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Abstract 

A paradigm shift has to be realized in future energy systems with high shares of renewable energy 

sources. The electrical demand has to react to the fluctuating electricity generation of renewable 

energy sources. To this end, flexible electrical loads like electric heating devices coupled with thermal 

storage or electric vehicles are necessary in combination with optimization approaches. In this paper, 

we develop a novel privacy-preserving approach for decentralized optimization to exploit load 

flexibility. This approach, which is based on a set of schedules, is referred to as SEPACO-IDA. The results 

show that our developed algorithm outperforms the other approaches for scheduling based 

decentralized optimization found in the literature.  Furthermore, this paper clearly illustrates the 

suboptimal results for uncoordinated decentralized optimization and thus the strong need for 

coordination approaches. Another contribution of this paper is the development and evaluation of two 

methods for distributing a central wind power profile to the local optimization problem of distributed 

agents (Equal Distribution and Score-Rank-Proportional Distribution). These wind profile assignment 

methods are combined with different decentralized optimization approaches. The results reveal the 

dependency of the best wind profile assignment method on the used decentralized optimization 

approach.  

Keywords: Demand response, Decentralized optimization, Smart grid, Wind and PV integration, 

Electric heating, Electric vehicles 

1 Introduction 

As the share of volatile renewable energy sources (RES) like photovoltaics (PV) and wind energy has 

been increasing in Europe, there is a strong need for demand response to balance demand and supply 

[1]. Especially electric vehicles (EV) and electric heating devices coupled with thermal storage can react 

to the intermittent electricity production from RES in residential areas by providing the needed 

flexibility [2, 3]. Coupling the electricity sector with the heat and transport sector is a vital step towards 

using high shares of RES [4]. The demand for heat is the main energy demand in residential areas in 

most countries. Electic heating devices can use existing infrastructures like hot water tanks or the 

inertia of building mass to store energy. Thus, their operation can be shifted to times with high 

generation by RES without affecting the residents’ comfort level.  

Advanced measurement devices like smart meters and intelligent monitoring and control strategies 

transform the conventional electricity grid into a smart grid [5]. A smart grid can reduce the curtailment 

of RES and thus increase the self-consumption rate of locally generated RES. In the year 2018, around 
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5.4 GWh of electricity production from RES were curtailed in Germany [6]. Wind energy caused about 

97 % of the curtailed energy, while the share of PV was approximately 2 %. Furthermore, intelligent 

control approaches can lower the peak load in local grids and thus reduce the stress on the 

transformers.    

Centralized scheduling-based optimization (CO) is often applied in the literature to exploit the electric 

load flexibilities in residential areas [7]. In CO, a central unit generates schedules for all buildings in a 

residential area based on demand and generation forecasts and directly controls the flexible devices. 

While CO leads to the overall best results, it has many significant disadvantages that make its 

application difficult in real-world scenarios. CO approaches infringe on the privacy of the inhabitants 

[8, 9] and have a high computational complexity due to the NP-hardness of scheduling problems [10]. 

Moreover, CO approaches are not robust against single-point failures and cyber-attacks [9, 11]. 

Decentralized optimization (DO) approaches, on the contrary, do not depend on a central control unit. 

Each building only optimizes its own goal based on local information. DO approaches have a higher 

level of robustness and lead to increased data-privacy while having reduced computational complexity 

[8, 11]. However, uncoordinated DO of the single buildings without any interaction with the other 

buildings in a residential area leads to results that are far away from the optimum for the entire system 

[9].       

This paper has two main contributions. The first one is the development of a novel coordinating DO 

approach for scheduling-based optimization. We compare our approach to existing ones from the 

literature, to CO, and to a conventional control approach that is used nowadays. Moreover, we 

introduce and investigate methods for assigning central wind power profiles to the local optimization 

problems of different buildings in a residential area. For a large-scale analysis of the developed 

methods in a variety of scenarios, we use a multi-objective optimization problem that exploits the 

flexibility of electric heating devices and EVs. This paper is structured as follows: In Section 2, we sum 

up the related work, and in Section 3, we describe the residential area for our case study and the 

optimization problem. Section 4 introduces the novel DO approach and wind assignment methods. We 

show the results of our case study in Section 5 and summarize the paper in Section 6.  

 

2 Related Work 

We use scheduling-based approaches for exploiting the flexibility of electric heating devices and EVs 

in this study. These approaches determine an optimal schedule for the operation of the flexible device 

as the output of an optimization problem. We found several DO approaches for demand response in 

the literature. Commonly used techniques are decomposition methods [12–15]. A single optimization 

problem is broken down into multiple smaller optimization problems when using decomposition 

approaches. This process has to be carried out by a central control unit that defines the optimization 

problems for the decentralized agents.  

Braun et al. [12] and Worthmann et al. [16] use hierarchical model predictive control to coordinate the 

DO of different agents, and Menon et al. [17] use distributed model predictive control for demand 

response. The authors of [8, 9, 18, 19] use approaches where no central control unit is present. For the 

approach introduced by Chang et al. [19], the buildings need to exchange consumption and generation 

data, which interferes with the privacy of the residents [12, 16]. Ramchurn et al. [18] use a time-

dependent price signal and a coordinative optimization mechanism to reduce the costs and the peak 

load of multiple buildings in a decentralized way. The DO algorithms in [8, 9, 20, 21] are based on 

creating and coordinating a set of schedules for the local optimization problems of different buildings.   



 

 

While a central control unit is necessary in [20, 21], the DO approaches by Kolen et al. [8] and Dengiz 

et al. [9] are based on a set of schedules and do not need a central controller. Kolen et al. introduce a 

two-stage approach to exploit the flexibility of electric heating devices. In the first step, every agent 

creates a pool of (near-) optimal schedules by solving their local optimization problems.  The buildings 

afterward coordinate the selection of the individual schedules to optimize a common goal in the local 

grid. Dengiz et al. extend the coordinating algorithm by Kolen et al. and define a procedure to generate 

a diverse set of schedules for the problem of maximizing the self-consumption rate of locally generated 

RES. As we saw potential for improvement, we introduce a novel DO approach in this paper that is 

based on the coordination mechanism by Kolen et al. and the approach by Dengiz et al. for generating 

diverse solution sets.  

Several studies also apply decomposition methods [11, 22, 23] to use wind energy for demand 

response in a decentralized way. In [24, 25], the authors use load aggregation methods to aggregate 

the electrical load and the demand response capabilities of multiple residential buildings to participate 

in the electricity market. Xu et al. [25] use a stochastic day-ahead economic dispatch model to improve 

the utilization of wind energy. Shao et al. [24] develop a real-time demand response exchange market 

that is capable of balancing short-term fluctuations of wind power. In addition to the novel approach 

for coordinating DO, we introduce methods that distribute the whole wind power profile of a 

residential area to the local optimization problems of different buildings. To the best of our knowledge, 

this is the only study that investigates methods for assigning wind power profiles to decentralized 

agents that apply coordinating DO approaches based on a set of schedules.  

