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Host susceptibility to respiratory tract infections (RTI) is dependent on both genetic

and acquired risk factors. Repeated bacterial and viral RTI, such as pneumonia from

encapsulated microorganisms, respiratory tract infections related to respiratory syncytial

virus or influenza, and even the development of bronchiectasis and asthma, are

often reported as the first symptom of primary immunodeficiencies. In the same way,

neutropenia is a well-known risk factor for invasive aspergillosis, as well as lymphopenia

for Pneumocystis, and mycobacterial infections. However, in the last decades a better

knowledge of immune signaling networks and the introduction of next generation

sequencing have increased the number and diversity of known inborn errors of immunity.

On the other hand, the use of monoclonal antibodies targeting cytokines, such as

tumor necrosis factor alpha has revealed new risk groups for infections, such as

tuberculosis. The use of biological response modifiers has spread to almost all medical

specialties, including inflammatory diseases and neoplasia, and are being used to target

different signaling networks that may mirror some of the known immune deficiencies.

From a clinical perspective, the individual contribution of genetics, and/or targeted

treatments, to immune dysregulation is difficult to assess. The aim of this article is to

review the known and newly described mechanisms of impaired immune signaling that

predispose to RTI, including new insights into host genetics and the impact of biological

response modifiers, and to summarize clinical recommendations regarding vaccines and

prophylactic treatments in order to prevent infections.
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EPIDEMIOLOGY AND PATHOGENESIS OF
RESPIRATORY TRACT INFECTIONS

Acute and chronic respiratory tract infections (RTI) are one
of the most frequent causes of infections and antimicrobial
prescription, and the leading cause of death in developing
countries (1, 2). Pneumonia accounts for 1.3 million deaths
annually in children <5 years of age (3). In 2017, 1.6
million people died of tuberculosis (TB). Children (aged <15
years) accounted for 15% of total deaths, higher than their
share of estimated cases, suggesting poorer access to diagnosis
and treatment. About 1.7 billion people, 23% of the world’s
population, are estimated to have a latent TB infection (4).
The control of latent TB, a stage in which a person is
infected with Mycobacterium tuberculosis plays an important
role in disease control, since dormant bacilli are a reservoir
of potential TB cases (5). Viral acute RTI are estimated to
cause 75% of acute diseases in children, and is the main
reason for hospitalization worldwide (6). The annual prevalence
in an otherwise healthy child is from 3 to 10 infections
(7). Early and recurrent lower RTI are linked to a higher
risk to develop asthma or bronchiectasis (8–10). However,
bronchiectasis secondary to recurrent and severe infections alone
have declined, with an increasing proportion of patients being
recognized as having underlying conditions predisposing to its
development (11).

Improvements in immunization programs and the wide
availability of antimicrobials, have led to optimism for most of
the devastating infectious diseases. Always without forgetting

that alleviation of poverty is crucial, the combination of genetic
versatility and ecological opportunism of the microbial world
appears to have been under-estimated (12). Some emerging
pathogens, such as Legionella, avian influenza, and coronavirus
species were described in the past decades (13). Ethnic variations
in the incidence of RTI have also been reported, suggesting
genetic susceptibility to disease (14). Most children, on reaching
2 years of age, have been in contact with the most common
respiratory viruses, such as respiratory syncytial virus (RSV),
but while some develop a mild disease, others develop severe
bronchiolitis (15). Influenza viruses cause mild to moderate
respiratory illness in most people, but some develop fatal
infections. The virulence factors encoded by viral genes can
explain seasonal or geographical differences at a population level,
but are unlikely to account for inter-individual clinical variability
(16). TB outcome depends on the pathogen and extrinsic
elements, as well as on host factors that are still unclear (17).

As regards bacteria, focusing on those species whose normal
ecological niche is the airways, therapeutic decisions are a
daily clinical challenge (18). The shift from commensalism
to infection is shaped by host intrinsic (genetics) and
extrinsic factors (for example, diet and exposure to
cigarette smoke and environmental pollution) and by
bacterial features that also contribute to inter-individual
variability (19). Bacteria develop adaptive mechanisms
(at genetic/phenotypic level) in order to survive in a
hostile environment, such as the respiratory tract (20, 21).
Whether pathogen virulence generates clinical symptoms
depends on how well the immune system limits its impact.

