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Sommario 

Introduzione: La dipendenza da cibo è un disturbo comportamentale caratterizzato 

da modelli maladattativi di consumo alimentare, in cui alimenti ricchi in zuccheri, 

sale e/o grassi possono indurre una dipendenza tale da essere paragonata ai disturbi 

relativi all’abuso di sostanze. Alla base di questo processo vi è l’associazione tra 

questi cibi altamente palatabili e la sensazione piacevole e rinforzante indotta dal 

loro consumo, che può essere codificata in una nuova memoria maladattativa 

sottostante il disturbo di dipendenza. Infatti, le nuove informazioni che riceviamo 

quotidianamente dall’esterno vengono processate dal nostro cervello tramite un 

primo stadio di codifica e un secondo stadio di consolidamento, durante il quale 

vengono stabilizzate in una nuova memoria e integrate nella rete cerebrale di 

conoscenze preesistenti. Tuttavia, dopo il suo consolidamento, una memoria può 

essere destabilizzata e riportata ad uno stato di labilità che ne permette la modifica 

e l’eventuale integrazione con nuove informazioni. Infine, un nuovo processo di 

stabilizzazione chiamato riconsolidamento è necessario affinché la traccia 

mnemonica aggiornata sia nuovamente stabilizzata. 

Da recenti studi, è noto come il sonno sia rilevante sia per il consolidamento che 

per il riconsolidamento della memoria. Tuttavia, mentre è chiaro come il 

consolidamento che avviene durante il sonno permetta la stabilizzazione a lungo 

termine delle tracce mnemoniche, non è ancora stato del tutto chiarito il ruolo del 

sonno nel processo di riconsolidamento. 

Scopo: Date queste premesse, e nota l’importanza dell’interazione tra amigdala 

basolaterale (BLA) e ippocampo nel riconsolidamento delle memorie appetitive, gli 

obiettivi della presente tesi erano: i) valutare come l’amigdala BLA e ippocampo 

interagiscono in termini di potenziali locali durante la riattivazione della memoria 

strumentale effettuata o durante la fase di attività o durante la fase di inattività del 

ciclo circadiano dei roditori; ii) valutare come il richiamo della memoria effettuato 

durante la fase attiva o quella inattiva possa influenzare il successivo processo di 

riconsolidamento, e iii) trovare, in-vivo, un marker di riattivazione della memoria 

appetitiva. 

Metodi: Sono stati utilizzati 32 ratti maschi, ceppo Sprague Dawley, a cui sono 

stati impiantati due elettrodi profondi: uno in BLA e uno in ippocampo, per la 

registrazione dei potenziali locali. I ratti sono stati sottoposti ad un protocollo 

comportamentale in gabbia operante di auto-somministrazione di saccarosio, 
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composto da quattro stadi: addestramento (i), in cui i ratti imparavano 

l’associazione tra la pressione di una leva e l’emissione di un pellet di saccarosio; 

astinenza (ii), durante la quale i soggetti non venivano esposti al contesto di 

addestramento; riattivazione o non riattivazione (iii) della memoria strumentale in 

gabbia operante, svolta o durante la fase di attività, o durante la fase di inattività; 

test di ricaduta (iv).  

I potenziali locali sono stati analizzati per lo stadio (iii) in modo da ottenere la 

potenza delle oscillazioni theta e gamma per i due elettrodi profondi; tali frequenze 

sono state scelte in quanto rilevanti per i processi mnemonici. Infatti, il richiamo 

della memoria è correlato alla sincronizzazione delle onde theta (4-12 Hz) tra BLA 

e altre aree cerebrali quali l’area CA1 dell’ippocampo, ed è inoltre correlato alle 

basse gamma (30-60 Hz) nell’ippocampo. Infine, l’accoppiamento tra le onde theta 

e gamma nell’ippocampo è un noto metodo di comunicazione tra sotto-aree 

ippocampali nel corso dei processi di memoria. 

Risultati: I risultati hanno mostrato la presenza di una correlazione inversa tra la 

potenza delle basse gamma nell’area CA1 ippocampale e il tasso di risposta durante 

lo stadio di richiamo della memoria nella fase di attività, indipendentemente dal 

fatto che i soggetti stessero o meno premendo la leva. Le basse gamma potrebbero 

quindi rappresentare un marker di correlazione per il richiamo della memoria 

appetitiva. Inoltre, la potenza di basse e alte gamma ippocampali aumenta durante 

le epoche di pressione di leva quando il richiamo della memoria viene effettuato 

nella fase di inattività, suggerendo che le onde gamma potrebbero essere dei marker 

correlazionali specifici per la componente strumentale del richiamo della memoria 

effettuato durante la fase di inattività.  

Conclusioni e limitazioni: Per concludere, i risultati hanno mostrato l’importanza 

delle frequenze basse gamma nel richiamo delle memorie appetitive, tuttavia non 

hanno mostrato alcuna differenza a livello delle onde theta, né a livello della BLA. 

Di conseguenza, si conclude che il protocollo utilizzato nella presente tesi non ha 

mostrato una sensibilità sufficientemente elevata nell’evidenziare i cambiamenti 

ipotizzati a livello dei potenziali locali. Lo svolgimento di ulteriori esperimenti che 

andranno a determinare misure di connettomica quali coerenza e accoppiamento, 

sia intra- che inter- area, aiuterà a determinare se e come le due aree comunicano 

tra di loro.  
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Abstract 

Introduction: Food addiction is a behavioural disorder in which individuals 

develop maladaptive patterns of food consumption. Particularly, food containing 

processed sugars, salt, fat etc. can be addictive, and refined food consumption 

behaviours may meet the criteria for substance use disorders. For these 

characteristics, food addiction can also be considered a memory disorder. 

Memories in the brain are processed as follows: new information is encoded and 

then long-term consolidated through a process allowing its integration into already 

existing knowledge networks. After a memory has been consolidated, it can be 

destabilized and brought back to a labile state, requiring a new re-stabilization 

process called reconsolidation. 

Memory consolidation is known to require sleep. In fact, sleep allows new memory 

traces to long-term stabilize. Sleep also seems to influence memory reconsolidation; 

however, its involvement in this process is not yet clear. 

Aim: Given these premises, the goals of the project were: to evaluate how 

basolateral amygdala (BLA) and hippocampus interact in terms of local field 

potentials (LFPs) when appetitive instrumental memory is retrieved either during 

active or inactive phase of rats circadian rhythm; to evaluate how retrieving the 

memory in the activity vs inactivity phase influences following memory 

reconsolidation; and to find an in vivo electrophysiological marker of appetitive 

memory retrieval. In fact, it has been shown that BLA and dorsal hippocampus 

interaction is crucial for appetitive memory reconsolidation. 

Methods: Thirty-two male Sprague Dawley rats were implanted with in-depth 

electrodes for LFPs recordings in BLA and dorsal hippocampal CA1 and subject to 

a behavioural protocol apt to induce appetitive memory retrieval. The behavioural 

procedure consisted of four stages: training (i), in which animals learned lever 

pressing – sucrose reward association; abstinence (ii), during which subjects were 

not exposed to the training context; memory retrieval or no retrieval (iii): 

instrumental memory reactivation or no reactivation, performed either during active 

or inactive phase; and relapse test (iv), during which sucrose-seeking behaviour was 

analysed. 

Theta and gamma oscillations powers were analysed during stage (iii). In fact, they 

are known to be involved in memory processes. Memory retrieval has been shown 
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to correlate with theta (4-12 Hz) synchronization between BLA and other brain 

areas (such as hippocampal CA1) and with low gamma (30-60 Hz) in hippocampus. 

Particularly, theta-gamma cross-frequency coupling has been shown to be used as 

a mean of communication between hippocampal sub-areas during memory 

processing. 

Results: Results showed an inverse correlation between hippocampal CA1 low 

gamma power and reactivation rate of responding (either when rats were lever 

pressing or not) when reactivation was performed during the active phase. This 

suggests that low gamma may be a correlational marker of instrumental sucrose 

memory retrieval, independent of whether rats were lever-pressing or not. 

Moreover, hippocampal CA1 gamma bands increased when lever pressing during 

instrumental memory reactivation while in the inactive phase, suggesting that both 

low and high gamma bands may be correlational markers to actual instrumental 

responding retrieval during the inactive phase. 

Conclusions and limitations: In conclusion, results showed that low gamma is 

relevant in sucrose appetitive memory retrieval. However, no difference was 

observed in the theta frequency band, nor at the level of BLA. Therefore, the current 

protocol did not have the sensitivity to detect predicted changes in LFPs. Further 

experiments would help investigating if and how the two areas interact, by 

determining connectomics measures such as coherence and coupling within and 

between areas. 
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1. INTRODUCTION 

The topics that will be covered in the present dissertation are visually 

presented in Figure 1. According to the diagram, the dissertation will at first 

describe food addiction; it will then span through memory processes involved in 

addiction, with a specific focus on memory retrieval and memory reconsolidation. 

Then, memory processes in both wakefulness and sleep will be covered; finally, 

electrophysiological correlates of memory retrieval and reconsolidation will be 

described for two brain areas both important for addiction and memory: basolateral 

amygdala (BLA) and hippocampus. 
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Figure 1. Visual list of topics debated in the introduction of the present dissertation. 

For a description, see main text. Abbreviations: CA1 = CA1 area of the 

hippocampus; BLA = basolateral amygdala. 
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1.1 Drug Addiction 

Before starting the topic of food addiction, it is necessary to introduce what 

the word addiction means, starting from its origins, which go hand in hand with 

drug abuse. Therefore, the present paragraph will describe drug addiction. 

The National Institute on Drug Abuse (NIDA) defines drug addiction as a “complex 

illness” with devastating consequences, which is characterised by drug craving and 

compulsive and persistent drug seeking (NIDA, 2018).  

Today’s concept and description of drug addiction is the result of a scientific 

research that started back in 1878 in the United States. At that time, Edward 

Levinstein published his work Morbid Craving for Morphia on morphine addiction 

where he identified two key characteristics of opiate addiction: substance seeking 

despite its deteriorating effects on user’s life and withdrawal syndrome (Levinstein, 

1878; Musto, 1996). Since then, other publications reported their definition of drug 

abuse, and they all reported the same key features; for example, in the early 1900s, 

Dr. Charles Towns reported three characteristics of drug addiction that are still 

accepted today: (i) compulsive need; (ii) need for greater drug intake: tolerance; 

and (iii) relapse after withdrawal. In accordance with Town’s definition, Cameron 

described the following three features of narcotic addiction: (i) psychological 

dependence; (ii) tolerance; and (iii) physical dependence (Murray, 1967).  

As of 1957, the Treatment and Care of Drug Addicts report of the World Health 

Organization (WHO) recognizes that the definition of drug addiction depends on 

the point of view of the observer; until then, drug addiction was considered only as 

affecting the individual’s health. The Study Group added in this report a peculiarity 

of drug addiction: its impact on society. In fact, the report reads “[…] the Study 

Group accepted the public health concept according to which an addict is a person 

who habitually and compulsively uses any narcotic drug so as directly to endanger 

his own or other’s health, safety, or welfare” (Study Group on the Treatment and 

Care of Drug Addicts, 1957). 

Decades of basic research, case studies and clinical studies led us to today’s 

definition of addiction, as thoroughly described in the 5th edition of the Diagnostics 

and Statistical Manual of Mental Disorders (DSM-5), in the “Substance-Related 

and Addictive Disorders” chapter, which does not depart from its first descriptions. 

In DMS-5, substance-related disorders are categorized into 10 classes, based on the 

substances (in alphabetical order: alcohol -i-; caffeine -ii-; cannabis -iii-; 
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hallucinogens -iv-; inhalants -v-; opioids -vi-; sedatives, hypnotics and anxiolytics 

-vii-, stimulants -viii-, tobacco -ix- and unknown -x-). Besides substance-related 

disorders, the DSM-5 describes gambling disorder but doesn’t cover other 

behavioural addictions such as sex or shopping addiction (American Psychiatric 

Association, 2013). As for substance use disorders, the DSM-5 classifies them into 

3 severity classes: mild, moderate and severe on the basis of the number of 

symptoms shown by a patient. Symptoms and their categorization are shown in 

Table 1. 

 

Table 1. Diagnostic criteria for substance use disorder 

On the basis of these criteria, the severity of the disorder is considered mild in 

presence of 2-3 symptoms, moderate in presence of 4-5 symptoms and severe in 

presence of more than 6 symptoms (American Psychiatric Association, 2013). 

Grouping Individual criterion 

Impaired Control 1. Taking the drug over a longer period or in larger amounts 

than originally intended 

2. Presence of a desire to regulate the use of the substance 

3. Spending a lot of time obtaining, using or recovering from 

the effects of the substance 

4. Craving: urge for the drug 

Social Impairment 5. Failing to fulfil duties at work/school/home  

6. Continuing drug use despite its negative effects on oneself 

social life 

7. Giving up of social activities to continue using the substance 

Risky Use 8. Using the substance in physically hazardous situations 

9. Continuing using the substance despite knowing of having 

a problem caused (or intensified) by the substance 

Pharmacological 

Criteria 

10. Tolerance: increasing the dose to achieve the desired 

effect/reduced effect if consuming the usual dose 

11. Withdrawal: syndrome caused by the reduction in blood 

and/or tissue concentration of the substance. Withdrawal 

syndrome induces the individual to make substance use to 

relieve the negative symptoms 
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1.1.1 The addiction cycle 

Together with the NIDA definition of drug addiction as a “complex illness” 

(NIDA, 2018), O’Brien C. first in 1997 and Koob G.F. subsequently in a number 

of reviews, defined drug addiction as a chronic and relapsing disorder, characterized 

by a compulsion to seek and take the drug (O'Brien, 1997). Consistent with this 

widely accepted definition of addiction, the drug addiction process is seen as a 

recurring cycle composed of three stages (Koob and Volkow, 2016; Horseman and 

Meyer, 2019). For each of these stages, besides the specific effects of each drug of 

abuse and their active ingredients on the nervous system, there is a predominance 

of one specific brain circuit, which changes are suggested to be common to all sort 

of drugs and addictive behaviours (Goodman, 2008). The stages are the following: 

1. Binge/Intoxication; 

2. Withdrawal/Negative affect; 

3. Preoccupation/Anticipation (craving). 

The transition from drug abuse to drug addiction is characterized by a shift from an 

impulsive to a compulsive behaviour. Impulsivity can be defined as a decreased 

sensitivity to negative consequences, leading to a predisposition toward rapid and 

unplanned reactions to stimuli regardless of long-term consequences (Moeller et 

al., 2001). An impulsive subject is unable to resist impulses, presents unreflective 

decision-making and values short-term rewards as compared to long-term rewards 

(Robbins et al., 2012a). Moreover, impulsive behaviours are goal-directed 

behaviours. On the other hand, compulsivity is characterized by perseverative and 

repetitive actions (Robbins et al., 2012b) led by anxiety and stress. Finally, as 

opposed to impulsive behaviours, compulsive behaviours are not under the control 

of the goal as they are habit-based (Everitt and Robbins, 2005; Berlin and 

Hollander, 2014). 

As previously said, moving from the early to the later stages of the addiction cycle 

the individual shifts from an impulsive to a compulsive behaviour. Thus, there is a 

shift from a goal-directed behaviour led by positive reinforcements to a habit-based 

behaviour led by negative reinforcements and automaticity (Koob and Volkow, 

2010, 2016). 

 

To summarize, substance use disorders are characterized by different symptoms. 

Yet, the dissertation aims to understand the neuroanatomical bases of the 
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underlying processes. Therefore, the following paragraphs will cover the three 

stages of addiction and their prevailing brain circuits and mechanisms. Particularly, 

five circuits are hypothesized to be engaged in the transition to addiction: 

mesolimbic dopamine system (1), ventral striatum (2), ventral striatum-dorsal 

striatum-thalamus (3), extended amygdala (4) and dorsolateral frontal cortex-

inferior frontal cortex-hippocampus (5). The first three circuits are involved in stage 

1, the fourth circuit in stage 2 and the fifth circuit in stage 3 (Koob and Volkow, 

2010). 

 

Binge/Intoxication Stage 

 The neurobiological mechanisms involved during the first stage depend on 

both the rewarding effects of the substance and the stimuli associated with drug 

consumption, also known as conditioned stimuli. The main pathway involved in the 

reward system is the mesolimbic dopamine system : the projection dopaminergic 

(DA-ergic) system connecting the ventral tegmental area (VTA) to the nucleus 

accumbens (NAc, part of the ventral striatum), prefrontal cortex (PFC) and other 

cortical regions and amygdala (Di Chiara and Imperato, 1988; Tanda et al., 1997; 

Watkins et al., 2000; Mameli-Engvall et al., 2006). 

Rewarding stimuli act on the brain by increasing dopamine (DA) levels following 

phasic DA neurons firing in the VTA (Covey et al., 2014). Similarly, drugs of abuse 

cause DA levels to steeply increase and act on D1 receptors, emulating natural 

rewarding stimuli (Caine et al., 2007). However, differently from natural stimuli, 

drugs cause more prolonged and unregulated DA release, leading to synaptic 

plasticity in both the DA system and the DA-receptive neurons (Wolf, 2002). 

Besides reward, other two important constructs to consider during the 

binge/intoxication stage are conditioned reinforcement and incentive salience. A 

reinforcement is said to be conditioned when previously neutral stimuli can 

strengthen behaviours through their association with the primary reinforcer and in 

turn become reinforcers (Robbins, 1976). The incentive salience theory was 

thoroughly described by Robinson and Beveridge in 1993 (Robinson and Berridge, 

1993). Until then, Wise’s anhedonia hypothesis, stating that the DA-ergic systems 

in the brain play a central role in the subjective experience of pleasure associated 

with positive rewards (Wise, 1982) was widely accepted. As opposed to this 
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hypothesis, Robinson and Berridge’s incentive salience theory contrasts the 

psychological processes responsible for “liking” and “wanting” something 

(responsible for pleasure and incentive salience, respectively). With this regard the 

authors believe that incentive motivation involves three psychological processes 

acting jointly (Robinson and Berridge, 1993): 

1. Pleasure: the “liking”, which is insufficient to lead motivated behaviour 

(Berridge et al., 1989); 

2. Associative learning: assignment of pleasure to a stimulus or an action, 

which predicts pleasure; 

3. Incentive salience: the “wanting”. Salience attribution to stimuli or actions 

cause the same stimuli or actions to be attractive. 

