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Abstract

Reduced inhibitory GABA function, so-called neural disinhibition, has been implicated
in cognitive disorders, including schizophrenia and age-related cognitive decline. We
previously showed in rats that hippocampal disinhibition by local microinfusion of the
GABA-A receptor antagonist picrotoxin disrupted memory and attention and
enhanced hippocampal multi-unit burst firing recorded around the infusion site under
isoflurane anesthesia. Here, we analyzed the hippocampal local field potential (LFP)
recorded alongside the multi-unit data. We predicted frequency-specific LFP changes,
based on previous studies implicating GABA in hippocampal oscillations, with the
weight of evidence suggesting that disinhibition would facilitate theta and disrupt
gamma oscillations. Using a new semi-automated method based on the kurtosis of
the LFP peak-amplitude distribution as well as on amplitude envelope thresholding,
we separated three distinct hippocampal LFP states under isoflurane anesthesia:
“burst” and “suppression” states—high-amplitude LFP spike bursts and the inter-
spersed low-amplitudeperiods—and a medium-amplitude “continuous” state. The
burst state showed greater overall power than suppression and continuous states
and higher relative delta/theta power, but lower relative beta/gamma power. The
burst state also showed reduced functional connectivity across the hippocampal
recording area, especially around theta and beta frequencies. Overall neuronal firing
was higher in the burst than the other two states, whereas the proportion of burst fir-
ing was higher in burst and continuous states than the suppression state. Disinhibi-
tion caused state- and frequency-dependent LFP changes, tending to increase power
at lower frequencies (<20 Hz), but to decrease power and connectivity at higher fre-
quencies (>20 Hz) in burst and suppression states. The disinhibition-induced
enhancement of multi-unit bursting was also state-dependent, tending to be more
pronounced in burst and suppression states than the continuous state. Overall, we

characterized three distinct hippocampal LFP states in isoflurane-anesthetized rats.
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1 | INTRODUCTION

Subconvulsive neural disinhibition, that is, reduced inhibitory GABA
function, within the hippocampus has been implicated in important
neuropsychiatric disorders, including schizophrenia and age-related
cognitive decline, and in the cognitive impairments characterizing
these disorders (Bast, Pezze, & McGarrity, 2017; Benes &
Berretta, 2001; Heckers & Konradi, 2015; McGarrity, Mason, Fone,
Pezze, & Bast, 2017; Nava-Mesa, Jiménez-Diaz, Yajeya, & Navarro-
Lopez, 2014; Palop & Mucke, 2016; Stanley, Fadel, & Mott, 2012;
Thomé, Gray, Erickson, Lipa, & Barnes, 2016). In a recent study
(McGarrity et al., 2017), we pharmacologically disinhibited the tempo-
ral (also known as ventral) to intermediate hippocampus in rats by
acute local microinfusion of the GABA-A receptor antagonist picro-
toxin. Such hippocampal disinhibition caused clinically relevant cogni-
tive impairments, including in hippocampal memory function and in
attentional performance that relies on prefrontal-striatal mechanisms,
consistent with the idea that hippocampal disinhibition disrupts both
hippocampal processing and processing in hippocampal projection
sites (Bast et al.,, 2017). In addition, electrophysiological recordings
around the infusion site under isoflurane anesthesia showed that dis-
inhibition enhanced burst firing of hippocampal neurons, as reflected
by multi-unit data. The purpose of this article is to report the analysis
of the impact of disinhibition on the hippocampal local field potential
(LFP), which we recorded alongside the multi-unit data.

Brain rhythms or oscillations, that is, synchronized changes in the
activity of many neurons, as revealed by LFP recordings have been
suggested to be important for cognitive processing, including memory,
because they bind neurons into functional assemblies (Buzsaki &
Draguhn, 2004; Colgin, 2016). Alterations in brain rhythms have been
reported in many neuropsychiatric disorders and have been suggested
GABA (Uhlhaas &
Singer, 2006, 2010). Two prominent, widely studied hippocampal LFP

to arise partly from dysfunction
rhythms are the theta and gamma rhythms. In the rat hippocampus,
theta ranges from 4 to 12 Hz, whereas gamma oscillations range from
25 to 100 Hz, including “slow” or “low” gamma from 25 to 55 Hz (also
known as beta rhythms) and “fast” or “high” gamma from 60 to
100 Hz (Colgin, 2016; Colgin et al., 2009). Substantial evidence sug-
gests that theta and gamma LFP rhythms depend on hippocampal
GABAergic inhibition; this evidence leads to the hypotheses underly-
ing our study of the LFP changes caused by hippocampal disinhibition
and will be considered in the following paragraphs. Another promi-
nent hippocampal rhythm, sharp-wave ripples (110-250 Hz ripples
superimposed on 0.01-3 Hz sharp waves; Colgin, 2016), will not be

Disinhibition changed hippocampal LFP oscillations in a state- and frequency-
dependent way. Moreover, the disinhibition-induced enhancement of multi-unit

bursting was also LFP state-dependent.

anesthesia, disinhibition, GABA, hippocampus, LFP, oscillations, picrotoxin

considered further in this article, because ripples are not expressed
under volatile anesthetics (Ylinen et al., 1995), and the frequency
range of our LFP recordings (0.7-170 Hz) did not encompass the full
range of sharp waves and ripples.

Substantial evidence suggests that hippocampal disinhibition
would facilitate hippocampal theta power. Septal projections to the
hippocampus, including excitatory cholinergic projections and
GABAergic projections, which disinhibit the hippocampus by innervat-
ing hippocampal inhibitory GABA interneurons (Borhegyi, Varga,
Szilagyi, Fabo, & Freund, 2004; Freund & Antal, 1988; Hangya, Bor-
hegyi, Szilagyi, Freund, & Varga, 2009; Téth, Freund, & Miles, 1997),
are thought to be a main theta driver (Colgin, 2016). In line with this,
septal inactivation reliably abolishes hippocampal theta in freely mov-
ing rats (Brandon et al, 2011; Koenig, Linder, Leutgeb, &
Leutgeb, 2011), and, in urethane-anesthetized rats with septal inacti-
vation, hippocampal theta could be reinstated by cholinergic stimula-
tion or disinhibition (with the GABA-A receptor antagonist
bicuculline) of the hippocampus (Smythe, Colom, & Bland, 1992).
Moreover, cholinergic stimulation of rat hippocampal slices by carba-
chol reliably induces theta in vitro, and pharmacological disinhibition
by GABA-A receptor antagonists has been reported to enhance the
induced theta oscillations
(Golebiewski, Eckersdorf, & Konopacki, 1996; Konopacki,
Gotebiewski, Eckersdorf, Btaszczyk, & Grabowski, 1997; Kowalczyk,

Bocian, & Konopacki, 2013). In line with such theta-enhancing effects

amplitude of such cholinergically

of hippocampal disinhibition, hippocampal inhibition with the GABA-A
receptor agonist muscimol disrupted cholinergically induced theta in
the rat hippocampus in vitro (Golebiewski et al., 1996) and in vivo
(Smythe et al., 1992). These findings thus support an inverse relation-
ship between hippocampal GABA function and theta amplitude
(Kowalczyk et al., 2013).