Recently, changes in gut and lung microbiome composition
(dysbiosis) have also been related to dysfunctional immune
modulation (22).

IMMUNE RESPONSE TO RESPIRATORY
TRACT INFECTIONS

Respiratory immune responses are complex, and inborn errors
can be present at any level. Essential pathways can be
summarized as follows: Firstly, the pathogen has to be detected
by host cells. This identification relies on a set of pathogen
associated molecular profiles that bind to pattern recognition
receptors (PRR). PRR can be found as transmembrane,
cytosolic or extracellular components. Among PRRs, it is
important to mention toll-like receptors (TLR), nucleotide-
binding oligomerization domain-containing (NOD) receptor,
NOD-like receptors (NLR), RIG-I-Like Receptors (RLR), and
receptor CD14 because of their importance during respiratory
infections (23). Depending on the PRR, different intracellular
signaling pathways are activated (24). Most of the signaling
pathways converge on signaling hubs, such as transcription
nuclear factor κβ (NF-κβ), interferon regulatory factor families
(IRF3, IRF7), and mitogen-activated protein kinase, leading to
the induction of gene expression encoding adhesion molecules,
pro-inflammatory cytokines, chemokines, and type I interferon,
among others. NLRs directly trigger inflammasome assembly
and caspase-1 activation, leading to interleukin (IL)-1β and IL-
18 processing (25). Type III interferons, also termed IFN-λ,
have been recently identified as regulators of immunity and
homeostasis in the respiratory tract (26) during infections,
as well as during chronic lung diseases, such as asthma and
chronic obstructive pulmonary disease (COPD) (27). Alveolar
macrophages and dendritic cells (DC) have an important role
sensing microbes and thus activating lung epithelial cells and
neutrophils. These are essential for the defense against bacteria,
viruses, and Aspergillus (28, 29), as well as in the pathogenesis
of acute lung injury. In a recent study, patterns of differentially
expressed cellular genes shared by several respiratory pathogens
were searched using transcriptomics (30). Most of the commonly
up-regulated host genes were related to the innate immune
response and/or apoptosis, with Toll-like, RIG-I-like, and NLR
among the top 10 signalers. Some of the genes showed a high
degree of interconnection and possible redundancy to respiratory
viral and bacterial infections. The adaptive immune response
requires the activation of antigen-specific T and B lymphocytes
to trigger protective cellular and humoral responses. Most
of the T lymphocyte subsets, along with B lymphocytes and
DC, are essential for immune defense and/or regulation (31).
In particular, the protective immunity against M. tuberculosis
depends on CD4+ T-helper1 lymphocytes that mainly secrete
interferon-gamma (IFN-γ), IL-2, and tumor necrosis factor
alpha (TNF-α), which leads to macrophage activation, cytokine
production, and bacterial control (32). HIV-revealed T-cell
lymphopenia as a well-defined risk group for Pneumocystis
jirovecii pneumonia (PJP), but also in other situations where
CD4 lymphocyte count is lower, such as renal transplant
recipients (33).
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GENETIC SUSCEPTIBILITY TO
RESPIRATORY TRACT INFECTIONS

The study of susceptibility to lower respiratory tract infections is
complex, and requires different approaches. There are three main
elements playing a role: host genetic background (in relation
to lung tissue functionality and immune response), pathogen
virulence determinants, and environmental factors.

Early life (children under 5 years of age) is a challenging
period because pulmonary tissue and the immune system
are still in a maturation process while being continuously
exposed to airborne antigens (34). However, the occurrence
of life-threatening bacterial/viral/fungal infection in an
otherwise healthy individual deserves further immunological
and genetic studies (35, 36). Complications during upper
RTI include sinusitis and otitis media, and in the lower
airways, pneumonia, bronchitis, as well as the development
of bronchiectasis, interstitial lung diseases, organizing
pneumonia, and hyperreactive airway diseases (37). Indeed,
genetic susceptibility for the concomitant illnesses that
predispose to RTI can also play a role, including congenital
defects of the airways, familial congenital bronchiectasis or
tracheobronchomegaly (11). As regards impaired mucociliary
clearance, cystic fibrosis is the most common autosomal recessive
disorder and primary cause of bronchiectasis in the developed
world. Mutations are well-defined, but its severity is influenced
by genes involving inflammatory and anti-inflammatory
mediators (38, 39). Other disorders include ciliopathies and
disorders of humoral immunity. Alpha 1-antitrypsin is a
circulating serine protease inhibitor (serpin) made in the
liver that plays an important role in modulating immunity,
inflammation, apoptosis, and possibly cellular senescence
programs and its deficiency is considered the genetic cause
of COPD, but there are other genetic factors that may affect
disease activity and outcomes, even in patients without this
deficiency (27).