The relevant circuit for salience attribution is the one of ventral striatum, 

particularly the NAc (Belin and Everitt, 2008; Belin et al., 2009; Wolf and Ferrario, 

2010; Lüscher and Malenka, 2011). Dopamine D1 receptors in the NAc are 

activated following phasic DA release in the VTA, which in turn follows the 

presentation of new rewards or conditioned reinforcers. Consequently, NAc 

becomes more reactive to glutamate and two mechanisms seem to drive the drug-

seeking behaviour: decreased glutamate levels in the NAc (1), and increased 

glutamate release from prefrontal cortical- and amygdalar- glutamatergic 

projections to the NAc (2) (Roberts et al., 1996; Weiss et al., 1996; Pierce and 

Kalivas, 1997; McFarland et al., 2003). The combination of low glutamate levels 

and its increased release from other areas to the NAc is hypothesized to be 

responsible for the drug-seeking behaviour (Kalivas, 2004). 

As previously mentioned, a third system has been proposed to be involved in this 

first stage of the addiction cycle: the ventral striatum-dorsal striatum-thalamus 

circuit, involved in the transition from voluntary to habitual and compulsive drug 

seeking. The dorsal striatum is part of the basal ganglia and is composed of the 

caudate and putamen. It is thought to be an important area in the binge/intoxication 

stage because it receives projections from the ventral striatum and two PFC areas: 

the orbitofrontal cortex (OFC) responsible for reward processing and salience 

attribution and the cingulate gyrus, which disruption causes loss of inhibitory 

control and leads to impulsivity. These prefrontal areas are activated by drugs and 

conditioned stimuli (Koob and Bloom, 1988; Grant et al., 1996; Childress et al., 

1999). Brain imaging studies on humans showed that drug-associated cues are able 
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to induce DA increases at the level of the dorsal striatum, with DA magnitude 

inversely correlating to addiction severity (Martinez et al., 2007). Studies suggest 

that DA increase observed in the dorsal striatum following conditioned stimuli is 

the result of the stimulation of DA neurons by means of glutamatergic afferents 

from PFC (which includes OFC) and amygdala. These effects on the dorsal striatum 

are thought to contribute to compulsive drug seeking (Volkow et al., 2006; Wong 

et al., 2006). Finally, thalamus regulates arousal and modulates attention, for this 

reason it is believed to have a role in the addictive. However, few studies investigate 

the involvement of thalamus in addiction and most of them were carried out on 

cocaine abusers. There seem to be abnormalities in DA transmission at the thalamic 

level in addict patients, which could contribute to impairments in attention and 

craving (Volkow et al., 1997; Tomasi et al., 2007; Koob and Volkow, 2010, 2016; 

Horseman and Meyer, 2019). 

 

Withdrawal/Negative Affect Stage 

The binge/intoxication stage is characterized by an excessive drug 

consumption, initiating neuroadaptations that lead to the withdrawal/negative affect 

stage through a process called allostasis. To understand allostasis, it is necessary to 

first explain the term homeostasis. Homeostasis has been defined as the necessary 

mechanism for survival, maintaining a narrow range of vital and physiological 

parameters (Sterling and Eyer, 1988; McEwen, 2000). Starting from this concept, 

allostasis has been described as the maintenance of stability outside physiological 

and homeostatic ranges and as “stability through change” (Sterling and Eyer, 1988). 

Thus, allostasis is characterized by a chronic deviation from homeostatic operating 

levels. 

During acute withdrawal and chronic abstinence, addicts show peculiar physical 

and motivational signs such as physical pain, chronic irritability, dysphoria, 

emotional pain, sleep disturbance and loss of motivation for natural rewards. The 

allostatic state, which is characterized by both a decrease in reward function and an 

activation of the stress system, is hypothesized to be responsible for these negative 

emotional states (Koob and Le Moal, 2001; Koob and Volkow, 2016; Koob and 

Schulkin, 2018). 
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At the neurobiological level, negative emotional states were hypothesized to be 

mediated by both within-system and between-system neuroadaptations (Koob and 

Bloom, 1988). Within-system neuroadaptations are the first to be recruited during 

the second stage of addiction and involve the reward neurocircuitry. Changes that 

can be observed during withdrawal include: decreased firing of DA-ergic neurons 

in VTA with consequent decreased DA release in the NAc; decreased 

serotoninergic and Gamma-AminoButyric Acid-ergic (GABAergic) transmission 

in the NAc; and increased glutamatergic transmission in the NAc (Weiss et al., 

1992; Diana et al., 1993; Parsons and Justice, 1993; Davidson et al., 1995; 

Dahchour et al., 1998). 

On the other hand, in between-system neuroadaptations, neuronal circuits other 

than the ones involved in positive reinforcement are recruited or dysregulated by 

chronic activation of the reward system (Koob and Bloom, 1988). Particularly two 

stress-systems, conceptualized as anti-reward systems (Koob and Le Moal, 2008), 

are engaged and activated: the hypothalamic-pituitary-adrenal (HPA) axis through 

the adrenocorticotropic hormone (ACTH) release and the stress system mediated 

by extrahypothalamic release of corticotropin releasing factor (CRF) (Koob and 

Volkow, 2016). 

The most important neural circuit affected by between-system neuroadaptations is 

what is termed the “extended amygdala”. Extended amygdala is a macrostructure 

composed of the central medial amygdala, the bed nucleus of stria terminalis, the 

sublenticular substantia innominate and a zone of transition forming the NAc shell. 

The extended amygdala receives afferents from hippocampus, basolateral amygdala 

(BLA), limbic cortex, midbrain and lateral hypothalamus and sends efferent fibres 

to the medial VTA, brainstem and lateral hypothalamus (Heimer and Alheid, 1991; 

Heimer et al., 1991). During acute withdrawal it has been observed a response of 

elevated ACTH, corticosterone and amygdalar CRF. With protracted abstinence 

and withdrawal progression CRF, together with norepinephrine and dynorphin, is 

recruited in the extended amygdala producing aversive and stress-like states (Koob 

et al., 1994; Heinrichs et al., 1995; Gracy et al., 2001). Among the other structures 

affected by neuroadaptations there are the lateral habenula, which mediates and 

encodes aversive states controlling DA neurons firing in the VTA (Matsumoto and 

Hikosaka, 2007; Salas et al., 2009; Fowler et al., 2011); and the insula, which 

interfaces with the extended amygdala and has interoceptive functions, integrating 
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autonomic and visceral signals with emotion and motivation (Clark et al., 2008; 

Goudriaan et al., 2010; Verdejo-Garcia et al., 2014). To conclude, the endogenous 

anti-stress system (mediated by neuropeptide Y, nociception and 

endocannabinoids) influences vulnerability to the development of addiction, as it 

may be under-activated during withdrawal (Economidou et al., 2011; Sidhpura and 

Parsons, 2011; Reisiger et al., 2014). 

In summary, the combination of within-system and between-system 

neuroadaptations, the former corresponding to decreased reward function, the latter 

corresponding to increased stress function, anti-reward system activation and/or 

anti-stress system under-activation, triggers the negative reinforcement 

contributing to addiction, compulsivity and chronic relapse (Koob and Volkow, 

2016). 

 

Preoccupation/Anticipation Stage 

The third stage of the cycle has been investigated mainly in animal studies. 

In fact, the preoccupation/anticipation stage has been linked to craving, which is a 

difficult construct to evaluate in humans. Moreover, craving doesn’t always 

correlate with relapse (Tiffany et al., 2000). As we might recall from the first stage 

of the addiction cycle, VTA DA cells project to the NAc contributing to incentive 

salience development. In turn PFC has been identified as necessary to maintain 

executive control over incentive salience. In fact, its excitatory glutamatergic 

projections to VTA DA neurons control DA release in PFC and basal ganglia areas 

connected with VTA. 

Animal studies focusing on drug-induced reinstatement revealed the involvement 

of DA-regulated glutamatergic projection from prelimbic PFC to NAc. On the other 

hand, cue-induced reinstatement in rodents revealed the engagement of 

glutamatergic projections from prelimbic PFC, BLA and ventral subiculum to NAc, 

as well as DA modulation in BLA and dorsal striatum (Vorel et al., 2001; Everitt 

and Wolf, 2002; Vanderschuren et al., 2005). Humans imaging studies on cue-

induced craving report similar results, with PFC activation and increased DA 

release in both ventral and dorsal striatum, amygdala and PFC (Lee et al., 2005; 

Risinger et al., 2005; Volkow et al., 2005; Volkow et al., 2006; Fotros et al., 2013; 

Jasinska et al., 2014; Kober et al., 2016; Milella et al., 2016). 
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Based on these observations, Koob and Volkow suggest that glutamatergic 

projections mediate craving responses (Koob and Volkow, 2016). Besides, 

glutamate-mediated PFC activation is accompanied by executive disfunctions, 

which are suggested to involve a disruption in GABAergic activity in PFC (George 

et al., 2012). 

Craving seems to be associated also with insular disfunctions, as this area provides 

impulses conscious awareness. Insular reactivity has been observed to be so 

important as to suggest it as a biomarker for relapse prediction (Janes et al., 2010). 

Finally, a reduction of striatal D2 receptors was observed in addicted patients 

(Volkow et al., 2009), which seems to correlate with impulsivity and compulsivity 

(Martinez et al., 2007; Lee et al., 2009; Koob and Volkow, 2016). 

 

Briefly, firing changes start to happen in the mesolimbic DA neurons after 

the first administration of a drug, which leads to long term potentiation in both VTA 

and NAc and finally involves the dorsal striatum. With prolonged drug-use, 

amygdala and medial PFC encounter long-term changes which, in combination with 

stress system activation and anti-stress system dysregulation, cause a drive for drug-

seeking behaviour (Koob and Volkow, 2010). 

 

To summarize, drug addiction is a chronic and relapsing behavioural disorder and 

it is thoroughly described in the DSM-5. However, the DSM-5 does not cover other 

behavioural disorders, such as sex, shopping or food addiction (American 

Psychiatric Association, 2013). Therefore, the following paragraph will define food 

addiction after a description of food intake physiology. Food addiction description 

will be based on the scientific literature published up to now. 

 

1.2 Food addiction 

1.2.1 Food intake physiology 

Food consumption is necessary for survival and is physiologically regulated 

by five brain regions: amygdala, hippocampus, insula, OFC and striatum (Wang et 

al., 2009a), each controlling different aspects of feeding (learning food reward, 

allocating the right attention and salience to food rewards, integrating information 

from the outside world –for example food availability–, integrating information 
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about energy stores in the body and so on). Besides NAc, lateral hypothalamus (LH) 

and VTA have been identified as crucial in motivation for rewards in general, and 

for food as well (Castro et al., 2015). Particularly, LH has been shown to be so 

important as to earn the “feeding centre” epithet. In fact, studies showed that LH 

lesions cause aphagia (Anand and Brobeck, 1951) and, by contrast, LH activation 

through electrical stimulation causes increased food and water intake (Delgado and 

Anand, 1953). Moreover, LH roles have been extended as to include palatability, 

i.e. food affective processing (Teitelbaum and Epstein, 1962). 

Physiologically, feeding homeostasis is regulated by four hormones, allowing for 

the interaction between the peripheral and central nervous system: ghrelin, 

synthesised in the stomach, raises food consumption (Wren et al., 2000); leptin 

informs the brain about fat reserves in the body (Maffei et al., 1995); insulin and 

peptide YY inform the brain about acute changes in energy levels (Blumenthal and 

Gold, 2010). At the level of the CNS, other important homeostatic peptides deserve 

to be briefly described, such as the anorexigenic alpha-Melanocyte-stimulating 

hormone (α-MSH), the orexigenic neuropeptide Y (NPY), the melanocortin 

antagonist agouti related peptide (AgRP), orexin, the melanin concentrating 

hormone (MCH) and endorphins (Moran and Ladenheim, 2016). Briefly, NPY and 

AgRP releasing neurons in the hypothalamus increase their activity with low levels 

of leptin, causing an increased release of these peptides. By contrast, high 

hypothalamic leptin levels inhibit NPY/AgRP containing neurons (Schwartz et al., 

1996). The result of the high release of these two peptides is a potent feeding 

stimulation (Levine and Morley, 1984; Hahn et al., 1998). Besides NPY and AgRP, 

leptin-activated neurons in the hypothalamus express the prepropeptide 

proopiomelanocortin (POMC); POMC can be processed in opioid and melanocortin 

peptides, including α-MSH, which presence potently inhibits food intake (Thiele et 

al., 1998; Cowley et al., 2001). Furthermore, neurons in the perifornical region of 

the LH express orexin and MCH; both peptides are decreased in presence of high 

levels of leptin and, when present in high concentration, they increase food intake 

(Qu et al., 1996; Perez-Leighton et al., 2012). Finally, endorphins, together with 

DA-ergic mediation, play an important role in food-related reward signalling. The 

major site of action of both endorphins and the DA-ergic system is represented by 

the NAc. It has been shown that opiate agonists, such as morphine, increase eating 

through alterations in food palatability, enhancing the intake of preferred food and 
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hedonic responses to sweet solutions (Doyle et al., 1993; Gosnell and Krahn, 1993). 

As we know from the previous paragraphs, reward pathways are mediated by DA-

ergic circuits, which regulate motivation for both food consumption itself and 

pleasure derived from eating. It has been reported that DA agonist injections within 

NAc increase eating (Sills and Vaccarino, 1991) and that DA extracellular levels in 

NAc is increased with feeding (Hernandez and Hoebel, 1988), with this increase 

being greater when highly palatable food is consumed (Martel and Fantino, 1996). 

The DA-ergic pathways are stimulated by ghrelin and inhibited by leptin and insulin 

(Dagher, 2009; Blumenthal and Gold, 2010). 

 

The following paragraph will cover the topic of food addiction and will discuss the 

reward circuits that were previously described for drug addiction as well. 

 

1.2.2 From food consumption to food addiction 

An individual can be said to be a food addict when he/she develops 

maladaptive patterns of food consumption (Blumenthal and Gold, 2010). 

Particularly, based on the “refined food addiction” hypothesis, refined food 

(containing processed sugars, salt, fat etc.) can be addictive, and refined food 

consumption behaviours may meet the criteria for substance use disorders (Ifland 

et al., 2009). In fact, it is true that food is necessary for survival; however, palatable 

and highly appetitive foods such as those rich in refined sugar and fat are non-

essential (Carter et al., 2016). 

Food addiction has long been associated with obesity (Volkow and O'Brien, 2007; 

Davis et al., 2011; Gearhardt et al., 2011); support for the food addiction theory for 

obesity comes from similarities between obesity itself and drug addiction in terms 

of neurobiological and behavioural traits. However, food addiction and obesity are 

not and cannot be considered synonyms as not all obese patients meet the criteria 

for food addiction, while some non-obese individual does (Meule, 2011; Lee et al., 

2014). Some authors suggest and believe that food addiction can be more likely 

associated with people suffering from binge-eating disorder, as their eating patterns 

resemble drug-use patterns typical of substance use disorders (Ziauddeen and 

Fletcher, 2013; Carter et al., 2016). 
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Similarities between obese individuals and people suffering from substance use 

disorders has been found at both neurocognitive/personality level and 

neurobiological level. At the neurocognitive level, they both show deficits in 

executive function, displaying impairments in decision making, impulsivity and 

delay discounting, the latter defined as the tendency to discount future rewards 

while focusing on prompt gratification (Bechara, 2005; Weller et al., 2008; 

Fitzpatrick et al., 2013). Other neurocognitive deficits comprehend reduced 

inhibitory control (Barry et al., 2009), raised attentional processing of food-related 

stimuli (Nijs and Franken, 2012; Hendrikse et al., 2015), increased cue-reactivity 

(Castellanos et al., 2009), motivationally mediated salience of food information 

(Carter et al., 2016), craving for food (Nijs et al., 2010). 

At the neurobiological level, most of the information we have comes from animal 

studies, investigating neurochemical mechanisms in models of food 

overconsumption (Carter et al., 2016). First, as for addictive drugs, hyperpalatable 

foods act on the DA-ergic reward pathway, with VTA DA cells projecting to NAc 

and limbic and cortical regions (Stice et al., 2013; Nieh et al., 2015). The reward 

pathway and the specific mechanisms that were described for the drug addiction 

cycle (reward processing, salience attribution, loss of inhibitory control etc.) seem 

to be involved in food addiction and excessive food intake as well (Volkow et al., 

2013b). The reward system seems to be activated by calorie-rich foods 

independently of taste (de Araujo et al., 2008). A decrease in D2 receptors is also 

observed, accompanied by a reduced DA signalling in the ventral striatum, which 

contributes to what is termed a reward-deficiency syndrome (reduction in 

sensitivity to natural rewards) (Blum et al., 2000; Koob and Le Moal, 2006; Geiger 

et al., 2009; Johnson and Kenny, 2010; Kenny et al., 2013). Moreover, D2 receptors 

reduction at the level of the striatum leads to a reduced metabolism in OFC and the 

anterior cingulate cortex (ACC), which disruption brings to loss of control (London 

et al., 2000). As for drug-reward exposure, after repeated food rewards exposure, 

the DA system is activated by conditioned stimuli that can induce craving 

(Berridge, 2009; Stice et al., 2013; Carter et al., 2016).  

In human imaging studies similar results were observed, including: increased DA 

release when consuming hyper-palatable food; decreased striatal D2 receptors in 

obese patients; reduced activity in ACC and OFC, respectively responsible for 

inhibitory control and decision making; striatal DA increase associated to food-
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associated cues, which plays an important role in craving and relapse; and 

dysregulation of the stress axis (Tang et al., 2012; Stice et al., 2013; Volkow et al., 

2013b, a; Carter et al., 2016; Lemieux and al'Absi, 2016; Contreras-Rodriguez et 

al., 2017). Figure 2 shows for a summary of the addicted brain versus the non-

addicted brain. 

 

In summary, food addiction, as drug addiction, is a behavioural disorder. This 

section covered food addiction and its neurocognitive and neurobiological features, 

giving prominence to food and drug addiction similarities. Memory processes are 

strictly related to behavioural disorders, and can also be considered memory 

disorders; therefore, the following section will give an overview of memory, 

starting from its definition and spanning through memory consolidation, retrieval 

and reconsolidation processes. 
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Figure 2. Brain circuits involved in drug and food addiction. (a) The nucleus 

accumbens (NAc) is important in salience attribution; orbitofrontal cortex (OFC) is 

involved in decision making and expecting rewards or punishments of an action. 

Amygdala and hippocampus (in the figure respectively, Am and Hip) are important 

for stimulus/reward memories formation. Prefrontal cortex (PFC) and anterior 

cingulate gyrus (CG) provide inhibitory control and emotional regulation. 

Addictive foods and drugs cause the release of dopamine from the ventral tegmental 

area to the NAc, a region regulating the activity in the frontal regions through the 

mesolimbic reward pathway (red arrows). (b) Reward pathway in the nonaddicted 

brain; (c) reward pathway in the addicted brain. In the addicted brain, compulsive 

behaviour is driven by hyperactivation of the memory/conditioning and 
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reward/saliency regions in the brain, together with a downregulation of the 

controlling regions PFC and CG (Baler and Volkow, 2006; Carter et al., 2016). 