However, there is also evidence that some types and properties
of hippocampal theta are positively modulated by GABA function and
disrupted by hippocampal disinhibition. Genetic ablation of synaptic
inhibition of parvalbumin-positive GABAergic interneurons disrupted
hippocampal theta in freely moving mice (Wulff et al., 2009). GABA-A
receptor antagonists reduced the power of theta induced by septal
activation in an in vitro septo-hippocampal preparation from rats
(Goutagny, Manseau, Jackson, Danik, & Williams, 2008), and of
nicotine-induced(Lu & Henderson, 2010) and electrically induced
(Heynen, Sainsbury, & Bilkey, 1993) theta in rat hippocampal slices,
and decreased frequency and coherence (connectivity) of carbachol-
induced theta between the entorhinal cortex and subiculum in vitro
(Levesque, Cataldi, Chen, Hamidi, & Avoli, 2017). Moreover,



GWILT ET AL Wl LEY 3

optogenetic activation of parvalbumin-positive GABAergic hippocam- GABAergic inhibition by parvalbumin neurons supports intrinsically
pal interneurons strengthened, whereas silencing of these neurons generated theta (Amilhon et al., 2015). Finally, genetic knock-out of
disrupted, theta in an in vitro preparation of the mouse hippocampus the GABA-A receptor subunit B3 decreased power, frequency, and
with intact intrinsic but severed extrinsic connectivity, suggesting that regularity of hippocampal theta and theta cross-correlation between
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FIGURE 1 Three distinct local field potential (LFP) states in the rat hippocampus under isoflurane anesthesia. For illustration purposes,
example raw traces are shown to familiarize the reader with the manifestation of the different LFP states. (a) The top panel shows two 400-s long
LFP traces, with corresponding multi-unit activity (MUA), recorded simultaneously from the temporal to intermediate hippocampus under
isoflurane anesthesia. They illustrate the transition from the burst-suppression state (left), comprising burst and suppression states, to the
continuous state (right). The middle panel shows the 40-s sections indicated in the top panel with an expanded time line. The bottom panel
depicts a 7-s period of the burst-suppression state with an expanded time line, showing the LFP signal during burst and suppression states in
higher detail. The three distinct LFP states also differ with respect to multi-unit spiking, particularly MUA tends to be higher during the burst than
in the suppression state (mind the color “scale,” showing three distinct levels of MUA [besides zero which is transparent]—corresponding to
different MUA frequencies; exported from Neuroexplorer v4). (b) The two plots show the LFP traces recorded from the montage of seven bipolar
channels in two different rats to give a more representative impression of the distinctiveness of the states that differs greatly between different
animals and, sometimes, electrodes. Bipolar Channel 2 of Rat 2 was selected as the “LFP state-defining” channel here because of very clear visual
separation of the three states based on the amplitude differences (these are the data magnified in [a]). By contrast, in Rat 4, the three LFP states
are visually less clearly separated. Channel 3 was selected as the “LFP state-defining” channel for this rat because, although it has smaller overall
amplitudes than other channels, the three different states are visually more clearly separated, especially compared to Channels 4-7 [Color figure
can be viewed at wileyonlinelibrary.com]
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different hippocampal subfields in freely moving mice (Hentschke
et al., 2009).

There is also substantial evidence linking hippocampal gamma oscil-
GABAergic
(Colgin, 2016). In rodents, firing of hippocampal interneurons is phase-

lations to inhibitory hippocampal interneurons
locked to spontaneous hippocampal gamma oscillations (Belluscio,
Mizuseki, Schmidt, Kempter, & Buzsaki, 2012; Mann, Suckling, Hajos,
Greenfield, & Paulsen, 2005; Tiesinga, Fellous, José, & Sejnowski, 2001;
Traub et al, 2000; Tukker, Fuentealba, Hartwich, Somogyi, &
Klausberger, 2007), and intracellularly recorded inhibitory postsynaptic
potentials of pyramidal cells, recorded in vivo, are reflected in gamma
oscillations (Penttonen, Kamondi, Acsady, & Buzsaki, 1998; Soltesz &
Deschenes, 1993). This indicates that hippocampal gamma is generated
by hippocampal GABA interneurons (Colgin, 2016). Consistent with
this, GABA-A receptor antagonists have been shown to disrupt differ-
ent types of experimentally induced gamma oscillations in hippocampal
slices, with the magnitude of this effect depending on the hippocampal
subfield (Bartos, Vida, & Jonas, 2007; Fisahn et al., 2004; Traub, Bibbig,
LeBeau, Buhl, & Whittington, 2004; Whittington, Traub, Kopell,
Ermentrout, & Buhl, 2000).

Overall, the above review of GABAergic mechanisms of hippo-
campal theta and gamma oscillations leads to the hypothesis that
pharmacological hippocampal disinhibition will cause frequency-
dependent changes in LFP oscillations, with the weight of evidence
suggesting that gamma amplitude may be reduced, whereas theta
amplitude may be enhanced. However, there is also evidence
suggesting that some features of the theta rhythm, including its
coherence across the hippocampus, may be disrupted.

When analyzing LFP recordings from anesthetized rodents, it is
important to consider that, under anesthesia, many brain regions,
including the hippocampus, show different LFP states characterized
by distinct LFP patterns which can alternate (Clement et al., 2008;
Kenny, Westover, Ching, Brown, & Solt, 2014; Land, Engler, Kral, &
Engel, 2012; Lustig, Wang, & Pastalkova, 2016; Wolansky, Clement,
Peters, Palczak, & Dickson, 2006) (for an example of our hippocampal
recordings, see Figure 1a). One key LFP state observed with many
anesthetics, including isoflurane, is the burst-suppression state, which
can be further subdivided into a “burst” state, characterized by LFP
“bursts” (i.e., high-amplitude LFP deflections), which alternates with a
“suppression” state, characterized by low-amplitude LFP signal (Note:
the burst-suppression state is often, or even typically, considered as
one state, without further subdivision in two distinct states, although
visual inspection of the LFP trace clearly suggests distinct properties
of the burst and suppression components; our quantitative analysis
reported in this article also revealed distinct properties of these two
states). A third LFP state is characterized by a more "continuous" LFP
pattern with continuous LFP activity of lower amplitude than during
LFP bursts. The balance between the burst suppression and continu-
ous states changes with anaesthetic depth, with burst-suppression
tending to become more dominant, the deeper the anesthesia (Land
et al., 2012; Lustig et al., 2016). To analyze the impact of neurophar-
macological manipulations, including hippocampal disinhibition, on

LFP oscillations under anesthesia, it is important to separate these

different LFP states for two main reasons. First, the large-amplitude
LFP signals characterizing the burst state reflect major non-
stationarities in the otherwise low-amplitude signals and may thus
dominate the power spectral analysis, occluding frequency compo-
nents that may be more characteristic of the other LFP states. Second,
given the distinct characteristics of LFP patterns in different LFP
states, neuropharmacological mechanisms underlying oscillatory activ-
ity may be LFP-state dependent.

In the present study, we aimed to characterize the effect of hippo-
campal disinhibition, by picrotoxin infusions into the temporal to inter-
mediate hippocampus, on hippocampal neural oscillations around the
infusion site using the LFP data recorded by McGarrity et al. (2017).
First, we developed an objective, semi-automated method to separate
the three distinct LFP states described above (the continuous LFP state
from the burst-suppression state, and, within the latter, the burst from
the suppression state; and compared several properties of these states
(frequency-specific power and connectivity, and multi-unit parameters).
Second, we examined the impact of picrotoxin on hippocampal LFP
properties (frequency-specific power and connectivity) in the three dis-
tinct LFP states. Third, we examined if the disinhibition-induced
enhancement of multi-unit burst firing reported previously (McGarrity
et al,, 2017) is dependent on the LFP state.