High-throughput whole genome sequencing technologies
and novel bioinformatics tools are revealing the sequence
and annotation of the complete human genome, as well as
genome-wide maps of polymorphic microsatellite markers and
single nucleotide polymorphisms (SNP). In order to characterize
genetic susceptibility, two complementary approaches can be
envisaged: whole genome association studies (WGAS) for the
identification of variants with high population frequency but low
impact at individual level in terms of risk of infection (although
SNP identification can potentially be later included in healthcare
planning protocols); and mechanistic studies for identifying
disease-causing mutations with deleterious effects, related to a
high risk of infection at individual level, although its frequency
in general population is low. Many genetic variants have been
associated with complex human diseases and traits, but often
confer relatively small increases in risk (40). According to a recent
review, there are more than 300 primary immunodeficiency
disorders (PIDs), most of them monogenic conditions with
Mendelian inheritance, that are mainly associated with crucial
defects in adaptive immunity (31). Innate immune responses are
largely redundant, with pleiotropic nature of some gene products

(31), thus most of the defects can be potentially counterbalanced.
According to the literature, there is another view suggesting
that while patients with broad immunodeficiencies may present
with one of their many infections, the phenotype of particular
inborn errors of immunity is very narrow, with susceptibility to
only one specific infection (36, 41, 42). A set of inborn errors
affecting “primarily” innate immunity, exercise their effect on
the adaptive immune response (41). The range and nature of
infections depend on several factors. The improving recognition
of immune dysregulation diseases, autoinflammatory disorders,
and interferonopathies leads to changes in terminology. The
annual report of the authoritative International Union of
Immunological Societies (43) has categorized and listed (as of
February 2017) 354 inborn errors of immunity, and those with
a predominant RTI phenotype have been included in Table 1.

Despite the limitations of molecular genetic studies in
pulmonary infections, several associations have been described
between SNPs and bacterial pneumonia and mycobacterial
infections (14, 45). Polymorphisms affecting community-
acquired pneumonia including, among others, those related
to mannose-binding lectin and the IgG2 Fc gamma receptor
II, and are discussed extensively elsewhere (14). The genetic
contribution for the propensity to develop severe RSV infection
was estimated to account for∼20% of the variance in RSV disease
severity. Several studies have attempted to link candidate host
SNPs to disease severity, mostly in chemokine receptors and
PRRs (46, 47).

As regards TB, SNPs are frequently found in loci involving
TLR-2, TNF-α, IL-12, and IFN-γ, and their corresponding
receptors (45). Genetic variations in dendritic cell-specific
ICAM-3 grabbing non-integrin have been linked with
reduced risk of developing TB (48). Mendelian susceptibility
to mycobacterial disease is a syndrome characterized by
susceptibility to weakly virulent mycobacteria, including the
attenuated vaccine Bacillus Calmette-Guerin (BCG) strain
and non-tuberculous mycobacteria (NTM). Different gene
mutations have been identified, most of which are related
to IFN-γ-mediated immunity (49–51). Using exome and
transcriptome sequencing, three rare loss-of-function variants
have been recently characterized in theIFIH1 gene. These encode
a RIG-I-like receptor involved in the sensing of viral RNA (52).
The deficiency causes a primary immunodeficiency manifested
in extreme susceptibility to common respiratory RNA viruses.
Interestingly, human primary immunodeficiency disorders (PID)
affecting T and B cells were not found to predispose to severe
influenza. However, human IRF7 was shown to be essential for
IFN-α/β- and IFN-λ-dependent protective immunity against
primary influenza in vivo (53).

