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Background and aims: Ticagrelor reduces cardiovascular events in patients with acute coronary syn-
drome (ACS). Recent studies demonstrated the expression of P2Y12 on vascular cells including endo-
thelial cells, as well as platelets, and suggested its contribution to atherogenesis. We investigated
whether ticagrelor attenuates vascular dysfunction and inhibits atherogenesis in apolipoprotein E-
deficient (apoe™/~) mice.

Methods: Eight-week-old male apoe™/~ mice were fed a western-type diet (WTD) supplemented with
0.1% ticagrelor (approximately 120 mg/kg/day). Non-treated animals on WTD served as control.

ﬁi{lgzrisl'emsis Atherosclerotic lesions were examined by en-face Sudan IV staining, histological analyses, quantitative
Inflammation RT-PCR analysis, and western blotting. Endothelial function was analyzed by acetylcholine-dependent
Endothelial function vasodilation using aortic rings. Human umbilical vein endothelial cells (HUVEC) were used for in vitro
P2Y12 experiments.

Ticagrelor Results: Ticagrelor treatment for 20 weeks attenuated atherosclerotic lesion progression in the aortic

arch compared with control (p <0.05). Ticagrelor administration for 8 weeks attenuated endothelial
dysfunction (p < 0.01). Ticagrelor reduced the expression of inflammatory molecules such as vascular cell
adhesion molecule-1, macrophage accumulation, and lipid deposition. Ticagrelor decreased the phos-
phorylation of JNK in the aorta compared with control (p <0.05). Ticagrelor and a JNK inhibitor
ameliorated impairment of endothelium-dependent vasodilation by adenosine diphosphate (ADP) in
wild-type mouse aortic segments. Furthermore, ticagrelor inhibited the expression of inflammatory
molecules which were promoted by ADP in HUVEC (p < 0.001). Ticagrelor also inhibited ADP-induced
JNK activation in HUVEC (p < 0.05).
Conclusions: Ticagrelor attenuated vascular dysfunction and atherogenesis through the inhibition of
inflammatory activation of endothelial cells. These effects might be a potential mechanism by which
ticagrelor decreases cardiovascular events in patients with ACS.

© 2018 Elsevier B.V. All rights reserved.

Abbreviations: Ach, acetylcholine; ACS, acute coronary syndrome; ADP, adeno- 1. Introduction

sine diphosphate; apoE /-, apolipoprotein E-deficient; Ctrl, control; HUVEC, human

umbilical vein endothelial cell; ICAM-1, intercellular adhesion molecule-1; MCP-1,
monocyte chemoattractant protein-1; MOMA-2, monocyte/macrophage marker-2;
qPCR, quantitative real-time PCR; SNP, sodium nitroprusside; VCAM-1, vascular cell
adhesion molecule-1; WT, wild-type; WTD, western-type diet.
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P2Y12 antagonists in combination with aspirin are widely used
for the treatment of patients with acute coronary syndrome (ACS)
and patients undergoing percutaneous coronary intervention [1].
Ticagrelor is the first reversible oral P2Y12 antagonist, which acts
directly on P2Y12 without hepatic biotransformation [2]. Clinical
studies demonstrated that ticagrelor reduced vascular events in
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patients with ACS or a history of myocardial infarction [3,4]. P2Y12-
mediated platelet activation plays a central role in thrombosis [5,6],
whereas several studies have suggested that P2Y12 expression is
not restricted to platelets, and that many cell types including
endothelial cells [7,8], vascular smooth muscle cells (VSMC) [9—11]
and immune cells [12] express it. Furthermore, recent studies
indicate that ADP-P2Y12 signaling directly mediates the expression
of inflammatory molecules and inflammation in the vessel wall,
leading to the development of atherosclerosis independent of
platelet activation [13]. In fact, apolipoprotein E-deficient (apoe /")
mice which lack P2Y12 develop smaller atherosclerotic lesions
compared with P2Y12-expressing mice [14,15]. Previous studies
demonstrated the involvement of P2Y12-mediated signaling such
as ADP-induced monocyte chemoattractant protein-1 (MCP-1)
expression and mitogenesis in VSMC in atherosclerotic processes
[11,16]. Several clinical studies suggested that P2Y12 antagonists
such as clopidogrel and ticagrelor exert anti-atherosclerotic effects
including improvement of endothelial function, besides their anti-
thrombotic effect, in patients with coronary artery disease [17—20].
Also, previous studies have shown that these P2Y12 antagonists
attenuate atherogenesis in an atherosclerotic mouse model [21,22],
although the number of studies that examined the effects of tica-
grelor on the endothelium and the underlying mechanisms is
limited.