2 | METHODS
2.1 | LFP and multi-unit data recording and
preprocessing

Analysis was carried out on the hippocampal LFP and multi-unit data
collected in our previous study (McGarrity et al., 2017). The record-
ings were carried out in accordance with the Animals (Scientific Pro-
cedures) Act 1986, and full details concerning the rats used for the
recordings, housing conditions, surgical and recording procedures,
and equipment can be found in our previous study (McGarrity
et al., 2017). In brief, LFP and multi-unit data were recorded simulta-
neously in isoflurane-anesthetized male adult (2-3 months) Lister-
hooded rats, using a custom-made assembly of a 33-gauge stainless
steel infusion cannula and an eight-electrode (microwire) recording
array that was implanted into the hippocampus (Figure 2a, top right).
The cannula tip, through which saline or picrotoxin solution could be
injected, touched the electrodes and was positioned about 0.5 mm
above the tips of the central electrodes. The assembly was stereo-
tactically implanted into the right hippocampus, such that the eight-
electrode array was arranged perpendicular to the brain midline and
anterior to the infusion cannula, with the cannula tip aimed at coor-
dinates in the right temporal (also known as ventral) to intermediate
hippocampus (5.2 mm posterior to bregma, 4.8 mm lateral from mid-
line, and 6.5 mm ventral from dura). The eight-electrode array
spread approximately 2 mm, in the mediolateral direction (Figure 2a,
top left). The extracellular signal recorded by the electrodes was
band-pass filtered into LFP (0.7 and 170 Hz) and multi-unit
(250 Hz-8 kHz) data, which were recorded for a 30-min baseline
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period and a 60-min period following infusion (over about 1 min) of
either 0.5 pl saline (n = 7 rats) or 150 ng/0.5 pl picrotoxin (n = 6 rats)
in a between-subjects design. Isoflurane levels were kept at a rela-
tively stable level (1-3% depending on the rat) over the entire
recording period, such that the breathing rate was kept around
50 breaths per minute and the pedal reflex was absent. All data were

infusion (baseline) and 12 post-infusion5-min bins. Although the pic-
rotoxin group in the original study included eight rats (McGarrity
et al., 2017), only six could be included in the present analysis,
because one of the data sets could not be read into MATLAB for
analysis and another data set was recorded using a bundle array and,
therefore, could not be combined with the rest of the data for LFP

collected continuously and averaged in 5-min bins, that is, six pre- analysis.
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All data were processed in MATLAB (R2016a) (The MathWorks,
Inc) using the FieldTrip toolbox (Oostenveld, Fries, Maris, &
Schoffelen, 2011). To reduce noise, far-field effects, and shared signal
from all the electrode recordings, a montage of seven bipolar channels
was digitally created using a pairwise bipolar subtraction (Land
et al, 2012) of the eight original electrodes. Data were then
preprocessed in FieldTrip by re-referencing with a common reference
over all bipolar channels (except for the functional connectivity analy-
sis) to remove any remaining linear gradient affecting all bipolar pairs,
DC offset removal for each episode, and a band-stop filter between
49.5 and 50.5 Hz to remove the electric line noise. The most medial
and/or the most lateral electrodes of the 2-mmeight-electrode record-
ing array were located outside of the hippocampus (typically 1-3 elec-
trodes per rat; Figure 2a, bottom), and our previous multi-unit analysis
revealed that hippocampal picrotoxin infusion did not affect any of
the multi-unit parameters analyzed from these electrodes (consistent
with the densely packed fiber bundles surrounding the hippocampus)
(McGarrity et al., 2017). If both of the electrodes used to calculate a
synthetic bipolar electrode were outside the hippocampus, that partic-
ular bipolar channel was removed, otherwise it was included in the
analysis. As bipolar subtraction was not appropriate for multi-unit
activity (MUA), in order to match the seven bipolar channels used for
the LFP analysis, electrodes 2-8 were selected and matched to their
corresponding bipolar channel (i.e., electrode 2 to bipolar 1, electrode
3 to bipolar 2, etc.). Electrodes 2-8 were selected in place of 1 to
7 because in most cases electrode 1 (the most medial) sat outside the

hippocampus and had to be excluded anyway.

2.2 | Semi-automated separation of LFP states

The hippocampal LFP recordings under isoflurane anesthesia clearly
showed the three distinct LFP states outlined in Section 1, including a
burst, suppression, and continuous state (Figure 1a). The simulta-
neously recorded MUA also appeared to vary depending on the LFP
state, with the burst state tending to show a higher multi-unit firing
than the suppression state, and the continuous state characterized by

continuous firing at a similar rate to that in the burst state. Our
semi-automated separation strategy was to start by separating the
combined burst-suppression state from the continuous state and then
to separate the burst from the suppression state.

Simple thresholding based on continuous amplitude/power mea-
sures did, with our data, not result reliably in state separation that
corresponded to the states that would be assigned by visual inspec-
tion (although thresholding worked for the example LFP traces in
Figure 1a, it did not reliably separate the LFP states when these
showed less pronounced differences; for example, see Figure 1b,
right). Therefore, we used a higher order moment (kurtosis) of the
distribution of the peak amplitude values—rather than the mere
amplitude of the continuous signal (see below). To separate the
three states, for each rat the channel with the most marked differ-
ence between LFP states based on visual inspection of the raw LFP
traces, the “LFP state-defining” channel, was selected (for example,
see Figure 1b). For this LFP state-defining channel, the peaks and
troughs of the LFP trace were identified (undifferentiated over base-
line and post-infusion periods) by identifying the sign change of the
first derivative. The distribution of these peaks and troughs identi-
fied from the signchange turned out to be unimodal (Figure 2b), and
thus not enabling a clear separation into discrete states. In contrast,
a measure of the kurtosis (“tailedness”) of the amplitude distribution
of those peaks and troughs separated the burst-suppression and
continuous states. The kurtosis was calculated for a 10-s sliding win-
dow with a 1-s step size (the raw signal and the estimates of kurtosis
are plotted in Figure 2c, Panels 1 and 2, respectively). A histogram of
kurtosis values (a total of 4,391) was plotted in 100 bins (Figure 2c,
Panel 3), and the most distinct local minimum (the first or second)
separating peaks in the multimodal distribution was selected as
threshold to separate the combined burst-suppression states from
the continuous state (Figure 2c, arrow). If kurtosis values exceeded
this threshold, the corresponding time points were marked as being
in the burst-suppression state, whereas time points with subthresh-
old values were marked as in the continuous state (Figure 2c, shaded
area). These labels were then applied to the samples of every chan-
nel from the same rat.

FIGURE 2

Hippocampal recordings and separation of hippocampal local field potential (LFP) states. (a) Placement of the infusion-recording

array within the temporal to intermediate hippocampus. The top pictures show, right, the eight-electrode array with the attached infusion cannula
and, left, an example coronal section through the hippocampus, with the placements of the most medial and most lateral electrodes indicated by
the white arrow heads. The array was arranged perpendicular to the midline of the brain, with the infusion cannula located just posterior to the
center of the array. In the bottom, the most medial (black dots) and most lateral (grey dots) electrode placements are indicated for all rats included
in the analysis on drawings of coronal brain sections taken from the atlas by (Paxinos & Watson, 1998). Note that the most medial and/or the
most lateral electrodes of the 2-mmeight-electrode recording array were located outside the hippocampus (typically one to three electrodes per
rat), and data from these electrodes were excluded from the analysis. (b) The distribution of amplitude of peaks and troughs in the burst-suppression
state and the continuous state differ in kurtosis, but not modality. A histogram was calculated for the identified peak and trough amplitudes based
on visually identified 100-s segments belonging to the combined burst-suppression or the continuous state, from the 400-s trace shown in
Figure 1. Both states show a unimodal amplitude distribution, but the distribution of the burst-suppression state shows a higher kurtosis
(tailedness). (c) Semiautomatic separation of burst-suppression and continuous LFP states, using the kurtosis values of the distribution of the peak and
trough amplitudes of the LFP trace. (1) 400-s LFP trace, clearly showing separate burst-suppression (white background) and continuous states
(shaded) (same 400-s trace as shown in Figure 1a). (2) The time course of the kurtosis values of the 400-s LFP trace, calculated using a 10-s long,
1-s sliding window. (3) Histogram of the distribution of kurtosis values over baseline and post-infusion data (i.e., the whole recording period, not
only the 400-s period presented in [1] and [2]). The arrow from (3) to (2) represents, in this case, the second minimum in the histogram (3), which
corresponds to the kurtosis threshold value (stippled line in 2) that separates burst-suppression from the continuous state.

