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Relating Hydraulic Conductivity to Particle Size Using DEM
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Abstract: For over 100 years it has been accepted that the permeability or hydraulic conductivity of a soil is controlled by the size of pores
through which the fluid flows, and that this pore size should be a function of particle sizes. All well-known formulas (such as the empirical
Hazen or analytical Kozeny–Carman) are based on the squared value of some characteristic particle or pore size. Recent work has established
which particles control the porosity or density of a granular material, so it follows that these particles may also govern the hydraulic conductivity.
In this work, a new yet simple technique was used to obtain a characteristic “smallest” particle size, which is a function of both the particle size
distribution and the geometrical packing. The use of this new proposed characteristic particle size was shown to be valid both theoretically and in
comparison with the characteristic particle or pore sizes used in classical predictive methods for the permeability of granular materials. A very
simple fractal theory showed what the characteristic particle size that controls conductivity should be, and a simple discrete element simulation
was used to confirm the result. DOI: 10.1061/(ASCE)GM.1943-5622.0001670. This work is made available under the terms of the Creative
Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.

Introduction

It is widely known that the packing characteristics of a granular ma-
terial are governed by the size of the particles. It has been accepted
for many years for example that the porosity (or density) of a gran-
ular soil depends on the distribution and range of particle sizes
(e.g., Burmister 1938). The packing of a granular material strongly
influences the macroscopic engineering properties; for example, in
the absence of crushing, the density of a sand determines the dila-
tancy and peak strength when sheared (e.g., Bolton 1986), while
the size and connectivity of the pores control the ease with which
fluid can flow through the soil, that is, the hydraulic conductivity
(e.g., Mitchell and Soga 2005).

There are many factors controlling the hydraulic conductivity of
a soil–fluid system, which include both soil and fluid properties.
Many predictive methods for example take into account the fluid
viscosity and density, the degree of saturation, temperature, and
the shape and tortuosity of the pores. For fully saturated conditions
with a given fluid however, predictions of the hydraulic conductiv-
ity are based primarily on the particle size(s), which are assumed to
control the size of the pores. Indeed, it has been accepted for over a
century that the hydraulic conductivity of soil is largely governed
by some characteristic smallest particle or pore size (e.g., Hazen
1892), although the number of published predictive equations re-
veal that this remains unsolved (e.g., Chapuis 2012). The focus
here therefore is specifically on the governing role of pore size
on the saturated hydraulic conductivity.

Recent work (de Bono and McDowell 2018b) has sought to es-
tablish what controls the porosity (the nonsolid fraction of volume)
of granular materials with arbitrary particle size distributions and
particle shapes. It was shown that for a confined granular material,

there exists a group of “smallest particles” that govern the pore
space and therefore the overall porosity or density. In this paper,
it will be established that the same particles can be said to control
the hydraulic conductivity, and this will be shown to be consistent
with existing classical predictive methods.

Current Predictive Methods

Predicting the permeability or hydraulic conductivity of a granular
(or any porous) material from known or estimated physical proper-
ties is a long-standing problem. The flow of groundwater or any
other fluid through soils and other porous media is of major interest
to geotechnical, geological, and petroleum engineers. The general
established formula for relating hydraulic conductivity to particle
(or pore) size is of the form

k = cd2 (1)

where the conductivity k is in units of velocity and d is a character-
istic particle or pore size in units of length. The coefficient c is typ-
ically empirical and may or may not include properties such as
porosity or fluid viscosity, and so forth.

The conductivity k is used in Darcy’s law for steady-state seep-
age through porous media according to v= ki=−k(dh/dl), where v
is the superficial velocity, i is the hydraulic gradient, h is the poten-
tial, and l is the distance over which the potential drops. Probably
the oldest and most well-known predictive method for hydraulic
conductivity is that of Hazen (1892), which defines k as

k ∝ d210 (2)

where d10 is the particle diameter that 10% in terms of mass of the
soil is finer than, measured from a graphical semi-logarithmic par-
ticle size distribution. Hazen’s formula clearly states that the hy-
draulic conductivity of soil is governed by the d10 size; most
subsequent predictive methods for calculating k likewise use d10
or similar (such as d5). For an excellent overview of such methods,
see Chapuis (2012), in which Table 3 provides a useful summary.