3 Optimization problem for the residential area of our case study 

In this section, we describe the optimization problem for the residential area of our case study. The 

different building types with their corresponding heating systems are shortly described in Section 3.1, 

and the multi-objective optimization problem for exploiting the load flexibility potentials is explained 

in Section 3.2.  

3.1 Different building types and heating systems  

The residential area in our case studies consists of three different building types that all represent 

single-family buildings. Building type 1 and building type 2 have a high insulation level and use an 

underfloor heating system (for space heating) and a hot water tank (for domestic hot water) as thermal 

storage. Building type 1 uses a non-modulating ground-source heat pump and building type 2 uses a 

modulating air-source heat pump. Buildings belonging to the third category have a mediocre insulation 

standard and use a combined storage system for space heating and domestic hot water. Their primary 

heat source is a gas boiler. In addition to that, a modulating electric heating element is used in the 

combined hot water tank.  

Figure 1 displays a schematic view of the residential area’s local grid. Some buildings are equipped with 

a PV system and some have EVs that are charged at home. Furthermore, a wind turbine is connected 

to the local grid. All buildings use an energy management system (EMS) for controlling the flexible 

heating systems and the charging of the EVs. A transformer connects the local grid to other grid levels.  

Table A.1 (Appendix) lists the parameters of the heating systems and the EVs in the residential area. In 

Section 5.1, we describe how we generate the scenarios for our case study. We use the software tool 

synPRO that generates realistic synthetic data for the load profiles (demand for electricity, space 

heating, and DHW) and PV generation [26].  



 

 

 

Figure 1: Local grid of the residential area 

 

3.2 Multi-objective optimization problem 

The buildings in the residential area solve an optimization problem with two objectives. The first goal 

is to minimize the surplus energy �� and thus to maximize the self-consumption rate of locally 

generated RES. Further, the buildings intend to minimize their peak loads �����. To determine an 

optimal schedule for the electric heating devices and the EVs, each building solves a multi-objective 

optimization problem. Eq. (1) shows the objective function for the individual buildings. We combine 

the two objectives by using a weighted sum approach. Thus, the objective space is transformed into a 

one-dimensional space and we can apply conventional algorithms for solving single-objective 

optimization problems [27]. We multiply the two objectives by the two weights �	 and �
 that sum 

up to one. To avoid biases caused by different scales of the objectives, we divide each of the objective 

variables (�� and �����) by their corresponding normalized values (����� and ����
���� ). These values 

represent the optimal solution for each of the two objectives if the weight of the other objective is set 

to zero. They are obtained by solving two auxiliary single-objective optimization problems separately 

prior to the basic optimization problem with the two objectives. 
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 The optimization problems have the following constraints: 

• Temperature limits of the buffer storage 

• Volume limits of the hot water tank 

• Heat pump cannot heat up both storages of a building simultaneously (building types 1 and 2) 

• Power constraint of the heating device 

• Power and availability constraint for charging the EV 

• State of charge (SOC) limitation constraints for the EV 

The following variable definitions are part of the optimization problem: 

• Amount of surplus energy 

• Power of RES (wind and PV) 

• Peak load 

• Difference equation for the temperature of the buffer storage (building types 1 and 2) 

• Difference equation for the volume of the hot water tank (building types 1 and 2) 

• Difference equation for the energy content of the combined storage (building type 3) 

• Difference equation for the SOC of the EV 

The coordinating DO approaches of Section 4.2 require the buildings to have not only one schedule 

but a set of multiple schedules. We use the method introduced in [9] to generate a diverse solution 

pool that leads to much better results than the conventional procedure of commercial solvers to collect 

and store the solutions found during the optimization. For this purpose, all buildings have to solve 

another optimization problem that maximizes the diversity of a new solution to a given optimal 

schedule. The full commented mathematical representation of the basic problem (described in this 

section) and the diversity maximization problem (described in [9]) for all three building types can be 

found at the data repository hosting the supplementary materials for this paper [28]. Moreover, we 

uploaded the commented code (written in the modeling language GAMS) for all optimization problems 

used in our study.  

 

4 Decentralized optimization   

We describe methods for assignment of wind power to buildings in Section 4.1. In Section 4.2, we 

explain two coordination approaches for decentralized optimization from the literature and introduce 

a novel approach that is based on the two other ones.  

4.1 Methods for assignment of wind power to decentralized agents 

To assign a central wind power profile to the local optimization problems of different buildings, we 

propose and investigate two simple methods. Figure 2 illustrates these two methods for the 

distribution of an entire wind power profile to five buildings. The upper diagram shows an exemplary 

profile of a small wind turbine that should be distributed to the different buildings such that they can 

incorporate the generated wind power into their optimization procedures. The left-hand picture 

depicts the assignment when using the Equal Distribution (ED) method. The entire profile is equally 

distributed to the five buildings. Eq. (2) shows the formula to calculate the wind power assigned to 

building �.  For every time slot �, the power value of the entire wind power profile ��
���������� is 

divided by the number of buildings. Thus, each building gets an equal share of wind energy. The 

buildings include these assigned profiles in their local optimization problems by adding the 

corresponding values to their PV generation profiles.  
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The picture on the right-hand side of Figure 2 shows the Score-Rank-Proportional Distribution (SRPD) 

method. In the first step, a score is calculated for every building by using Eq. (3). The power of the 

building’s electric heating device ��
/��0��0��1�����2

 and the power for the EV charging station 

��
/345�2��2

 are subtracted from the peak power of the PV system ��
�3����. This score roughly 

quantifies the expected self-consumption rate of locally generated PV. Buildings that have a high score 

are more likely to generate surplus energy since their flexible electrical demand might not match their 

PV generation. As all information from the buildings is static, there is no need to measure any data 

from the buildings or to monitor demand profiles, which would infringe on the residents’ privacy. In 

the next step, the buildings are ranked according to this score. The building with the highest score gets 

the highest rank and the building with the lowest score gets the lowest rank. In the example of Figure 

