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Abstract: Exposure to atmospheric particulate matter (PM) has detrimental effects on health,
but specific mechanisms of toxicity are still not fully understood. In recent years, there has been a
growing evidence that oxidative stress is an important mechanism of toxicity; however, when acellular
oxidative potential (OP) data are correlated with the outcomes of in vitro (or in vivo) toxicological
tests there are contrasting results. In this work, an analysis of PM10 health effect indicators was done,
using the acellular Dithiotreitol (DTT) assay to retrieve OPDTT, the Microtox® test on Vibrio fischeri
bacterium to assess the ecotoxicological potential, and the in vitro MTT assay on the human cell line
A549 to estimate the cytotoxicological potential. The objective was to evaluate the correlation among
acellular OPDTT and the results from toxicological and ecotoxicological bioassays and how these
health-related indicators are correlated with atmospheric PM10 concentrations collected at an urban
background site in Southern Italy. Results indicated that both bioassays showed time-dependent
and dose-dependent outcomes. Some samples presented significant ecotoxic and cytotoxic response
and the correlation with PM10 concentration was limited suggesting that these health endpoints
depend on PM10 chemical composition and not only on exposure concentrations. OPDTT showed a
statistically significant correlation with PM10 concentrations. MTT and Microtox outcomes were not
correlated suggesting that the two toxicological indicators are sensitive to different physical-chemical
properties of PM10. Intrinsic oxidative potential OPDTT

M (DTT activity normalised with PM10 mass)
was correlated with mortality observed with MTT test (normalized with PM10 mass); however, it was
not correlated with Microtox outcomes.

Keywords: MTT test; oxidative potential; cytotoxicity; ecotoxicological potential; DTT assay; health
effects of particulate

1. Introduction

There is increasing evidence that exposure to atmospheric particulate matter (PM) can lead to
adverse health effects [1–3]. PM is a complex mixture with physical and chemical properties largely
varying in time and space [4] leading to biological effects varying in time, location, and seasons [4–6].
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This because different properties of PM determine the biological response, so that even if recent studies
demonstrated the statistical association between exposure to PM and health adverse outcomes, they
were not able to establish the definitive cause-effect relationship [7]. Several studies suggested that a
number of PM health effects could be due to the oxidative or oxidant generating properties of ambient
particles [8,9] or that a synergistic effect of inflammation and oxidative stress could be an important
aspect of PM toxicity and health effects [10]. Different oxidative mechanisms can act simultaneously,
leading to high concentrations of reactive oxygen species (ROS) that, if in excess of the antioxidant
capacity to neutralize them, lead to oxidizing other cellular components, which in turn eventually
translates into numerous health outcomes [11,12].

The induction of oxidative stress due to the generation of ROS is considered a conceivable
paradigm to explain some in vitro toxicity of inhaled PM [13]. As a consequence, in the last years, there
has been a growing consensus on the possible use of easy to use, affordable, and relatively fast acellular
method to determine the oxidative potential of PM as an indicator of potential health effect [14,15].

However, epidemiological studies and in vitro and in vivo toxicological studies show contrasting
results regarding the association of acellular oxidative potential with health outcomes [16–18].

Looking at epidemiological studies, DTT activity was found to be associated with emergency
department visits for asthma/wheezing and congestive heart failure [14,19] and for multiple
cardiorespiratory health effects [20]. A positive association between OPDTT and respiratory health
problems was also found in Yang et al. [21]. Other studies reported little or no association between
OPDTT and mortality or hospital admissions [22,23].

Looking at in vitro toxicological studies, an analysis of PM10 toxicity in two sites in Belgium
showed that OP was not related to the observed cellular response in Beas-2B cells, but it was associated
with direct and indirect mutagenic activity [24]. Steenhof et al. [25] found that oxidative potential was
significantly associated with MTT-reduction activity in murine macrophages, whereas no association
between OP and the production of pro-inflammatory markers was observed.

Looking at in vivo studies, Liu et al. [26] observed a correlation between ROS activity of PM
collected in Beijing (China) and inflammatory response in epithelial cells. Instead, OPDTT was found
associated with markers of airway and nasal inflammation, but only for specific measurement sites;
furthermore, OPDTT was not associated with lung function, inflammatory, and coagulation parameters
in blood samples from volunteers exposed to ambient pollution [27].