From (Carter et al., 2016). Reprinted with permissions from Annual Reviews. 

 

1.3 Addiction as a memory disorder 

As anticipated in the previous section, memory processes are linked together with 

behavioural disorders. Therefore, to better understand how addiction can be 

considered a memory disorder, the following paragraphs will define and classify 

memory, and then will describe memory consolidation, retrieval and 

reconsolidation processes. Finally, the focus will be on sucrose instrumental 

memory reconsolidation, as the instrumental sucrose self-administration paradigm 

was used as a model for food addiction. 

 

1.3.1 Memory classification 

Memory is not a single entity; thus, its description cannot be limited to a single 

definition. First, a distinction is made between short-term, or working, memory and 

long-term memory (Atkinson and Shiffrin, 1968; Baddeley and Warrington, 1970; 

Milner, 1972). Working memory is used to store a limited amount of information 

during learning through a short time interval (usually seconds to hours) (Baddeley 

and Hitch, 1974; McGaugh, 2000). On the other hand, long-term memories are 

stored for hours to months, or even a lifetime; they allow to recall information from 

the past. Long-term memories don’t occupy the current stream of thought, either 

because they exceed the working memory capacity or because attention is 

redirected to other memoranda (Jeneson and Squire, 2012).  

One of the major contrasts between working memory and long-term memory is 

represented by their capacity. The former is highly limited in the amount of 

information it can simultaneously hold (Luck and Vogel, 1997; Cowan, 2001; 

Baddeley, 2003); the latter has a nearly boundless capacity (Eriksson et al., 2015). 

However, the two types of memory are not independent from each other. In fact, 

working memory capacity also depends on whether things to be remembered can 

be clustered in meaningful units: this clustering allows to use concepts stored in 

long-term memory to more efficiently store information in working memory and 

increase performance (Miller, 1956; Brady et al., 2009; Eriksson et al., 2015). 
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Moreover, a short-term memory can undergo what is termed “memory 

consolidation” and stabilize as a long-term memory, a time-dependent process 

requiring protein synthesis. The memory consolidation process will be discussed in 

the following section. 

Long-term memory can be divided in two categories: declarative memory and 

nondeclarative memory, which in turn are composed of sub-categories, shown in 

Figure 3. Declarative memory makes it possible to consciously recall fact-based 

information; on the other hand, nondeclarative memory allows for nonconscious 

information storage and it is expressed through skills and abilities, which manifest 

through performance rather than on conscious recollection of information (Squire 

and Zola, 1996). Declarative memory can be divided in semantic memory, which 

is relative to facts and it involves learning of factual knowledge (Squire, 2004); and 

episodic memory, which is relative to events and it represents the set of information 

derived from personal experience and remembering a specific episode (Tulving, 

2002). 

Nondeclarative memory can be divided into procedural memory, priming, non-

associative learning and conditioning (Squire and Dede, 2015). Procedural memory 

refers to motor and perceptual skills that can be measured through performance. 

Priming can be defined as an unconscious improved access to items (or associated 

items) that have been recently presented (Graf et al., 1984). Non-associative 

learning, also called trial-and-error learning, leads to habit formation and is 

characterized by automatized and repetitive behaviours (Dickinson, 1985). Finally, 

conditioning can be divided in classical or instrumental conditioning. Classical 

conditioning was independently discovered by two scientists: Edwin Burket 

Twitmyer in the United States and Ivan Petrovich Pavlov in Russia in the first 

1900s. In its most basic form, an initially neutral stimulus, called conditioned 

stimulus (CS) predicts the occurrence of an unconditioned stimulus (US), a stimulus 

that can induce a measurable behavioural response (the unconditioned response) 

when presented alone. The CS may be a sound, an odour, or a light for example; 

the US may be a stimulus with positive or negative reinforcing properties, such as 

food or foot-shock, which elicit unconditioned responses such as salivation and 

freezing respectively for food and foot-shock. When the CS is repeatedly presented 

right before the US, it begins to elicit a response, called conditioned response, even 
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when presented alone. A conditioned response, unlike unconditioned responses, is 

not innate; rather, it is learned (Clark, 2004; Murphy and Lupfer, 2014). 

Operant conditioning, or instrumental learning, has been described in 1938 by the 

American Burrhus Frederic Skinner. In operant conditioning, the subject does not 

passively learn associations between a CS and a US, rather he/she learns that his/her 

actions are followed by a consequence. Consequences can be categorized as 

follows: positive and negative reinforcements (procedures that induce an increase 

in the frequency of an action), and positive and negative punishments (procedures 

that induce a decrease in the frequency of an action). Positive reinforcements are 

also called “rewards”; an example of a reward is a food pellet which is given to a 

rat when a lever is pressed. The stimulus causing the increase of the rate of lever 

pressing is called a positive reinforcer. For negative reinforcements, the rate of 

responding is increased to prevent or terminate the presentation of a negative 

stimulus, which may be a foot-shock that can be interrupted by pressing a lever. On 

the other hand, a positive punishment follows a behaviour and decreases the 

probability of the same behaviour. For example, a rat may be foot shocked each 

time it presses a lever; this would induce a reduction in the lever pressing and the 

shock is said to be a positive punisher for lever pressing. Finally, in negative 

punishment, a behaviour causes the removal of a stimulus, which in turn causes the 

reduction of that same behaviour. An example of negative punishment is food 

removal: given a food-deprived rat, it may be given free access to food, with lever 

pressing provoking food removal. This consequence will induce the rat to decrease 

the rate of lever pressing (Miller, 2006; Murphy and Lupfer, 2014). In summary, in 

operant conditioning a subject learns an association between a behaviour (or non-

behaviour) and a positive or negative consequence, which causes the subject to 

increase or decrease the rate of his/her behaviour as a function of the presentation 

or removal of a stimulus. 

 

Among the different memory classifications, the focus of the present dissertation 

will be on positive reinforcement operant conditioning, by applying a sucrose self-

administration paradigm. 
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Figure 3. Long-term memory categories. 

Long-term memory can be classified in declarative and nondeclarative memory. 

Declarative memory can be semantic and episodic; nondeclarative memory can be 

divided in procedural memory, priming, non-associative learning and conditioning, 

which can be classical (or Pavlovian) or operant (or instrumental). 

 

1.3.2 Memory processing: from learning to consolidation 

New information can evolve into a long-term memory following two stages: 

encoding (i), taking from milliseconds to seconds, which leads to acquisition and 

the formation of a short-term memory, susceptible to loss or change; and 

consolidation (ii), a set of processes needed to the long-term stabilization of new 

information (Stickgold and Walker, 2005). During encoding, receiving stimuli from 

the environment results in the development of a new memory trace; in its first 

stages, the memory trace is susceptible to decay, leading to forgetting (Rasch and 

Born, 2013). However, when a memory undergoes consolidation, the memory trace 

is stabilized (McGaugh, 2000) to be strengthened and integrated into already 

existing knowledge networks (Rasch and Born, 2013). 

Memory consolidation  theory was first proposed by Müller and Pilzecker in 1900 

(Müller and Pilzecker, 1900) and it is described as the time-dependent process 

requiring protein synthesis by which a labile and temporary memory is transformed 

into a stable and long-lasting memory (Figure 4) (McGaugh, 2000; Squire et al., 
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2015). The key observation that led to the consolidation theory is related to 

retrograde amnesia: recent memories are more susceptible to interferences than 

remote ones (Ribot, 1881). It has been observed that a memory could be disrupted 

or improved when interferences were presented soon after memory acquisition; this 

observation led to the distinction between the unstable and sensitive to interferences 

short-term memories and the stable and unsensitive to disruption long-term 

memories (Haubrich and Nader, 2018). Examples of disruptive interferences are 

electroconvulsive shock, protein synthesis inhibitors injection and newly learned 

competing information (Duncan, 1949; Flexner et al., 1965; Gordon and Spear, 

1973). Conversely, examples of some treatments improving memory maintenance 

are strychnine, cholecystokinin receptors activation and amphetamines (McGaugh 

and Krivanek, 1970; Flood and Morley, 1989; Lee and Ma, 1995).  

Present-day, the term consolidation is used to describe two types of events: synaptic 

consolidation and systems consolidation. Synaptic consolidation implicates the 

strengthening of memory representations at the level of the synapses; thus, it is the 

process by which synaptic plasticity induced by learning is stabilized at 

synaptic/cellular level and it implies changes in synaptic connections in localized 

neuronal circuits; this process happens within hours after learning and require gene 

transcription, new protein translation and synaptic growth (Bailey and Chen, 1983; 

Montarolo et al., 1986; Schacher et al., 1988; Bailey and Chen, 1989; Dudai, 2004; 

Born and Wilhelm, 2012; Asok et al., 2019). By contrast, system consolidation 

process is needed to allow memory consolidation; the term refers to the 

reorganization of the brain systems that support memory (Squire et al., 2015). 

During systems consolidation long-term memories, which initially depend on the 

hippocampus, find a more permanent storage in neocortical regions. These 

reorganizations at systems level include an increased complexity, distribution and 

connectivity among regions in the neocortex (Squire and Alvarez, 1995; Dudai and 

Morris, 2000; Squire et al., 2015). As opposed to synaptic consolidation, which 

seems to equally occur during sleep and wakefulness, system consolidation seems 

to take place exclusively during sleep, in order not to interfere with the normal 

processing of external stimuli (Diekelmann and Born, 2007; Born and Wilhelm, 

2012). 
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Figure 4. Memory consolidation phases. Memory consolidation is a time-

dependent process. However, short-term and long-term memories are not strictly 

sequentially linked, as suggested in 1965 in the dual-trace hypothesis by Agranoff 

and colleagues (Agranoff et al., 1965). Rather, consolidation brings to the 

stabilization of a short-term memory into a long-term memory; however, different 

memory stages depend on different processes acting simultaneously. Later 

consolidation stages result in long-lasting memories formation, which involve the 

interaction and reorganization of the connections in different brain systems 

(McGaugh, 2000). From (McGaugh, 2000). Reprinted with permissions from 

AAAS. 

 

1.3.3 Memory reconsolidation 

Once a memory trace goes through the process of consolidation to become a long-

term memory, it becomes stable. Long-term memories were once believed to be not 

only stable, but also static and immutable (Squire et al., 1984; Nader, 2003). Based 

on the first formulation of the consolidation theory, long-term memories retrieval 

was a simple and passive access to consolidated memories. This theory soon started 

to be confuted after the observation that fear memories (classical conditioning) 

could be impaired in rodents exposed to Electroconvulsive Shock (ECS) when ECS 

was presented 24 hours after fear conditioning (thus, consolidated) and soon after 

the fear memory was reactivated by means of CS presentation (Lewis et al., 1968; 

Misanin et al., 1968; Schneider and Sherman, 1968). A study published by Gordon 

in 1977 also shown that a consolidated memory can be disrupted when new 

information is acquired soon after memory reactivation (Gordon, 1977). Based on 
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these studies, a long-term memory is disrupted leading to amnesia only when the 

interference (ECS or acquisition of competing information) is applied soon after 

memory reactivation.  

Thus, memory recall can destabilize a consolidated memory and bring it back to a 

labile state subject to degradation; the transformation of the destabilised memory 

trace to a re-stabilised form needs a phenomenon similar to a new learning, 

requiring protein synthesis, called reconsolidation (Figure 5) (Spear, 1973; 

Przybyslawski and Sara, 1997; Nader et al., 2000; Nader, 2003; Stickgold and 

Walker, 2005). However, if a memory is destabilised and not reconsolidated, it can 

degrade (Stickgold and Walker, 2005). Other studies confirmed or supported the 

reconsolidation theory (Terry and Holliday, 1972) across different species as well, 

such as the garden slug Limax (Sekiguchi et al., 1997) and both across aversive and 

appetitive paradigms (Bucherelli and Tassoni, 1992; Land et al., 2000; Sara, 2000). 

When talking about reconsolidation, it is important to define the difference between 

the concepts of memory retrieval and memory reactivation. In literature the two 

terms are often used interchangeably, however they don’t represent the same 

process. Memory retrieval can be defined as the process that allows to use 

previously acquired information; memory reactivation on the other hand is a 

necessary component of memory retrieval and can be defined as the process that 

allows to trigger the memory from a latent state to a “retrievable” state (Gisquet-

Verrier and Riccio, 2012). Thus, if the memory is not reactivated, it cannot be 

retrieved. Memory reactivation is required in every case in which a knowledge 

needs to be modified: it is the case of retraining, during which supplementary 

information to the reactivated one is acquired; extinction, during which previously 

learned responses are not reinforced anymore; or, more in general, rule-shiftings 

which require a memory to be updated. Reactivation can occur if the subject is re-

exposed to cues associated to a specific memory (Gisquet-Verrier and Riccio, 

2012). 

Reconsolidation studies continued also in more recent years. As previously 

mentioned, these studies propose and confirm that consolidated memory 

reactivation is a manipulation that destabilizes the memory itself. This 

destabilization returns the memory to a labile state requiring the protein synthesis-

dependent stabilization process called reconsolidation. Reconsolidation has been 
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observed to be necessary both for memory maintenance (Tronson and Taylor, 2007; 

Hardt et al., 2010) and update (Morris et al., 2006; Lee, 2010). 

Studying and observing the memory reconsolidation process behaviourally is a 

challenge. For this reason, memory reconsolidation occurrence has been 

demonstrated by different authors through its manipulation. For example, it has 

been demonstrated through its inhibition (Lee, 2009; Tedesco et al., 2014); more 

rarely, it has been demonstrated through its enhancement (Stern and Alberini, 

2013). Based on the scientific literature, the reconsolidation process seems to be 

complete by 6-h after memory reactivation. After this time, as for consolidated 

memories, the memory trace becomes again resistant to interferences 

(Przybyslawski et al., 1999; Nader et al., 2000; Gruest et al., 2004; Stickgold and 

Walker, 2005). 

 

Figure 5. Traditional consolidation theory vs reconsolidation model. 
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The traditional consolidation theory (a) states that a labile short-term memory 

becomes consolidated into a stable long-term memory through the consolidation 

process, which requires protein synthesis. Long-term memories are posited to be 

permanent and unmodifiable. The reconsolidation model proposed by Lewis in 

1979 (Lewis, 1979) (b) distinguishes between an active state (AS; analogous to 

short-term memory) and an inactive state (IS; analogous to long-term memory). 

New memories enter an AS and eventually enter an IS with time (top red arrow). If 

memories in IS are reactivated, they return to AS and they become susceptible again 

(bottom red arrow). From (Nader, 2003). Reprinted with permissions from Elsevier. 

 

1.3.4 The boundary conditions of memory reconsolidation  

In order to study appetitive memory reconsolidation, a behavioural protocol must 

be set up. Usually in rodents the behavioural protocol goes through the following 

steps: training (i), memory reactivation/manipulation (ii) and test for retention (iii). 

However, intrinsic characteristics of consolidated memories can influence the 

occurrence of memory reactivation, and specific parameters (called boundary 

conditions) in the behavioural protocol must be carefully chosen. In fact, not every 

retrieval session is able to destabilize and eventually reactivate a memory trace. 

Important boundary conditions are represented by memory age and memory 

strength. In fact, while recent memories are in subcortical regions such as 

hippocampus, older memories are found in cortical areas and need stronger stimuli 

to be destabilized and disrupted (Frankland et al., 2006). On the other hand, memory 

strength can be defined by the length of the training stage. Wang and colleagues in 

2009 showed that 10 tone-shock pairings in fear memory conditioning created a 

stronger memory trace with respect to a single pairing (Wang et al., 2009b). Two 

days after conditioning, fear memory reactivation was performed in a different 

context with respect to the training one. Following, anisomycin (ANI, an antibiotic 

inhibiting protein synthesis) injections in BLA could inhibit the weaker memory 

trace reconsolidation and could not disrupt the stronger memory reconsolidation, as 

the reactivation session wasn’t able to destabilize the stronger memory trace (Wang 

et al., 2009b). Other boundary conditions have been reported to influence memory 

retrieval such as reactivation context (Hupbach et al., 2008), phase of reactivation 

(wake vs sleep) (Diekelmann et al., 2011) and CS specificity (Debiec et al., 2006). 
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Finally, one of the major constraints for memory reconsolidation is predictability 

(Pedreira et al., 2004): prediction error (defined as the mismatch between what is 

expected and what actually happens) is believed to function as a destabilizing factor 

for its ability to re-access previously consolidated memories (Fernandez et al., 

2016). 

 

1.3.5 Sucrose instrumental memory reconsolidation  

Memory reconsolidation for sucrose has been studied using the typical drug 

addiction behavioural protocols. Among these, one widely used protocol follows 

drug addiction progression and consists of an initial bingeing stage for sucrose, a 

withdrawal stage in which incubation of reward craving happens and the final 

sucrose craving stage, which can be evaluated through a reinstatement test (Grimm 

et al., 2002; Avena et al., 2005; Grimm et al., 2005). Incubation for drug craving 

has first been proposed in 1986 by Gawin and Kleber and can be defined as time-

dependent increase in cue-induced drug seeking during the first periods of 

withdrawal from the drug (Gawin and Kleber, 1986). Incubation for cocaine craving 

has been demonstrated by Grimm and colleagues in 2001 in rats, following a 

behavioural protocol of cocaine self-administration (Grimm et al., 2001). The 

phenomenon has been observed with different substances (Li et al., 2015), such as 

heroin (Shalev et al., 2001), methamphetamine (Shepard et al., 2004), alcohol 

(Bienkowski et al., 2004) and nicotine (Abdolahi et al., 2010). As for sucrose, 

Grimm and colleagues in 2002 applied the following behavioural protocol: 10-d 

training stage in which rats learned to associate lever presses for sucrose to acoustic 

and visual cues (tone and light respectively); 1-d or 15-d withdrawal; extinction 

session; memory reconsolidation test. In their study, authors showed that sucrose 

instrumental responding to tone and light (CS) exposure, was more resistant after 

15-d withdrawal than after 1-d withdrawal demonstrating that, as it happens with 

drugs, incubation happens for sucrose craving as well (Grimm et al., 2002).  

