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Abstract 

Combination of CDK4/6 inhibitors and endocrine therapy improves clinical outcome 

in advanced estrogen receptor (ER)-positive breast cancer, however relapse is 

inevitable. Here, we show in model systems that other than loss of RB1 few gene-copy 

number (CN) alterations are associated with irreversible-resistance to endocrine 

therapy and subsequent secondary resistance to palbociclib. Resistance to palbociclib 

occurred as a result of tumour cell re-wiring leading to increased expression of EGFR, 

MAPK, CDK4, CDK2, CDK7, CCNE1 and CCNE2. Resistance altered the ER genome 

wide-binding pattern, leading to decreased expression of “classical” estrogen-regulated 

genes and was accompanied by reduced sensitivity to fulvestrant and tamoxifen. 

Persistent CDK4 blockade decreased phosphorylation of tuberous sclerosis complex 2 

(TSC2) enhancing EGFR signalling, leading to the re-wiring of ER. Kinome-

knockdown confirmed dependency on ERBB-signalling and G2/M–checkpoint 

proteins such as WEE1, together with the cell cycle master regulator, CDK7. 

Noteworthy, sensitivity to CDK7 inhibition was associated with loss of ER and RB1 

CN. Overall, we show that resistance to CDK4/6 inhibitors is dependent on kinase re-

wiring and the re-deployment of signalling cascades previously associated with 

endocrine resistance and highlights new therapeutic networks that can be exploited 

upon relapse after CDK4/6 inhibition. 

 

 

Introduction 

The majority of breast tumours at primary diagnosis are estrogen receptor alpha positive 

(ER). This knowledge has been exploited clinically by the development of endocrine 

therapies which seek to deprive the hormone dependent tumour cells of estrogen (E) 
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using aromatase inhibitors (AI), or the use of antiestrogens such as tamoxifen or 

fulvestrant both of which compete with E for the ER. Antagonizing ER leads to 

inhibition of cyclin dependent kinase (CDK)/cyclin activity and the maintenance of 

retinoblastoma protein (RB) in a hypophosphorylated state suppressing transcription of 

E2F regulated genes and inhibiting progression through S-phase.  

 

Unfortunately, the beneficial actions of existing endocrine treatments are attenuated by 

the ability of tumours to circumvent the need for steroid hormones, whilst in most cases, 

retaining the nuclear steroid receptors (reviewed by [1]).  In this setting, aberrant growth 

factor signalling leading to altered expression of key downstream pathways, such as 

PI3K/AKT/mTOR and ERK1/2, converge at the level of cyclin D forcing cell cycle 

progression. Furthermore, ERK1/2 is also known to regulate AP1 (Fos/Jun) complexes, 

which in turn can drive transcription of CCND1 [2]. Additionally, deregulation of 

specific cell cycle components such as RB and p27kip1 can reduce the efficacy of ER 

inhibition [3]. Amplification of CCND1 occurs in approximately 15% of breast cancer 

(BC) [4] and overexpression in a larger proportion [5] has been associated with 

resistance to endocrine therapy [6-8]. This high degree of heterogeneity in adaptive 

mechanisms during the course of BC progression highlights the importance of finding 

common nodes responsible for to therapeutic failure.  

 

As proliferation is a hallmark of endocrine resistant tumours, targeting cell cycle 

regulation has provided an attractive proposition. Indeed, recent studies suggest many 

cancer cells might be addicted to high CDK4/6 activity [9]. A number of CDK 

inhibitors have been developed but the most widely used to date is palbociclib (PD-
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0332991), an orally available selective inhibitor of CDK4 and CDK6 kinases, which is 

capable of blocking RB-phosphorylation resulting in G1 arrest [10].  

 

The combination of CDK4/6 inhibitors and endocrine therapy have been shown to 

improve clinical outcome in patients with ER+ metastatic BC [11-13], and have since 

become approved as 1st and 2nd line treatment options. However, not all patients will 

benefit from such combination therapy and many will eventually relapse with acquired 

resistance to combined treatment through poorly characterised mechanisms. In order to 

address this, we generated models of acquired resistance to palbociclib and showed that 

other than copy number (CN) loss of RB1, few genetic changes are associated with 

resistance to CDK4/6 inhibition. Upregulation of CCNE1 and CCNE2 was evident in 

all resistant models. We provide evidence that prolonged CDK4 blockade enhances 

EGFR/ERBB signalling, as a result of reduced TSC2-phosphorylation, which impacts 

downstream on ER-signalling leading to an altered ER-cistrome and reduced sensitivity 

to subsequent endocrine blockade. Overall, we show that resistance to CDK4/6 

inhibitors is dependent on kinase re-wiring and the re-deployment of signalling 

cascades previously associated with endocrine resistance. Our study highlights the 

potential clinical utility of targeting the ERBB-signalling axis or cell cycle via 

perturbation of CDK7 (cell cycle master regulator) or WEE1 (G2/M Checkpoint), 

according to the mode of resistance acquired to long-term CDK4/6 treatment.  