Figure 2a is adapted from figure 5A in McGarrity et al. (2017) [Color figure can be viewed at wileyonlinelibrary.com]
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combination [Color figure can be viewed at wileyonlinelibrary.com]

In a final step, we further separated the burst-suppression state
into the burst and suppression components, using a semiautomatic
LFP-amplitude thresholding routine in Fieldtrip. To this end, a distri-
bution of the absolute amplitude-values of the signal was formed.
Samples that exceeded a fixed z-value of 5 and those falling within a
symmetrical 0.25-s window around the threshold crossing were con-
secutively labeled as burst state. This thresholding was run on each

individual channel to prevent summation of z-values, which could

occur from synchrony across channels and convolute the routine. The
output of this routine gave the boundaries between low amplitude
activity, corresponding to the suppression state, and the burst state.
Not all rats were spending time in each of the LFP states for
every 5-min bin of the recording period, and four rats were not spend-
ing any time in the continuous state during baseline (therefore not all-
owing baseline normalization of the post-infusion data). Therefore,

the number of rats contributing to the different analyses of state-
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separated data could differ from the overall number of rats from
which recordings were made (Figure 3). The reduced sample size dur-
ing the continuous state implies that the statistical power of any anal-
ysis in the continuous state is reduced compared to the analysis of

the other two states.

2.3 | State-separated analyses of hippocampal LFP
properties
2.3.1 | Power spectral density

Power at different frequencies was analyzed separately for the differ-
ent LFP states in FieldTrip, using Fast Fourier Transform with a
Hanning window from 0.5 to 40 Hz. These power spectra were subse-
quently averaged across channels and compared across the different
states. Given the substantial raw-power differences between the dif-
ferent states (already separated in this analysis) and in order to inves-
tigate potential differences in relative spectral density, for each
individual channel, we additionally normalized the spectra to the total
area under the curve of the power spectrum before comparison

across states.

2.3.2 | Connectivity

Phase-locking values (PLVs) were calculated to indicate the phase-
coherence (a measure of neuronal synchronization that is independent
of amplitude correlations) of two signals originating from a pair of
electrodes (measuring local activity due to their bipolar montage;
Aydore, Pantazis, & Leahy, 2013; Bastos & Schoffelen, 2015;
Srinivasan, Winter, Ding, & Nunez, 2007). PLVs were calculated for
every possible pair of hippocampal electrodes for every 0.5-Hz fre-
quency bin. Because the individual electrodes between rats were not
at consistent locations within the temporal to intermediate hippocam-
pus, instead of averaging PLVs of electrode pairs across subjects (as is
common in electroencephalography [EEG]/magnetoencephalography
analysis where a standard mapping of electrodes does exist, for exam-
ple, Oostenveld & Praamstra, 2001), we used a different method to
extract the communality of connectivity between all electrode pairs
and to then calculate a statistic of this across rats (Cohen, 2015). To
this end, we used singular value decomposition (SVD) over the imagi-
nary part of the PLV matrix of all states and times. We used the imagi-
nary part of the complex PLV (complex cross-spectrum normalized on
power in individual trials) as this is not corrupted by volume-
conduction problems (Nolte et al., 2004). For each rat and frequency
bin, we extracted the singular vectors U and V that satisfy the equa-
tion PLV = U x S x V', with S being the matrix of singular values and
PLV the matrix of imaginary PLVs. The individual imaginary PLV matri-
ces for each state and time combination were then projected into this
space using the respective singular vectors, and the first two “singular
values” were extracted. These two values represent the connectivity

strength within the two dominant “neural networks” of the rat in the

area of the temporal to intermediate hippocampus sampled by the

bipolar seven-electrode montage.

2.3.3 | Multi-unit activity

We compared the following key MUA parameters between LFP
states: overall firing rate, bursts per minute, percentage of spikes in
burst, and burst duration. The original MUA analysis in our previous
study (McGarrity et al, 2017) had been completed using
NeuroExplorer (version 4). However, in order to examine the state-
dependency of MUA parameters (and, subsequently, also of the previ-
ously reported disinhibition-induced enhancement of MUA burst
parameters, see below), we replicated the original analysis using
MATLAB, where we could then separate the different snippets of
MUA by their associated LFP state. The MUA data were separated
according to the different LFP states based on their time stamps in a
way that preserved the original MUA bursts, with each burst assigned
to the state occupied longest during the burst duration.

2.34 | Statistical comparison of the three distinct
hippocampal LFP states during baseline

To analyze the effect of the different states on the overall LFP and
MUA, we compared the baseline data, removing the factor of drug.
For the baseline frequency-specific effects (power spectra and
PLV), we compared each state to both other states in a separate
analyses, after running a moving average over the frequency values,
with a kernel of 1.5 Hz sliding over 0.5 Hz. The statistical analysis
of these effects was carried out using pairwise comparisons at each
frequency bin. In order to address the multiple comparisons prob-
lem arising from the simultaneous analysis of 80 different fre-
quency bins, we conducted a cluster permutation analysis
(Hayasaka, Phan, Liberzon, Worsley, & Nichols, 2004; Maris &
Oostenveld, 2007). This method runs a mass-univariate indepen-
dent samples t-test for each frequency bin, for both real data pairs
(of the conditions to be compared) and randomly assigned pairs
(combining data of both conditions to obtain a reference distribu-
tion). Adjacent frequency bins that pass the univariate significance
threshold form a cluster and a summary statistic of these clusters
(e.g., summed t-value) is calculated for real data and reference dis-
tribution data. Only those clusters from the comparisons of the real
data pairs which cutoff less than 5% of the maximum cluster statis-
tic from the reference distribution (random pairs) were considered
as statistically significantly different.

For the state-separated analysis of MUA, a problem of missing
data points over time arose due to the limited time each rat spent in
each state (see Figure 3 for the missing data in different 5-min bins).
Therefore, it was not possible to conduct a repeated-measures analy-
sis of variance (ANOVA) and so we used a pooling strategy. More spe-
cifically, we used the 5-min bins in the different states as the units of

observation, such that data from all rats and time bins were pooled
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according to state—after averaging across channels (for each rat). This
was then subjected to a between-subjectsone-way ANOVA, with LFP
state as the between-subjects factor; this reflects a fixed-effect

analysis.

2.4 | Analyses of LFPstate-dependent drug
infusion effects

241 | Power spectral density

For the comparison of frequency-specific effects of drug infusion, the
difference between pre- and post-infusion power was expressed as
log of the ratio between post-infusion (power spectra over 60 min)
and pre-infusion (baseline; power spectra over 30 min) values for each
channel. These difference values were then averaged per rat for sta-
tistical analysis, then for each drug group for plotting. The statistical
analysis of the frequency-specific effects of picrotoxin compared to
saline infusions on LFP power was carried out using cluster permuta-
tion where, separately for each LFP state, the log ratio of both drug

groups was compared.

24.2 | Connectivity

The first two PLV “singular values” for each rat (see Section 2.3.2)
were averaged to give a single measure of aggregate connectivity. To
normalize post-infusion values to pre-infusion (baseline) values, the
pre-infusion values were subtracted from the post-infusion values. As
was done for the spectral power analysis, the cluster permutation sta-
tistic was used to compare the effects of picrotoxin vs. saline for each
of the LFP states separately.

243 | Multi-unit activity

Our previous analysis, which did not separate MUA data according to
LFP state, showed that hippocampal disinhibition by picrotoxin causes
enhanced burst firing, as reflected by increased bursts per minute,
percentage of spikes in burst, and burst duration (McGarrity
et al., 2017). Therefore, our present analysis focused on these burst
parameters.

To assess the effect of picrotoxin on the state-separated MUA
analysis, we could not apply the mixed-model ANOVA of MUA
parameters with drug as between-subjects and time (5-min bin) as
repeated-measures factors, which we used in our original MUA data
analysis (which did not separate data by LFP state; McGarrity
et al,, 2017). This is because of the many missing data points, follow-
ing separation of data according to LFP state (see Figure 3). Therefore,
we used the same pooled analysis as for the comparison of MUA
parameters between LFP states during baseline, however, here with
the additional factor of infusion group. Again, data were pooled over

time and rats and separated according to LFP state and infusion

group. Prior to pooling, data for each rat, in each state, were normal-
ized by subtracting the average of the pre-infusion values for each
channel from the individual post-infusion values for the corresponding
channel; subsequent to this, an average was taken across the chan-
nels, for each rat and time point separately. The normalized and
pooled MUA data were subsequently analyzed using a two-way
ANOVA, with LFP state and infusion condition as between-subjects
factors (and time bins and rats as units of observation). A significant
infusion condition x state interaction would statistically support
state-dependent drug effects.