Hernandez and colleagues in 2002 and 2004 published two studies demonstrating 

that ANI injections were not able to disrupt memory reconsolidation (Hernandez et 

al., 2002; Hernandez and Kelley, 2004). Sucrose instrumental memory 

reconsolidation was first demonstrated by Wang and colleagues in 2005. Authors 

used an incentive learning protocol and tested rats for both consolidation and 
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reconsolidation following ANI or vehicle (VEH) injections in BLA. They showed 

that ANI inhibited both memory consolidation and reconsolidation and concluded 

that also sucrose memory reconsolidation depends on protein synthesis (Wang et 

al., 2005). Sucrose instrumental memory reconsolidation has also been 

demonstrated to depend on beta-adrenergic receptors, as their inhibition with 

systemic propranolol (Diergaarde et al., 2006; Milton et al., 2008) or MK-801 (Lee 

and Everitt, 2008a) injections immediately after retrieval inhibits memory 

reconsolidation. Particularly, the reactivation session performed by Lee and Everitt 

in 2008 consisted of a re-exposure to the training experimental session, except for 

the lack of sucrose US. In a subsequent study, the same authors reported the 

importance of the CS presentation: in fact, they observed that sucrose instrumental 

memory was successfully reactivated only when CS was presented contingently 

with active lever pressing (Lee and Everitt, 2008b). Their results showed the 

importance of salient memory-evoking stimuli presentation to target memory 

reconsolidation as a therapeutic tool for addictive behaviours. 

In the previous paragraph the topic of boundary conditions was taken into 

consideration. It was reported that the features of a retrieval session are important 

to establish whether a memory will be effectively reactivated and undergo 

reconsolidation or if it will be extinguished. The balance between reconsolidation 

and extinction for sucrose instrumental memory was assessed in 2013 by Flavell 

and Lee, who showed that pure instrumental memory reconsolidation is not affected 

by MK-801 (a NMDA receptors antagonist) injections (Flavell and Lee, 2013). The 

first to show that MK-801 injections can inhibit pure sucrose instrumental memory 

reconsolidation were Exton-McGuinness and colleagues (Exton-McGuinness et al., 

2014; Exton-McGuinness and Lee, 2015). 

 

In summary, this section covered memory processes relevant for the self-

administration operant conditioning paradigm. Following a drug addiction protocol, 

a subject (usually a mouse or rat) is trained to self-administer a substance/a sugar 

pellet following lever pressing. Operant conditioning training is a form of memory 

consolidation between the instrumental behaviour and the reinforcing sucrose 

pellet. After a period of forced abstinence (withdrawal), in which the subject cannot 

receive substance/sucrose, the consolidated memory can be retrieved through a 

reactivation session, which allows for memory reconsolidation occurrence. 
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Memory processes are influenced by sleep, and some of them exclusively happen 

when a subject is sleeping. Therefore, the following section will describe sleep and 

its involvement in memory consolidation and reconsolidation. 

 

1.4 Memory and Sleep 

1.4.1 Sleep 

 Sleep is a physiological and reversible state during which a subject shows 

loss of consciousness, relative inactivity and reduced responsiveness to external 

stimuli (Borbely and Achermann, 1999). Across sleep’s functions, the followings 

have been proposed (Rasch and Born, 2013): energy-saving (Webb, 1988; Berger 

and Phillips, 1995), cell tissue repairing and energy resources restoration (Oswald, 

1980), thermoregulation (Rechtschaffen and Bergmann, 1995), metabolic 

regulation (Knutson et al., 2007; Van Cauter et al., 2008), and adaptive immune 

functions (Lange et al., 2010). Sleep’s features that these functions do not explain 

are the loss of consciousness and loss of responsiveness; these peculiarities induced 

researchers to state that sleep is mainly for the correct brain functioning (Kavanau, 

1997; Hobson, 2005), including brain free radicals detoxication (Reimund, 1994; 

Inoue et al., 1995), glycogen replacement (Scharf et al., 2008), synaptic plasticity 

and memory formation (Tononi and Cirelli, 2006; Diekelmann and Born, 2010). 

In mammals, two stages that cyclically alternate have been identified: slow-wave 

sleep (SWS) and rapid-eye-movement (REM) sleep, also called paradoxical sleep. 

The former is characterised by slow and high-amplitude electroencephalographic 

(EEG) oscillations; the latter is characterised fast and low-amplitude EEG 

oscillations. For having a wake-like oscillatory brain activity, REM sleep is also 

called paradoxical sleep (Rasch and Born, 2013).  

 

1.4.2 Memory Consolidation and Sleep 

Whereas the encoding of new information coming from external stimuli 

happens during wakefulness, the brain finds in its sleeping state the optimal 

conditions for memory consolidation processes that allow new memory traces to 

integrate in the long-term store (Rasch and Born, 2013). Two hypotheses have been 

proposed to explain mechanisms underlying memory consolidation during sleep: 

the synaptic homeostasis hypothesis and the active system consolidation 
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hypothesis, which explain processes probably acting together to optimize memory 

consolidation during sleep (Figure 6) (Diekelmann and Born, 2010).  

In the synaptic homeostasis hypothesis (Crick and Mitchison, 1983; Tononi and 

Cirelli, 2006) wake encoding would serve to increase brain’s synaptic strength, 

while sleep would be used to downscale this synaptic strength to a sustainable level 

in terms of tissue volume and energy demands, allowing future use of the same 

synapses for encoding (Vyazovskiy et al., 2008; Dash et al., 2009; Diekelmann and 

Born, 2010). Based on this hypothesis, SWS would be associated to downscaling 

(Tononi and Cirelli, 2006). However, synaptic downscaling would implicate that 

memories that were weakly encoded are forgotten, which is in contrast with 

behavioural evidence showing that weakly encoded memories benefit from sleep 

(Kuriyama et al., 2004; Drosopoulos et al., 2007). Thus, this hypothesis is not able 

to fully explain sleep dependence of memory consolidation.  

On the other hand, to describe the active system consolidation hypothesis, it is first 

necessary to introduce the two-stage model of consolidation. Based on this model, 

the temporary store for short-term memories is the hippocampus, while the long-

term store is represented by the neocortex. Briefly, events experienced during 

wakefulness are encoded in both hippocampus and neocortex. Subsequently, 

mainly during SWS, new memory traces that were encoded during wakefulness are 

repeatedly reactivated in the hippocampus and are redistributed to the neocortex, 

exploiting the SWS off-line period. As a result, neocortical synaptic connections 

are strengthened, giving rise to more persistent memory representations; transferred 

memories may completely lose their dependence from the hippocampus (Zola-

Morgan and Squire, 1990; McClelland et al., 1995; Frankland and Bontempi, 2005; 

Born and Wilhelm, 2012). Slow waves enable hippocampal memories reactivation 

and guide the transferring. They are generated in the neocortical networks and their 

amplitude probably depends on neocortical network’s usage during initial 

encoding: the more information is encoded during wake states, the higher the slow 

waves amplitude (Huber et al., 2004; Molle et al., 2004; Born and Wilhelm, 2012). 

Slow waves are relevant also in other brain regions that are involved in memory 

consolidation, such as the thalamus and the hippocampus. At the level of the 

thalamus there is the generation of the thalamo-cortical spindles; on the other hand, 

at the level of the hippocampus sharp-wave ripples, which allow reactivations of 

memory representations, are generated (Born and Wilhelm, 2012). Consistent with 
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this, slow oscillations, hippocampal ripple activity and spindle activity were shown 

to be increased during sleep after learning at the local field potentials level; 

moreover, increases were also shown to be linked to improved retention of new 

memories (Gais et al., 2002; Huber et al., 2004; Clemens et al., 2005; Eschenko et 

al., 2008; Girardeau et al., 2009; Molle and Born, 2009). The described process is 

used to consolidate new memories, but also to integrate new learnings and 

knowledge into pre-existing memory representations. Finally, the process is 

selective, in that memories that are more relevant for the subject will more probably 

and preferentially undergo consolidation (Born and Wilhelm, 2012). 

Starting from this model, it is possible to introduce the second hypothesis: the active 

system consolidation hypothesis. It was first proposed for declarative memory 

(Marr, 1971; Buzsaki, 1989; McClelland et al., 1995; Frankland and Bontempi, 

2005; Rasch and Born, 2007), however it might describe consolidation in other 

memory systems as well (Marshall and Born, 2007). Thus, memory transfer is 

enabled by the synchronous presence of slow waves, hippocampal sharp wave 

ripples and thalamo-cortical spindles, the latter reaching the neocortex during up-

states of slow oscillations. When spindles reach the neocortex, they simulate 

Ca2+influx starting the synaptic plasticity process (Sejnowski and Destexhe, 2000; 

Rosanova and Ulrich, 2005; Diekelmann and Born, 2010). Despite the ability of the 

active system consolidation hypothesis to explain memory consolidation and the 

integration of new information into the pre-existing long-term memories network, 

it does not explain how sleep can stabilize the involved synaptic connections in the 

long term, allowing to strengthen memory traces. The stabilization of synaptic 

connections, as previously stated, is called synaptic consolidation, and it seems to 

happen during REM sleep (Diekelmann and Born, 2010). In fact, studies suggest 

that REM sleep is associated with immediate early genes (IEG) activity 

upregulation related to plasticity (Ribeiro et al., 2002; Ulloor and Datta, 2005; 

Ribeiro et al., 2007). The upregulated IEG activity seems to be correlated with 

spindle activity during SWS that precedes REM sleep (Figure 6) (Ribeiro et al., 

2007). Rapid eye movement sleep enhances cholinergic tone (von der Kammer et 

al., 1998; Teber et al., 2004), which allows the maintenance of long term 

potentiation (LTP) in the hippocampus-medial prefrontal cortex pathway, in turn 

involved in the transferring of memories in system consolidation (Takashima et al., 

2006; Gais et al., 2007; Peyrache et al., 2009; Wierzynski et al., 2009). During REM 
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sleep brain activity is as high as in wake state; this activity could act in a non-

specific way to locally amplify synaptic plasticity (Cantero et al., 2003; Axmacher 

et al., 2008; Montgomery et al., 2008; Diekelmann and Born, 2010). 

 

 

Figure 6. Memory consolidation hypotheses. The synaptic homeostasis hypothesis 

(a) proposes that encoding happens during wakefulness, during which synapses also 

become potentiated; SWS then downscales synaptic strength, so that weak 

connections are deleted, whereas relative strength of other connections is 

maintained. The active system consolidation model (b) proposes that encoding 

happens in both hippocampus and neocortex and that slow oscillations during slow 

wave sleep (SWS) drive the synchronous hippocampal memories reactivation, 

hippocampal sharp wave ripples and thalamo-cortical spindles. This 

synchronization allows reactivated memories transferring from hippocampus to 

neocortex. Arrival of information at the neocortical networks causes synaptic 

plasticity changes supported by rapid eye movement (REM) sleep. These changes 

include activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and 

protein kinase A (PKA), which cause immediate early genes (IEG) expression 

(Diekelmann and Born, 2010). LTP, long-term potentiation; AMPAR, α-amino-3-

hydroxy-5-methyl-4-isoxazole propionic acid receptor; NMDAR, N-methyl-D-
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aspartate receptor. From (Diekelmann and Born, 2010). Reprinted with permissions 

from Springer Nature. 

 

1.4.3 Memory Reconsolidation and Sleep 

Although a wealth of literature is available about sleep’s role in memory 

consolidation, not much has been investigated and is known about sleep’s role in 

memory reconsolidation. In a review of Stickgold and Walker of 2005, the authors 

hypothesize that both degradation and reconsolidation can/must occur during sleep 

(Stickgold and Walker, 2005). They argue that in most studies on reconsolidation 

performed on rodents, experiments are carried out during the light phase (rodent’s 

inactivity phase) and they state that it is probable that subjects slept between the 

reactivation stage and following measurements of reconsolidation. Therefore, it is 

not easy to discriminate between time-dependent and sleep-dependent 

reconsolidation (Stickgold and Walker, 2005). Some studies on procedural memory 

reconsolidation in humans showed that sleep indeed has a role in memory 

reconsolidation. In fact, Walker and colleagues showed that the day after learning 

a motor sequence, subjects showed overnight sleep-dependent improvement in both 

speed and accuracy of the task (consolidation). They also showed that if a 

competing sequence is taught 10 minutes after the first one, sleep-dependent 

consolidation interference is observed (interference with consolidation); whereas if 

the time between learning the first sequence and the competing one was increased 

to 6-h or 24-h, no interference was observed (no interference with consolidation) 

(Walker et al., 2002; Walker et al., 2003). By contrast, if the consolidated memory 

was reactivated through 90-s rehearsal just before learning the interference 

sequence, subject’s accuracy on the first task as tested the following day was shown 

to be reduced (Walker et al., 2003; Stickgold and Walker, 2005). In a more recent 

study, Klinzing and colleagues showed that a 40-m night sleep facilitates the re-

stabilisation (thus, reconsolidation) of reactivated declarative memories (Klinzing 

et al., 2016). Finally, a rodent study applied REM sleep deprivation (RSD) to 

evaluate its effects on retrieval of methamphetamine reward memory; results 

showed that RSD impairs drug-related memory only when it occurs during memory 

reactivation (Shahveisi et al., 2019). Thus, sleep seems to play an important role in 
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memory reconsolidation, however there is limited evidence in support of this 

hypothesis. 

 

In summary, sleep has been shown to be fundamental in memory consolidation, and 

it seems to be involved in memory reconsolidation as well. However, its connection 

to memory reconsolidation is not yet clear. Based on the topics displayed until now, 

the following section will illustrate the aim of the project presented in the present 

dissertation. 

 

1.5 Aims of the thesis 

The present dissertation focuses on two brain areas that are known to be 

involved and to interact in appetitive memory reconsolidation. In this regard, a 

paper from 2011 from Rita Fuchs’ laboratory inspired the project: “Interaction 

between the basolateral amygdala and dorsal hippocampus is critical for cocaine 

memory reconsolidation and subsequent drug context-induced cocaine-seeking 

behaviour in rats” (Wells et al., 2011). In this work, Wells and colleagues focused 

their investigations on BLA and dorsal hippocampus (DH) as they were known to 

regulate cocaine-seeking behaviour (Meil and See, 1997; Fuchs et al., 2002; Kantak 

et al., 2002; Fuchs et al., 2005; Fuchs et al., 2007) and cocaine-related memory 

reconsolidation (Nader et al., 2000; Milekic et al., 2007; Mamiya et al., 2009; 

Ramirez et al., 2009; Li et al., 2010). However, it was not known whether the two 

areas interacted to control reconsolidation. To investigate this question, they 

applied a disconnection experiment. Briefly, they trained rats to self-administer 

cocaine and then exposed them to extinction sessions in a context different from the 

training one. Subsequently, they destabilised cocaine-related memories by re-

exposing the rats to the training context and eventually unilaterally microinjected 

them with ANI into the BLA plus baclofen/muscimol (B/M) into the contralateral 

(full disconnection between the two areas) or ipsilateral DH, or vehicle into the 

contralateral or ipsilateral DH as a control.  After 21 days and following another 

extinction training, rats were tested for cocaine-seeking behaviour. The authors 

showed that disconnection of the two areas following re-exposure to cocaine-paired 

context impaired context-induced cocaine-seeking behaviour with respect to 

subjects injected with vehicle or subjects injected ipsilaterally in the DH with B/M. 
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Authors concluded that BLA and DH interaction is necessary to regulate cocaine-

related associative memories reconsolidation (Wells et al., 2011). 

 

Therefore, the aim of the project described in the present dissertation was that of 

investigating functional connectomics measures (such as synchronization, coupling 

and coherence) between BLA and the CA1 area of the dorsal hippocampus during 

appetitive (sucrose) memory retrieval in both Dark (activity phase) and Light 

(inactivity phase) phases in rats. The first goal of the project was to evaluate 

differences in LFPs when memory retrieval is performed during Light or Dark 

phases, to improve our knowledge on the impact of performing an appetitive 

memory retrieval session during the inactivity vs activity phase in rodents on 

memory reactivation and following reconsolidation. The second goal of the project 

was to find an in vivo electrophysiological marker of appetitive memory 

reactivation. In fact, being able to identify a marker of appetitive memory 

reactivation would have a great translational value. Improving our knowledge on 

the electrophysiological mechanisms leading reactivation could provide us with 

information that could be exploited to face the problem of relapse to food addiction 

after withdrawal. For example, by applying new strategies to inhibit memory 

reconsolidation after its reactivation and avoid relapse to abuse. 

 

In order to answer aim’s questions, it is important to understand the underlying 

electrophysiological mechanisms. Therefore, brain rhythms in hippocampus and 

BLA and their involvement in memory processes will be described in the following 

paragraphs. 

 

1.6 Brain rhythms 

Brain rhythms, or network oscillations, are extracellular fluctuating waves 

(voltage deflections) of neuronal activity that can be revealed by local field potential 

(LFP) recordings (Colgin, 2016; Bocchio et al., 2017). These rhythms are the result 

of the synchronized activity of a large number of neurons: synchronized neuronal 

currents sum together and generate LFPs; non-synchronized neuronal currents do 

not sum together and cannot be detected as LFPs (Colgin, 2016). Thus, oscillatory 

waves are believed to be the cause of synchronous synaptic activity of a great 
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number of neurons (Buzsaki et al., 2012; Bocchio et al., 2017) and occur at different 

frequency bands. Synchronization between neurons is believed to be important for 

cognition and memory operations; in fact, individual neurons cannot execute 

complex cognitive operations when firing in isolation and must organize in 

functional networks with other neurons (Quiroga, 2013). Frequency bands can be 

divided in delta (0.5 – 4 Hz), theta (4 – 12 Hz), beta (12 – 30 Hz), and gamma (30 

– 120 Hz), which amplitude and frequency depend on the behavioural state and 

brain area (Buzsaki, 2009). Power and synchrony of different brain rhythms have 

been shown to be controlled by neurotransmitters such as dopamine, noradrenaline, 

serotonin and acetylcholine (Kocsis et al., 2007; Benchenane et al., 2010; Sorman 

et al., 2011; Vandecasteele et al., 2014; Bocchio et al., 2017). As theta and gamma 

oscillations in BLA and hippocampus are known to be involved in memory 

processes, the following paragraphs will focus on these brain areas and oscillations. 

 

1.6.1 Basolateral amygdala 

The amygdala is a brain area located in the medial temporal lobe; it regulates 

emotional behaviour in both rodents and non-human and human primates (Phelps 

and LeDoux, 2005). Neuronal circuits belonging to BLA are very important for 

different memory functions, ranging from acquisition and consolidation to retrieval 

and extinction of emotional memories. Importantly, synchronous oscillations in 

theta and gamma frequency bands between BLA and other brain structures have 

been shown to be relevant for emotional (both fear and reward) memory 

consolidation and retrieval (Bocchio et al., 2017), and for storage and formation of 

associative memories (Fanselow and LeDoux, 1999; Blair et al., 2005). Basolateral 

amygdala is one of the two main amygdalar nuclei (the other one is represented by 

the central amygdala) and it regulates both negative emotions and reward-based 

memory processes (Tye and Janak, 2007; Tye et al., 2008; Gore et al., 2015; 

Namburi et al., 2015; Beyeler et al., 2016). In fact, in both fear and reward 

conditioning, researchers observed an increase in excitatory synaptic inputs to the 

lateral amygdalar nucleus, which allows the formation of associative memories 

(Tye et al., 2008). Some authors have shown that different BLA neurons encode 

either for associative fear or associative reward memories (Redondo et al., 2014; 

Namburi et al., 2015; Beyeler et al., 2016), with no topographical segregation 
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between neuronal populations encoding for aversive or reward memories (Shabel 

and Janak, 2009; Zhang et al., 2013; Gore et al., 2015; Namburi et al., 2015; 

Bocchio et al., 2017). 