Endothelial dysfunction is an initial step of atherosclerosis.
Vascular inflammation caused by lifestyle-related diseases such as
dyslipidemia promotes endothelial dysfunction. Accumulating ev-
idence indicates the reversibility of endothelial dysfunction, sug-
gesting it as a potential therapeutic target [23,24]. In this study, we
administered ticagrelor to apoe™'~ mice and investigated the
mechanisms by which ticagrelor attenuates endothelial dysfunc-
tion and the development of atherosclerosis.

2. Materials and methods
2.1. Animals and drug administration

Apoe~!~ mice (C57BL/6] background), a widely used mouse
model of atherosclerosis with severe hypercholesterolemia [25],
were originally purchased from The Jackson Laboratory. Ticagrelor
was supplied by Astra-Zeneca. From eight weeks of age, male
apoe~!~ mice were fed a western-type diet (WTD) supplemented
with 0.1% ticagrelor (approximately 120 mg/kg/day) for 20 weeks to
examine its effects on atherogenesis. To investigate the effect of
ticagrelor on endothelial function at the early stage of atheroscle-
rosis, the same dose of ticagrelor was administered to 8-week-old
male apoe !~ mice for 8 weeks. Non-treated animals on WTD
served as the control. Mice were maintained under controlled
lighting (12 h light/dark) and temperature (24 °C) conditions. All
animal experimental procedures conformed to the guidelines for
animal experimentation of Tokushima University.

2.2. Blood pressure and laboratory data

Blood pressure was measured by a tail-cuff system as we
described previously [26]. At the time of sacrifice, blood was
collected from the heart, and plasma was separated and stored
at —80 °C until required. Plasma total cholesterol, HDL-cholesterol,
and triglyceride levels were measured at LSI Medience Corporation
(Japan).

2.3. Quantification of atherosclerotic lesions

The severity of atherosclerotic lesions in the aorta was assessed
as we previously described [26]. In brief, mice were sacrificed with

an overdose of pentobarbital, and perfused with 0.9% sodium
chloride solution at a constant pressure via the left ventricle. Both
the heart and whole aorta were immediately removed. The thoracic
aorta was excised, opened longitudinally, and fixed with 10%
neutral buffered formalin. To quantify atherosclerotic lesions in the
aortic arch, en-face Sudan IV staining was performed, and the
percentage of Sudan IV-positive area was measured. The abdominal
aorta was removed and snap-frozen in liquid nitrogen for gene
expression and western blot analysis.

2.4. Histological and immunohistochemical analyses

Histological and immunohistochemical analyses were per-
formed on frozen sections of the aortic root. The sections (at 5-pm
intervals) were stained with oil red O to detect lipid deposition.
Also, sections were incubated with anti-vascular cell adhesion
molecule-1 (VCAM-1) antibody, anti-intercellular adhesion
molecule-1 (ICAM-1) antibody (Abcam), or anti-monocyte/
macrophage marker (MOMA-2) antibody (BioRad), followed by
the alkaline phosphatase-conjugated secondary antibody (VECTOR
Laboratories, Inc.), and stained using a VectorRed AP Substrate Kit
(VECTOR Laboratories, Inc.). All sections were counterstained with
hematoxylin. The ratio of positive area to plaque area was calcu-
lated in three valve lesions in the aortic root and used for com-
parison [26].