This poses questions on the efficiency of using OP for the evaluation of health risks, and further
research is needed to investigate the association of acellular OP data with health outcomes. The objective
of this work was to investigate the correlation between oxidative potential obtained with the acellular
DTT assay, which is the most widely used method [14], with the results of two toxicity bioassays:
the MTT assay used to evaluate mortality of A549 cells (representative of the alveolar type II
pneumocytes of the human lung) exposed to PM and the Microtox® test measuring inhibition of the
natural bioluminescence of Vibrio fischeri bacteria. These bioassays have been recently proved to be
useful tools for the assessment, respectively, of the cytoxicity and ecotoxicity of PM. Compared to the
acellular OP measurement, which focuses on a specific aspect of the particulate matter activity, such as
the induction of oxidative species, these bioassays provide general endpoint outcomes, representing
an integrated response of the multiple effects that the particulate matter can exert at the cellular level.
Therefore, the choice of these bioassays arises from the aim to correlate the oxidative potential of
particulate matter with more integrated biological effects at the cellular level. The study was performed
on water-soluble PM10 collected at an urban background site located in Southern Italy.

2. Experimental Methods

The study was carried out on 10 samples of airborne PM10 randomly selected among the samples
collected between 16/09/2017 and 25/12/2017 at the Environmental-Climate Observatory of ISAC-CNR in
Lecce (Southern Italy), regional station of the Global Atmosphere Watch (GAW) network, characterized
as an urban background site [28]. The observatory (40◦20′8” N—18◦07′28” E, 37 m asl) is located
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inside the University Campus and it is influenced by local emissions (mainly traffic and domestic
heating) and by the emission of the town of Lecce and of small villages located around the Campus.
Furthermore, it is possible to have transport of pollution from the large industrial settlements of
Taranto (about 80 km in the NW direction) and Brindisi (about 30 km in the NNW direction). Daily
PM10 samples, exposed for 24 h starting at midnight, were collected using a low-volume (2.3 m3/h)
automatic sampler (SWAM, Fai Instruments srl Via Aurora, 15 – 00013 FONTE NUOVA (Roma)) based
on β-attenuation for detection of particle concentrations [29]. The sampler was equipped with 47 mm
quartz fiber filters (Whatman) pre-fired at 700 ◦C for 2 h in order to reduce contamination. Average
uncertainty on PM10 measurements was 2% [30].

The methodology used for sample analysis is schematized in Figure 1. Water-soluble fraction of
PM10 was obtained, using the whole filter, in 10 mL ultrapure water (Milli-Q) in an ultrasonic bath
using four cycles of sonication for a total of 80 min. Successively, the extracts were filtered using
PTFE membranes. Three aliquots of each extract were used for the assessment, respectively, of the
ecotoxicological potential of PM10 using the Microtox® test, of the cytotoxicological potential using
the MTT assay, and of the oxidative potential using the DTT (Dithiotreitol) assay. This approach
guarantees the comparability of the outcomes of the different assays; all of them start from the same
water soluble extract.
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The ecotoxicological potential of PM10 was assessed by the bioluminescence inhibition assay based
on the Gram-negative non-pathogenic bacterium Vibrio fischeri (Microtox® test), which physiologically
emits light as a result of its metabolic activity. The natural bioluminescence of V. fischeri is inhibited
by exposure to a number of chemical pollutants, including organic and inorganic compounds [31].
The Microtox test has been successfully applied to measure the ecotoxicity of atmospheric particulate, by
exposing the bioluminescent bacterium to aqueous extracts of PM10 [32–34]. Roig et al. [35] concluded
that Microtox test on V. fischeri is a suitable approach as a preliminary test for assessing the effects of
particle-phase air pollution. Different exposure times (5, 15, and 30 min) were used in this work and
inhibition results were reported as a net effect (percentage of inhibition) corrected using field blanks.
Uncertainties were estimated using five repetitions and ranged between 1% and 6% (average 2.5%).

The cytotoxicological potential of PM10 was assessed on the aqueous extracts by the MTT assay
on the cell line A549. The MTT assay is based on a colorimetric reaction dependent on mitochondrial
respiration of the cells and indirectly allows assessing the cellular energy capacity of a cell [36].
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The MTT assay was applied to the A549 cell line, representative of the alveolar type II pneumocytes of
the human lung [37]. Cell mortality after 24 h exposition is evaluated, in relative terms, considering the
net effect of PM10 using field blanks for correction. Six repetitions were done to assess the uncertainties
that ranged between 3% and 8% (average 5.5%).