IMPACT OF BIOLOGICAL RESPONSE
MODIFIERS IN RESPIRATORY TRACT
INFECTIONS AND TUBERCULOSIS

Biological response modifiers (BRM) are substances that interact
with and modify the host immune system by acting on
a therapeutic target considered important in the pathogenic
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TABLE 1 | Reported risk of infection and recommended prophylaxis according to functional classification of biologicals-based on ESCMID consensus document (44) and

to categorization of inborn errors of immunity-based on International Union of Immunological Societies annual report (43).

Reported risk of infection Recommendations

TB

screening

and

prophylaxis

Pneumocystis

prophylaxis

Pneumococcal/

capsulated

bacteria

vaccination

Influenza

vaccination

TARGETED AGENT

Anti-tumor necrosis factor-α

agents

Two to four increase in the risk of active TB compared to

healthy patients and other granulomatous conditions

Rate of Legionella 37-fold higher. Histoplasmosis

and coccidioidomycosis

Yes No Yes Yes

Interleukins, immunoglobulins

and complement factors

IL-1 family, moderate risk of infection,

IL-6 and IL-6 receptor (JAK), similar to TNF. Neutropenia in

some cases

C5 targeted, Aspergillus encapsulated bacteria, specially

Neisseria,

IL-17 upper respiratory tract infections and Candida

IgE helminth infection, Strongyloides

Yes No Yes Yes

Cell surface

receptors/associated signaling

pathways

Drug induced neutropenia

Skin and soft tissue infections and sometimes pneumonia

Overall risk of infection low for epidermal growth factor

Optional No Age

appropriate

Yes

Intracellular signaling pathways Increased overall risk of infection, cytomegalovirus and

hepatitis B reactivation

Difficult to distinguish from the risk of the underlying disease

Cases of Pneumocystis, invasive fungal infection nocardiosis,

mainly JAK

Yes Yes Age

appropriate

Yes

Lymphoid cells surface antigens

(CD19, CD20, CD52)

Can cause IgG hypogammaglobulinaemia and neutropenia

Evidence of catheter related bacteremia, severe respiratory

tract infection, hepatitis B reactivation and varicella zoster

Yes Yes Age

appropriate

Yes

Lymphoid/Myeloid cells surface

antigens (CD22, CD30, CD33,

CD38, CD40, SLAMF-7, CCR4)

Similar to anti CD20 Optional Yes Age

appropriate

Yes

Immune checkpoint inhibitors,

cell adhesion inhibitors,

sphingosine-1-phosphate

receptor modulators and

proteasome inhibitors

Associated T cell lymphopenia but no opportunistic infections

reported

Risk of varicella zoster virus

Yes Yes Yes Yes

INBORN ERRORS OF IMMUNITY

Severe combined immune

deficiency:

Severe opportunistic disseminated infections in early

childhood

Non-

applicable

Yes No No

(cohabitants)

Less severe combined immune

deficiency

Some related to recurrent respiratory tract infections Optional Yes Yes Yes

Combined immune deficiencies

with syndromic features

e.g., Wiscot Aldrich and those

altering DNA reparation

Recurrent infections Optional No Yes Yes

Humoral immune deficiencies

Antibody deficiencies

Repeated respiratory tract infections (pneumonia, sinusitis,

otitis, …)

Optional No Yes Yes

Defects of phagocyte number or

function

Fungal and bacterial infections, pulmonary abscesses,

aspergillosis

No No Yes Yes

Defects in intrinsic and innate

immunity

Pyogenic bacterial infections In

selected

cases

No (*) Yes Yes

Autoinflammatory diseases No clear predisposition to infection No No Yes Yes

Complement deficiencies Disseminated infections (meningitis/sepsis) by capsulated