Phenomena related to memory processes that received attention are synaptic 

plasticity, engrams recruitment and network oscillations (Bocchio et al., 2017). 

With “engram” we mean a subset of neurons that act together; the term was first 

introduced by Richard Simon in the early 20th century, referring to is as the neural 

substrate for memory storage and recall (Schacter, 2001; Josselyn and Tonegawa, 

2020). As mentioned before, network oscillations in BLA (theta and gamma 

oscillations for example) are important in regulating memory storage and retrieval; 

moreover, they synchronize BLA with other brain areas both during reward and 

fear memory retrieval. These long-range synchronizations, for example those 

between the BLA and the medial prefrontal cortex (mPFC), could play a main role 

in plasticity induction (Likhtik et al., 2014; Karalis et al., 2016). Oscillations in the 

BLA seem to originate from BLA neurons, which show intrinsic membrane 

oscillations at theta band (Pare et al., 1995; Pape and Driesang, 1998) and 

rhythmically fire with local gamma and theta oscillations (Stujenske et al., 2014; 

Karalis et al., 2016; Bocchio et al., 2017).  

 

Theta 

Differently from hippocampal theta, BLA theta do not occur during 

locomotion (Seidenbecher et al., 2003). Besides being generated locally by 

principal neurons, researchers suggested that BLA theta oscillations are likely 

generated by glutamatergic inputs from afferent areas such as the mPFC and the 

hippocampus (Bocchio et al., 2017).  

It has been shown that oscillatory patterns in BLA are also important for emotional 

memories consolidation. For example, during REM sleep after fear memory 

conditioning, the strength of memory retrieval correlates with theta synchronization 

from the CA1 area of the hippocampus to the BLA and in turn from the BLA to the 

mPFC (Popa et al., 2010). Evidence showed that during contextual fear memory 

retrieval, lateral amygdala, dorsal hippocampus and mPFC synchronize at theta 

frequencies (Seidenbecher et al., 2003; Narayanan et al., 2007b; Lesting et al., 

2011). Moreover, Cambiaghi and colleagues showed that the temporal association 
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cortex synchronizes with BLA at theta frequencies during fear memory retrieval 

(Cambiaghi et al., 2016). 

 

Gamma 

Gamma can be divided in low gamma (or low gamma, 30 – 70 Hz or 35 – 

45 Hz) and high gamma (or high gamma, 70 – 120 Hz), which frequencies change 

depending on the study taken into consideration (Bauer et al., 2007; Popescu et al., 

2009; Stujenske et al., 2014; Bocchio et al., 2017). High gamma band in the BLA 

can be long-range synchronized with mPFC theta oscillations via a phenomenon 

called theta-gamma cross-frequency coupling, which allows BLA gamma 

amplitude to be modulated by mPFC theta phase (Lisman and Jensen, 2013; 

Stujenske et al., 2014). Gamma oscillations in BLA probably originate from 

membrane fluctuations in principal neurons (Bocchio et al., 2017). 

It has been shown that power and synchrony of low gamma increase in BLA and 

striatum during appetitive learning (Bauer et al., 2007; Popescu et al., 2009).  

Like theta frequencies, gamma oscillations are important for memory retrieval as 

well. In fact, evidence showed that BLA high gamma power decreases when 

subjects recognize an auditory cue anticipating a foot-shock and decreases if the 

auditory cue is not paired with the punishment. Moreover, theta-high gamma cross-

frequency phase-amplitude coupling between mPFC and BLA increases when 

subjects correctly discriminate stimuli leading to freezing. By contrast, neither low 

gamma power, nor phase amplitude cross-frequency coupling between low gamma 

and theta has been observed (Stujenske et al., 2014). 

Finally, gamma synchrony between BLA, striatum and rhinal cortices seem to be 

important for appetitive memories retrieval (Bocchio et al., 2017). 

 

1.6.2 Hippocampus 

The hippocampus is an essential brain area for episodic memory and spatial 

memory (Squire et al., 2004). Pyramidal cells represent the principal excitatory 

neurons in the hippocampus; many of them are provided with receptive fields for 

different locations in space and for this reason are called “place cells” (O'Keefe and 

Dostrovsky, 1971; O'Keefe, 1976). Pyramidal cells, particularly in the CA1 area, 

intrinsically generate LFPs. Dendrites of pyramidal cells in CA1 are in fact 
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parallelly aligned, characteristic that allows currents to flow in the same direction 

and sum together to produce LFPs. Moreover, hippocampal interneurons are very 

important to generate rhythm; in fact, they have divergent projections that allow 

them to synchronize activity across large numbers of neurons (Cobb et al., 1995). 

These characteristics make the hippocampus an excellent model for studying brain 

rhythms. The main hippocampal brain rhythms are theta (Vanderwolf, 1969) (4 – 

12 Hz), sharp wave-ripples (110 – 250 Hz) and gamma (Buzsaki et al., 1983; Bragin 

et al., 1995) (25 – 100 Hz). Different rhythms are related to and perform different 

functions. For example, theta seems to allow encoding of new information (Colgin, 

2013), while sharp wave-ripples seem to allow memory stabilization and 

consolidation (O'Neill et al., 2010; Colgin, 2016).  

 

Theta 

Theta oscillations in the hippocampus occur during active exploration and 

REM sleep (Vanderwolf, 1969; Colgin, 2013). Following, a simplified summary on 

how hippocampal theta rhythms are generated: the medial septum (MS) is believed 

to be the pacemaker for theta rhythm, as evidence showed that theta oscillations in 

the hippocampus are abolished by MS lesions (Green and Arduini, 1954). The theta 

pacemaker cells are GABAergic cells of the MS and target CA3, CA1 and dentate 

gyrus interneurons (Freund and Antal, 1988), which in turn disinhibit pyramidal 

cells and promote theta firing. However, it has been shown that theta may also 

generate not only from MS but also locally from circuit interactions in the 

hippocampus (Colgin, 2016). 

The first electroencephalographic (EEG) studies showed that the extent to which 

theta was present in the hippocampus predicted animals learning rate and memory 

retention, leading to the theory that theta plays a central role in learning and memory 

(Landfield et al., 1972; Berry and Thompson, 1978). Recent studies on place fields 

called this theory into question (Wilson and McNaughton, 1993; Frank et al., 2004; 

Leutgeb et al., 2004; Yartsev and Ulanovsky, 2013; Brandon et al., 2014) 

demonstrating that theta is not essential for place fields formation nor for spatial 

memory representations at the level of the single cell (Colgin, 2016). However, 

memory does not involve isolated neurons; rather, it involves neuronal ensembles. 

Results from different authors suggested that theta function is to link in functional 
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ensembles different cells, so that they can support memory (Skaggs et al., 1996; 

Dragoi and Buzsaki, 2006; Foster and Wilson, 2007; Gupta et al., 2012; Feng et al., 

2015; Wang et al., 2015; Wikenheiser and Redish, 2015; Colgin, 2016) and they 

can give integrated representations of complex experiences and concepts (Colgin, 

2016). Theta is also present in the hippocampus during REM sleep, with a different 

profile than waking theta (meaning that it is present in different hippocampal 

regions) (Montgomery et al., 2008); REM sleep-associated theta is believed to have 

a role in memory consolidation, as spiking patterns of place cells that were activated 

during active state have been observed to reoccur during the following REM sleep 

(Louie and Wilson, 2001). 

 

Gamma 

Gamma frequencies can be divided in a lower end (low gamma, 25 – 55 Hz) 

and a higher end (60 – 100 Hz) (Schomburg et al., 2014). Low gamma oscillations 

couple activity in the CA1 area of the hippocampus to inputs from CA3. On the 

other hand, high gamma oscillations in CA1 and CA3 are entrained by inputs from 

the medial entorhinal cortex (MEC) (Colgin et al., 2009; Colgin, 2016). Thus, two 

independent gamma oscillations generators have been identified: one located in the 

MEC, the other one located in CA3, respectively producing fast and low gamma 

frequencies in CA1 (Colgin et al., 2009; Colgin and Moser, 2010; Colgin, 2016). 

Particularly, gamma oscillations seem to generate from inhibitory interneurons and 

reflect inhibitory events at the level of pyramidal cells in CA1 and CA3 and at the 

level of granule cells in the dentate gyrus (Soltesz and Deschenes, 1993; Bartos et 

al., 2007; Colgin and Moser, 2010; Pernia-Andrade and Jonas, 2014), with low 

gamma driven by CA3-activated interneurons and high gamma driven by MEC-

activated interneurons (Lasztoczi and Klausberger, 2014; Schomburg et al., 2014). 

The primary force behind the generations of gamma oscillations in the hippocampus 

is rhythmic inhibitory postsynaptic potentials (IPSPs) in the pyramidal cells (Colgin 

and Moser, 2010). Gamma amplitude and phase in the hippocampus are modulated 

by theta phase; particularly, it has been suggested that gamma-generating 

interneurons are inhibited at a specific theta phase (Penttonen et al., 1998; Colgin 

et al., 2009; Wulff et al., 2009; Belluscio et al., 2012; Zheng et al., 2016), with slow 
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and high gamma oscillations occurring at different theta cycle phases (Colgin et al., 

2009; Colgin and Moser, 2010). 

Different functions have been proposed for gamma oscillations in the hippocampus: 

dynamic grouping, dynamic routing, memory encoding, memory retrieval, 

involvement in working memory and representation of spatial sequences (Colgin 

and Moser, 2010). 

As for dynamic grouping, gamma oscillations have been proposed to explain the 

“binding problem”: since during sensory processing complex stimuli are broken 

down by different cells coding for different aspects of the same stimuli, the binding 

problem asks how the brain puts the pieces back together, so to retrieve a complete 

perceptual experience (von der Malsburg, 1995; Colgin and Moser, 2010). 

Experimental evidence suggested that gamma oscillations provide the necessary 

temporal synchrony to allow binding (Gray et al., 1989). 

Gamma oscillations are also believed to be involved in dynamic routing, and the 

“neuronal communication through neuronal coherence” hypothesis has been 

proposed (Fries, 2005). Based on this hypothesis, synchronization of gamma 

oscillations between different areas allow transmission of information between 

different levels of processing (Colgin and Moser, 2010). Two groups of neurons are 

said to be synchronized when their periods of high excitability coincide, leading to 

effective communications between the areas (Womelsdorf et al., 2007). Moreover, 

as previously mentioned, gamma oscillations tend to occur at specific theta phases, 

with slow and high gamma occurring at different theta phases in CA1 (Brankack et 

al., 1993; Kamondi et al., 1998; Hasselmo et al., 2002). Thus, different gamma 

frequencies seem to serve to route information to the CA1 from other brain areas 

and theta modulation of gamma amplitude may serve to facilitate this 

communication (Sirota et al., 2008; Tort et al., 2008). 

Gamma oscillations also facilitate memory encoding, as demonstrated by studies 

involving intracranial recordings from humans. In these studies, subjects were 

asked to memorize a list of words; researchers observed that increased hippocampal 

gamma power during encoding of a single word was correlated with the probability 

that that word would be subsequently recalled (Sederberg et al., 2007a; Sederberg 

et al., 2007b). Moreover, gamma synchronization between hippocampus and rhinal 

cortices was found to be significantly higher during encoding of words that later 

were successfully remembered, compared with forgotten words (Fell et al., 2001). 
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Studies showed that high gamma, rather than low gamma, is mainly involved in 

sensory information encoding (Newman et al., 2013; Bieri et al., 2014; Zheng et al., 

2016). Also, changes in high gamma may be linked to variations in the ongoing 

behaviour, for example to changes in running speed (Ahmed and Mehta, 2012; 

Zheng et al., 2015).  

As for gamma involvement in working memory, studies have shown that gamma 

power in the hippocampus increases with increasing working memory load (van 

Vugt et al., 2010) and observed enhanced theta-gamma phase-amplitude cross-

frequency coupling in the hippocampus during working memory maintenance 

(Axmacher et al., 2010). Given that working memory processes in the hippocampus 

also rely on other brain regions, such as the prefrontal cortex (Fuster, 2000; 

Ranganath, 2006; D'Esposito, 2007), gamma synchronization between the two 

areas may be involved in working memory tasks (Colgin and Moser, 2010). 

As previously mentioned, gamma oscillations might be important for movement 

trajectories representations, with different classes of place cells firing at different 

gamma phases (some place cells fire phase locked to gamma trough, while others 

fire phase locked to gamma rising phase (O'Keefe and Recce, 1993; Skaggs et al., 

1996; Mehta et al., 2002; Senior et al., 2008)). Particularly, high gamma-modulated 

cells fire on high gamma troughs; low gamma-modulated cells fire on low gamma 

ascending phase (Colgin et al., 2009). 

Finally, and most importantly for the present thesis, gamma oscillations are thought 

to be important for memory retrieval. In support of this hypothesis, in a study from 

2007 LFPs are recorded from rats performing a delayed spatial alternation task. At 

each trial, rats were required to retrieve information about a previously traversed 

trajectory and return where they received a reward. Results showed increased 

gamma coherence between CA1 and CA3 and increased gamma power in CA1 on 

the centre arm, which is believed to be the place were memory retrieval happens. 

Thus, authors suggested that gamma facilitate the transfer from CA3 to CA1 of 

retrieved memories (Montgomery and Buzsaki, 2007). Other studies agree with the 

observation that memory retrieval requires projections from CA3 to CA1 

(Sutherland et al., 1983; Steffenach et al., 2002; Gilbert and Kesner, 2006; 

Nakashiba et al., 2008). Mainly low gamma is believed to promote memory 

retrieval; in fact, low gamma in CA1 is driven by CA3, which is believed to be the 

hippocampal area where memories are stored and retrieved from (Treves and Rolls, 
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1992; Brun et al., 2002; Nakazawa et al., 2002; Steffenach et al., 2002). In fact, low 

gamma amplitude in CA3 has been shown to be increased during retrieval of 

learned associations between contexts and items (Tort et al., 2009; Colgin and 

Moser, 2010). Moreover, theta phase – low gamma amplitude coupling in CA3 has 

been shown to be related to successful memory retrieval (Shirvalkar et al., 2010). 

low gamma coupling between lateral entorhinal cortex and CA1 during an odour-

place association experiment performed in rats was found to develop as rats learned 

the task; this coupling was observed during odour-sampling, which is likely 

corresponding to the time when animals recall place association (Igarashi et al., 

2014). However, authors observed this coupling in frequencies going from 20 Hz 

to 40 Hz, which may correspond to the beta band (related to odour sampling (Martin 

et al., 2007)) as well (Colgin, 2016). Supporting low gamma involvement in 

memory retrieval, these oscillations have also been found to allow activation of 

previously learned spatial sequences representations in place cell ensembles (Carr 

et al., 2012; Bieri et al., 2014; Pfeiffer and Foster, 2015; Zheng et al., 2016). 

 

1.6.3 Electrophysiological correlates of emotional memory retrieval/ 

reconsolidation 

Most of the scientific literature available on electrophysiological correlates 

of memory retrieval and reconsolidation comes from fear memory studies. In fact, 

little is known and studied about LFPs in hippocampus and amygdala during 

appetitive memory retrieval/reconsolidation. It has been shown that neuronal 

activity timing is crucial for effective communication across different brain areas 

in general (Buzsaki and Draguhn, 2004; Uhlhaas et al., 2009; Fell and Axmacher, 

2011; Lesting et al., 2013) and this timing seems to be crucial for memory retrieval 

as well. For example, theta synchronization between lateral amygdala and the CA1 

subfield of the hippocampus has been shown to be important for fear memory 

consolidation (Seidenbecher et al., 2003; Pape and Pare, 2010) and reconsolidation 

(Narayanan et al., 2007b), with the synchronization decreasing at remote memory 

stages (Narayanan et al., 2007a; Lesting et al., 2013). As previously stated, 

synchronization and coupling at the same or different frequencies between different 

brain areas are used as means of communications between neuronal ensembles. 
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Thus, similar measures can be used to understand whether areas are interacting 

and/or communicating with each other. 
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2. MATERIALS AND METHODS 

2.1 Animals  

Thirty-three male Sprague Dawley rats were individually housed in a 

temperature and humidity-controlled environment (19-23°C, 60 ± 20%) on a 12h 

light/dark cycle, with light on at 7:30 PM. Rats were food restricted to maintain 

their body weight in the range 300 ± 10 g (daily checked) and food (two to four 

pellets, 10-20 g/day) was made available hours after each experimental session. 

Water was available ad libitum, except during experimental sessions. Animals were 

trained or tested once daily during either the dark or light phase of the light/dark 

cycle (depending on the experimental group and on the experimental session). All 

procedures were carried out in accordance with the U.K. Animals (Scientific 

Procedures) Act 1986 and associated guidelines, and with EU Directive 

2010/63/EU for animal experiments. All procedures were approved by the ethical 

committee (OPBA) of the University of Verona and by the Ministry of Health 

(authorization n. 50/2017-PR). All efforts were made to minimize animal suffering 

and to keep the lowest number of animals used.  

 

2.2 Apparatus  

Rats were trained and tested in operant chambers (Coulbourn Instruments, Lehigh 

Valley, Whitehall, PA, USA) 31 cm (width) x 25.5 cm (height) x 33 cm (depth) 

encased in sound-insulated cubicles 64 cm (width) x 44 cm (height) x 50 cm (depth) 

equipped with ventilation fans (Ugo Basile, Varese, Italy).  

Each chamber was equipped with two levers, an active (right) and an inactive (left) 

lever, symmetrically oriented laterally to the food magazine, on the frontal panel. 