2, building 5 has the lowest score and thus the lowest rank (67&89 = 5) and building 1 has the highest 

score and thus the highest rank (67&8	 = 1). SRPD uses Eq. (4) for assignment of the wind power 

profiles to the buildings. The entire wind power for each time slot is divided by the sum of ranks (in 

this example, the sum of ranks is ∑ 67&8�
<
� = 1 � 2 � 3 � 4 � 5 = 15). This value is then multiplied 

by the rank of the building which leads to an assignment of more wind power to buildings with lower 

ranks, as is illustrated in Figure 2. We evaluate the two methods SRPD and ED in Section 5.2. 
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Figure 2: Two methods for assignment of wind power to buildings 

4.2 Coordination methods for decentralized optimization 

4.2.1 Iterative Desync Algorithm (IDA) 

The Iterative Desync Algorithm (IDA), developed by Kolen et al. [8], is the basic approach for the two 

other coordinating DO algorithms used in this paper. Figure 3 schematically displays IDA in a residential 

area. In the first step, all buildings simultaneously create a solution pool that consists of multiple 

schedules by solving their local optimization problems (see Section 3.2). Afterward, the buildings 

coordinate the selection of the individual schedules. All buildings are ordered in a cycle and have a 

predecessor and successor each. Furthermore, the buildings store local views on the residential areas’ 

load profiles (profiles resulting from generation and demand). In each iteration, each building 

successively selects the schedule out of its solution pool that leads to an optimal value of a common 

objective. This common objective of our study is based on the load profiles of the residential area. It 

can be calculated by using the weighted sum of the surplus energy in the residential area, and the peak 

load (see Eq. (1)). The building then updates the common load profiles of the residential area based 

on their selected schedules (demand profile) and generation profiles. Next, the building forwards the 

updated profiles to the next building in the cycle, which performs the same procedure. The algorithm 

terminates if none of the buildings changes its previously selected schedule for one iteration through 

the cycle.  

To guarantee the privacy-friendliness of this algorithm, the first building to start with this process adds 

a random noise vector to its load and generation profiles during the first iteration and stores this 

vector. During the second iteration through the cycle, this building removes the previously added 

random noise from the load profiles of the residential area. 



 

 

 

Figure 3: Decentralized optimization approach IDA in a residential area [9] 

 

4.2.2 Parallel Successive Cluster Optimization with IDA (PSCO-IDA) 

The PSCO-IDA algorithm groups the buildings of the residential area into multiple clusters of a specific 

size. The number of steps for PSCO-IDA is proportional to the number of buildings in a cluster. Figure 

4 shows the algorithm for clusters of size two, as this cluster size led to the best results in our 

experiments. In the first step, only the first of the two buildings in each cluster solve their local 

optimization problems in parallel and thus generate a solution pool. Afterward, they forward the 

resulting surplus power profiles to the next buildings in the clusters, which use these as an input to 

their local optimization problems. In contrast to IDA, the results of the first buildings’ optimization 

problems directly influence the solution pool of the second buildings in the clusters. In the last step, 

all buildings of the residential area use IDA to coordinate the selection of the schedules. A more 

detailed description of IDA and PSCO-IDA can be found in [8, 9]. 

Instead of randomly assigning buildings to the clusters, we use a simple ordering heuristic that is 

introduced in [9] and that led to strongly improved results. For each building, a score is calculated by 

using Eq. (3). The building with the highest score and the building with the lowest score are grouped 

into the first cluster. For the second cluster, we use the building with the second-highest and the 

second-lowest score. We successively do this until each building belongs to one cluster. The basic idea 

behind this clustering is that the buildings with low PV generation can use the surplus power of 

buildings with high PV generation for their flexible devices as buildings with higher scores tend to 

generate more surplus energy. 



 

 

 

Figure 4: PSCO-IDA algorithm with two buildings per cluster [9] 

4.2.3 Sequential Parallel Cluster Optimization with IDA (SEPACO-IDA) 

The SEPACO-IDA algorithm is one of the two main contributions of this paper. It efficiently combines 

the PSCO-IDA and IDA algorithms. As in PSCO-IDA, the buildings are divided into an arbitrary number 

of clusters. In SEPACO-IDA, the number of steps is proportional to the number of clusters. Figure 5 

illustrates the algorithm for two clusters. We investigated the algorithm with different numbers of 

clusters, and two clusters led to the best results while having the lowest computational time. In the 

first step, the buildings of the first cluster simultaneously generate a solutions pool and use IDA for 

selecting individual schedules. Afterward, the resulting load profiles of the cluster are sent to all 

buildings from the second cluster (2nd step). Next, the buildings of the second cluster likewise generate 

a solution pool and use IDA for coordination. The resulting load profiles of the first cluster influence 

the local optimization problems of the buildings in the second cluster. The surplus power profile of the 

previous clusters can be assigned to the building of the new cluster by using the methods explained in 

Section 4.1 for the wind power assignment. In the last step, all buildings of the residential area use IDA 

to coordinate the selection of the schedules jointly. The difference to PSCO-IDA is that in SEPACO-IDA, 

the buildings in one cluster generate their solution pool simultaneously and not successively. 

Moreover, the buildings use IDA for the coordination within every cluster, and optimization of the 

different clusters is done sequentially and not in parallel. As no building receives direct information 

from another single building, SEPACO-IDA has a higher level of privacy compared to PSCO-IDA.  

We investigated different approaches for assigning buildings to the clusters. The best result was 

obtained when using the score function of Section 4.1 (Eq. (3)) and putting the buildings with high 

scores into the first cluster and the buildings with low scores into the second cluster. We also tried a 

random assignment of buildings to the clusters and assignments based on either an increasing sum of 

scores per cluster or a similar sum of scores per cluster. However, our approach with a decreasing sum 

of scores per cluster overall led to the best solutions. We analyze the three DO approaches and 

compare them to CO and a conventional control approach in Section 5.3. 



 

 

 

 

Figure 5: SEPACO-IDA algorithm with two clusters 

 



 

 

5 Results 

In this section, we evaluate the methods developed in Section 4. Section 5.1 describes the scenarios 

used for our analysis. In Section 5.2, we compare the two wind assignment methods and in Section 

5.3, we show the results for the different optimization approaches.  

5.1 Scenarios for the analysis 

To analyze the developed methods, we define base case scenarios for 31 days. We randomly choose 

31 days with mediocre to high PV or wind energy generation from the heating period in Germany 

(October – March). In the base case scenarios, we use 15 buildings for each of the three building types, 

resulting in 45 buildings. Of these, 15 have two residents each, whereas four persons live in each of 

the other 30 buildings. The average PV peak of buildings which have a PV system on their rooftop is 

7 kW with a maximum positive and negative deviation from the average peak power of 3 kW. This 

means that the values for the PV systems’ peak power of the different buildings are uniformly 

distributed between 4 kW (7 – 3) and 10 kW (7 + 3). The share of buildings with a PV system is 50 % in 

the base case scenarios. Ten of the buildings have an EV that is charged at home. We choose two types 

of EVs (Opel Ampera-e and BMW i3) and assume that at the beginning of the optimization horizon, the 

SOC of all vehicles is at 0.5 (50 %). This value is also the target SOC for the end of the optimization 

horizon. We use the driving and availability patters from [29] as mobility data for the EVs. Table A.1 in 

the Appendix lists the technical parameters of the EVs and the charging stations. For wind generation, 

we use profiles of the wind turbine Nordex N27/150 with a capacity of 100 kW generated by the web 

tool Renewable.ninja [30].  