2.5. Vascular reactivity assay

Analysis of vascular reactivity was performed as we described
previously [27]. In brief, the descending thoracic aorta was cut into
2-mm rings with special care to preserve the endothelium, and
mounted in organ baths filled with modified Krebs—Henseleit
buffer (KHB; 118.4 mM NaCl, 4.7 mM KCl, 2.5 mM CaCl,, 1.2 mM
KH3POy4, 1.2 mM MgSQOy4, 25 mM NaHCOs3, 11.1 mM glucose) aerated
with 95% 0, and 5% CO, at 37 °C. The preparations were attached to
a force transducer, and isometric tension was recorded on a poly-
graph. Vessel rings were primed with 31.4 mM KCl, and then pre-
contracted with phenylephrine, producing submaximal (60% of
maximum) contraction. After the plateau was attained, the rings
were exposed to increasing concentrations of acetylcholine (Ach;
1079 to 10~4M) and sodium nitroprusside (SNP; 10~ to 10~4 M) to
obtain cumulative concentration—response curves. In ex-vivo ex-
periments, aortic rings isolated from wild-type (WT) mice were
incubated with 100nM ticagrelor or 100nM JNK inhibitor
(SP600125) for 2 h and then stimulated with 100 uM ADP (Sigma,
Aldrich) for 16 h, and vascular reactivity was examined.

2.6. Cell culture experiments

Human umbilical vein endothelial cells (HUVEC) were pur-
chased from Life Technologies and cultured in EGM-2 (Lonza).
HUVEC (passages 4—6) were incubated with 0—100 nM ticagrelor
or 100 nM JNK inhibitor for 2 h, and then stimulated with 100 uM
ADP in EBM-2 (Lonza) containing 2% FBS.

2.7. Quantitative RT-PCR

Total RNA was extracted from the aorta and HUVEC using an
illustra RNAspin RNA Isolation Kit (GE Healthcare). cDNA was
synthesized using a QuantiTect Reverse Transcription kit (Qiagen).
Quantitative real-time PCR (qPCR) was performed on an Mx3000 P
(Agilent Technologies) using Power SYBR Green PCR Master Mix
(Applied Biosystems). Data are expressed in arbitrary units
normalized by (-actin or GAPDH. The sequences of primers are
listed in Supplementary Table 1.
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Fig. 1. Ticagrelor attenuated atherogenesis in apoe '~ mice.

Ticagrelor

The results of en face Sudan IV staining demonstrated that ticagrelor administration to apoe '~ mice for 20 weeks significantly reduced the development of atherosclerosis in the
aortic arch (n = 1114, per group). Bar: 1 mm **; p <0.01 vs. Ctrl group. Ctrl; control. All values are mean + SEM.

2.8. Western blot analysis

Protein lysates were isolated from HUVEC or aortic tissue using
RIPA buffer (Wako Pure Chemical Industries, Ltd.) containing a
protease inhibitor cocktail (Takara Bio Inc.) and phosphatase in-
hibitors (Roche LifeScience). Proteins were separated by SDS-PAGE
and transferred to polyvinilidine difluoride membranes (Hybond-
P; GE Healthcare). The membrane was blocked in 5% bovine serum
albumin for 1 h at room temperature, followed by incubation with
primary antibody against either phospho-SAPK/JNK, SAPK/JNK
(Cell Signaling Technology), or B-actin (Sigma) at 4 °C overnight.
After blots were washed in TBS containing 1% Tween-20, the
membranes were incubated in horseradish peroxidase-conjugated
secondary antibody (Chemicon) for 1 h. Expression of f-actin was
used as an internal control to confirm equivalent total protein
loading. Antibody distribution was visualized with ECL-plus re-
agent (GE Healthcare) using a luminescent image analyzer (LAS-
1000, Fuji Film).

2.9. Statistical analysis

All results are expressed as mean + SEM. Comparison of pa-
rameters between two groups was performed with unpaired Stu-
dent's t-test. Comparisons of dose—response curves were made by
two-factor repeated-measures ANOVA, followed by Tukey's post
hoc test for comparison between groups. A value of p <0.05 was
considered significant.