Levers were located 6 cm and food magazine 3 cm above the grid floor. A white 

light-emitting diode (LED) house light (HL) was located 27 cm above the grid floor 

on the front panel of the operant chambers and provided ambient illumination 

during the entire session duration of all the experimental and for the entire training 

sessions except for time-out (TO) periods. A red LED was located 23 cm above the 

grid floor and provided illumination during the entire session duration of all the 

experimental phases, allowing for video monitoring and recording. Operant 

chamber is shown in Figure 7. During training, right lever presses produced the 

delivery of a 45-mg sucrose food pellet (Bilaney Consultants Ltd, UK) with a fixed-
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ratio 1 (FR1) schedule of reinforcement. During Retrieval, right lever presses did 

not correspond to pellet delivery. Left lever presses did not have consequences 

during the entire experimental protocol. Schedule parameters, data acquisition and 

pellet deliveries were controlled by MedPC software (version 1.15; Med Associates 

Inc., Georgia Regional Industrial Park, Fairfax, VT, USA). A small rear-view 

camera was placed in the middle of the top panel. The camera was used to video 

monitor the rats during the recording sessions and was controlled by means of a 

video grabber (Hamlet, Dublin, Ireland) connected to a computer. Finally, and 

infra-red (IR) emitting diode was placed over the white HL and allowed 

synchronization between behavioural data and brain waves recordings: every time 

the active lever was pressed, the IR diode emitted an IR signal which was detected 

by an IR detector placed on the recording logger. 

 

 

Figure 7. Operant chamber used to carry out behavioural experiments. On the 

frontal panel is possible to note the right lever (a), the left lever (b), the food 

dispenser placed in between the two levers (c), the red house light (d), the white 

house light (e) right above the white one, the infrared emitting diode (f) and the 

video camera (g). All the Skinner boxes were placed inside a sound-isolated cubicle 

equipped with a fan providing ventilation and a background white noise. 
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2.3 Electrodes construction 

In-depth electrodes consisted of an insulated tungsten wire (Advent 

Research Materials, Witney, UK) with bare diameter 50 μm and outer diameter 75 

μm, welded to a pin (Harwin, Portsmouth, UK) and inserted into a cannula guide 

consisting of a 30 Gauge stainless steel tube (Pentaferte, Ferrara, Italy). Two golden 

screws (1 mm diameter; TSE Systems, Bad Homburg, Germany) were used 

respectively as Electrocorticogram (ECoG) and reference + ground. The screw used 

to record ECoG was an insulated copper wire (Advent Research Materials, Witney, 

UK) having bare diameter 100 μm and outer diameter 114 μm, in turn soldered to 

a pin. The screw used as reference and ground was welded to two insulated copper 

wires, each soldered to a pin. Finally, two muscular electrodes (one used to record 

the electromyogram -EMG-, the other one used as reference) consisted of insulated 

copper wires having bare diameter 100 μm and outer diameter 114 μm soldered to 

a pin. Electrodes are shown in Figure 8 together with their location on the skull. 

 

2.4 Surgery 

Rats were handled for at least 5 days, 5 minutes/day before performing the 

surgery to implant the electrodes. On day of the surgery, rats were anaesthetized 

with intra-muscular (i.m.) 0.05 mg/Kg medetomidine hydrochloride (Sedator, 

Dechra Pharmaceuticals PLC, Northwich, UK) and i.m. 10mg+10mg/Kg 

zolazepam + tiletamine (Zoletil 50/50, Virbac, Milano, Italy). Lungs secretions 

were reduced by subcutaneously (s.c.) injecting 0.05 mg/Kg atropine (Atropina 

solfato, Azienda Terapeutica Italiana A.T.I. s.r.l., Bologna, Italy). Carprofen was 

injected 5 mg/Kg s.c. as analgesic (Rimadyl, Pfizer, New York, NY, USA).  

Rats were first checked for loss of reflexes, then fixed on the stereotaxic frame 

(David Kopf Instruments, Tujunga, CA, USA) by means of ear bars and kept warm 

during the whole procedure with a heating pad. Eyes were kept lubricated with 

drops of saline solution during the whole surgery. Hair on the skin above the skull 

were shaved and skin was disinfected with a 10% povidone-iodine solution (POVI-

IODINE 100, Formevet, Milano, Italy). An incision was performed on the scalp and 

connective tissue was removed to expose the skull, which was cleared with 3% 

hydrogen peroxide. Coordinates for electrodes’ insertion were taken and holes were 

performed on the skull by means of burrs (diameter of the tip: 0.5 mm; Fine Science 
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Tools, Heidelberg, Germany) for micro-drill (Dremel, Racine, WI, USA). 

Electrodes were inserted at the following coordinates with respect to Bregma: BLA 

electrodes were inserted at dorso-ventral (DV) -8.4 mm, rostro-caudal (RC) -2.8 

mm and medio-lateral (ML) +4.8 mm; CA1 electrodes were inserted at DV -2.6 

mm, RC -3.3 mm and ML +1.5 mm (Paxinos and Watson, 2007). The screw for 

ECoG recording was fastened on the skull at the level of the parietal cortex at the 

following coordinates with respect to bregma: RC -3.8 mm and ML -2.0 mm. The 

reference + ground golden screw was fastened to the skull over the right cerebellar 

hemisphere, as well as three support screws, two of which were fixed on the skull 

over the frontal cortex and one over the left cerebellar hemisphere. Muscular 

electrodes were inserted in the right shoulder’s muscle by means of a suture needle. 

The insulating membrane was removed by means of a scalpel blade in the contact 

point between the wire and the muscle. Electrodes and their placement are shown 

in Figure 8. Pins of the electrodes were inserted into a socket to protect them and 

the skull was covered with dental cement (Paladur, Kulzer, Hanau, Germany), 

which allowed to fix the pins as well. After the surgery, rats were administered with 

12.5 mg/Kg s.c. enrofloxacin (Baytril 50 mg/ml, Bayer, Leverkusen, Germany) as 

antibiotic. Baytril was administered for four days after surgery. Rats were daily 

checked and allowed to recover for at least 6 days before starting the experiments. 
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Figure 8. Electrodes and their location on the skull. In-depth electrodes were used 

to record LFPs and were inserted in the left CA1 area of the dorsal hippocampus 

(LFP CA1) and in left BLA (LFP BLA). A cortical electrode in the form of a golden 

screw was used to record sleep/wake waves from the right parietal cortex (ECoG).  

Another golden screw was implanted over the left cerebellum and served as 

reference and ground (Reference2 + Ground). Finally, two electrodes in the form 

of copper wires were inserted in the right shoulder’s muscle (EMG; Reference1). 

The three grey screws represent support screws and were located two at the level of 

the prefrontal cortex, and one at the level of the cerebellum. Yellow rectangles on 

the right represent the pins that were inserted in Neurologger 2A (described in the 

next section) to record the animals. 

Abbreviations: LFP, Local Field Potential; BLA, Basolateral Amygdala; ECoG, 

Electrocorticogram; EMG, Electromyogram. 
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2.5 Recording apparatus 

 Local field potentials were recorded by means of Neurologger 2A (Evolocus 

LCC, Tarrytown, NY, USA), shown in Figure 9. Neurologger 2A is a wireless 

recording device measuring 22 x 5 x 15 mm and weighting 2 g. It can record up to 

4 channels at sampling rate up to 19.2 kHz and data is stored in a 1 Gb memory 

soldered to the Neurologger. Real-time infrared (IR) synchronization was possible 

by means of an IR receiver placed on the Neurologger, which received signals from 

an IR emitting diode connected to the Skinner box anytime the rats pressed the 

active lever. Neurologger was zinc-air batteries A312 powered. Recordings were 

carried out using the following sampling parameters: sampling rate 1600 Hz, 

oversampling 4x, recording of IR synchronization active. Recorded data were 

stored in the memory soldered to the Neurologger. A USB adapter was used to 

allow communication between the Neurologger and a computer, and the 

Downloader software (Evolocus LCC, Tarrytown, NY, USA) was used to 

download and convert data to a readable format. 

 

Figure 9. Neurologger 2A. The two black spheres represent the IR sensor that is 

used for external events synchronization (in my case active lever pressings). The 

black parallelepiped on the left is the socket that is placed on the pins on the rat’s 

implant. The main feature of the logger is that it is wire-free thus, it allows to record 

LFPs in freely moving animals. 
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2.6 Behavioural procedure 

2.6.1 General Procedure 

The experimental protocols were designed according to the following 

phases (Figure 10): Stage I) Training to sucrose self-administration (S/A), Stage II) 

forced abstinence in home cage, Stage III) memory Retrieval (Ret) or No Retrieval 

(No Ret), and Stage IV) Relapse test. These stages are described in detail in the 

following sections. All the stages were performed during the Dark phase (light off), 

but the Retrieval/No-Retrieval stage, which was performed either during the Light 

or Dark phase of the light/dark cycle. Thus, rats were divided in 4 groups:  

1. Retrieval Dark (Ret/Dark, n = 9): performed Ret during the dark 

phase; 

2. No Retrieval Dark (No Ret/Dark, n = 7): performed No Ret during 

the dark phase; 

3. Retrieval Light (Ret/Light, n = 8): performed Ret during the light 

phase; 

4. No Retrieval Light (No Ret/Light, n = 8): performed No Ret during 

the light phase. 

 

 

Figure 10. Behavioural protocol and its different stages. Stages are described in 

detail in the following paragraphs. Light refers to white HL. Abbreviations: TO, 

Time-Out. 
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2.6.2 Lever press shaping and training to sucrose self-administration 

All rats were initially shaped to associate right lever presses with sucrose 

pellets as reinforcement. The schedule was a FR1 procedure, with the delivery of 

45-mg sucrose food pellets, no delivery time-out (TO) during the procedures (white 

HL always ON) and sessions lasted up to 100 reinforcements or 120 min. Inactive 

lever presses (ILPs) had no consequences. Once the criterium of 100 reinforcements 

was reached, animals started training Stage I. During Stage I, rats were trained for 

6 continuous days (1 session/day) to obtain sucrose reinforcements with the same 

FR1 schedule, plus a 60-s TO (HL OFF during TO), during which active lever 

presses (ALPs) had no consequence. Moreover, ALPs during TO caused TO itself 

to reset. Sessions lasted up to 12 reinforcements or 120-m.  Local field potential 

recording was performed during the first and last days of training. Inactive lever 

presses had no consequence for all the experimental procedure. After Stage I ended, 

rats entered Stage II (forced abstinence) and remained in home cages for 14 days. 

During forced abstinence, rats were daily handled, weighted and fed to keep their 

body weight between 300 ± 10g. 

 

2.6.3 Retrieval procedure and Relapse test 

After Stage II, rats were divided in the four aforementioned groups and were 

subjected to Stage III. Ret and No Ret sessions were performed in the training 

context. During the Ret session both levers were presented, and rats were allowed 

to press the active lever up to 20 times, HL always ON. Inactive lever presses had 

no consequence. When 20 ALPs were reached, or after 60-m, the procedure was 

interrupted. During Ret, ALPs caused an IR diode to send an IR signal to the 

detector placed on the logger to allow synchronization between behavioural data 

and recordings. During the No Ret session no levers were presented, and HL was 

OFF. Procedure was interrupted after 216s (mean time animals in the Ret group 

spent in the operant chamber based on previous experiments from our laboratory). 

Ret and No Ret sessions were recorded using Neurologger 2A starting from 2 hours 

before the behavioural sessions. Rats belonging to the Ret/Dark and No Ret/Dark 

groups were moved in the experimental room at 9AM and the recording logger was 

fixed on their implant; rats belonging to Ret/Light and No Ret/Light groups were 

moved in the experimental room at 9 PM and the recording logger was fixed on 
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their implant. Two hours after fixing the recording logger, rats belonging to 

Ret/Dark and Ret/Light groups were subjected to Ret session; rats belonging to No 

Ret/Dark and No Ret/Light were subjected to No Ret session. Twenty-four hours 

after Stage III for Ret/Dark and No Ret/Dark groups and thirty-six hours after Stage 

IV for Ret/Light and No Ret/Light groups all subjects started Stage IV. During 

Stage IV they were exposed for 60-m to the training context in the presence of 

levers and HL ON for a non-reinforced Relapse test, to evaluate sucrose seeking 

behaviour in terms of ALPs. Thus, lever presses had no consequence. 

 

2.7 Electrodes placement verification 

After the behavioural procedure was over, animals were intraperitoneally 

administered with 350 mg/Kg/2 mL chloral hydrate to anesthetize them. Then, they 

were transcardially perfused first with a heparin (Sigma-Aldrich, Milan, Italy) 

solution 100 UI/L diluted in saline solution (0.9% NaCl), then in paraformaldehyde 

(PFA) 4% dissolved in a phosphate buffered solution (PBS). After perfusion, brains 

were extracted and post-fixed in PFA 4% in PBS for 24-h at 4 °C. The following 

day, brains were washed 3 times in PBS, each wash lasting for 30-m. Finally, brains 

were put in a sucrose 30% solution in PBS for 48-h, acting as cryoprotective. Forty 

μm free-floating sections containing electrodes placement sites were obtained by 

means of a Leica CM1950 cryostat (Leica Biosystems, Wetzlar, Germany). Free-

floating slices were mounted on glass slides and let dry for at least 30 minutes 

before proceeding to Nissl staining. Once dry, slices were rehydrated with 3 washes, 

5 minutes/wash, in PBS; then they were covered with a 1:5 ethanol and chloroform 

solution for 1 hour. Slices were then immersed in Cresyl Violet solution for 30-60 

minutes and, after a fast wash in water, they were dehydrated with increasing 

ethanol concentrations (50%, 70%, 80%, 96% and 99%, 1-2 minutes/concentration) 

and two steps in xylene (10 minutes/step) and finally closed with the mounting 

medium Entellan (Merck Group, Darmstadt, Germany). 

 

2.8 Behavioural data analysis 

All statistical analyses were performed using the GraphPad software 

package (Prism, version 6; GraphPad, San Diego, California, USA). 



60 

 

Behavioural analysis was performed for behavioural stages I, III and IV. For 

behavioural stage I, the S/A training learning-curve was generated by computing 

the rate of responding for each training day and for each subject. Rate of responding 

was expressed in seconds as Inter Response Time (IRT), obtained with the 

following formula: IRT = (Time – Latency)/12, where Time is the time duration of 

the training session expressed in seconds; Latency is the time elapsed between the 

start of the training session and the first reinforcement expressed in seconds; finally, 

12 is the number of reinforcements subjects receive during the training session. 

Going on with the training sessions, subjects become more and more efficient in 

the task; consequently, IRT becomes smaller and smaller until it reaches stability. 

Thus, in order to show an increasing graph (shown in the Results section), the 

inverse of IRT was computed. Data were inserted in Graphpad Prism v.6 software 

and two-way repeated measures (RM) ANOVA was computed for factors Session 

(six levels: from training session 1 to training session 6) and Group (four levels: 

Ret/Dark, No Ret/Dark, Ret/Light, No Ret/Light), followed by post-hoc Tukey’s 

multiple comparisons test. 

For behavioural stage III, Ret/Dark and Ret/Light rate of responding was computed 

as IRT = (Time - Latency)/20, where Time is the time duration of the Ret session 

expressed in seconds; Latency is the time elapsed between the start of the Ret 

session and the first ALP expressed in seconds; finally, 20 is the number of ALP 

subjects perform during Ret session. To evaluate differences between the two 

groups, Mann-Whitney test was computed. Since two subjects belonging to 

Ret/Light group did not reach the 20 ALPs criterion, they were excluded from the 

analysis from this stage on. 

For behavioural stage IV, the number of ALPs was analysed to evaluate differences 

in sucrose-seeking behaviour during the whole 1-hour test between the four groups. 

Two-way ANOVA for factor Experimental Condition (two levels: Ret, No Ret) and 

for factor Phase (two levels: Dark, Light) was computed. 

 

2.9 Local Field Potential Analysis 

Local field potential data analysis was performed using Matlab software 

(MathWorks, Natick, MA, USA) and its EEGLAB (Delorme and Makeig, 2004) 

and Chronux (Mitra and Bokil, 2007; Bokil et al., 2010) toolboxes. All statistical 
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analyses were performed using the GraphPad software package (Prism, version 6; 

GraphPad, San Diego, California, USA). For Ret/Dark and Ret/Light recordings 

during Retrieval, epochs containing IR signals (indicating that the active lever was 

pressed) were extracted from 1-s before the IR signal to 1-s after the IR signal (2-s 

segments, Retrieval Active Lever Presses/Dark – Ret ALP/Dark – and Retrieval 

Active Lever Presses/Light – Ret ALP/Light – groups) using Matlab. Then, epochs 

were visually inspected with EEGLAB for artefact removal and only artefact-free 

epochs were considered. As a control to Ret ALP/Dark and Ret ALP/Light epochs, 

Ret No-ALP/Dark and Ret No-ALP/Light epochs were extracted respectively. Ret 

No-ALP/Dark and Ret No-ALP/Light epochs were randomly extracted as intra-

recording artefact-free 2-s segments in the same number as the Ret ALP/Dark and 

Ret ALP/Light epochs. No Ret groups epochs were randomly extracted as twenty 

artefact-free 2-s segments. To analyse theta and gamma power, Matlab Chronux 

toolbox was used. Particularly, extracted epochs were band-pass filtered between 4 

and 150 Hz. Then, multi-taper power spectra between 0.5 and 100 Hz were 

computed using the mtspectrumc function of the Chronux toolbox, using a time-

bandwidth product of 3 and 5 tapers. Ret ALP/Dark and Ret ALP/Light epochs 

were averaged for each subject, as well as Ret No-ALP/Dark and Ret No-

ALP/Light epochs. Theta (4-12 Hz) and gamma (30-100 Hz) relative powers were 

computed. Gamma band was analysed both as total-gamma (30-100 Hz) and as split 

in low-gamma (30-60 Hz) and high-gamma (60-100 Hz), since it has been 

suggested that low- and high-gamma frequencies may have different functions. For 

example, at the level of the hippocampus low-gamma has been suggested to be 

involved in memory retrieval (Shirvalkar et al., 2010), while high-gamma may be 

linked to memory encoding, spatial representation (Zheng et al., 2015) and/or 

working memory (Yamamoto et al., 2014). For each frequency band, the area under 

curve (AUC) was computed by means of the Matlab trapz function and normalized 

by dividing it by the total AUC (between 0.5 and 100 Hz). 

Normalized data were then inserted into Graphpad Prism software for statistical 

analysis. For each electrode and each frequency band, two-way RM ANOVA was 

performed to compare Ret ALP/Dark and Ret ALP/Light respectively with Ret No-

ALP/Dark and Ret No-ALP/Light groups for factors Lever Pressing (two levels: 

ALP and No-ALP) and for factor Phase (two levels: Dark, Light). To compare Ret 

No-ALP/Dark and Ret No-ALP/Light respectively with No Ret/Dark and No 
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Ret/Light groups, two-way ANOVA was performed for factors Experimental 

Condition (two levels: Ret and No Ret) and for factor Phase (two levels: Dark, 

Light). Moreover, to evaluate the correlation between the oscillations relative 

power and the rate of responding during the Retrieval session in Ret/Dark and 

Ret/Light groups, Pearson’s correlation coefficient was computed between Ret 

ALP/Dark and IRT, Ret No-ALP/Dark and IRT, Ret ALP/Light and IRT and Ret 

No-ALP/Light and IRT for low and high gamma powers in CA1 electrode. 