In addition to the base case scenarios, we generate several further scenarios for our analysis. To this 

end, we use a Monte Carlo sampling method for the different parameters. Table 1 lists the relevant 

parameters of the residential area and their average, minimum, and maximum values. For all scenarios, 

the optimization horizon is one day with a time resolution of five minutes. We implemented the 

optimization problems in the modeling language GAMS with Cplex as the solver and used Java for the 

simulations. The solution pool for all coordinating approaches consists of five different solutions, as 

this leads to a good trade-off between the quality of the results and computational time [9].  

Table 1: Parameters for the Monte Carlo sampling 

Parameter Average Min Max 

Number of buildings type 1 15 5 25 

Number of buildings type 2 15 5 25 

Number of buildings type 3 15 5 25 

PV peak power [kW] 7 3 11 

Maximal deviation from PV 

peak power [kW] 

1.5 0 3 

Share of buildings with PV 

[%] 

50 25 75 

Number of EVs 11.5 2 21 

Power of wind turbine [kW] 140 30 250 
 

 

 

 

 



 

 

5.2 Wind assignment methods 

For the evaluation of the two different wind assignment methods of Section 4.1, we use six different 

optimization approaches in combination with the wind assignment methods for the base case 

scenarios. Figure 6 shows the optimality percentages of the two wind assignment methods for the 

different optimization approaches averaged over the 31 base case scenarios with wind. Per definition, 

CO leads to an optimality of 100 %. In addition to the three coordination methods for DO described in 

Section 4.2, we include a conventional control approach (hysteresis control) that is current practice for 

today’s heating systems, and a DO approach without any coordination mechanism in the evaluation. 

The analysis shows that for CO and Conventional Control, the two assignment methods ED and SRPD 

lead to similar results since CO and Conventional Control do not depend on the assignment of wind 

power profiles to decentralized entities. The slight difference for Conventional Control occurs because 

of the random decision on whether to heat up or cool down the thermal storage at the beginning of a 

day.  

For the DO approaches, the application of ED and SRPD leads to different results. While for DO without 

coordination and for IDA, an equal distribution (ED) of the centralized wind power profile leads to 

better results, for PSCO-IDA and SEPACO-IDA, the Score-Rank-Proportional Distribution (SRPD) yields 

better results. This might be explained by the fact that for PSCO-IDA and SEPACO-IDA, a score roughly 

quantifying the expected self-consumption rate of the different buildings is already used for the 

generation of the clusters. A second assignment based on such a score might interfere with the notion 

of the initial clustering. IDA and DO without coordination do not make use of such a score. This might 

be the reason why consideration of the score brings these optimization approaches closer to 

optimality, as Figure 6 indicates.  

 
Figure 6: Optimality comparison of the two wind assignment methods for the different optimization approaches averaged 

over the base case scenarios 

5.3 Optimization approaches  

To compare and evaluate the coordination methods for DO, we use scenarios with and without wind 

power generation. PV is included in all scenarios. For the scenarios with wind energy generation, we 

use the 31 days of the base case and generate four additional scenarios per day by using the Monte 



 

 

Carlo sampling method. This leads to a total of 155 scenarios.  We ran all scenarios with five different 

combinations of weight coefficients. Figure 7 displays the optimality of the methods used with 

different weights for the objectives averaged over all scenarios with wind and PV generation. For all 

weight combinations, Conventional Control, as expected, leads to the worst results having optimality 

percentages of around 30 %. The figure clearly shows that if all buildings only optimize their own goal 

without interacting with the other buildings, the result is quite far away from the optimal solution. For 

all weights, DO without coordination leads to optimality percentages below 50 %. The results reveal 

that SEPACO-IDA outperforms the other two coordinating DO approaches IDA and PSCO-IDA having 

optimality percentages of between 87 % and 79 %.  The differences to PSCO-IDA are small (between 

0.8 % and 2.4 %), while the improvements compared to IDA are significant (between 11.1 % and 

13.3 %). Figure 7 shows that the more the emphasis is on the second goal (reducing the peak load), 

the worse the results become for all three coordinating DO approaches (IDA, PSCO-IDA, and SEPACO-

IDA).  

 

 

Figure 7: Optimality comparison of the used optimization approaches with different weight combinations for the objectives 

averaged over all scenarios with wind and PV (w1: Weight for the Surplus Energy, w2: Weight for the Maximum Load) 

Table 2 lists the average results of the scenarios with wind and PV for different weights of the 

objectives. For Conventional Control, the values of the surplus energy and the maximum load do not 

depend on the weights of the objectives. For all four DO approaches, the results significantly change 

for the three weight combinations that have nonzero values for both objectives ([w1 = 0.75, w2 = 0.25], 

[w1 = 0.5, w2 = 0. 5], [w1 = 0.25, w2 = 0.75]). Surprisingly, when putting the whole weight and thus the 

emphasis only on one objective ([w1 = 1.0, w2 = 0.0] or [w1 = 0.0, w2 = 1.0]), the results for the single 

objective are worse than the corresponding result for that objective when also considering the other 

objective to some degree. This means that decreasing the weight for one objective from 1.0 to 0.75 

led to better results for that objective. This counterintuitive outcome can be explained by the 



 

 

optimization approach used for creating the solution pool for the DO approaches explained in [9]. A 

diverse solution pool with different schedules is vital for the DO approaches, as the coordination 

procedure is not an exact optimization algorithm but a heuristic.  Using weights for both objectives 

leads to higher flexibility for the generation of a solution pool. This eventually can lead to better results 

for the whole residential area, although the results for the individual buildings might be worse.  

For CO, the results among the combined weights ([w1 = 0.75, w2 = 0.25], [w1 = 0.5, w2 = 0. 5], [w1 = 

0.25, w2 = 0.75]) are almost identical. The results of the objective Maximum Load for the combined 

weights are equal to the one of the single-objective optimization of the peak load ([w1 = 0.0, w2 = 1.0]). 