microorganisms and Neisseria

No No (*) Yes Yes

*Antibiotic prophylaxis to prevent bacterial infections.
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process of the disease. Monoclonal antibodies (mAbs) are
now established as therapies for malignancies, transplant
rejection, several immune disorders from most organ systems,
and even infectious diseases (54). Safety problems related to
immunomodulation and infection have been identified in some
cases (55). The use of mAb indirectly provides insights into
the function of the molecule to combat particular pathogens,
increasing our knowledge of the immune system (56). A
recent consensus document has reviewed the groups of drugs
according to the targeted site of action, the expected impact
on susceptibility to infection, the evidence of risk, and the
recommendation of prevention strategies. It is also important
to mention the influence of previous or concomitant therapies,
underlying conditions, and the accumulative exposure to the
agent (44). As regards lower RTI, treatment with BRM results
in an increased risk is reported for pneumonia, influenza-
related complications, TB and NTM, Pneumocystis, and fungal
infections, such as histoplasmosis, taking into account the impact
of geographical variations on incidence rates (57). The knowledge
obtained from experience with the prescription of BRM may
be particularly valuable for the understanding of some genetic
inborn errors, as the type of infections acquired as a side effect
may help to identify which genetic defects favors a similar
infectious phenotype.With the current knowledge and because of
pleiotropic effects, it is not feasible to show how biological agents
actually mimic some inborn errors of immunity, but several
parallelisms can be inferred. We provide a Table containing
the list of BRM according to their functional classification,
and inborn errors categorized according to common infectious
phenotypes (Table 1). Data presented are extracted from the
respective consensus documents, and lists the main RTI and
preventive recommendations.

Current recommendations should be focused on rheumatic
diseases because of the greater experience in follow-up time
(more than 15 years) and number of patients treated. Biological
therapies targeting TNF-α, T cells, B cells, and various
cytokines (including IL-6 and IL-1) have become essential
for the treatment of rheumatic diseases [mainly rheumatoid
arthritis (RA), ankylosing spondylitis, and psoriatic arthritis], as
well as other immune-mediated diseases. Moreover, additional
drugs with novel targets, including those that inhibit IL-12–
IL-23, IL-17α, or the Janus activating kinase system have
been introduced more recently. Immunomodulation offered
by biological and non-biological disease-modifying therapies
and prednisone contributes greatly to the increased risks of
opportunistic infections (OI) (58, 59). In Figure 1 we present
the sites of action and associated risks of the most frequently
prescribed BRM.

Two recent meta-analysis have calculated the relative risk
of infection for rheumatic patients under biological treatment,
with an odds ratio (OR) of 1.31–1.41 (60, 61). The absolute
increase in the number of serious infections per 1,000 patients
treated/year is six times higher than that observed with synthetic
disease-modifying anti-rheumatic drugs (DMARDs). Different
meta-analyses and national registries have confirmed the increase
on the impact of any infections (20%), serious infections (40%),
and TB (250%), associated with anti-TNF-α use (60). In addition,

the risk of serious infections is highest during the first 6
months of therapy (62) (up to 4.5-fold risk), although, after
1 year this risk is no different from conventional DMARDs.
Recurrent infections in RA are common. In a prospective
observational cohort study, the baseline annual rate of a first
serious infection was 4.6%. Additionally, 14% of this cohort
experienced a recurrent episode/year during their follow-up,
with the highest risk being within the first year (29%), and
with respiratory infections being the most common (44% of
all episodes) (63). Factors that have shown to be predictive of
infection include, age, functional status, specific comorbidities
(chronic renal/lung disease), corticosteroid treatment, number
of previous DMARD, treatment failures, previous serious
infections, and current treatment with anti-TNF-α inhibitors or
non-biological DMARDs (64). Nevertheless, recent data suggest
that patients having a serious infection and exposed to biological
treatment have a significantly lower risk of sepsis and fatal
outcome than patients treated with conventional DMARDs
(62, 65). British and French national biological registries have
reported OI rates of 200–270/100,000 in patients using anti-
TNF-α therapies (66, 67). In particular, there is evidence of
an increased risk of M. tuberculosis, herpes zoster, and Listeria
infections. The overall incidence of OI is not significantly
different considering drug classes; however, the rate of PJP
is significantly higher in those patients using rituximab in
comparison to anti-TNF-α therapy. The absolute risk of PJP
is low, although corticosteroid exposure is a strong predictor.
Current data do not support PJP prophylaxis for all rituximab
users. However, it may be appropriate in certain high-risk
individuals. Furthermore, rituximab-associated neutropenia and
impaired antibody response is also well-described.