The water-soluble fraction of PM10 was also used for the analysis of the OP, performed with
the dithiothreitol assay (DTT), a surrogate for cellular antioxidants, which analyses the rate of DTT
depletion catalysed by chemical species present in the PM [38,39]. An aliquot of the extracts was
diluted with deionised water (1:4 factor). Samples were incubated at 37 ◦C with DTT (0.1 mM) in
0.1 M potassium phosphate buffer at pH 7.4 for times varying from 5 to 90 min. At designated times
(specifically at 5, 10, 15, 20, 30, 45, 60, and 90 min), an aliquot (0.5 mL) of incubation mixture was picked
up and 10% trichloroacetic acid (0.5 mL) was added to stop the reaction. Then, this reaction mixture was
mixed with 2 mL of 0.4 M Tris–HCl, pH 8.9 containing 20 mM EDTA and 25 µL of 10 mM DTNB. Then,
this reaction mixture was mixed with a solution containing 10 mM DTNB. The concentration of the
formed 5-mercapto-2-nitrobenzoic acid was measured by its optical density absorption at 412 nm using
a Eon BioTek Microplate Spectrophotometer). The consumption of DTT over time was determined
through the linear fitting of the absorbance with the time in which the withdrawal was done. The DTT
depletion rate was used to determine OP values as DTT-activity normalized in terms of sampled air
volume (OPDTT

V) or in terms of mass of collected aerosols (OPDTT
M). Oxidative potential data reported

in this work are corrected for the blanks. Repeatability tests indicate a typical uncertainty of 8–10%.

3. Results

The average and median values of PM10 are reported in Table 1 together with the min-max range
and the inter-quartile range (between 25th and 75th percentiles). PM10 concentrations measured are
comparable to the typical values observed in this area [40,41].

Table 1. Statistics of PM10 concentrations, Microtox, MTT, OPDTT
V, and OPDTT

M results.

PM10
(µg/m3)

Microtox
(% Inhibition)

MTT
(% mortality)

OPDTT
V

(nmol/min*m3)
OPDTT

M
(pmol/min*µg)

Average
(min–max)

31.0
(11.3–53.9)

55.4
(30.5–70.2)

51.1
(33.7–65.8)

0.29
(0.15–0.45)

10.1
(6.9–15.7)

Median
(25th–75th)

32.1
(19.2–40.8)

59.7
(46.2–67.7)

52.4
(43.3–59.4)

0.28
(0.24–0.30)

9.0
(8.3–11.8)

3.1. Microtox Test Results

The Microtox test was performed for different exposure times (5, 15, and 30 min) and for different
dilutions of the extracts (1:1, 1:2, and 1:4) to test the eventual correlation between dose and effect.
The results for one of the samples are reported in Figure 2a.
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They show an increase of the inhibition for low dilutions (i.e., larger concentrations) going from a
range of 35%–45% (at the different exposure times) for the (1:4) dilution to a range of 61%–71% when the
sample is not diluted (1:1). Furthermore, the percentages of inhibition are increasing when the exposure
time increases. These aspects suggest that there is a clear, statistically significant, dose-response
relationship in observed percentages of inhibition of the Vibrio fischeri bioluminescence. In Table 1 the
statistics of the Microtox test results are reported for 30 min exposure. In all the samples analyzed,
a significant inhibition of the Vibrio fisheri bioluminescence was observed as a result of the exposure of
bacteria to the undiluted extracts, suggesting the presence in the PM10 of components able to induce an
ecotoxic effect. Four samples (samples n. 2, 3, 4, and 7) showed a percentage of inhibition ranging from
30% to 50%, ascribable to a slight toxic effect, while six samples (samples 1, 5, 6, 8, 9, and 10) showed a
percentage of inhibition above 50% suggesting the presence of a toxic effect. The correlation analysis
between PM10 concentrations and the Vibrio fischeri bioluminescence inhibition results (Figure 3a)
showed a significant positive correlation (Pearson 0.67, p < 0.05) for nine of the data pairs, while
one sample (sample number 6) was out of trend. Considering that the bioluminescence of V. fischeri
is sensitive to the exposure to a wide range of inorganic and organic pollutants [42], the obtained
results suggest that the chemical composition of the sampled PM can sensibly influence the ecotoxicity
of the PM.
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3.2. MTT Test Results

The dose-response relationship was investigated also for the MTT test exposing A549 cells to
different dilutions of the same extract. The results for one of the samples are reported in Figure 2b.
Results of MTT test showed a statistically significant dose-response relationship with mortality growing
from 2% (1:8 dilution) to 45% for the undiluted sample.

The statistics of the MTT results for cytotoxicity are reported in Table 1. In all the samples analyzed,
significant cell mortality was observed, ranging from 35% to 65% following exposure of the cells for
24 h to the undiluted samples. Four samples showed slight cytotoxicity (mortality below 50%, sample
numbers 3, 6, 8, and 9); while the other showed mortality higher than 50% (the maximum mortality
recorded was 65%). These results suggest the presence in the sampled PM of substances able to exert a
cytotoxic effect when exposed for 24 h to the cell model utilized. The correlation analysis between
PM10 concentrations and the MTT results on A459 cells (Figure 3b) showed a highly significant positive
correlation (Pearson 0.91, p < 0.05) for eight of the data pairs, while two samples (numbers 2 and 7)
were out of trend. The cytotoxic nature of PM is related to chemical composition and may be due to
the relative abundance of different components such as water soluble metals and organics [43], so that
different cytotoxicity could be associated to samples with equal PM10 concentrations.