3 | RESULTS

3.1 | Three distinct hippocampal LFP states under
isoflurane

3.1.1 | Differences in frequency-dependent power

and functional connectivity

To compare quantitatively the three distinct hippocampal LFP states
(Figure 1a), we combined the baseline data (i.e., data recorded before
any drug infusion) from all infusion groups. During the baseline period,
all rats showed the burst and suppression states, but not all rats
showed a continuous state, resulting in a sample size of n = 13 rats for
the burst and suppression state and of n = 9 rats for the continuous
state (Figure 3).

The three LFP states substantially differed with respect to overall
raw power and with respect to relative power at different frequencies
(Figure 4). The overall raw power in the burst state was significantly
and substantially higher than in the suppression (cluster level
p = .000999, corrected for multiple comparisons; cluster spanning
across all frequencies, that is, 1-39 Hz) and continuous states
(p = .005, cluster including 1-22.5 Hz). Suppression and continuous
states did not differ significantly (p > .05) indicating similar overall
power, although at lower frequencies power tended to be somewhat
higher in the continuous compared to the suppression state
(Figure 4a). With respect to relative power at different frequencies,
the burst state showed a higher proportion of power within delta/low
theta than the other two states and tended to show a lower propor-
tion of power in high frequencies from about 20 to 40 Hz than both
the suppression and continuous states, which were both characterized
by conspicuous gamma “bumps” in the normalized power spectra in
this frequency range (Figure 4b). For the comparison between burst
and continuous states, a significant cluster was found at 3.5-10 Hz
(p = .024), and between burst and suppression states a significant
cluster was found at 4-14 Hz (p = .009). The numerical differences at
higher frequencies did not reach statistical significance: neither for
the comparisons of continuous and burst states (p = .16) nor suppres-
sion and burst states (p = .10).

Regarding connectivity, we computed an aggregate measure of
phase-locking between all electrode pairs spread across the temporal

to intermediate hippocampus (see Section 2). To exclude any
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FIGURE 4 The three hippocampal local field potential (LFP) states—differences in frequency-dependent power and connectivity. (a) Raw
power spectral density, (b) log-ratio of power divided by the total area under the curve (representing relative power at different frequencies), and
(c) phase-locking values (PLVs) are shown across frequencies for each of the three LFP states. All values are shown as mean + SEM. The
frequency ranges showing significant (p < .05) differences based on cluster permutation statistics are indicated by an asterisk (*) and a solid line
for comparisons between burst and continuous, and a dashed line for comparisons between burst and suppression states. Number of rats
contributing data to the different states: burst, n = 13; suppression, n = 13; continuous, n = 9 [Color figure can be viewed at

wileyonlinelibrary.com]

contamination by volume conduction, only the imaginary part of the
PLVs was used and submitted to an SVD, of which we report the first
two diagonal (Eigen-)values. Across the frequency range examined
(0.7 to 40 Hz), the burst state showed generally lower connectivity
than both suppression and continuous states, which showed very sim-
ilar connectivity (Figure 4c). One significant cluster was found for the
comparison between burst and continuous states at 1.5-9 Hz
(p = .018), and two significant clusters for the comparison between
burst and suppression states: one cluster at 2.5-13 Hz (p = .019) and
another cluster at 17-38 Hz (p = .005). In all these clusters, connectiv-
ity was reduced in the burst state, in comparison to both the continu-
ous and the suppression state.

Overall, in terms of total power, relative power at different fre-
quencies and functional connectivity, the burst state of the hippocam-
pal LFP markedly differs from the suppression and continuous states,
whereas the latter two states show similar characteristics in these

parameters.

3.1.2 | Differences in associated MUA

At baseline, some of the MUA parameters differed between states
(Table 1), consistent with the impression based on visual inspection of
hippocampal recordings (Figure 1a). The pooled analysis explained in
the methods revealed that states significantly differed with respect to
overall firing rate (spikes per second) (F[2,180] = 3.37, p = .037), with
the firing rate in the burst state being higher or tending to be higher,
respectively, than in the suppression state (p = .02) and continuous
state (p = .058), which did not differ (p = .904). States also differed sig-
nificantly with respect to percentage spikes in burst (F[2,177] = 9.44,
p < .0001), with both burst and continuous states, which did not differ
significantly (p = .108), showing a higher percentage of spikes in bursts
than the suppression state (p = .002 and p < .0001, respectively).
States did not differ significantly with respect to bursts per minute (F
[2,177] = 0.95, p = .383) or burst duration (F[2,172] = 1.19, p = .307).
Overall, this quantitative comparison of MUA parameters is consistent
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with the impression based on visual inspection of the MUA data in
the three states (Figure 1a) that MUA activity is “suppressed” in the
suppression state compared to the burst and continuous state. It
should be noted that, although these differences were suggested by
visual inspection of most recordings, they were not always apparent
even in recordings from different electrodes in the same rat. For
example, in Figure 1a burst and suppression states clearly show higher
MUA on Channel 1 whereas on Channel 2, which shows a higher
overall firing rate, the states display similar MUA, possibly reflecting a

ceiling effect.

3.2 | Hippocampal neural disinhibition did not
affect the expression of the three hippocampal LFP
states

During the post-infusion period, the cumulative time spent in the dif-
ferent LFP states was similar in rats infused with picrotoxin and saline
(Figure 5). Independent sample t-tests revealed that there was no sig-
nificant difference between the picrotoxin and saline groups in the
total time spent in any of the three LFP states (continuous state, t(7)

< 1; suppression and burst state: t(11) < 1).

3.3 | Hippocampal neural disinhibition caused
state- and frequency-dependent effects on
hippocampal LFP power and functional connectivity

Hippocampal picrotoxin infusions, compared to saline, tended to
increase power in the lower frequencies (<20 Hz) and to decrease
power in the higher frequencies (>20 Hz), in both burst and suppres-
sion states, while having minimal effect in the continuous state
(Figure 6a, c, e). However, only the picrotoxin-induced increase in
power at 6-18 Hz in the burst state attained statistical significance
(b = .017). In the continuous state, power was numerically higher dur-
ing the post-infusion period, as compared to the pre-infusion baseline;
this was regardless of infusion, as indicated by a positive difference in
log ratio power, especially at lower frequencies, which indicates
“baseline drift.” There was no difference between the drug groups in
this state (no clusters; Figure 6a).

Hippocampal picrotoxin tended to decrease functional connectiv-
ity (as reflected by PLVs) at higher frequencies in the burst and sup-
pression states and at lower frequencies in the continuous state

(Figure 6b, d, f). However, the picrotoxin-induced decreases in

TABLE 1

Bursts per minute
441.50 £ 65.95
Suppression 325.85+47.75
Burst 380.32 + 44.03

Continuous

% spikes in burst
35.10 £ 2.22*2
20.26 = 1.96 *1*2
29.26 + 2.14*!

connectivity reached statistical significance only in the burst state, in
a high-frequency cluster ranging from 29.5 to 33 Hz (p = .049), but
there was no significant picrotoxin-induced decrease in connectivity
during the suppression state (no clusters). The visually apparent
decrease in the continuous state (at lower frequencies) also failed to
reach statistical significance, although there was a trend in a cluster
from 6 to 7 Hz (p = .065).