3. Results
3.1. Ticagrelor attenuated atherosclerosis in apoe™~ mice

To investigate the effect of ticagrelor on atherogenesis, apoe*/’
mice were fed WTD supplemented with 0.1% ticagrelor for 20
weeks. Ticagrelor did not alter metabolic parameters in apoe’/’
mice, as shown in Supplementary Table 2. Sudan IV staining
showed that ticagrelor treatment decreased the development of
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atherosclerotic lesions in the aortic arch compared with the control
(172 £2.1 vs 10.8 + 1.3%, p < 0.01) (Fig. 1).

3.2. Ticagrelor attenuated endothelial dysfunction in apoe™~ mice

To investigate the mechanism by which ticagrelor attenuates
atherogenesis, we examined the effects of ticagrelor on endothelial
dysfunction, an initial step in vascular inflammation and athero-
genesis. The results of immunostaining demonstrated that
administration of ticagrelor for 8 weeks reduced the expression of
adhesion molecules such as VCAM-1 and ICAM-1 in atherosclerotic
plaques. Associated with the reduction of these inflammatory
molecules, ticagrelor attenuated the accumulation of macrophages
as determined by the expression of MOMA-2 and lipid deposition
in the lesions (Fig. 2). Furthermore, ticagrelor decreased mRNA
expression of Vcam1 and Icam1 (p < 0.05, respectively), and tended
to decrease the expression of Mcpl (p=0.07) in the abdominal
aorta compared with the control (Fig. 3A).

Endothelium-dependent vasodilation in response to Ach was
significantly impaired in apoe’/* mice after 8-week WTD feeding
compared with that in age- and sex-matched WT mice fed normal
chow. However, ticagrelor administration for 8 weeks ameliorated
the impairment of endothelium-dependent vasodilation (Fig. 3B).
On the other hand, endothelium-independent relaxation in
response to SNP did not differ between the ticagrelor-treated group
and control group (Fig. 3C). Ticagrelor administration inhibited
phosphorylation of JNK in the atherosclerotic aorta, suggesting that
ticagrelor inhibits JNK activation (Fig. 3D). Metabolic parameters
did not differ between the ticagrelor-treated group and control
group (Supplementary Table 3).

3.3. Ticagrelor inhibited ADP-induced expression of inflammatory
molecules in HUVEC

The effects of ADP on the expression of inflammatory molecules
in HUVEC were examined by qPCR. ADP promoted the expression of
inflammatory molecules such as Vcam1, Icam1, and Mcp1 in HUVEC,
while pre-treatment with ticagrelor inhibited these responses
(Fig. 4A—C). The results of western blotting indicated that ADP
stimulated the phosphorylation of JNK, suggesting that ADP pro-
motes JNK activation in endothelial cells. Ticagrelor inhibited JNK
activation induced by ADP (Fig. 4D).

3.4. Inhibition of INK ameliorated endothelial dysfunction

To confirm the contribution of JNK signaling to ADP-induced
endothelial dysfunction, HUVEC were treated with ADP in the
presence or absence of a JNK inhibitor (SP600125). ADP promoted
the expression of Vcami1 and Mcp1, while SP600125 significantly
attenuated ADP-induced inflammatory molecule expression in
HUVEC (Fig. 5A). Furthermore, endothelium-dependent vascular
reactivity was impaired in aortic rings treated with ADP. However,
pre-treatment with ticagrelor or SP600125 ameliorated this
impairment (Fig. 5B). The vascular response to SNP was unaffected
by ADP even in the presence/absence of ticagrelor or SP600125
(Fig. 5C).

4. Discussion

The present study demonstrated that treatment with ticagrelor,

a P2Y12 antagonist, reduced the development of atherosclerotic
lesions in apoe~/~ mice. Ticagrelor decreased the expression of
inflammatory molecules in the aorta and ameliorated the vascular
response to Ach, suggesting that ticagrelor has protective effects on
endothelial function in apoe’/ ~ mice. Atherosclerosis is a chronic
inflammatory disease, which involves various cellular and molec-
ular processes [28—30]. It is widely accepted that endothelial
damage interrupts homeostasis of the vasculature, and initiates
atherosclerotic processes including endothelial permeability,
platelet aggregation, leukocyte adhesion, and cytokine production
[23]. Therefore, impairment of endothelial function is an early
marker of atherosclerosis and a potential therapeutic target for the
prevention of atherosclerotic diseases [24]. The results of recent
clinical trials demonstrated that ticagrelor reduced vascular events
in patients with ACS or a history of myocardial infarction [3,4]. The
results of our study may explain the mechanism of the beneficial
outcome of ticagrelor, at least partially.