The results of the objective Surplus Energy are only slightly worse for the combined objectives 

compared to the single-objective optimization ([w1 = 1.0, w2 = 0.0]). This indicates that the objectives 

in our case studies are not contrary to each other. The surplus energy can simultaneously be minimized 

with the maximum load because the power of the RES mainly causes the peak load. However, if the 

full focus is on one objective only, the other objective is neglected, which leads to very poor results for 

that objective. This is valid for CO and all DO approaches. Thus, for scenarios with high power 

generation by RES in residential areas where the peak load at the transformer is mainly caused by 

feeding power of RES from the local grid into the whole grid, the consideration of a combined objective 

function is highly beneficial.  

Table 2: Average results of the scenarios with wind and PV for different weight combinations of the objectives (Surplus 

Energy in kWh and Maximum Load in kW) 

Objectives 
Conventional 

Control 

DO with no 

coordination 
IDA 

PSCO-

IDA 

SEPACO-

IDA 
CO 

Surplus Energy   

(Weight w1 = 1.0) 

666.8 

 

481.8 

 

278.0 

 

238.7 

 

236.0 

 

207.7 

 

Maximum Load  

(Weight w2 = 0.0) 

111.4 

 

93.2 

 

77.1 

 

72.6 

 

72.5 

 

75.0 

 

Surplus Energy  

(Weight w1 = 0.75) 

666.8 

 

475.6 

 

276.8 

 

236.8 

 

234.1 

 

210.3 

 

Maximum Load  

(Weight w2 = 0.25) 
111.4 82.4 64.3 56.9 56.7 37.6 

Surplus Energy  

(Weight w1 = 0.5) 
666.8 477.8 279.5 238.6 237.1 210.3 

Maximum Load  

(Weight w2 = 0.5) 
111.4 78.2 60.9 53.5 52.4 37.5 

Surplus Energy  

(Weight w1 = 0.25) 
666.8 477.8 283.2 239.7 239.6 210.4 

Maximum Load  

(Weight w2 = 0.75) 
111.4 75.7 58.4 50.5 49.1 37.5 

Surplus Energy  

(Weight w1 = 0.0) 
666.8 637.4 361.4 341.0 343.2 370.1 

Maximum Load  

(Weight w2 = 1.0) 
111.4 83.1 59.3 52.1 50.4 37.5 

 

As the authors of [9] only test the algorithm PSCO-IDA in scenarios with PV, but without wind energy, 

we also evaluate the newly developed algorithm SEPACO-IDA in scenarios without wind. Figure 8 

illustrates the optimality percentages of the used control approaches with different weights for the 

objectives averaged over all scenarios with PV and no wind. For this purpose, we used the base case 

scenarios without wind and additionally generated three scenarios for each day, leading to a total of 



 

 

124 scenarios. The results show that SEPACO-IDA again leads to better results compared to IDA and 

PSCO-IDA (for the combined weights [w1 = 0.25, w2 = 0.75], PSCO-IDA and SEPACO-IDA have similar 

results). The optimality percentages of PSCO-IDA and SEPACO-IDA do not vary strongly for the different 

weight combinations. In contrast, the difference to IDA becomes smaller with an increasing emphasis 

on the objective of minimizing the peak load.  

 

 

Figure 8: Optimality comparison of the used optimization approaches with different weight combinations for the objectives 

averaged over all scenarios with PV and no wind (w1: Weight for the Surplus Energy, w2: Weight for the Maximum Load) 

Table 3 shows the average runtimes and number of coordination rounds of the optimization 

approaches for the base case scenarios with wind and PV. CO has the highest runtime requiring around 

20 times more time than SEPACO-IDA. We used an Intel i7 3930K system with 3.2 GHz and 64 GB RAM 

for the analysis. The MIP gap for both the centralized and the decentralized optimization problems was 

set to 0.1 %. Surprisingly, SEPACO-IDA led to a similar number of coordination rounds for selection of 

the schedules as IDA and fewer coordination rounds compared to PSCO-IDA. Although SEPACO-IDA 

needs coordination for each cluster, the final IDA step converges rather quickly. We included the load 

profiles of all buildings for all base case scenarios to the uploaded supplementary materials of this 

paper [28]. Moreover, we added result tables, which include detailed information about the results 

and the configurations of every single scenario to the supplementary materials. 

 



 

 

Table 3: Average runtimes and number of coordination rounds of the optimization approaches for the base case scenarios 

Approach Runtime [s] 

Number of 

coordination 

rounds 

Conventional Control 2 - 

DO without coordination 13 - 

IDA 47 4.7 

PSCO-IDA 76 4.9 

SEPACO-IDA 86 4.7 

CO 1770 - 
 

5.4 Critical appraisal 

For our study, we made some simplifications. We assumed perfect foresight regarding the generation 

and demand of the buildings for all optimization problems. To apply the investigated methods to real-

world scenarios, they have to be combined with forecasts and uncertainty handling methods for 

scheduling-based optimization like [31, 32]. Furthermore, we assumed that all buildings agree to 

participate in the decentralized optimization without any incentive. The focus of this study was to 

investigate different optimization approaches from a system perspective and not to analyze market 

strategies for incentivizing building owners to use their flexibility or to trade their generated electricity 

locally.  

We merely tested two different methods for wind power assignment. Many other possible criteria for 

the assignment of wind power profiles to the local optimization problems of decentralized entities 

exist. Also, for the coordination approach SEPACO-IDA, clustering methods based on other score 

functions or ranking schemes have not been analyzed in detail. Doing a large-scale analysis of different 

methods for generating the clusters could even improve SEPACO-IDA.  

 

6 Summary and conclusion 

In this paper, we developed a novel coordination mechanism for optimally using flexible electrical 

loads in a decentralized way in order to react to the volatile supply from renewable energy sources in 

a residential area. The Sequential Parallel Cluster Optimization with IDA (SEPACO-IDA) combines two 

coordination algorithms from the literature for decentralized optimization that are based on a set of 

schedules (PSCO-IDA and IDA). In a case study that consists of a high number of scenarios, we 

compared our developed approach to existing approaches for decentralized optimization, to a 

conventional control approach and a centralized optimization. The load flexibility in the residential 

areas comes from electric heating devices and electric vehicles. The results reveal the superiority of 

SEPACO-IDA over the other coordinating approaches for decentralized optimization. Further, our 

analysis demonstrates that uncoordinated decentralized optimization leads to fairly bad results. In 

addition to that, we investigated the two methods Equal Distribution and Score-Rank-Proportional 

Distribution for assigning a wind power profile to the local optimization problems of decentralized 

agents. These methods are used in combination with decentralized optimization approaches.  While 

for the uncoordinated decentralized optimization and IDA, the wind assignment method Score-Rank-

Proportional Distribution yields better results, the two decentralized optimization approaches SEPACO-

IDA and PSCO-IDA profit more from the Equal Distribution method.  