3.3. Oxidative Potential Results

The average and median values of the OPDTT
V and OPDTT

M values are reported in Table 1.
The values found are comparable or slightly lower than the levels observed in other towns in Italy
and Europe [38,44–47] and USA [48–50]. The correlation analysis between PM10 concentrations and
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OPDTT
V shows a significant positive correlation (R 0.91, p < 0.05) with no samples out of trend. The OP

measured with DTT assay is mainly determined by quinones and transition metals, but several studies
indicate a correlation with other major components of PM [51], including primary and secondary
organic carbon [38] and water-soluble organic carbon (WSOC) [52]. The correlation with major PM
components likely drives the observed correlation between OPDTT

V and PM10 at a specific site. It must
be mentioned that nonlinear dependence of OPDTT

V with concentrations of specific metals (Cu and
Mn) was also observed [53].

3.4. Correlation between OP and Results of Bioassays

As mentioned in the previous paragraphs the endpoints of the toxicity bioassays are likely
sensitive to different chemical and physical properties of PM. In Figure 4a, the results of Microtox
inhibition and of MTT mortality, normalized by the PM10 exposure mass, are compared. Results
show a statistically not significant correlation. Normalized Microtox results are compared to intrinsic
OPDTT

M, showing a weak (statistically not significant) correlation (Figure 4b). Instead, there was a
clear correlation (Pearson 0.91, p < 0.05) between normalized MTT results and OPDTT

M (Figure 4c),
suggesting that likely similar factors influence the capacity of PM to induce ROS and the reduced
mitochondrial functionality, cell damage, and death as measured by the MTT test.
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IL-6 and TNF-α, and chemokine MIP-2). In Wang et al. [54], cytotoxicity of PM2.5, measured in terms
of the volume of air that kills 50% (LC50) of the cells (Chinese hamster ovary, cell line K1—AS52,
clone 11–4–8), was significantly correlated with DTT consumption. However, other methods for
OP estimation had a larger correlation. This was interpreted as a synergistic interaction between
organic compounds and metals which are not effectively captured measuring only DTT consumption.
Velali et al. [4] found a statistically significant association between mass-based DTT activity and
cytotoxicity of water-soluble PM (different size fractions) evaluated using MTT test on MRC-5 cell
lines. Furthermore, an association was found between OPDTT

M and LDH release cytotoxicity assay
(limited to wintertime samples) in two sites in Greece. Li et al. [8] showed a correlation between
in vitro DTT activity and HO-1 induction in RAW 264.7 cells and BEAS-2B cells (a transformed human
bronchial epithelial cell). Roig et al. [35] compared the results of the toxicity test of water-soluble PM10

collected in Spain using Microtox test on Vibrio fischeri bacteria and MTT test on A549 cells and found
no correlation similarly to the results reported here. This was interpreted as a consequence of the
different influence of the various chemical species on toxicity mechanisms in each cells typology.
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4. Conclusions

An analysis of PM10 health effect indicators has been performed using the a-celluar DTT assay for
the oxidative potential estimation, the Microtox® test on Vibrio fischeri bacterium for the ecotoxicological
potential evaluation, and the MTT assay on the cell line A549 for the cytotoxicological potential
assessment. The objective was to evaluate the correlation among acellular and in vitro tests results and
how these health-related indicators are correlated with atmospheric PM10 concentrations collected at
an urban background site in southern Italy.

Results indicated that toxicity bioassays showed time-dependent and dose-dependent outcomes.
Some samples presented significant ecotoxic and cytotoxic response and the correlation with PM10

concentration was limited suggesting that these health endpoints depend on PM10 chemical composition
and not only on particulate exposure concentrations. OPDTT showed values comparable with those
observed in other Italian and European urban background sites with and a statistically significant
correlation with PM10 concentrations.

MTT and Microtox outcomes were not correlated suggesting that the two toxicological indicators
are sensitive to different physical-chemical properties of PM10. Intrinsic oxidative potential OPDTT

M

(DTT activity normalized with PM10 mass) was correlated with mortality observed with the MTT
test (normalized with PM10 mass); however, it was not correlated with Microtox outcomes. Further
research is needed to fully understand its use; this result could suggest that acellular evaluation of OP
using DTT assay is an indicator of cytotoxicological effects of PM, at least on a proxy of the alveolar
type II pneumocytes of the human lung.
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