3.4 | State-dependence of enhanced multi-unit
burst firing caused by hippocampal neural disinhibition

We first replicated the picrotoxin-induced increases in burst parame-
ters, including bursts per minute, percentage of spikes in bursts and
burst duration, as calculated by the Neuroexplorer software and origi-
nally reported by McGarrity et al. (2017), using a MATLAB code that
could be run with the segmented LFP state-separated data
(Figure 7a-c); the original Neuroexplorer data for rats that were
excluded from the LFP analysis (see Section 2.1) was inputted directly
into MATLAB to complete the data set for comparison of analyses
(i.e,, n = 8 rats in the picrotoxin group and n = 7 rats in the saline
group). Next we plotted the time course of the multi-unit burst
parameters following picrotoxin and saline infusions separately for the
three different LFP states, using the state-separatedmulti-unit data
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FIGURE 5 Hippocampal neural disinhibition does not affect the
expression of the three hippocampal local field potential (LFP) states.
Cumulative time (mean + SEM) spent in each LFP state by the two
drug groups during the post-infusion period

Baseline values for different multi-unit activity bursting parameters in the three local field potential states

Mean burst duration (s)
0.0094 + 0.00025
0.0088 + 0.00039
0.0093 + 0.00041

Spikes per second
21.29 £5.12
24.06 +3.16**
65.33 + 18.86*!

Note: Mean + SEM. * indicates significant difference between states (p < .05), with the number indicating the pair of states that differ.
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FIGURE 6 Hippocampal neural disinhibition causes state- and frequency-dependent effects on hippocampal local field potential power and
functional connectivity. Frequency-dependent impact of hippocampal picrotoxin or saline infusion on power (left) and on functional connectivity
(right) in the continuous (top panel), suppression (middle panel), and burst (bottom) states. The logarithm of the ratio between post-infusion (saline
or picrotoxin) and pre-infusion (baseline) power is shown as a measure of their respective “difference” for both infusion groups across frequencies
and separately for each state (a, c, e). The difference between post-infusion (saline or picrotoxin) and pre-infusion (baseline) phase-locking values
(PLVs) as a measure of aggregate functional connectivity is shown for both infusion groups across frequencies and separately for each state (b, d,
f). All values are shown as mean + SEM. The dotted line (value of 0) represents no change from the pre- to the post-infusion period, while
positive numbers indicate an increase from baseline and negative numbers a decrease from baseline in the post-infusion period. The frequency
ranges showing significant (p < .05) differences between the picrotoxin and saline infusion groups based on cluster permutation statistics are
indicated by an asterisk (*) and a solid line [Color figure can be viewed at wileyonlinelibrary.com]

(Figure 7d-1) (with sample sizes for the different 5-min bins indicated be weaker during the continuous LFP state (Figure 7d-f) compared to
in Figure 3). Visual inspection of these plots indicates that, numeri- the burst state (Figure 7g-i) and suppression state (Figure 7j-l). In

cally, the picrotoxin-induced increase of bursts per minute appears to order to examine directly the LFP state-dependence of the picrotoxin
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effects, we pooled the time-deconstructedpost-infusion values of the independent variable (see Section 2.4.3), revealed a significant main
three multi-unit burst parameters, subtraction-normalized to baseline, effect of drug infusion for all three burst parameters (outcomes of sta-
and separated them by infusion group and LFP state (Figure 7m-o). tistical analysis not shown), reflecting that, overall, picrotoxin infusion
ANOVA of these values, using LFP state and drug infusion as increased these values as compared to saline infusion. Importantly,
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the ANOVA of burst duration (Figure 70) revealed a significant inter-
action of drug infusion x LFP state (F[2,316] = 3.86, p = .022),
reflecting that picrotoxin increased burst duration in the burst and
suppression states, but not the continuous state. Although, numeri-
cally, the picrotoxin-induced increases in bursts per minute and per-
centage of spikes in bursts also tended to be somewhat weaker in the
continuous, compared to the other two states (Figure 7m,n), ANOVA
did not support significant interactions of drug infusionxLFP state for
these two parameters (burst per min: F(2,343) = 1.118, p = 0.328; per-
centage spikes in bursts: F(2,343) <1). Overall, the increased multi-unit
burst duration following hippocampal neural disinhibition was mark-
edly less pronounced in the continuous state of the hippocampal LFP,
as compared to the other two states. The other two burst parameters
showed numerical tendencies in the same direction, but these were

not statistically significant.

4 | DISCUSSION

We, first, developed a semi-automated method based on the kurto-
sis of the LFP peak-amplitude distribution and amplitude envelope
thresholding to separate three distinct hippocampal LFP states in
the isoflurane anesthetized rat: burst, suppression, and continuous
states (Figure 1), and we described some of the properties of these
three LFP states. The burst state shows substantially larger overall
raw power across the frequency range examined compared to the
suppression and continuous states (Figure 4a), as well as higher rela-
tive power in the delta/theta range (<15 Hz), but lower relative
power in the high beta/low gamma range (>20 Hz) (Figure 4b).
Moreover, compared to suppression and continuous states, the
burst state showed lower frequency-specific “functional connectiv-
ity” across the recording area in the temporal to intermediate hippo-
campus, as reflected by reduced phase-locking values of the LFP
signals recorded from the different electrodes (Figure 4c). In terms
of MUA, overall neuronal firing was higher in the burst state than in
the two other states, whereas the percentage of spikes fired in
bursts was higher in both the burst and continuous states as com-
pared to the suppression state (Table 1). Finally, the expression of

the hippocampal LFP states, as reflected by the cumulative duration

of these states across the recording period, was not affected by hip-
pocampal neural disinhibition (Figure 5).

Second, and importantly, we then showed that hippocampal neu-
ral disinhibition by picrotoxin changed the hippocampal LFP in a
state- and frequency-dependent way (Figure 6). In both burst and
suppression states, but not the continuous state, hippocampal neural
disinhibition tended to increase LFP power at lower frequencies
(<20 Hz) and to decrease power and functional connectivity at higher
frequencies (>20 or >15 Hz, respectively). There was also a trend
toward picrotoxin decreasing functional connectivity in the theta
range (6-7 Hz) during the continuous state.

Third, we also found that the increase in multi-unit burst parame-
ters by hippocampal neural disinhibition, which we reported in a previ-
ous study (McGarrity et al., 2017), was partially dependent on the
hippocampal LFP state: disinhibition-induced increases in burst dura-
tion were limited to the burst and suppression state and not apparent

in the continuous state (Figure 7).

4.1 | Three distinct hippocampal LFP states under
isoflurane anesthesia

Visual inspection of the LFP recorded from the temporal to intermedi-
ate hippocampus in isoflurane-anesthetized rats indicates three dis-
tinct LFP states, including burst, suppression, and continuous states
(Figure 1a). We found that the kurtosis of the LFP peak and trough
amplitude distribution was the best metric to separate the periods
including burst and suppression states from the continuous state.
Using this kurtosis measure, we thus separated the continuous state
from the combined burst and suppression states, which could then be
separated by amplitude envelope thresholding. Power analysis corrob-
orated the impression based on visual inspection of the LFP traces
that raw power during the burst state is substantially higher than in
the other two states, owing to large amplitude LFP bursts, and that
the continuous state tends to show higher power than the suppres-
sion state (although the latter difference failed to reach statistical sig-
nificance). Interestingly, analysis of relative power revealed a marked
beta/gamma shoulder (24-34 Hz) in the power spectra of continuous

and suppression states which was absent in the burst state. Others

FIGURE 7 State-dependence of enhanced multi-unit burst firing caused by hippocampal neural disinhibition. The top row displays a
replication of the time course of multi-unit burst parameters during baseline and following infusion of picrotoxin and saline, across all local field
potential (LFP) states, that is, without state separation, as originally reported by McGarrity et al. (2017), but carried out in MATLAB rather than
Neuroexplorer v4. Hippocampal neural disinhibition by picrotoxin markedly enhanced hippocampal multi-unit burst firing as compared to saline
infusions, as reflected by increases in (a) bursts per minute, (b) percentage spikes in burst, and (c) burst duration (and statistically supported by a
significant infusion x time interaction, McGarrity et al., 2017). All values are division-normalized to the baseline value and mean + SEM. The three
rows underneath display the same time course analysis, but separated by LFP state, using the MATLAB scripts developed in the present study:
(d-f) continuous state; (g-i) suppression state; and (j-I) burst state. Visual inspection indicates that the picrotoxin-induced enhancement of burst
parameters is less pronounced in the continuous, compared to the other two states. To visualize the potential interaction of hippocampal infusion
and LFP state, the bottom row displays the time-deconstructed and pooled post-infusion values (subtraction-normalized to baseline,