The usual starting point when deriving a prediction for hydraulic
conductivity is steady laminar flow in a circular pipe, which, accord-
ing to the Poiseuille formula, gives the volume flow rate Q (volume
of fluid passing per unit time) as a function of the pipe diameter d and

1Nottingham Centre for Geomechanics, Univ. of Nottingham,
Nottingham NG7 2RD, UK. Email: glenn.mcdowell@nottingham.ac.uk

2Nottingham Centre for Geomechanics, Univ. of Nottingham,
Nottingham NG7 2RD, UK (corresponding author). ORCID: https://orcid
.org/0000-0002-0637-712X. Email: gjhn.debono@nottingham.ac.uk

Note. This manuscript was submitted on February 6, 2019; approved on
November 4, 2019; published online on October 23, 2020. Discussion pe-
riod open until March 23, 2021; separate discussions must be submitted for
individual papers. This technical note is part of the International Journal
of Geomechanics, © ASCE, ISSN 1532-3641.

© ASCE 06020034-1 Int. J. Geomech.

 Int. J. Geomech., 2021, 21(1): 06020034 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

80
.2

.4
1.

20
6 

on
 1

1/
02

/2
0.

 C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@Nottingham

https://core.ac.uk/display/304694623?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1061/(ASCE)GM.1943-5622.0001670
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
mailto:glenn.mcdowell@nottingham.ac.uk
mailto:glenn.mcdowell@nottingham.ac.uk
mailto:glenn.mcdowell@nottingham.ac.uk
mailto:glenn.mcdowell@nottingham.ac.uk
mailto:gjhn.debono@nottingham.ac.uk
mailto:gjhn.debono@nottingham.ac.uk
mailto:gjhn.debono@nottingham.ac.uk
mailto:gjhn.debono@nottingham.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1061%2F%28ASCE%29GM.1943-5622.0001670&domain=pdf&date_stamp=2020-10-23


drop in piezometric pressure Δp as Q=−(πd4/128μl)Δp, where μ is
the viscosity and l is the length over which the piezometric pressure
drops. Dividing piezometric pressure by the unit weight of water
γw gives the potential, and recasting this gives the velocity of the
fluid as vw=−(d2γw/32μ)(Δh/l). If this equation is to apply to an ide-
alized set of pipes in soil through the voids, then one must account
for the fact that vw applies to fluid velocity and not superficial veloc-
ity, and that voids are tortuous. This can be simplified by writing the
superficial velocity as v∝ (d2γw/μ)(Δh/l), which is Darcy’s law if the
hydraulic conductivity is

k ∝
d2γw
μ

(3)

To establish the permeability as a function of particle size,
Kozeny and Carman (Carman 1956; Mitchell and Soga 2005) con-
sidered the pore space in a porous material as a series of pipes with
tortuous paths. Taking into account the effect of surface friction on
flow, they used the hydraulic radius, rh,

rh =
cross-sectional area normal to flow

wetted perimeter
(4)

to derive a formula for the hydraulic conductivity, which for a
given porosity, soil material, and fluid gave the conductivity as a
function of rh

k ∝ r2h (5)

which is consistent with Eq. (3) and is therefore similar to the
Hazen formula in using a characteristic linear size (but also depen-
dent on the porosity). For a circular pipe, rh= r/2= d/4, with 4rh
representing the actual pipe diameter. For a cylindrical pipe with
a uniform cross section, the hydraulic radius is given by

rh =
volume filled with fluid

wetted surface
(6)

For a granular material with a uniform porosity n, the pore space
can be considered as consisting of a series of pipes or as a single
pipe with a highly complicated cross section. Using Eq. (6), the
hydraulic radius can therefore be expressed as

rh =
VV

ST
(7)

where VV = volume of voids (i.e., the pore space) and ST = total
surface area of the solid particles. This can be rewritten in terms
of the porosity n and void ratio e as

rh =
n

S
=

e

S0
(8)

where S = surface area per unit volume of the bulk material and
S0 = specific surface area of the particles (the surface area per
unit volume of solid), and the void ratio e is the ratio of the volume
of voids to the volume of solids. The well-known form of the
Kozeny–Carman equation used in geotechnical engineering uses
(e/S0) instead of rh.

The Hazen and Kozeny–Carman methods are the two most well-
known methods for predicting soil hydraulic conductivity, with the
latter regarded as being more accurate. The values of rh and d10
used in the above methods will now be reconciled with the recent
work on the smallest particle size, which has been shown to control
the overall pore space and density (de Bono and McDowell 2018b).