A summary of the performed statistical analyses is reported in Figure 11. Each 

analysis was carried out on both electrodes (CA1 and BLA) and on all frequency 

bands: theta, total gamma, low gamma and high gamma; except for linear 

regression which was carried out only on CA1 low and high gamma relative powers, 

since I observed significant differences only at the level of this electrode at the 

gamma frequency band. 

Finally, sleep scoring was performed for Ret/Dark and Ret/Light groups during the 

Ret behavioural session. To perform this analysis, cortical electrode and muscular 

electrode recordings were split in 10-s epochs and visually inspected. A 

classification was assigned to each epoch based on cortical oscillations (wake or 

sleep): high frequency and low amplitude oscillations, associated with muscular 

activation are typical of wake epochs; very low frequency and high amplitude 

associated with muscular non-activation are typical of non-REM sleep epochs; 

finally, wake-like oscillations following non-REM sleep associated with muscular 

non-activation are typical of REM sleep epochs. After classifying each epoch as 

wake or sleep, the percentage of sleep epochs over the total number of epochs in 

the behavioural session was computed. 
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Figure 11. Schematic view of the statistical analyses. All statistics were carried out 

by means of Graphpad Prism v.6 software. Two-way RM ANOVA (repeated 

measures on factor Levers) and two-way ANOVA were performed for each in-

depth electrode (BLA and CA1) and for each listed frequency band: theta (4-12 

Hz), total gamma (30-100 Hz), low gamma (30-60 Hz) and high gamma (60-100 

Hz). Pearson’s correlation coefficient was computed for CA1 electrode and for low 

and high gamma. To compare the groups, relative powers were extracted for each 

frequency band. All the different groups are previously described in the text. 

Abbreviations: Ret, Retrieval; No Ret, No Retrieval; ALP, Active Lever Presses; 

No-ALP, No Active Lever Presses; RR, Rate of Responding. 
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3. RESULTS 

3.1 Behavioural results 

Behavioural results can be divided based on the behavioural stage that is 

taken into consideration. 

 

3.1.1 Stage I: Training 

To evaluate behaviour in terms of performance at the training stage, the 

inverse of IReT (1/IReT) was computed for each group and for each training 

session, as reported in Figure 12. To analyse improved performance, two-way RM 

ANOVA was computed for factors Session (six levels: from training session 1 to 

training session 6) and Group (four levels: Ret/Dark, No Ret/Dark, Ret/Light, No 

Ret/Light) and showed a significant matching between subjects [F(28,140) = 1.831; 

p = .0119], a significant main effect of factor Session [F(5,140) = 24.485 p < .0001], 

but not of factor Group [F(3,28) = .1123; p = .9522] or their interaction [F(15,140) 

= .4817; p = .9466]. As expected, no significant main effect was observed for factor 

Group; thus, post-hoc Tukey’s multiple comparisons test between training sessions 

was carried out pooling groups data. Table 2 shows mean 1/IReT ± Standard Error 

of the Mean (S.E.M.) for each training session from 1 to 6 from pooled data.  

Table 3 shows results of post-hoc Tukey’s multiple comparisons test. In summary, 

training session 1 showed a significant difference vs training session 3 to 6; training 

session 2 showed a significant difference vs. training sessions 4 to 6; finally, 

training session 3 was significantly different from training session 5 and 6. 

 

Table 2. Mean ± S.E.M. of 1/IReT (s-1) for each training session for pooled data 

from the four groups (N = 32). 

Training 
session 

Mean 1/IReT ± S.E.M. s-1 

1 0.003749 ± 0.000220 s-1 

2 0.004114 ± 0.000216 s-1 

3 0.005085 ± 0.000313 s-1 

4 0.006383 ± 0.000343 s-1 

5 0.007416 ± 0.000424 s-1 

6 0.007497 ± 0.000433 s-1 
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Table 3. Training sessions IReTs were compared by applying two-way RM 

ANOVA, followed by Tukey’s post-hoc multiple comparisons test. The table shows 

results for Tukey’s multiple comparisons test. Results are obtained from pooled 

data from the four groups (N = 32). 

NS = not significant; * p < .05; **** p < .0001 

Training 
session 

1 2 3 4 5 6 

1   NS * **** **** **** 

2     NS **** **** **** 

3       NS **** **** 

4         NS NS 

5           NS 

6             

 

 

Figure 12. Training stage. The graph shows the training sessions on the x-axis and 

1/IReT on the y-axis. Lines represent 1/IReT from session 1 to session 6 for No 

Ret/Light (open squares, n = 8), Ret/Light (open circles, n = 8), No Ret/Dark (solid 

squares, n = 7), Ret/Dark (solid circles, n = 9) groups. The inverse of IReT is 

reported instead of IReT in order to show an increasing learning curve. In fact, IReT 

decreases from session 1 to session 6 meaning that the subjects are more efficient 

in performing the task. Significant differences between training sessions are 

reported in  
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Table 3. Data are presented as mean ± S.E.M. IReT = Inter Reinforcement Time. 

 

3.1.2 Stage III: Retrieval 

At stage III, IRT was analysed for Ret/Dark and Ret/Light groups, to 

evaluate whether performing Retrieval during the Dark or Light phases had an 

influence on rate of responding (Figure 13). Being IRT values non-normally 

distributed, Mann-Whitney test was applied to statistically compare the two groups. 

Mann-Whitney test showed a significant difference (p = .0312) for Ret/Dark group 

with respect to Ret/Light group, with the former having lower IRT with respect to 

the latter. Two subjects belonging to the Ret/Light group were excluded from the 

analyses from this stage on, as they did not reach the 20 ALPs criterion for stage 

III. 

 

Figure 13. IRT during Retrieval for Ret/Dark (n = 9) and Ret/Light (n = 6) groups. 

Data are shown as box (25th to 75th percentile) and whiskers (minimum to 

maximum). Horizontal lines represent median values with + symbol indicating the 

mean. Two animals from the Ret/Light group did not reach the 20 ALP criterion 

and were excluded from the analysis. Mann-Whitney test, * p < .05.  

 

To evaluate whether the higher IRT shown for Ret/Light group with respect to the 

Ret/Dark group was due to a difference in the percentage of sleep that rats showed 

performing the Retrieval session (Figure 14), sleep scoring was performed during 

the behavioural session and expressed as percentage over the total time duration of 

the behavioural session. Being sleep percentages non-normally distributed, Mann-
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Whitney test was applied to statistically compare the two groups. No significant 

difference was observed between the groups (p = .1678). Two subjects belonging 

to the Ret/Dark group was excluded from sleep analysis because of lack of LFP 

recording. 

 

 

Figure 14. Percentage of sleep during Retrieval for Ret/Dark (n = 7) and Ret/Light 

(n = 6) groups. Data are shown as median + interquartile range. Mann-Whitney test. 

No statistical difference has been observed between the groups.   

 

3.1.3 Stage IV: Relapse Test 

At stage IV, the number of ALPs was analysed for the four groups to 

evaluate sucrose-seeking behaviour during the whole 1-hour test (Figure 15). Two-

way ANOVA for factor Experimental Condition (two levels: Ret, No Ret) and for 

factor Phase (two levels: Dark, Light) showed no significant main effect for factors 

Experimental Condition [F(1,26) = .1038, p = .7499], Phase [F(1,26) = .4326, p = 

.5165], or their interaction [F(1,26) = .002, p = .964 ]. 
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Figure 15. Number of active lever presses (ALPs) at Relapse test are expressed as 

mean + S.E.M for the four groups. Solid columns represent Dark groups (n = 9 and 

7 respectively for Ret/Dark and No Ret/Dark groups), open columns represent Light 

groups (n = 6 and 8 respectively for Ret/Light and No Ret/Light groups). Two-way 

ANOVA showed no significant difference between the groups.  

 

3.2 Local Field Potential results 

3.2.1 Gamma frequency and rate or responding correlation 

As mentioned in section 2.8 Behavioural data analysis Pearson’s correlation 

coefficients were computed for Ret ALP/Dark, Ret No-ALP/Dark, Ret ALP/Light 

and Ret No-ALP/Light relative powers vs their respective IRT during Ret session. 

Pearson’s correlation coefficients were computed for low gamma and high gamma 

from CA1 electrode. 

The analysis showed a significant correlation between Ret ALP/Dark low gamma 

and Ret IRT (R = 0.6745; p = 0.0235) (Figure 16, panel A) and between Ret No-

ALP/Dark low gamma and IRT (R = 0.5706; p = 0.0496) (Figure 16, panel B). On 

the other hand, no significant correlation was found between Ret ALP/Dark high 

gamma and IRT (R = 0.0005, p = 0.09613) (Figure 17, panel A) and between Ret 

No-ALP/Dark high gamma and IRT (R = 0.0615; p = 0.5917) (Figure 17, panel B). 

Finally, no significant correlation was observed between Ret ALP/Light low 

gamma and IRT (R = 0.0092; p = 0.8563) (Figure 16Errore. L'origine riferimento 

non è stata trovata., panel C), Ret No-ALP/Light low gamma and IRT (R = 

0.0002; p = 0.9772) (Figure 16, panel D), Ret ALP/Light high gamma and IRT (R 
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< 0.0001; p = 0.9899) (Figure 17 , panel C) or Ret No-ALP/Light high gamma and 

IRT (R = 0.2407; p = 0.3232) (Figure 17, panel D). 

 

 

Figure 16. Correlation plots between Inter-Response Time (IRT; seconds) and low-

gamma relative power for Ret ALP (A; closed circles) or Ret No-ALP (B; closed 

squares) epochs during the Dark phase Retrieval session and low-gamma relative 

power for Ret ALP (C; open circles) or Ret No-ALP (D; open squares) epochs 

during the Light phase Retrieval session. Closed and open circles and squares 

represent data of single subjects (N = 7, Dark; N = 6, Light). Solid lines represent 

the linear regression line, dotted lines represent 95% confidence intervals. 

Pearson’s correlation coefficient showed a significant correlation for both sub-plots 

in panels A (R = 0.6745, p = 0.0235) and B (R = 0.5706, p = 0.0496). Conversely, 

no significant correlation was found for data shown in panels C and D. 
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Figure 17. Correlation plots between Inter-Response Time (IRT; seconds) and 

high-gamma relative power for Ret ALP (A; closed circles) or Ret No-ALP (B; 

closed squares) epochs during the Dark phase Retrieval session and low-gamma 

relative power for Ret ALP (C; open circles) or Ret No-ALP (D; open squares) 

epochs during the Light phase Retrieval session. Closed and open circles and 

squares represent data of single subjects (N = 7, Dark; N = 6, Light). Solid lines 

represent the linear regression line, dotted lines represent 95% confidence intervals. 

 

3.2.2 Comparison between instrumental memory retrieval in Dark and Light 

phases 

As mentioned in section 2.8, two-way RM ANOVA was used to compare 

four groups with factors Lever Pressing (two levels: ALP, No-ALP) and Phase (two 

levels: Dark, Light). A summary of two-way RM ANOVA statistics is reported in 

Table 4. Thus, groups subjects of this analysis were Ret ALP/Dark, Ret No-

ALP/Dark, Ret ALP/Light and Ret No-ALP/Light. 

In BLA, two-way RM ANOVA on theta relative power (Figure 18, panel A) 

showed no significant matching between subjects [F(11,11) = 2.146; p = .1105] and 
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no main effects of factors Lever Pressing [F(1,11) = 1.056; p = .3262] and Phase 

[F(1,11) = .6834; p = .426] or their interaction [F(1,11) = .9059; p = .3616]. Two-

way RM ANOVA on total gamma relative power (Figure 18, panel B) showed a 

significant matching between subjects [F(11,11) = 4.184; p = .0128], a main effect 

of factor Lever Pressing [F(1,11) = 5.233; p = .043] but not of Phase [F(1,11) = 

.0842; p = .777] or their interaction [F(1,11) = 2.135; p = .1719]; post-hoc Sidak’s 

multiple comparisons test showed no significant differences between groups. Two-

way RM ANOVA on low gamma relative power (Figure 18, panel C) showed no 

significant matching between subjects [F(11,11) = .789; p = .6494], a main effect 

of factor Lever Pressing [F(1,11) = 4.981; p = .0474] but not of Phase [F(1,11) = 

2.896; p = .1169] or their interaction [F(1,11) = 1.615; p = .23]; post-hoc Sidak’s 

multiple comparisons test showed no significant differences between groups. Two-

way RM ANOVA on high gamma relative power (Figure 18, panel D) showed a 

significant matching between subjects [F(11,11) = 14.5; p < .0001], a main effect 

of factor Lever Pressing [F(1,11) = 4.583; p = .0555] but not of Phase [F(1,11) = 

.6194; p = .4479] or their interaction [F(1,11) = 2.42; p = .148]. 

In CA1, two-way RM ANOVA on theta relative power (Figure 19, panel A) showed 

a significant matching between subjects [F(11,11) = 8.909; p = .0005] and no main 

effects of factors Lever Pressing [F(1,11) = 2.193; p = .1667] and Phase [F(1,11) = 

3.658; p = .0822] or their interaction [F(1,11) = .4559; p = .5135]. Two-way RM 

ANOVA on total gamma relative power (Figure 19, panel B) showed a significant 

matching between subjects [F(11,11) = 10.55; p = .0002], a main effect of factor 

Lever Pressing [F(1,11) = 13.3; p = .0038] but not of Phase [F(1,11) = 1.705; p = 

.2182] or their interaction [F(1,11) = 1.721; p = .2163]; post-hoc Sidak’s multiple 

comparisons test showed a significant difference between Ret ALP/Light and Ret 

No-ALP/Light groups (0.175 ± 0.036 vs. 0.131 ± 0.019; p < 0.05) but not between 

Ret ALP/Dark and Ret No-ALP/Dark groups (0.126 ± 0.013 vs. 0.105 ± 0.012; NS). 

Two-way RM ANOVA on low gamma relative power (Figure 19, panel C) showed 

a significant matching between subjects [F(11,11) = 11.86; p = .0001], a main effect 

of factor Lever Pressing [F(1,11) = 13.34; p = .0038] but not of Phase [F(1,11) = 

1.708; p = .2179] or their interaction [F(1,11) = 1.711; p = .2176]; post-hoc Sidak’s 

multiple comparisons test showed a significant difference between Ret ALP/Light 

and Ret No-ALP/Light groups (0.127 ± 0.027 vs. 0.096 ± 0.015; p < 0.05) but not 

between Ret ALP/Dark and Ret No-ALP/Dark groups (0.090 ± 0.010 vs. 0.075 ± 
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0.009; NS). Two-way RM ANOVA on high gamma relative power (Figure 19, 

panel D)  showed a significant matching between subjects [F(11,11) = 7.399; p = 

.0012], a main effect of factor Lever Pressing [F(1,11) = 10.24; p = .0084] but not 

of Phase [F(1,11) = 1.352; p = .2695] or their interaction [F(1,11) = 1.375; p = 

.2657]; post-hoc Sidak’s multiple comparisons test showed a significant difference 

between Ret ALP/Light and Ret No-ALP/Light groups (0.047 ± 0.009 vs. 0.035 ± 

0.006, p < 0.05) but not between Ret ALP/Dark and Ret No-ALP/Dark groups 

(0.035 ± 0.004 vs. 0.030 ± 0.003; NS). 

 

 

Figure 18. Bar plots show BLA relative powers for theta, total gamma, low gamma 

and high gamma oscillations. Relative powers are reported on the y-axis for 

Retrieval Active Lever Presses (Ret ALP) and Retrieval No-Active Lever Presses 

(Ret No-ALP) epochs during Dark (solid columns, N = 7) and Light (open columns, 

N = 6) phases. Data are shown as mean + S.E.M. Two-way RM ANOVA showed 

no significant difference between the groups. 
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Figure 19 Bar plots show CA1 relative powers for theta, total gamma, low gamma 

and high gamma oscillations. Relative powers are reported on the y-axis for 

Retrieval Active Lever Presses (Ret ALP) and Retrieval No-Active Lever Presses 

(Ret No-ALP) epochs during Dark (solid columns, N = 7) and Light (open columns, 

N = 6) phases. Data are shown as mean + S.E.M. * = p < 0.05, two-way RM 

ANOVA followed by Sidak’s post-hoc multiple comparisons test. 
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Table 4. Summary of two-way RM ANOVA statistics.  

Area 
Frequency 

band 
ANOVA table F (DFn, DFd) P value 

P value 
summary 

CA1 

Theta 

Interaction F (1, 11) = 0,4559 P = 0,5135  

Lever Pressing F (1, 11) = 2,193 P = 0,1667  

Phase F (1, 11) = 3,658 P = 0,0822  

Subjects (matching) F (11, 11) = 8,909 P = 0,0005 *** 

Total 
Gamma 

Interaction F (1, 11) = 1,721 P = 0,2163  

Lever Pressing F (1, 11) = 13,30 P = 0,0038 ** 

Phase F (1, 11) = 1,705 P = 0,2182  

Subjects (matching) F (11, 11) = 10,55 P = 0,0002 *** 

Low 
Gamma 

Interaction F (1, 11) = 1,711 P = 0,2176  

Lever Pressing F (1, 11) = 13,34 P = 0,0038 ** 

Phase F (1, 11) = 1,708 P = 0,2179  

Subjects (matching) F (11, 11) = 11,86 P = 0,0001 *** 

High 
Gamma 

Interaction F (1, 11) = 1,375 P = 0,2657  

Lever Pressing F (1, 11) = 10,24 P = 0,0084 ** 

Phase F (1, 11) = 1,352 P = 0,2695  

Subjects (matching) F (11, 11) = 7,399 P = 0,0012 ** 

BLA 

Theta 

Interaction F (1, 11) = 0,9059 P = 0,3616  

Lever Pressing F (1, 11) = 1,056 P = 0,3262  

Phase F (1, 11) = 0,6834 P = 0,4260  

Subjects (matching) F (11, 11) = 2,146 P = 0,1105   

Total 
Gamma 

Interaction F (1, 11) = 2,135 P = 0,1719  

Lever Pressing F (1, 11) = 5,233 P = 0,0430 * 

Phase 
F (1, 11) = 
0,08424 

P = 0,7770  

Subjects (matching) F (11, 11) = 4,184 P = 0,0128 * 

Low 
Gamma 

Interaction F (1, 11) = 1,615 P = 0,2300  

Lever Pressing F (1, 11) = 4,981 P = 0,0474 * 

Phase F (1, 11) = 2,896 P = 0,1169  

Subjects (matching) 
F (11, 11) = 

0,7890 
P = 0,6494   

High 
Gamma 

Interaction F (1, 11) = 2,420 P = 0,1480  

Lever Pressing F (1, 11) = 4,583 P = 0,0555  

Phase F (1, 11) = 0,6194 P = 0,4479  

Subjects (matching) F (11, 11) = 14,50 P < 0,0001 **** 
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3.2.3 Comparison between instrumental memory retrieval and no retrieval in 

Dark and Light phases 

As mentioned in section 2.8, two-way ANOVA was used to compare four 

groups with factors Experimental Condition (two levels: Ret, No Ret) and Phase 

(two levels: Dark, Light). Thus, groups subjects of this analysis were Ret No-

ALP/Dark, No Ret/Dark, Ret No-ALP/Light and No Ret/Light. 