 

 

All introduced methods are easy to implement and preserve the privacy of the residents. Our study 

shows the suboptimality of the currently used conventional control approaches and the crucial 

advantages of coordinating decentralized optimization. Sustainable energy systems with high shares 

of renewable energy sources can profit from the application of the developed methods.  They can help 

to overcome the challenges brought about by the weather-dependent electricity generation of wind 

turbines and photovoltaic systems.  

Future work could compare the used scheduling-based decentralized optimization approaches to rule-

based or to machine-learning-based control approaches. Moreover, different criteria (like the sum of 

the total electricity consumption) for the assignment of wind power profiles to decentralized 

optimization problems of buildings should be investigated. Designing novel market mechanisms to 

offer incentives to building owners to participate in demand response programs is an essential task for 

exploiting the load flexibilities in residential areas and should be analyzed in future work.  

 

 

 

 

 

Supplementary materials 

We added the following supplementary materials to an open-source online data repository [28] 

hosted at Mendeley Data (https://data.mendeley.com/datasets/8jx97kfjxg/2):  

• Full mathematical description of all optimization problems with explanations of the 

equations 

• Resulting load and temperature profiles of the buildings for the base case scenarios  

• Result tables with detailed information about the scenarios and their results 

• Commented code (in the modeling language GAMS) of the decentralized optimization 

problems for the different building types and the centralized optimization problem  
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Appendix 

Parameters of the residential area 
Table A.1: Parameters of the residential area 

Parameter Value Source Comment 

Heated area of the buildings 140 m2 [33] Assumption: Not all rooms 

in the cellar are heated 

Concrete width (for the 

underfloor heating system) 

7 cm [34] DIN standard 18560 for 

screeds in building 

construction 

Density of concrete 2400 
kg

m3 
[35] European standards for 

concrete EN 206-1 

Heat capacity of concrete 1000
J

kg⋅K
 [35] European standards for 

concrete EN 206-1 

Temperature range of the 

underfloor heating system 

20 – 22 °C [36] Assumptions for optimal 

comfort 

Temperature range of the 

hot water tank (buffer 
storage) 

30 – 45 °C [37]  

DHW tank volume 150 l, 200 l [38] 200 l for 4 residents, 150 l 
for 2  

Losses of space heating 45 W  Assumption 

Losses of DHW tank 35 W [39] 2nd highest efficiency class 
(EU regulations 814/2013) 

Supply temperature  of the 
underfloor heating system 

30 °C [36]  

Supply temperature of the 

hot water tank (buffer 

storage) 

60 °C [37]  

Supply temperature of the 

hot water tank (DHW) 

45 °C [41]  

Energy content of the 

combined storage 

14 kWh   

Electrical power of the 

heating devices 

1.2 kW (BT 1), 3 kW 

(BT 2, BT 3) 

 Thermal power of the gas 

heating device: 12 kW 

COP of the air-source heat 

pump for ΔT=28 K 

3.8 [40] Similar value as model LA 

28TBS from Glen Dimplex 

COP of the air-source heat 

pump for ΔT=42 K 

2.8 [40] Similar value as model LA 

28TBS from Glen Dimplex 

COP of the ground-source 

heat pump for ΔT=35 K 

4.7 [42] Similar value as model SIK 

6TES from Glen Dimplex 

COP of the ground-source 

heat pump for ΔT=45 K 

3.7 [42] Similar value as model SIK 

6TES from Glen Dimplex 

Battery capacity BMW i3 37.9 kWh [43]  

Charging efficiency BMW i3 85 % [43]  

Energy consumption per 

100 km BMW i3 

13.9 kWh [43]  

Battery capacity 

Opel Ampera-e 

60 kWh [43]  

Charging efficiency 

Opel Ampera-e 

89 % [43]  



 

 

Parameter Value Source Comment 

Energy consumption per 

100 km Opel Ampera-e 

17.5 kWh [43]  

Maximal charging power for 

home charging 

4.6 kW [44] Wallbox: KEBA KeContact 

P30 

Average length of rides 

BMW i3 (Opel Ampera-e) 

35 km (45 km) [45] Assumptions inspired by the 

German Mobility Study  
 

 

 

 
 

 

 

 

 

References 
[1] Shariatzadeh F, Mandal P, Srivastava AK (2015): Demand response for sustainable 

energy systems: A review, application and implementation strategy. Renewable and 

Sustainable Energy Reviews 45: 343–350. doi: 10.1016/j.rser.2015.01.062 

[2] Shao S, Pipattanasomporn M, Rahman S (2011): Demand Response as a Load Shaping 

Tool in an Intelligent Grid With Electric Vehicles. IEEE Trans. Smart Grid 2(4): 624–631. 
doi: 10.1109/TSG.2011.2164583 

[3] Patteeuw D, Bruninx K, Arteconi A et al. (2015): Integrated modeling of active demand 

response with electric heating systems coupled to thermal energy storage systems. 

Applied Energy 151: 306–319. doi: 10.1016/j.apenergy.2015.04.014 

[4] Narayanan A, Mets K, Strobbe M et al. (2019): Feasibility of 100% renewable energy-

based electricity production for cities with storage and flexibility. Renewable Energy 

134: 698–709. doi: 10.1016/j.renene.2018.11.049 

[5] Dileep G (2020): A survey on smart grid technologies and applications. Renewable 

Energy 146: 2589–2625. doi: 10.1016/j.renene.2019.08.092 

[6] Bundesnetzagentur (2019): Quartalsbericht zu Netz- und Systemsicherheitsmaßnahmen 
- Gesamtjahr und Viertes Quartal 2018 

[7] Jordehi AR (2019): Optimisation of demand response in electric power systems, a 

review. Renewable and Sustainable Energy Reviews 103: 308–319. doi: 

10.1016/j.rser.2018.12.054 

[8] Kolen S, Molitor C, Wagner L et al. (2017): Two-level agent-based scheduling for a 

cluster of heating systems. Sustainable Cities and Society 30: 273–281. doi: 

10.1016/j.scs.2017.01.014 

[9] Dengiz T, Jochem P (2020): Decentralized optimization approaches for using the load 

flexibility of electric heating devices. Energy 193: 116651. doi: 

10.1016/j.energy.2019.116651 
[10] Ullman JD (1975): NP-complete scheduling problems. Journal of Computer and System 

Sciences 10(3): 384–393. doi: 10.1016/S0022-0000(75)80008-0 

[11] Guo F, Wen C, Mao J et al. (2016): Distributed Economic Dispatch for Smart Grids With 

Random Wind Power. IEEE Trans. Smart Grid 7(3): 1572–1583. doi: 

10.1109/TSG.2015.2434831 

[12] Braun P, Grune L, Kellett CM et al. (2015): Predictive control of a Smart Grid: A 

distributed optimization algorithm with centralized performance properties. In: Control 

ICoDa (ed) 2015 54th IEEE Conference on Decision and Control (CDC): Date: 15-18 Dec. 