Porosity as a Function of the Smallest Particles

Recent work based on fractal theory and statistics of soil particle
strengths has quantified the rate at which the volume of soil re-
duces when subjected to monotonic increasing stress (de Bono
and McDowell 2018a; McDowell 2005). This was based on the
fact that the porosity or void ratio of a granular soil must be con-
trolled by the smallest particle size, dsm. The total volume of voids
(pores) was considered to be proportional to the cumulative vol-
ume of the smallest particles. The theory was shown to be valid
for the compression of real sands (de Bono and McDowell
2018a), for which fractal size distributions emerge and self-
similarity enables the changing size of the smallest particles to
be estimated. However, in subsequent simulations investigating
the packing of spheres, it proved difficult to quantify the smallest
particles in an expanding fractal distribution of sizes due to there
always only being one or two particles with the absolute smallest
dimension out of many thousands or millions. It was then sug-
gested (de Bono and McDowell 2018b) that particles that are
mainly surrounded by larger particles should be considered the
smallest and therefore representative of the surrounding pore
space. Specifically, those particles for which ≥50% of the con-
tacts are with larger neighboring particles are the smallest parti-
cles, of size dsm. This novel approach took into account both
the particle size distribution and the geometrical packing. The
use of interparticle contacts to classify the smallest particles
also meant it was possible to account for local variations in the
particle size distribution. Using discrete element method (DEM)
simulations, it was shown that the cumulative volume, Vsm, of
these particles demonstrated direct proportionality with the vol-
ume of voids, VV, over a range of particle shapes, independent
of stress path and particle size distribution (including nonfractal
distributions). This was also confirmed to be the case in idealized
Apollonian sphere packings (de Bono and McDowell 2018b), for
which it has been shown analytically that the overall pore volume
should also be proportional to the volume of the smallest particles
(Anishchik and Medvedev 1995).

Considering that these smallest particles have been shown to
govern the void space, and that it is accepted that hydraulic con-
ductivity is related to the squared value of some characteristic
pore diameter (e.g., Carrier 2003; Chapuis 2012), it follows
that these so-called smallest particles might also determine the
hydraulic conductivity. That is, the characteristic size dsm of
the smallest particles defined by de Bono and McDowell
(2018b) may accurately predict the hydraulic conductivity and/
or provide a physical justification of traditional parameters
such as d10 or rh.

Real fractal distributions of sizes are finite, and from the defini-
tion of a fractal (e.g., Palmer and Sanderson 1991), it can be de-
duced that the number of particles N of a given size d (or size
range) is N (d) ∼ d−D, where D is the fractal dimension. For a gran-
ular material subjected to confined crushing, the fractal dimension
invariably tends to D= 2.5 (Turcotte 1986), which is the same
value found in Apollonian sphere packings (Anishchik and Med-
vedev 1995). In assuming that the volume of voids VV was propor-
tional to the volume of the smallest particles, the volume of voids
was given in McDowell (2005) as

Vv ∼ d3sm · d−2.5sm ∼ d1/2sm (9)

and for such a fractal distribution, in McDowell and Bolton (1998)
the total surface area of all particles ST was given by

ST ∼ d2sm · d−2.5sm ∼ d−1/2sm (10)

© ASCE 06020034-2 Int. J. Geomech.
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which means that the hydraulic radius parameter in Eq. (7) and used
in the Kozeny–Carman theory is given by

Vv

ST
=

e

So
∼

d1/2sm

d−1/2sm

∼ dsm (11)

This analysis will work for any fractal dimension D, and
means that, according to the theory of McDowell (2005) and the
Kozeny–Carman theory (Carman 1956), the smallest particle size
dsm is the correct characteristic size to use in predicting the perme-
ability or hydraulic conductivity of soil, whatever that smallest par-
ticle size dsm can be reasonably deemed to be.

It will now be examined whether there is any agreement
between the value of dsm and the value of d10 that Hazen or rh
that Kozeny and Carman would have used. A simple simulation
of crushable spheres was performed using the DEM and the
strength parameters specified in McDowell and de Bono (2013).
Details are the same as used previously (de Bono and McDowell
2018b): to summarize, the sample of spheres was subjected to in-
creasing isotropic normal stress, and when the average octahedral
shear stress within any sphere reached its strength, the sphere
was replaced by two smaller spheres, obeying conservation of
mass. It should be noted that although this simulation uses spheres,
the fundamental concept has been shown to be valid for nonspher-
ical particles (de Bono and McDowell 2018b). In terms of hydrau-
lic conductivity, particle shape will affect the tortuosity and
therefore also the hydraulic conductivity, but the focus here is
solely on the governing effect of the pore size. The cylindrical sam-
ple initially contained approximately 6,000 spheres of d= 2 mm
and contained around 155,000 spheres at the end of compression.
The macroscopic results in terms of void ratio and stress are
given in Fig. 1. If the smallest particles are defined as any particle
for which at least 50% of neighboring particles are larger, then the
cumulative volume of these particles, Vsm, is directly proportional
to the void space. This is shown and explained in more detail in

de Bono and McDowell (2018b), along with additional simulations
using different particle shapes.