In BLA, two-way ANOVA on theta relative power (Figure 20, panel A) showed no 

main effect of factors Experimental Condition [F(1,25) = .1302; p = .7212] and 

Phase [F(1,25) = .0496; p = .8256], nor their interaction [F(1,25) = .0015; p = 

.9692]. Two-way ANOVA on total gamma relative power (Figure 20, panel B) 

showed no main effect of factors Experimental Condition [F(1,25) = .004; p = 

.9502] and Phase [F(1,25) = .7106; p = .4072], nor their interaction [F(1,25) = 

.5146; p = .4798]. Two-way ANOVA on low gamma relative power (Figure 20, 

panel C) showed no main effect of factors Experimental Condition [F(1,25) = 

1.875; p = .183] and Phase [F(1,25) = .6267; p = .436], nor their interaction [F(1,25) 

= .2849; p = .5982]. Two-way ANOVA on high gamma relative power (Figure 20, 

panel D) showed no main effect of factors Experimental Condition [F(1,25) = 

.7253; p = .4025] and Phase [F(1,25) = 2.592; p = .12], nor their interaction [F(1,25) 

= .4964; p = .4876]. 

In CA1, two-way ANOVA on theta relative power (Figure 21, panel A) showed a 

main effect of factor Phase [F(1,25) = 9.563; p = .0048], but not of factor 

Experimental Condition [F(1,25) = .5655; p = .4591] or their interaction [F(1,25) = 

.0006; p = .9396]; post-hoc Tukey’s multiple comparisons test showed no 

significant differences between groups. Two-way ANOVA on total gamma relative 

power (Figure 21, panel B) showed a main effect of factor Phase [F(1,25) = 8.993; 

p = .0061], but not of factor Experimental Condition [F(1,25) = .0162; p = .8999] 

or their interaction [F(1,25) = 1.148; p = .2943]; post-hoc Tukey’s multiple 

comparisons test showed a significant difference between No Ret/Dark and No 

Ret/Light groups (0.093 ± 0.011 vs. 0.147 ± 0.012; p < 0.05). Two-way ANOVA 

on low gamma relative power (Figure 21, panel C) showed a main effect of factor 

Phase [F(1,25) = 9.922; p = .0042], but not of factor Experimental Condition 

[F(1,25) = .0064; p = .9365] or their interaction [F(1,25) = 1.253; p = .2735]; post-

hoc Tukey’s multiple comparisons test showed a significant difference between No 

Ret/Dark and No Ret/Light groups (0.065 ± 0.008 vs. 0.108 ± 0.009; p < 0.05). 
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Two-way ANOVA on high gamma relative power (Figure 21, panel D) showed no 

main effect of factors Experimental Condition [F(1,25) = .0385; p = .846] and Phase 

[F(1,25) = 3.77; p = .0635], nor their interaction [F(1,25) = .4984; p = .4867]. 

 

Figure 20. Bar plots show BLA relative powers for theta, total gamma, low gamma 

and high gamma oscillations. Relative powers are reported on the y-axis for 

Retrieval No-Active Lever Presses (Ret No-ALP) and No Retrieval (No Ret) 

epochs during Dark (solid columns, N = 7 and N = 7, respectively) and Light (open 

columns, N = 6 and N = 8, respectively) phases. Data are shown as mean + S.E.M. 

Two-way RM ANOVA showed no significant difference between the groups. 
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Figure 21. Bar plots show CA1 relative powers for theta, total gamma, low gamma 

and high gamma oscillations. Relative powers are reported on the y-axis for 

Retrieval No-Active Lever Presses (Ret No-ALP) and No Retrieval (No Ret) 

epochs during Dark (solid columns, N = 7 and N = 7, respectively) and Light (open 

columns, N = 6 and N = 8, respectively) phases. Data are shown as mean + S.E.M. 

* = p < 0.05, two-way ANOVA followed by Tukey’s post-hoc multiple 

comparisons test.  
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Table 5. Summary of two-way ANOVA statistics.    

Area 
Frequency 

band 
ANOVA table F (DFn, DFd) P value 

P value 
summary 

CA1 

Theta 

Interaction 
F (1, 25) = 
0,005860 

P = 0,9396  

Experimental Condition F (1, 25) = 0,5655 P = 0,4591  

Phase F (1, 25) = 9,563 P = 0,0048 ** 

Total 
Gamma 

Interaction F (1, 25) = 1,148 P = 0,2943  

Experimental Condition F (1, 25) = 0,01615 P = 0,8999  

Phase F (1, 25) = 8,993 P = 0,0061 ** 

Low 
Gamma 

Interaction F (1, 25) = 1,253 P = 0,2735  

Experimental Condition 
F (1, 25) = 
0,006476 

P = 0,9365  

Phase F (1, 25) = 9,922 P = 0,0042 ** 

High 
Gamma 

Interaction F (1, 25) = 0,4984 P = 0,4867   

Experimental Condition F (1, 25) = 0,03851 P = 0,8460  

Phase F (1, 25) = 3,770 P = 0,0635   

BLA 

Theta 

Interaction 
F (1, 25) = 
0,001520 

P = 0,9692   

Experimental Condition F (1, 25) = 0,1302 P = 0,7212  

Phase F (1, 25) = 0,04958 P = 0,8256   

Total 
Gamma 

Interaction F (1, 25) = 0,5146 P = 0,4798  

Experimental Condition 
F (1, 25) = 
0,003973 

P = 0,9502  

Phase F (1, 25) = 0,7106 P = 0,4072   

Low 
Gamma 

Interaction F (1, 25) = 0,2849 P = 0,5982   

Experimental Condition F (1, 25) = 1,875 P = 0,1830  

Phase F (1, 25) = 0,6267 P = 0,4360   

High 
Gamma 

Interaction F (1, 25) = 0,4964 P = 0,4876  

Experimental Condition F (1, 25) = 0,7253 P = 0,4025  

Phase F (1, 25) = 2,592 P = 0,1200   
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4. DISCUSSION 

In summary, rats belonging to different groups display a similar learning 

curve during the Training stage, confirming that there is no a priori difference 

between the subjects. At the Retrieval stage, subjects reactivating the memory 

during the Dark (i.e. active) phase show a higher rate of responding with respect to 

subjects reactivating the memory during the Light (i.e. inactive) phase. Moreover, 

no difference is observed among the groups at the Relapse test in terms of active 

lever presses. 

From the electrophysiological point of view, hippocampal CA1 low gamma power 

values are inversely correlated to reactivation rate of responding when measured 

either when rats were actually lever pressing or not during the Dark, but not in the 

Light phase. This correlation was not observed in the high gamma frequency band. 

Furthermore, results show that hippocampal CA1 gamma bands power increased 

when lever pressing during instrumental sucrose memory reactivation while in the 

Light. This finding suggests that gamma bands (both low and high) may be specific 

correlational markers to actual instrumental responding reactivation during the 

inactive phase only when rats were pressing the levers. In fact, the same difference 

was not observed when rats were lever pressing during instrumental sucrose 

memory reactivation while in the Dark. In addition, hippocampal CA1 low gamma 

power increased in subjects not reactivating appetitive instrumental memory in the 

Light versus the Dark phase. Finally, no difference is observed in the theta 

frequency band in hippocampal CA1, suggesting that theta power is not a 

discriminating factor of memory retrieval neither during the Dark nor Light phase. 

At the level of the basolateral amygdala, no difference is observed neither in theta 

nor gamma frequency bands, suggesting that this area, in our conditions, is not 

relevant for memory retrieval. 

 

Sucrose appetitive memory reconsolidation has been investigated in rodents 

following typical drug-addiction behavioural protocols, consisting of a training 

stage, an abstinence period, a memory reactivation stage and a final test to evaluate 

memory reconsolidation occurrence. In the present project, behavioural data at the 

training stage showed that subjects belonging to different groups displayed a similar 

learning curve (measured as inter reinforcement time), with no significant 

differences between the groups. Statistical analysis comparing inter reinforcement 
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time between the training sessions showed a lack of significant differences between 

the last three training sessions, suggesting self-administration stability 

achievement. At the Retrieval stage, subjects reactivating the memory during the 

Dark phase showed a lower inter response time with respect to subjects reactivating 

the memory during the Light phase (i.e. rats reactivating the instrumental memory 

during their active phase were faster in reaching the criterion to stop the Retrieval 

session with respect to rats reactivating the instrumental memory during their 

inactivity phase). Sleep scoring performed during Retrieval session excludes that 

subjects in the Ret/Light group slept during the behavioural procedure. Finally, at 

Relapse stage, no difference in terms of sucrose-seeking behaviour (measured as 

active lever presses) was observed between subjects performing Retrieval and 

subjects performing No Retrieval sessions in either Dark or Light phases. Based on 

the scientific literature, reconsolidation occurrence from the behavioural point of 

view has been observed only through its inhibition. For example, in 2014 Tedesco 

and colleagues, following a similar protocol to the one applied in the present 

project, showed that administering the NMDA receptor antagonist MK-801 after 

nicotine-related instrumental memory retrieval can reduce following nicotine-

seeking behaviour measured as active lever presses over the 60 minutes behavioural 

session at Relapse test (Tedesco et al., 2014). In the present project, no protein 

synthesis inhibitor was administered to inhibit appetitive memory reconsolidation. 

 

From the electrophysiological point of view, theta and gamma powers have been 

analysed in dorsal hippocampus and in basolateral amygdala, as the two areas (and 

their interaction) have been shown to be crucial for appetitive memory 

reconsolidation, as shown by Wells and colleagues in 2011 (Wells et al., 2011). 

Furthermore, theta and gamma oscillations in the two brain areas have been shown 

to be relevant for memory processing. 

Particularly, results showed that hippocampal low gamma power correlates with 

reactivation rate of responding during the Dark, but not the Light phase, when 

measured either when rats were lever pressing or not: the higher the rate of 

responding, the lower the low gamma power. The same correlation was not 

observed in the high gamma frequency band. When comparing theta and gamma 

powers among groups performing reactivation in either Dark or Light phases, 

results showed that hippocampal CA1 gamma bands (both low and high) power 
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increased during instrumental sucrose memory reactivation in subjects performing 

the Retrieval session during the Light phase when they were lever pressing 

compared to when they were not lever pressing. This result suggests that gamma 

bands may be specific for instrumental responding reactivation during the Light 

phase. In fact, the same difference was not observed when the Retrieval session was 

performed during the Dark phase. However, further experiments should be done to 

show whether instrumental memory retrieval occurs during sleep. As reported in 

section 1.5.2, gamma oscillations can be divided in low and high gamma, based on 

the oscillation’s frequencies. High gamma is mainly involved in sensory 

information encoding (Newman et al., 2013; Bieri et al., 2014; Zheng et al., 2016) 

and was also shown to be linked to changes in running speed (Ahmed and Mehta, 

2012; Zheng et al., 2015). Based on the last evidence, increased high gamma power 

observed in rats lever pressing during the Retrieval session in their inactivity phase, 

might be correlated to lever-pressing related movement. However, the same 

difference was not observed for the group performing Retrieval in its activity phase, 

ruling out this option.  

The same increase was observed for low gamma frequency; low gamma in CA1 is 

driven by CA3, which is believed to be the hippocampal area where memories are 

stored and retrieved from (Treves and Rolls, 1992; Brun et al., 2002; Nakazawa et 

al., 2002; Steffenach et al., 2002). Particularly, theta phase – low gamma amplitude 

coupling in CA3 has been shown to be related to successful memory retrieval 

(Shirvalkar et al., 2010). Thus, as previously stated, the observed difference in low 

gamma frequency in CA1 may suggest that low gamma band power may be specific 

for instrumental responding reactivation during the Light phase. However, further 

experiments and analyses are needed to confirm this statement. For example, the 

same experiments could be replicated by recording local field potentials in both 

CA1 and CA3 to evaluate coherence and synchrony between the two areas during 

memory retrieval. Particularly, analysis of theta-gamma phase-amplitude cross-

frequency coupling in CA3 may provide a better insight in the memory reactivation 

process. 

 

Finally, local field potential analysis in hippocampal CA1 showed total and low 

gamma power increase in subjects not reactivating appetitive instrumental memory 

in the Light versus the Dark phase. Groups performing the No Retrieval session 
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were not expected to show differences in terms of oscillations powers, as they 

represented the “negative control” groups. However, it cannot be ignored that the 

No Retrieval session was performed during two different phases of their circadian 

rhythm, which may bring along physiological oscillatory differences. In fact, 

gamma amplitude is modulated by the slower delta and theta frequencies; in the 

hippocampus, delta is prominent during sleep, while theta is predominant during 

active wake and REM sleep (Headley and Pare, 2017). Therefore, differences in 

neuronal oscillations due to different activity states might directly influence gamma 

frequencies power. This observation leads to the conclusion that, when comparing 

lever pressing versus non-lever pressing related gamma power in groups 

performing Retrieval in both active and inactive phases, not only we are observing 

differences related to memory reactivation, but also to circadian physiological 

differences. Therefore, it is difficult to discern the two components using this 

technique. As a control, further analysis may be carried out by analysing baseline 

recordings from when subjects were in their home cage during the two hours 

preceding the Retrieval/No Retrieval behavioural sessions. 

 

4.1 Limitations 

The stated goals of the project were first to evaluate differences in local field 

potentials when memory retrieval is performed during Light or Dark phases, in 

order to improve our knowledge on the impact of performing an appetitive memory 

Retrieval session during the inactivity vs activity phase in rodents on memory 

reactivation and following reconsolidation. And, secondly, to find an in vivo 

electrophysiological marker of appetitive memory reactivation. 

The obtained results left the project with some unanswered questions and 

observations that are difficult to explain. Moreover, they were not able to give 

answers to its original goals. 

On this regard, one of the limitations of the project is related to the difference 

between what is termed reactivation and what is termed retrieval: the former 

represents the operational methodology applied to reactivate the memory (which 

doesn’t ensure that the memory will eventually be retrieved); the latter is the 

memory retrieval (molecular) process itself. As previously mentioned, it is possible 

to evaluate whether a memory has been retrieved or not by testing for 
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reconsolidation, either by means of molecular markers (for example, the immediate 

early gene zif268 and the phosphorylation of the ribosomal protein rpS6 (Piva et 

al., 2019)), or by means of reconsolidation inhibition (Tedesco et al., 2014). 

While memory retrieval and reconsolidation occurrence has already been shown for 

the protocol adopted in the present dissertation with Retrieval session during the 

Dark phase (Tedesco et al., 2014; Piva et al., 2019), they have never been shown 

by applying the same protocol with Retrieval session during the Light phase. 

Therefore, further experiments should be performed to evaluate retrieval and 

reconsolidation occurrence in the group reactivating the memory during the 

inactivity phase before drawing conclusion from the obtained results.  

Moreover, further analyses and experiments are needed. Indeed, local field 

potentials analyses shown in the present dissertation were limited to theta and 

gamma power analysis evaluating the two areas (hippocampal dorsal CA1 and 

basolateral amygdala) independently from each other. However, the project aimed 

at understanding if (and how) the two areas interact during appetitive memory 

reactivation and reconsolidation. Therefore, a re-analysis of electrophysiological 

data should be performed to evaluate connectomics measures such as coherence 

and coupling within and between areas. For example, synchrony of distant areas 

can be measured by power correlation or phase coherence analyses; Granger 

causality test can be useful to assess whether a time series predicts another one 

(Bocchio et al., 2017). Performing a similar analysis between hippocampus and 

basolateral amygdala could allow to understand whether the two areas 

communicate with each other and, more importantly, to assess directionality of 

rhythmic activity between regions. 

 

4.2 Conclusion 

Behavioural data presented in the current dissertation are in line with the 

literature. In fact, with the described protocol, reconsolidation occurrence as tested 

through the reinstatement test can only be observed through reconsolidation 

inhibition following memory reactivation (Tedesco et al., 2014). 

What deserves to be highlighted is the Retrieval stage, as results showed that the 

instrumental memory Retrieval session lasts longer if performed during the inactive 

period of the circadian cycle. The reason of this is unknow, as up to date no similar 
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experiments are reported in the literature. However, rodents lower their locomotor 

activity during their inactive phase (Borbély and Neuhaus, 1978). Therefore, it 

could be speculated that the physiological decrease in their locomotion caused the 

subjects to respond slower during Retrieval; this may have had an impact on 

memory reactivation itself. 

 

From the electrophysiological point of view and considering the scientific literature 

mentioned above on the relationship between CA1 and CA3 (Nakazawa et al., 

2002; Steffenach et al., 2002), the inverse correlation between reactivation rate of 

responding and CA1 low gamma power suggests that with decreasing CA1 low 

gamma power there could be an increased output processing for memory 

reactivation. However, it cannot be excluded the opposite: maybe the increasing 

rate of responding acts as a sort of negative feedback by affecting CA3-dependent 

low gamma power in CA1. The lack of the same correlation for subjects performing 

Retrieval during the inactive phase may suggest that this result can only be seen 

within a limited time-window, and that the rate of responding for Light group was 

outside these limits.  

 

In CA1, increase in both low and high gamma powers suggest a specific relationship 

between gamma oscillations and actual instrumental memory reactivation. This 

specificity emerges only when subjects are performing Retrieval in their inactive 

phase. It could be speculated that during the light phase of the dark/light cycle the 

instrumental memory is more labile and susceptible to reactivation. Therefore, low 

gamma increase would support the instrumental reactivation hypothesis; on the 

other hand, increase in high gamma might be related to ‘novelty’. In fact, as stated 

above, it has been shown that high gamma is involved in information encoding and, 

even if the Retrieval context is the same as the Training one, subjects in the Light 

group were exposed to a novel temporal context (i.e. Retrieval stage when the light 

was on). 

 

In conclusion, although results taken together show that hippocampal gamma power 

is differently modulated during instrumental memory reactivation either in the dark 

of light phases, speculations need to be cautiously made. In fact, when reading these 

data, physiological oscillatory differences must be taken into consideration, as 
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demonstrated by the higher hippocampal low gamma power in subjects not 

reactivating the instrumental memory during the active vs. inactive phases.  
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