Pre-clinical and clinical evidence indicate that anti-TNF-
α therapy (infliximab, adalimumab, golimumab, certolizumab
pegol, and etanercept) is associated with a 2- to 4-fold increase
in the risk of active tuberculosis and other granulomatous
conditions. Risk seems to be lower for etanercept (68). Risk
also depends on local TB prevalence: in the year 2000,
Spanish investigators reported an estimated TB incidence of
1,893/100,000 person-years in patients with RA treated with
infliximab (69). This rate is ∼10- to 20-fold higher than the
observed rate in naïve patients. These rates have decreased
dramatically since the establishment of latent tuberculosis
infection (LTBI) screening prior to biological therapy (67,
70). It is essential to rule out LTBI in such individuals in
order to reduce the risk of active TB reactivation. Interferon-
gamma release assays (IGRAs) are useful tools for LTBI
diagnosis. They are more specific than the tuberculin skin test
(TST) because they do not show cross-reactivity with BCG-
vaccination or NTM sensitization (71–73). Moreover, these in-
vitro assays incorporate a mitogen control that can detect the
presence of anergy, common in patients on immunosuppressive
therapy (74). However, the clinical performance of IGRAs
is still controversial due to the variety of concomitant
immunosuppressive drug-regimens used at the time of LTBI
screening, population heterogeneity, and the severity of the
disease itself (75). Therefore, the clinical accuracy of IGRAs
seems to be differentially affected depending on the specific type
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FIGURE 1 | Mode of action of biological response modifiers (BRM) according to cell type, cytokine and/or receptor targeted. Risk of developing infections according

to the BRM considered is also shown. List of BRM. Anti-tumor necrosis factor-α (TNF-α) agents. ADA, adalimumab; CTZ, certolizumab; GLM, golimumab; IFX,

infliximab; ETN, etanercept. Anti-interleukins, immunoglobulins, and complement factors. Anti IL-1, anakinra ANK; Anti IL-6: TCZ, tocilizumab; Anti IL-17: SCK,

secukinumab; IXE, ixekizumab; BRD, brodalumab. Anti-IL12/23: USK, ustekinumab. Cell surface receptors/associated signaling pathways agents. Anti-CD28: ABT,

abatacept; B-cell activating factor (BAFF): BLM, belimumab. Lymphoid cells surface antigens. Anti-CD20: RTX, rituximab. mAb, monoclonal antibody; PEG,

polyethylene glycol; TB, tuberculosis; LTBI, latent tuberculosis infection.

of immune disorder. Crohn’s disease and/or its concomitant
drug-profile (such as azathioprine or high-dose corticosteroids)
could negatively affect the clinical performance of IGRAs
when compared with other immune-mediated diseases, such
as psoriasis or inflammatory rheumatic diseases (76). Thus, it
seems prudent and convenient to perform dual LTBI testing
with TST and IGRAs (77). Patients with RA and underlying
structural lung diseases are at increased risk of developing

NTM infection (78), mostly Mycobacterium avium. In some
countries, NTM infections are more common than TB after
anti-TNF-α treatment. However, there are still no established
recommendations as regards screening and prophylaxis (79). A
baseline chest x-ray should be recommended prior to starting
therapy, and in patients with chronic unexplained cough, further
work-up should include chest computed tomography scans and
culture of respiratory specimens.
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Immunization strategies are recommended for all cases,
regardless of whether the patient has PID or is receiving
immunosuppressive treatment, and it is of importance
to be vaccinated according to the national immunization
routine schedules. For patients with anti-TNF-α treatment,
pneumococcal and age-appropriate anti-viral vaccinations
(i.e., influenza) should be administered (68). Immunization
before and after BRM is well-established as regards
inactivated vaccines, and precautions should be taken for
live vaccines (57). However, even if response to vaccines is
impaired in patients with PID (80), it may have an effect
in patients receiving some BRM. This may be partially
explained by the concept of trained immunity-based
vaccines (81).

In conclusion, RTIs belong to the most common causes
of infections in humans worldwide. The genetic contribution
to severe RTIs may have been masked by other interventions
(82). The inborn errors of innate immunity show us that
the absence of a measurable immunological defect does
not exclude an immunodeficiency (41). Further functional
genetic studies are necessary in order to fully validate
the impact of host genetics during lung infections. The
knowledge obtained from experience with the prescription
of BRM may be particularly valuable, as the infections
acquired as a side effect may help to identify genetic
defects with a similar infectious phenotype. In the meantime,
recommendations based on biological rationale and clinical

experience are mandatory in order to prevent re-emerging
severe infections.
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