mean = SEM) of (m) burst per min, (n) percentage spikes in bursts, and (o) burst duration (seconds), for the picrotoxin and saline infusion groups
and separated by LFP state; these plots also indicate that the picrotoxin-induced increase in burst parameters is, at least numerically, less
pronounced in the continuous than in the other two states [Color figure can be viewed at wileyonlinelibrary.com]
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have previously reported similar beta/gamma shoulders in the hippo-
campal LFP during continuous-like LFP states under anesthesia (Land
et al., 2012, isoflurane; Pagliardini, Gosgnach, & Dickson, 2013, ure-
thane). However, if the burst state is not separated from the other
LFP states, hippocampal LFP power spectra recorded under anesthe-
sia do typically not show a beta/gamma shoulder (Lustig et al., 2016,
and our unpublished observations, both isoflurane). This likely reflects
that the power spectra are dominated by the large-amplitude burst
state (which lacks a beta/gamma shoulder). Overall, in the frequency
range examined, continuous and suppression states tended to show
higher connectivity, as indicated by PLVs, than the burst state across
the recording area in the temporal to intermediate hippocampus. In
the continuous state, a peak in connectivity was apparent at lower
frequencies (<10 Hz, Figure 4c), which included the theta range,
although statistically connectivity in this range did not significantly
differ between continuous and suppression states. The numerically
increased theta-range connectivity may correspond to findings of
characteristic activity in the theta range in related hippocampal LFP
states identified by others (Table 2). More specifically, several studies
have described hippocampal LFP states under anesthesia, distinct
from periods characterized by burst-suppression patterns and referred
to as “light anesthesia” states (Land et al., 2012; Lustig et al., 2016,
both isoflurane) or ‘“continuous”/ ‘“activated” states (Clement
et al., 2008; Wolansky et al., 2006, both urethane), with distinct activ-
ity in the theta range (3-12 Hz), although these studies did not exam-
ine connectivity within the hippocampal recording area at the
frequencies we investigated. These previous studies, which all
recorded from the septal (also known as dorsal) hippocampus, showed
a more distinct theta peak compared to our recordings, which were
from the temporal to intermediate hippocampus. This is consistent
with the septo-temporal reduction in theta power that has been
reported by studies in freely moving and sleeping rats (Patel, Fujisawa,
Berenyi, Royer, & Buzsaki, 2012; Sirota, Patel, &
Buzsaki, 2010).

The three hippocampal LFP states differ with respect to the asso-

Royer,

ciated MUA. The burst state showed higher overall neuronal firing, as
indicated by increased overall firing rate, than the suppression and
continuous states. In addition, both burst and continuous state
showed stronger burst firing than the suppression state, as reflected
by a higher percentage of spikes in burst. Increased neuronal firing in
the burst compared to the suppression state under isoflurane anes-
thesia has been reported previously in neocortical regions (Ferron
et al., 2009; Kroeger & Amzica, 2007; Steriade et al., 1994) and in the
subiculum (Land et al., 2012). To explain this difference, it was pro-
posed that anesthesia induces a hyperexcitable state with an
increased extracellular Ca2+ concentration. During the burst state,
the high Ca2+ would facilitate synaptic transmission causing the Ca2+
to move into the neuron, which would then lead to the suppression
state, a refractory period during which Ca2+ concentration is rela-
tively high within (and relatively low outside) of the neurons, there-
fore decreasing the likelihood of neuronal activity until the Ca2+ is
transported back into the extracellular space (Ferron et al., 2009;

Kroeger & Amzica, 2007). In contrast, urethane anesthesia does not

cause such a hyperexcitable state but instead reduces overall neural
excitability by causing neural hyperpolarization (Ferron et al., 2009;
Hara & Harris, 2002; Pagliardini, Funk, & Dickson, 2013). This may
explain why under urethane anesthesia the hippocampal LFP does not
show a burst-suppression pattern but is instead characterized by a
slow oscillation of about 1 Hz (Clement et al., 2008; Land et al., 2012;
Pagliardini, Funk, et al., 2013, Pagliardini, Gosgnach, et al., 2013;
Wolansky et al., 2006).

Taken together, our semi-automated separation method based on
the kurtosis of the LFP amplitude distribution revealed three distinct
hippocampal LFP states under isoflurane anesthesia—burst, suppres-
sion, and continuous state—whose properties correspond to those of
similar hippocampal LFP states under anesthesia that had been identi-
fied previously based on visual inspection or other methods (Table 2).
In unanesthetized animals, that is, awake or sleeping, the hippocam-
pus (and other brain areas) also show distinct LFP states that are char-
acterized by the relative dominance of activity in different frequency
bands and are associated with different neural firing patterns (Kay &
Frank, 2019). Distinct unanesthetized LFP states resemble distinct
anesthetized LFP states in terms of relative dominance of specific fre-
quency bands and other properties (e.g., Lustig et al., 2016), although
correspondence between specific anesthetized and unanesthetized
LFP states is limited, not least because a defining feature of
unanesthetized LFP states is their close association with specific
behavioral states (Kay & Frank, 2019). Our study of picrotoxin-
induced changes in the hippocampal LFP under isoflurane allowed us
to examine these changes separately from behavioral effects of hippo-
campal disinhibition, including locomotor changes (McGarrity
et al., 2017) which are known to affect the hippocampal LFP (Kay &
Frank, 2019). On the other hand, isoflurane may interact with picro-
toxin, limiting the generalizability of our findings to unanesthetized
animals; at an anesthetic doses, isoflurane primarily acts as a positive
allosteric modulator of GABA-A receptors, enhancing the amplitude
and duration of GABA's effects at this receptor (Garcia, Kolesky, &
Jenkins, 2010). Isoflurane, thereby, may counteract some of the
effects of disinhibition by picrotoxin, a noncompetitive GABA-A
receptor antagonist blocking the receptor's chloride channel
(Olsen, 2006). In hippocampal neurons, picrotoxin has been shown to
reduce both phasic and tonic GABA-A receptor currents (Bai
et al., 2001), whereas isoflurane specifically enhances phasic GABA-A
currents (Bieda, Su, & Maclver, 2009). Nevertheless, we have shown
previously that hippocampal picrotoxin disinhibition enhanced hippo-
campal multi-unit bursting under isoflurane anesthesia, consistent
with similar effects of hippocampal disinhibition in vitro and in
unanesthetized rodents (see discussion in McGarrity et al., 2017) and,
as discussed below, LFP changes observed in the present study were
consistent with previous in vitro findings. This supports that electro-
physiological studies under isoflurane anesthesia can reveal key neural
effects of picrotoxin disinhibition in the hippocampus that are rele-
vant to unanesthetized animals. In the present study, the cumulative
duration of each of the three hippocampal LFP states under isoflurane
was not affected by local infusion of the GABA-A receptor antagonist

picrotoxin, indicating that the expression of the states does not
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depend on GABA-Areceptor-mediated inhibition in the hippocampus.
However, as discussed in the next two sections, hippocampal neural
disinhibition by picrotoxin changed the LFP properties within the
three hippocampal LFP states.