There are many different ways of calculating a representative size
of these smallest particles (or the pores, which will be discussed
later). A straightforward method of obtaining an effective size of
these smallest particles, dsm, is using the diameter of the volumetric
average (Vsm divided by the total number of smallest particles). The
values of dsm are shown on particle size distributions in Fig. 2, show-
ing the evolution due to crushing. It can be seen that dsm approaches
d10, particularly at high stresses as the grading evolves to a fractal,
lending new credibility to the Hazen approach.

The volume of voids and the total particle surface area can
be calculated directly in DEM for use in Eq. (7) to calculate the
hydraulic radius. The values of dsm are plotted against the hydraulic
radius rh in Fig. 3 for the same simulation. The values are directly
proportional at medium-to-high stresses, showing a clear relation-
ship. It is generally accepted that the Kozeny–Carman approach
to calculating hydraulic conductivity is one of the most accurate
predictive methods (e.g., Carrier 2003), and the fact that the hy-
draulic radius is entirely consistent with dsm highlights the signifi-
cance of both dsm and the method of defining the smallest particles.
Carman (1956) stated that 4rh can be regarded as some mean pipe
diameter of significant hydrodynamical importance, so it is interest-
ing to note from the gradient in Fig. 3 that 4rh≈ 0.57dsm.

Pore-Size Distributions

For granular materials, predictions of hydraulic conductivity tend
to be based on particle size(s), due to the fact that the particle
sizes govern the pores. For nongranular porous materials (e.g., sedi-
mentary rock), predictions of k tend to be based directly on estima-
tions of the pore or throat size(s). Pore-size distributions can be
estimated using, for example, mercury intrusion porisometry,
which shows the cumulative pore volume against (decreasing)
pore diameter. It is possible to obtain analogous information

Fig. 2. Progressive particle size distributions showing an increase in
quantity and range of sizes during compression, with dsm values
superimposed.

Fig. 1. Normal compression results showing the reduction in voids
ratio against stress for crushable spheres.

© ASCE 06020034-3 Int. J. Geomech.
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about the pore network in DEM from the size distribution of the
smallest particles. Given that the overall pore space is proportional
to the cumulative volume of these smallest particles, it can be as-
sumed then that each of these particles is proportional to its sur-
rounding pore space. That is, each small particle has an
associated volume of pore space, the sum of which is equal to
the overall pore space. This assumption means that the volumetric
pore-size distribution should be equivalent to that of the smallest
particles. Fig. 4 shows the evolution of the cumulative volumetric
size distribution for the smallest particles from the DEM simula-
tion. The constant of proportionality between the total volume of
voids and the volume of the smallest particles is 1.7, that is, VV=
1.7 ×Vsm (de Bono andMcDowell 2018b). So for any small particle
of size d, the diameter of the surrounding pore, dp, might be as-
sumed to be dp= d× 1.7(1/3); this pore-size scale is also plotted in
Fig. 4.

Two well-known methods for predicting permeability using a
characteristic pore size are by Winland (e.g., Nelson 2009) and
Katz and Thompson (1986). The Winland method uses the
pore size for which 35% of the pore space is in larger pores,
as the size in Eq. (1), which, similar to the Hazen approach,
uses a single size and does not include information about the dis-
tribution in its entirety. The Katz and Thompson method sug-
gests using the pore size corresponding to the inflection point
on the cumulative pore-size distribution (e.g., Fig. 4). This
value, dpi, represents a modal pore size in terms of volume
and was interpreted as being the smallest throat size forming
part of a continuous pore network through the material. The sug-
gestion that dpi represents the minimum pore size of significance
implies that this is more useful than using an arbitrary fixed
value from some distribution (such as the Hazen or Winland
methods); however, it does not necessarily account for the
range of the pore sizes. From the curves in Fig. 4, inflection
points have been simply estimated, and the corresponding values
of dpi compared with the hydraulic radius and dsm in Fig. 3. The
different measures were all consistent with each other, which
supports the assumptions used here in estimating the pore-size
distribution.