P2Y12 was originally found in platelets and plays a key role in
platelet activation, which results in platelet aggregation and coag-
ulation [6]. However, several studies have demonstrated that
vascular cells such as endothelial cells express P2Y12” 8. Platelet-
independent roles of P2Y12 have therefore attracted much atten-
tion. A recent study reported that vessel wall P2Y12 deficiency but
not platelet P2Y12 deficiency attenuated atherosclerotic lesions in
the aortic sinus and brachiocephalic artery in apoe™/~ mice [15].
Previous clinical studies demonstrated that treatment with clopi-
dogrel, another widely used P2Y12 antagonist, improves
endothelium-dependent vascular reactivity and decreases pro-
inflammatory molecules in humans [19,20,31]. These studies sug-
gested beneficial effects of P2Y12 inhibition on endothelial func-
tion. Since its clinical approval, a substantial number of studies
have reported the superiority of ticagrelor compared with clopi-
dogrel in reducing cardiovascular events [17,18]. Several studies
demonstrated that ticagrelor has protective effects on the endo-
thelium, and that the effects were more robust compared with
those of clopidogrel [17,18]. However, the mechanism by which
P2Y12 inhibition by these drugs ameliorates endothelial dysfunc-
tion is not fully understood.

In this study, ticagrelor decreased the expression of inflamma-
tory molecules in the aorta and attenuated endothelial dysfunction
in apoe~/~ mice. We found that ticagrelor decreased the phos-
phorylation of JNK, which is an important regulator of vascular
inflammation and endothelial function, in treated animals [32,33].
In in vitro experiments, ADP stimulated the expression of inflam-
matory molecules in HUVEC, and a JNK inhibitor, SP600125, abol-
ished these responses. Ticagrelor also inhibited ADP-induced JNK
phosphorylation in HUVEC. Furthermore, our ex vivo experiment
using aortic rings isolated from WT mice confirmed that ticagrelor
or SP600125 attenuated impairment of endothelium-dependent
vasodilation. These results partially explain that inhibition of
ADP-mediated P2Y12 signaling by ticagrelor ameliorates endothe-
lial dysfunction. Several studies have suggested that other P2Y re-
ceptors also regulate endothelial function. For example, ADP-
mediated P2Y1 signaling promotes human endothelial cell migra-
tion, suggesting that it may stimulate re-endothelialization after
vascular injury [34]. The ADP-P2Y receptors signaling pathways in
the endothelium remain incompletely characterized. Further
studies are needed to elucidate the role of these signaling pathways
in endothelial cells, which could provide a new concept for endo-
thelial protection.

Fig. 2. Ticagrelor attenuated expression of inflammatory molecules in atherosclerotic plaques in apoe™/~ mice.

Representative images of immunostaining against VCAM-1 (A), ICAM-1 (B) and MOMA-2 (C), and oil red O staining (D) of atherosclerotic lesions in the aortic root in apoe '~ mice
treated with ticagrelor for 8 weeks. Ticagrelor decreased the expression of VCAM-1 and ICAM-1. Ticagrelor also reduced macrophage accumulation and lipid deposition in plaques.
(n = 7, per group). Bar: 500 um *p < 0.05, **p < 0.01. Ctrl; control. All values are mean + SEM.
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Fig. 3. Ticagrelor attenuated endothelial dysfunction in apoe™/~ mice.