2015. IEEE, [Piscataway, NJ], pp 5593–5598 
[13] Harb H, Paprott J-N, Matthes P et al. (2015): Decentralized scheduling strategy of 

heating systems for balancing the residual load. Building and Environment 86: 132–140. 

doi: 10.1016/j.buildenv.2014.12.015 

[14] Liu Y, Yu N, Wang W et al. (2018): Coordinating the operations of smart buildings in 

smart grids. Applied Energy 228: 2510–2525. doi: 10.1016/j.apenergy.2018.07.089 

 



 

 

[15] Diekerhof M, Schwarz S, Martin F et al. (2018): Distributed Optimization for Scheduling 

Electrical Demand in Complex City Districts. IEEE Systems Journal 12(4): 3226–3237. doi: 

10.1109/JSYST.2017.2713798 

[16] Worthmann K, Kellett CM, Braun P et al. (2015): Distributed and Decentralized Control 

of Residential Energy Systems Incorporating Battery Storage. IEEE Trans. Smart Grid 

6(4): 1914–1923. doi: 10.1109/TSG.2015.2392081 

[17] Menon RP, Amblard F, Page J (2019): Distributed Model Predictive Control For Demand 

Response On Thermal Devices in Building Blocks. In: 2019 IEEE PES Innovative Smart 
Grid Technologies Europe (ISGT-Europe), pp 1–5 

[18] Sarvapali D. Ramchurn, Perukrishnen Vytelingum, Alex Rogers et al.: Agent-based 

control for decentralised demand side management in the smart grid. In: The Tenth 

International Conference on Autonomous Agents and Multiagent Systems (AAMAS 

2011), Taiwan, Province of China. 02 - 06 May 2011. pp. 5-12 . 

[19] Chang T-H, Nedic A, Scaglione A (2014): Distributed Constrained Optimization by 

Consensus-Based Primal-Dual Perturbation Method. IEEE Trans. Automat. Contr. 

59(6): 1524–1538. doi: 10.1109/TAC.2014.2308612 

[20] Ogston E, Zeman A, Prokopenko M et al. (2007): Clustering Distributed Energy 

Resources for Large-Scale Demand Management. In: Di Marzo Serugendo G (ed) First 
International Conference on Self-Adaptive and Self-Organizing Systems, 2007: SASO '07 ; 

9 - 11 July 2007, Cambridge, Massachusetts ; proceedings. IEEE Computer Society, Los 

Alamitos, Calif. [u.a.], pp 97–108 

[21] Blaauwbroek N, Nguyen PH, Konsman MJ et al. (2015): Decentralized Resource 

Allocation and Load Scheduling for Multicommodity Smart Energy Systems. IEEE Trans. 

Sustain. Energy 6(4): 1506–1514. doi: 10.1109/TSTE.2015.2441107 

[22] Ghasemi A, Mortazavi SS, Mashhour E (2016): Hourly demand response and battery 

energy storage for imbalance reduction of smart distribution company embedded with 

electric vehicles and wind farms. Renewable Energy 85: 124–136. doi: 

10.1016/j.renene.2015.06.018 
[23] Zhao L, Zeng B (2012 - 2012): Robust unit commitment problem with demand response 

and wind energy. In: 2012 IEEE Power and Energy Society General Meeting. IEEE, pp 1–8 

[24] Shao C, Ding Y, Siano P et al. (2019): A Framework for Incorporating Demand Response 

of Smart Buildings Into the Integrated Heat and Electricity Energy System. IEEE Trans. 

Ind. Electron. 66(2): 1465–1475. doi: 10.1109/TIE.2017.2784393 

[25] Jiang Y, Xu J, Sun Y et al. (2017): Day-ahead stochastic economic dispatch of wind 

integrated power system considering demand response of residential hybrid energy 

system. Applied Energy 190: 1126–1137. doi: 10.1016/j.apenergy.2017.01.030 

[26] Fischer D, Härtl A, Wille-Haussmann B (2015): Model for electric load profiles with high 

time resolution for German households. Energy and Buildings 92: 170–179. doi: 
10.1016/j.enbuild.2015.01.058 

[27] Grodzevich O, Romanko O (2006): Normalization and Other Topics in Multi -Objective 

Optimization. Proceedings of the Fields–MITACS Industrial Problems Workshop 2006 

[28] Dengiz T (2020): Supplementary materials for paper "Demand response through 

decentralized optimization in residential areas with wind and photovoltaics". 

https://data.mendeley.com/datasets/8jx97kfjxg/2 

[29] Wang Z, Jochem P, Fichtner W (2020): A scenario-based stochastic optimization model 

for charging scheduling of electric vehicles under uncertainties of vehicle availability and 

charging demand. Journal of Cleaner Production 254: 119886. doi: 

10.1016/j.jclepro.2019.119886 
[30] Staffell I, Pfenninger S (2016): Using bias-corrected reanalysis to simulate current and 

future wind power output. Energy 114: 1224–1239. doi: 10.1016/j.energy.2016.08.068 

[31] Dengiz T, Jochem P, Fichtner W (2019 - 2019): Uncertainty handling control algorithms 

for demand response with modulating electric heating devices. In: 2019 IEEE PES 

Innovative Smart Grid Technologies Europe (ISGT-Europe). IEEE, pp 1–5 



 

 

[32] Mazidi M, Rezaei N, Ghaderi A (2019): Simultaneous power and heat scheduling of 

microgrids considering operational uncertainties: A new stochastic p-robust 

optimization approach. Energy 185: 239–253. doi: 10.1016/j.energy.2019.07.046 

[33] Fraunhofer-Institut für Solare Energiesysteme ISE: synPRO. 

https://www.elink.tools/elink-tools/synpro. Accessed 20 Aug 2018 

[34] DIN 18560-2:2009-09, Estriche im Bauwesen_- Teil_2: Estriche und Heizestriche auf 

Dämmschichten (schwimmende Estriche) 

[35] IBU - Institut Bauen und Umwelt e.V (2013): Beton der Druckfestigkeitsklasse C 20/25. 
https://www.beton.org/fileadmin/beton-

org/media/Wissen/Nachhaltigkeit/EPD_IZB_2013411_C20_25_D.pdf. Accessed 19 Aug 

2018 

[36] The Danfoss Group (2008): Handbook Hydronic Floor Heating. 

http://heating.danfoss.com/PCMPDF/Handbook_Introduction_VGDYA102_lo-res.pdf. 