Discussion

It is not currently feasible to use the contact distribution in a real
soil to identify the smallest particles, which would enable Vsm or
dsm to be correlated to the volume of voids or permeability, con-
firming the theories proposed here. Nor is it possible to determine
the permeability of any numerical DEM samples with confidence.
This limiting factor in the DEM simulations is generally the par-
ticle size: the existence of increasingly fine particles causes the
time step to become very small and the simulations to become
unwieldy. To simulate the flow of fluid, the mesh size would
need to be several orders of magnitude smaller than the smallest
particle, meaning that this is not currently computationally within
our means (not to mention the inherent assumptions involved). Hav-
ing said that, it remains a priority to physically validate the theory
here; one option that may be possible in the future is using X-ray
tomography to obtain particle and contact distributions prior to per-
meability testing.

Although the lack of validation is an issue, the volume of the
smallest particles has been rigorously shown to correlate directly
with the pore space, for any particle shape (de Bono and McDowell
2018b), and it is logical that these particles also govern the hydrau-
lic conductivity–for which it has been accepted for more than a cen-
tury is controlled by the squared value of some characteristic
diameter. In addition to providing physical justification for classic
measures (e.g., the hydraulic radius), it is hoped that this theory will
prove useful in future applications and lead to further microscopic
insight, when more advanced investigative techniques become
available.

The method of categorizing the smallest particles using contacts
(as described in de Bono and McDowell 2018b) has the advantage
of taking into account both the particle size distribution and the
geometrical packing of the bulk material, and the value of dsm cor-
related very well with the hydraulic radius used in many of the most
reliable permeability predictions, providing strong evidence that
these are the particles of most significance.

Interestingly, changing the contact selection criterion for the
smallest particles, for example from 50% (or more) to 35% or
60%, has no effect on the proportionality between the overall
pore space and the volume of the smallest particles, or dsm,

Fig. 4. Cumulative volume size distribution for the smallest particles,
assumed equivalent to the pore-size distribution.

Fig. 3. Characteristic measures of size against hydraulic radius.

© ASCE 06020034-4 Int. J. Geomech.
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which is consistent with the self-similarity expected from a fractal
distribution. This observation was also found to be consistent with
the analysis of Apollonian packings. Using an extreme value how-
ever causes the direct proportionality observed between the cumu-
lative volume of small particles and the overall pore space to be
lost. For example, if 100% is used—that is, only particles entirely
surrounded by larger particles are deemed the smallest—then this
ignores many pairs of two small particles surrounded by larger
ones. Similarly, using a low value such as 10% results in the vast
majority of particles being classed as the smallest, and does not cor-
relate with the volume of voids.

At the very least, this work provides a very simple and easy-to-
implement method of quantifying or discretizing the void space and
deducing pore-size distributions in numerical DEM samples for
which the continuous pore space is not easily dividable. From
these pore-size distributions, it should be possible to identify addi-
tional or more useful micro properties, for example a more appro-
priate characteristic size for use in explaining permeability than
simply the diameter of the volumetric average (dsm). It may also
be possible to further refine this work and relate the pore sizes to
the actual throat sizes between the pores, or as part of a network
model (e.g., Bryant and Blunt 1992).

Conclusions

This paper has sought to establish how the smallest particles in a
granular material control the (saturated) hydraulic conductivity, a
concept that has been accepted for a great many number of years.
It has been shown here that the smallest particles—defined as
those with fewer (or equal) smaller neighbors than larger ones—
should be those that govern the permeability. These particles
have previously been shown to govern the volume of pore space,
and a simple fractal theory presented here confirms that the size
of the smallest particles, dsm, is the correct characteristic size
when used to estimate the hydraulic conductivity in traditional
equations. DEM results have shown a strong correlation between
a simple characteristic measure of size of these particles, dsm, and
the hydraulic radius used by Kozeny–Carman as well as d10 used
traditionally by the geotechnical community. In addition to provid-
ing a new analytical basis for predicting hydraulic conductivity,
this work lends new micro mechanical credibility to classical pre-
dictive formulas. Volumetric pore-size distributions were also de-
duced from the smallest particles, from which it was possible to
perform further pore-size analytics.
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Notation

The following symbols are used in this paper:
D = fractal dimension;
d = particle size (diameter);
dp = pore size;
dpi = pore size corresponding to inflection point on distribution;
dsm = size of the smallest particles;
d10 = particle size for which 10% are smaller;
e = void ratio;
k = hydraulic conductivity;
N = number of particles;
n = porosity;
rh = hydraulic radius;
S = surface area per unit volume of bulk material;
ST = total surface area of solids;
S0 = specific surface area (surface area per unit volume of solid

material);
VS = volume of solids;
Vsm = cumulative volume of the smallest particles; and
Vv = volume of voids.
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