(A) Results of qPCR demonstrated that administration of ticagrelor for 8 weeks decreased the expression of inflammatory molecules in the atherosclerotic abdominal aorta
compared with control (n = 8, per group). (B and C) Vascular reactivity to Ach or SNP was determined using aortic rings obtained from ticagrelor-treated or control apoe !~ mice at
the early stage of atherosclerosis. Control apoe '~ mice showed an impaired endothelial response compared with age- and sex-matched WT mice fed normal chow. Ticagrelor
administration for 8 weeks ameliorated endothelium-dependent vasodilation compared with that in control apoe™/~ mice (B). Vasorelaxation in response to SNP did not differ
among the three groups (C). (n = 8, per group). (D) Western blot analysis showed that ticagrelor suppressed JNK activation in the aorta of ticagrelor-treated apoe /~ mice compared
with the control group (n = 7, per group). *p < 0.05, **p < 0.01. Ctrl; control. All values are mean + SEM.

Ticagrelor has vascular protective effects which are beyond the
ADP-P2Y12 pathway. Not only platelets but also damaged or
stressed tissues including endothelial cells release ADP [35], which
is converted to adenosine by CD39/CD73 on endothelial cells
[36,37]. Adenosine has protective effects on the endothelium;
however, the local adenosine level is immediately reduced by its
internalization into cells via equilibrative nucleoside transporter 1
(ENT1) [5]. Recent studies showed that ticagrelor inhibits ENT1,
leading to an increase in the local concentration of adenosine
[38—40]. Therefore, P2Y12-independent effects of ticagrelor also

contribute to the vasodilation and are associated with its
superiority.

A previous study showed that ticagrelor stabilized advanced
atherosclerotic plaques in apoe™/~ mice as determined by necrotic
core size, fibrous cap thickness, and macrophage accumulation in
plaques [22]. In that study, ticagrelor did not reduce already
existing atherosclerotic lesions, whereas ticagrelor inhibited the
activation of macrophages, leading to the suppression of vascular
inflammation. Another study showed that ticagrelor reduced
plasma CRP level and the expression of inflammatory cytokines
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such as tumor necrosis factor-o. and interleukin-6 in the aortic wall
in diabetic apoe™/~ mice [41]. Several clinical studies have also
demonstrated anti-inflammatory effects of ticagrelor. Ticagrelor
reduced carotid atherosclerotic plaque inflammation as deter-
mined by '®F-fluorodeoxyglucose positron emission tomographic
imaging [42]. Furthermore, ticagrelor decreased circulating levels
of inflammatory molecules in type 2 diabetic patients with
non—ST-segment elevation ACS requiring stent implantation [43].
These clinical and animal studies suggest that ticagrelor has anti-
inflammatory effects, which may be associated with its vascular
protection properties. Thus, ticagrelor seems to have protective
effects on the vasculature through a broad range of cellular and
molecular mechanisms. Further studies are needed to elucidate the
mechanism by which ticagrelor suppresses vascular inflammation
and atherogenesis.

There are several limitations of this study. First, we decided our
dosage with reference to a previous paper [22]. We did not measure

2 h were stimulated with 100 uM ADP for 15 min. ADP induced JNK activation in HUVEC, which was significantly inhibited by ticagrelor (n = 6, per group). *p < 0.05, **p < 0.01,

the plasma concentration of ticagrelor directly. Second, the degree
of inflammation of atherosclerotic lesions in the ticagrelor-treated
group and the control group was equivalent in this study, as
determined by the results of Sudan IV staining and immunohisto-
chemical analysis. Therefore, our results could not reveal the causal
role of the reduction of inflammation by ticagrelor in the sup-
pression of atherosclerotic lesions. Third, we only examined the
P2Y12-dependent effect of ticagrelor, although P2Y12-independent
effects of ticagrelor, such as inhibition of ENT1, are also reported.
These effects might contribute to the results of this study. Also, our
present study was performed using an animal model and cells at
limited time points. Therefore, some of the beneficial effects of
ticagrelor observed in this study might not necessarily be expected
in clinical situations.

In conclusion, the results of our study demonstrated that tica-
grelor decreased the development of atherosclerotic lesions in
apoe!~ mice. Suppression of the JNK pathway through ADP-
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mediated P2Y12 signaling by ticagrelor partially contributed to
endothelial cell protection. These results may partially explain the
findings of vascular protective effects of ticagrelor in recent clinical
studies. Further studies to investigate the platelet-independent
effects of P2Y12 may provide better understanding and a thera-
peutic strategy for atherosclerosis.
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