (24)

Thus we have c1f(x) = c2f(x) which means that f = 0. Now using (24) we
get that g = 0 which finishes the proof. �

Remark 3. Let Al, Bl be defined as in the above theorem. Equations (16) and
(7) are not l-alien if and only if case 4 (i) of Theorem 3 occurs.

Using this theorem, we will give some simple examples of equations that
are l-alien and not l-alien, respectively.

Remark 4. Suppose that H,K are fields such that Q ⊂ H,K. Let X,Y be linear
spaces, respectively over the fields H,K. Let p, q ∈ Q and α, β1, β2 ∈ K \ {0}.
Let f, g : X → Y be some functions. Equations

αf(px + qy) = 0

and

β1g(x) + β2g(y) = 0

are:
not 0-alien if β1 + β2 �= 0
not 1-alien if p

β1
= q

β2
.

There is no need to test the l-alienation for l > 1, since f, g satisfying
equation

αf(px + qy) = β1g(x) + β2g(y)

are polynomial functions of order at most 1.

The above remark was connected with the Cauchy equation, now we present
a result connected with the quadratic equation.

Remark 5. Suppose that H,K are fields such that Q ⊂ H,K. Let X,Y be linear
spaces, respectively over the fields H,K. Let f : X → Y be some functions, let
q1, q2 ∈ Q be any numbers. Equations

f(x + q1y) + f(x + q2y) = 0
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and

g(x) + g(y) = 0

are not 0-alien and are:

not 1-alien if and only if q1 + q2 = 2
not 2-alien if and only if q1 = 1, q2 = −1 or q1 = −1, q2 = 1.

Remark 6. Now the alienation of the Fréchet equations obtained in Proposition
1 may be viewed from the perspective of the general theory of Theorem 3.
Indeed, as it was shown in the proof of Proposition 1, the solutions f, g of
these equation are polynomial functions of order at most m. Let l < n then
Al, Bl = ∅ i.e. we have l-alienation. Further, if n < l ≤ m then Al �= ∅, Bl = ∅
i.e. again we have alienation.

Now, using Theorem 3, we will study the alienation problem for two mono-
mial equations.

Theorem 4. Suppose that H,K are fields such that Q ⊂ H,K. Let X,Y be
linear spaces, respectively over the fields H,K, Let m,n be positive integers,
m > n and let f : X → Y be some functions. Then equations

Δm
y g(x) − m!g(y) = 0 (25)

and
Δn

yf(x) − n!f(y) = 0 (26)

are not l-alien for l < n and l-alien for l ∈ {n, . . . , m}.
Proof. We will study the equation

Δn
yf(x) − n!f(y) = Δm

y g(x) − m!g(y), (27)

which certainly is an equation of the form (9). Moreover, it is clear that f, g
must be polynomial functions of order at most m.

Let l < n be a fixed positive integer and h b a monomial function of order
l, then

Δn
yh(x) = Δm

y h(x) = 0.

In view of Lemma 1 this means that for all k ∈ {0, . . . , l − 1} we have

ak,l

n∑
i=1

αip
k
i ql−k

i = 0

and

bk,l

m∑
j=1

βjr
k
j sl−k

j = 0.
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Whereas for l = n

al,l =
n∑

i=1

ql
i = −n!

and

bl,l

m∑
j=1

βjr
k
j sl−k

j = −m!.

Summarizing these two observations, we can see that Al = Bl = {l} and,
in consequence we have the non l-alienation of (25) and (26). Now take l ∈
{n, . . . , m}, then for a non zero monomial function h of order l we have

Δn
yh(x) �= 0

and

Δm
y h(x) = 0.

Thus we have ak,l �= 0 for some k < l and bk,l = 0 for all k < l i.e. Al �= Bl

and, in view of Theorem 3, Eqs. (26) and (25) are l-alien. �

Of course, in the case of Eqs. (26), (25) considered in the above theorem it
would be enough to assume that X and Y are (abelian) groups such that Y
is torsion free and divisible by m!. Our assumptions follow from the fact that,
in the proof we use Theorem 3.

Remark 7. The result of R. Ger concerning the alienation of the Cauchy equa-
tion and the quadratic equation is a particular case of the above result (with
n = 1,m = 2).

We conclude the paper with two final remarks.

Remark 8. In this paper we presented results where we first get the solutions
of Eq. (9) (using Theorem 3) and then we deduce the alienation properties
from the solutions. A similar approach was presented by Gilányi [8], however
Gilányi used a computer program to solve the equations.

Remark 9. The non-alienation obtained in Theorem 4 is quite surprising, since
it is much more common that two equations are alien than non-alien. The
explanation is provided by Theorem 3. It is difficult to obtain non-alienation,
since then all elements of Al and Bl must be proportional. In the case of
monomial equations this occurred because each of Al and Bl consisted of one
element only. If we study 0-alienation then the non-alienation effect appears
much more frequently, since A0 and B0 can have only one element.
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