4.2 | State- and frequency-dependent changes in
the hippocampal LFP power by local picrotoxin
disinhibition

In both burst and suppression states, picrotoxin, as compared to saline
infusions, tended to increase hippocampal LFP power at lower fre-
quencies (<20 Hz) and to decrease power at higher frequencies
(>20 Hz) although only the increase at 6-18 Hz in the burst state
reached statistical significance. In contrast, there was no evidence of
picrotoxin-induced power changes in the continuous LFP state. Our
finding that hippocampal GABA antagonism by picrotoxin facilitates
LFP oscillations at lower frequencies, including the theta range, is con-
sistent with many previous in vitro and vivo findings indicating an
inverse relationship between GABAergic inhibition and theta oscilla-
tions in the hippocampus (Colgin, 2016; Kowalczyk et al., 2013, also
see Section 1). As reviewed in Section 1, some previous studies have
shown that GABAergic inhibition can facilitate theta oscillations under
some conditions, including when more specific manipulations of
GABA transmission are used (Amilhon et al., 2015; Wulff et al., 2009)
and when specific mechanisms of theta generation, such as intrinsic
mechanisms (Amilhon et al.,, 2015), are studied separately. In our
study, broadly reducing hippocampal GABA-A receptor activation by
picrotoxin and not separating distinct mechanisms of theta genera-
tion, we did not find evidence for such facilitating GABA mechanisms
of hippocampal theta. Although we did not find any statistically signif-
icant effects of picrotoxin on hippocampal LFP power in the beta/
gamma frequencies (specifically 20-30 Hz), picrotoxin tended to
decrease power in this frequency band within the burst and suppres-
sion states. These numerical decreases are consistent with previous
findings that pharmacological disinhibition disrupts hippocampal
in vitro gamma oscillations and that GABAergic inhibition within the
hippocampus plays a key role in generating these oscillations (Bartos
et al., 2007; Buzsaki & Wang, 2012; Traub et al., 2004; Whittington
et al., 2000). Specifically, there is a wealth of in vitro studies showing
that the GABA-A receptor antagonist bicuculline applied to hippocam-
pal slices decreases the power of 20-30 Hz oscillations (Arai &
Natsume, 2006; Boddeke, Best, & Boeijinga, 1997; Shimono, Brucher,
Granger, Lynch, & Taketani, 2000; Trevino, Vivar, & Gutierrez, 2007).

4.3 | Reduced functional connectivity within the
temporal to intermediate hippocampus after
picrotoxin disinhibition

In the suppression and burst states, functional connectivity within the
temporal to intermediate hippocampus, as reflected by phase locking

of the LFP signal across the different electrodes of our recording

array, was decreased in the gamma range (>20 Hz); this decrease was
statistically significant in the burst state from 29.5 to 33 Hz. This is
consistent with previous in vitro findings that disinhibition by mor-
phine disrupted synchrony of gamma oscillations across a hippocam-
pal slice preparation (Faulkner, Traub, & Whittington, 1998;
Whittington, Traub, Faulkner, Jefferys, & Chettiar, 1998). Synchrony
was disrupted between areas that were 1.5-2.5 mm apart, whereas
effects were not observed at shorter distances (Whittington
et al., 1998). It is therefore possible that, in the present study, this
effect was weakened, because we assessed the collective connectivity
over our 2-mm electrode array, including short distances between
neighboring electrodes. Faulkner et al. (1998) also reported that a
GABA-A receptor agonist applied to hippocampal slices causes a simi-
lar decrease in gamma-frequency synchrony, suggesting that such
synchrony depends on a balanced level of hippocampal GABA inhibi-
tion. Furthermore, neurocomputational studies suggest that, through
multiple mechanisms, GABAergic interneurons are important for the
synchronization of gamma oscillations (Bartos et al, 2007,
Whittington et al., 2000). For example, in a neurocomputational model
of hippocampal pyramidal cells and GABAergic interneurons, blocking
GABA-A receptors on the pyramidal cells abolished coherence at
gamma frequencies (Traub et al, 2000). Our findings are the first
in vivo findings to support these in vitro and modeling findings that
the disruption of GABAergic inhibition, through blocking of hippocam-
pal GABA-A receptors, disrupts synchronization of gamma oscillations
across the hippocampus.

Finally, we found a numerical trend for picrotoxin to reduce
functional connectivity in the theta frequency in the continuous
hippocampal LFP state. This is consistent with previous findings
that disruption of GABA-A receptor function disrupted theta
coherence in vivo and in vitro (Hentschke et al., 2009; Levesque
etal., 2017).

44 | State-dependence of enhanced multi-unit
burst firing caused by hippocampal neural disinhibition

Similar to the state-dependence of LFP changes, the picrotoxin-
induced enhancement of hippocampal burst firing (McGarrity
et al., 2017) tended to be more pronounced in the burst and suppres-
sion states than in the continuous state, although only the analysis of
burst duration revealed a statistically significant interaction of the LFP
state with the infusion effect. Previous findings suggest that in an
isoflurane-inducedburst-suppression state, the cortex is in a hyper-
excitable state due to a decrease of excitation leading to a decrease in
inhibition, which overall results in the excitation/inhibition balance
being shifted toward excitation (Ferron et al., 2009). Neuronal hyper-
excitability is also supported by the finding that, during the burst-
suppression state, subliminal sensory stimuli activate cortical areas,
including the subiculum, that are not activated by the same stimuli
during other anesthetized states or the awake state (Kroeger &
Amzica, 2007; Land et al., 2012). The more pronounced effects of pic-
rotoxin during the burst and suppression states, compared to the
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continuous state, may reflect neuronal hyperexcitability during these

states.

45 | Conclusions and future directions

We have presented an objective, semi-automated method for separat-
ing three distinct hippocampal LFP states in isoflurane-anesthetized
rats, including the burst, suppression, and continuous states. These
states are characterized by different LFP properties and associated
MUA, which are consistent with the properties of burst-suppression
and “activated” or “light-anesthesia” hippocampal LFP states that have
previously been identified based on visual inspection and other
methods (Table 2). Furthermore, our finding that the enhanced hippo-
campal multi-unit burst firing induced by hippocampal picrotoxin infu-
sion is more pronounced in the burst and suppression state, compared
to the continuous state, is consistent with previous studies suggesting
that the burst and suppression states are characterized by neuronal
hyperexcitability (Ferron et al., 2009; Kroeger & Amzica, 2007; Land
et al., 2012). Our state-separated analysis of the impact of hippocam-
pal picrotoxin infusion on LFP properties around the infusion site rev-
ealed that, in the burst and suppression states, neural disinhibition
tended to increase low-frequency oscillations (<20 Hz), including
theta oscillations, and to decrease gamma frequency oscillations
(>20 Hz), although only the picrotoxin-induced power increase
between 6 and 18 Hz in the burst state was statistically significant. In
addition, neural disinhibition reduced functional connectivity, as
reflected by PLVs, across the recording area in the temporal to inter-
mediate hippocampus at gamma frequencies in the burst state (with
significant reductions compared to saline infusion between 29.5 and
33 Hz). These findings support that GABA-Areceptor-mediated mech-
anisms regulate hippocampal LFP oscillations in vivo (albeit under
anesthesia), confirming and extending previous findings mainly from
in vitro studies that GABA-Areceptor-mediated inhibition negatively
modulates lower frequencies, including theta frequencies (Kowalczyk
et al., 2013), and positively modulates power and connectivity at
higher frequencies (Bartos et al., 2007; Buzsaki & Wang, 2012; Traub
et al., 2004; Whittington et al., 2000). Similar findings albeit in neocor-
tex have also been made in pharmacological human studies (Lozano-
Soldevilla, ter Huurne, Cools, & Jensen, 2014). Cortical, including hip-
pocampal, LFP oscillations have been suggested to be important for
memory and other cognitive functions, and alterations of such oscilla-
tions have been linked to memory and other cognitive impairments
(Buzsaki & Draguhn, 2004; Colgin, 2016; Uhlhaas &
Singer, 2006, 2010). Consistent with this prominent view, the
frequency-specific alterations of hippocampal LFP properties caused
by hippocampal neural disinhibition may contribute to the memory
and attentional impairments caused by the same manipulation
(McGarrity et al., 2017). However, direct evidence causally linking
disinhibition-induced hippocampal LFP changes to the memory and
attentional deficits is lacking, and potential underlying mechanisms
would also require clarification. Two important questions raised by

the present findings include (a) whether similar changes in LFP

oscillations would be observed without anesthesia and (b) how such
changes relate to alterations in surface EEG recordings that have been
reported in relevant clinical conditions, including schizophrenia and
age-related  cognitive (Hunt, Kopell, Traub, &
Whittington, 2017; Uhlhaas & Singer, 2006, 2010). To address these

two questions, our ongoing studies examine the simultaneous impact

decline

of hippocampal neural disinhibition on the hippocampal LFP and on

surface EEG recordings in freely moving rats.
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