Accessed 11 Nov 2018 

[37] Institut für Technische Gebäudeausrüstung Dresden (2014): Energetische Bewertung 

einer Wärme- und Warmwasserversorgung mit Wohnungsstationen im Vergleich mit 

einem konventionellen zentralen bzw. dezentralen System. 

https://www.oventrop.com/Pools/Files/file/de/Energetische_Bewertung_Wohnungssta
tionen_11671645-aca2-4065-85d6-8994235daae9.pdf. Accessed 18 Mar 2019 

[38] Viessmann Deutschland GmbH (2011): Planungshandbuch Wärmepumpen. 

https://www.viessmann.de/content/dam/vi-brands/DE/PDF/Planungshandbuch/ph-

waermepumpen.pdf/_jcr_content/renditions/original.media_file.download_attachmen

t.file/ph-waermepumpen.pdf. Accessed 19 Aug 2018 

[39] Umweltbundesamt (2013): Ökodesign - Richtlinie und Energieverbrauchskennzeichnung 

- Warmwasserbereiter und Warmwasserspeicher. 

https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/oekod

esignrichtlinie_und_energieverbrauchskennzeichnung_warmwasserbereiter.pdf. 

Accessed 19 Aug 2018 
[40] Glen Dimplex Deutschland GmbH: LA 28TBS. 

http://www.dimplex.de/waermepumpe/luft-wasser/aussenaufstellung/la-28tbs.html. 

Accessed 18 Mar 2019 

[41] Paulsen O, Fan J, Furbo S et al. (2008): Consumer Unit for Low Energy District Heating 

Net. Proceedings of The 11th International Symposium on District Heating and Cooling 

[42] Glen Dimplex Deutschland GmbH: SIK 6TES. 

http://www.dimplex.de/waermepumpe/sole-wasser-erdwaerme/kompakt-fuer-

einfache-und-schnelle-installation/sik-6tes.html. Accessed 18 Mar 2019 

[43] ADAC e.V. (2020): Aktuelle Elektroautos im Test: So hoch ist der Stromverbrauch. 

https://www.adac.de/rund-ums-fahrzeug/tests/elektromobilitaet/stromverbrauch-
elektroautos-adac-test/ 

[44] ADAC e.V. (2020): ADAC Test Wallboxen 2018/19: KEBA KeContact P30. 

https://www.adac.de/rund-ums-

fahrzeug/tests/elektromobilitaet/wallboxen/details/4180/keba-kecontact-p30/ 

[45] Federal Ministry of Transport and Digital Infrastructure (2018): Mobilität in Deutschland 

− MiD. h]ps://www.bmvi.de/SharedDocs/DE/Anlage/G/mid-

ergebnisbericht.pdf?__blob=publicationFile. Accessed 17 Jan 2020 

 

 

 



The responsibility for the contents of the working papers rests with the author, not the institute.

Since working papers are of preliminary nature, it may be useful to contact the author of a

particular working paper about results or caveats before referring to, or quoting, a paper. Any

comments on working papers should be sent directly to the author.

Working Paper Series in Production and Energy

recent issues

No. 41 Jann Weinand, Fabian Scheller, Russell McKenna: Reviewing energy 

system modelling of decentralized energy autonomy

No. 40 Jann Weinand, Sabrina Ried, Max Kleinebrahm, Russell McKenna, Wolf 

Fichtner: Identification of potential off-grid municipalities with 100% 

renewable energy supply

No. 39 Rebekka Volk, Christian Kern, Frank Schultmann: Secondary raw 

material markets in the C&D sector: Study on user acceptance in 

southwest Germany

No. 38 Christoph Fraunholz, Dirk Hladik, Dogan Keles, Dominik Möst, Wolf 

Fichtner:On the Long-Term Efficiency of Market Splitting in Germany

No. 37 Christoph Fraunholz, Dogan Keles, Wolf Fichtner:On the Role of 

Electricity Storage in Capacity Remuneration Mechanisms

No. 36 Hansjörg Fromm, Lukas Ewald, Dominik Frankenhauser, Axel Ensslen, 

Patrick Jochem: A Study on Free-floating Carsharing in Europe –
Impacts of car2go and DriveNow on modal shift, vehicle ownership, 

vehicle kilometers traveled, and CO2emissions in 11 European cities

No. 35 Florian Zimmermann, Andreas Bublitz, Dogan Keles, Wolf Fichtner: 
Cross-border effects of capacity remuneration mechanisms: the 
Swiss case

No. 34 Judith Auer: Ladeinfrastruktur für Elektromobilität im Jahr 2050 in 

Deutschland

No. 33 Jann Weinand, Max Kleinebrahm, Russell McKenna, Kai Mainzer, Wolf 

Fichtner: Developing a three-stage heuristic to design geothermal-

based district heating systems

No. 32 Daniel Fehrenbach: Modellgestützte Optimierung des energetischen 

Eigenverbrauchs von Wohngebäuden bei sektor-gekoppelter 

Wärmeversorgung –Vorstellung des POPART-Modells

No. 31 Jann Weinand, Russell McKenna, Katharina Karner, Lorenz Braun, 
Carsten Herbes: Assessing the potential contribution of excess heat
from biogas plants towards decarbonisingGerman residential
heating

No. 30 Daniel Heinz: Erstellung und Auswertung repräsentativer Mobilitäts-und 

Ladeprofile für Elektrofahrzeuge in Deutschland

No. 29 Alexander Harbrecht, Russell McKenna, David Fischer, Wolf Fichtner: 

Behavior-oriented Modeling of Electric Vehicle Load Profiles: A Stochastic

Simulation Model Considering Different Household Characteristics, 

Charging Decisions and Locations

No. 28 Felix Hübner, Sven Möller, Frank Schultmann: Entwicklung eines 

Expertensystems für die Planung kerntechnischer Rückbauprojekte



www.iip.kit.edu

Impressum

Karlsruher Institut für Technologie

Institut für Industriebetriebslehre und Industrielle Produktion (IIP)
Deutsch-Französisches Institut für Umweltforschung (DFIU)

Hertzstr. 16
D-76187 Karlsruhe

KIT – Universität des Landes Baden-Württemberg und
nationales Forschungszentrum in der Helmholtz-Gemeinschaft

Working Paper Series in Production and Energy
No. 42, April 2020

ISSN 2196-7296