 

 

Material and Methods 

Detailed materials and methodology is provided in the supplementary STAR file. 
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Cell Culture 

Human BC cell lines MCF7, T47D, HCC1428, ZR75.1 and SUM44 were purchased 

from ATCC and Asterand. Cells were cultured in phenol red free RPMI containing 10% 

foetal bovine serum (FBS) and 1nM estradiol (E2). LTED derivatives were cultured in 

phenol red free RPMI supplemented with 10% dextran charcoal stripped (DCC) FBS, 

as previously described. [14].  Palbociclib-resistant cell lines were generated by long-

term culture of parental cell lines in the continuous presence of 1uM palbociclib until 

resistance developed (in average 5 to 6 months for all the cell lines). Resistance was 

authenticated by lack of response to escalating concentrations of palbociclib in 

comparison with their wild-type progenitor cell line and routine passage in the presence 

of the drug. From that point, palbociclib-resistant cell lines were routinely cultured in 

the presence of 1uM palbociclib. Palbociclib was removed from the media 48 hours 

prior to each experiment unless otherwise stated. All cell lines were authenticated by 

short tandem repeats (STR) profiling and routinely screened for mycoplasma 

contamination. 

 

Proliferation and spheroid assays 

Cell viability were carried as detailed previously [14].  In brief, parental cell lines were 

cultured in DCC medium for 3 day. Cells were seeded into 96 well plates. The following 

day monolayers were treated with the drug concentrations indicated for 6 days with a 

medium change on day 3. Viability was measured using TiterGlo according to the 

manufacturers’ instructions (Promega, UK). Statistical analysis for the drug studies has 

been performed using Wilcoxon Matched pairs test using Graph-Prism. 

Spheroid cultures were generated by seeding 2500 cells per well of a 96 well ultra-low-

attachment plate (Costar). Plates were spun at 900xgave for 10 minutes. Spheres were 
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formed over 72 hours and subsequently treated with the drugs as indicated for 7 days. 

Proliferation was assessed using Celigo S (Nexcelom Bioscience). 

 

Immunoblotting 

Immunoblotting was carried out, as previously described [14]. In brief whole cell 

lysates were resolved using SDS-PAGE followed by western blotting. Membranes were 

washed, blocked using 5% milk powder then immunoprobed with antibodies directed 

against the relevant proteins.  

 

Real-time quantitative PCR  

Taqman gene expression assays (Applied Biosystems) were used to quantify TFF1 

(Hs00907239_m1), CCND1 (Hs00765553_m1), PDZK1 (Hs00275727_m1), RB1 

(Hs01078066_m1), EGFR (HS01076090_m1), MAPK1 (Hs01046830_m1), MAP3K1 

(Hs00394890_m1), CDK2 (Hs01548894_m1), CDK4 (Hs00364847_m1), CDK7 

(Hs00361486_m1), CCNE1 (Hs01026536_m1), CCNE2 (Hs00180319_m1) together 

with FKBP15 (Hs00391480_m1) as housekeeping gene to normalise the data. The 

relative quantity was determined using ΔΔCt, according to the manufacturer's 

instructions (Applied Biosystems). 

 

Gene expression microarray analysis of cell lines  

Global gene expression analysis was carried out for MCF7, MCF7 LTED and T47D 

human BC cell lines along with their palbociclib-resistant derivatives (GSE98987). 

Data was normalized and handled, as previously described [14]. Gene set enrichment 

analysis was carried out using the GSEA v:2.0.13 GSEA pre-ranked tool 

(http://software.broadinstitute.org/GSEA/msigdb/annotate.jsp and G-profiler  

http://software.broadinstitute.org/GSEA/msigdb/annotate.jsp
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Gene copy number analysis 

DNA was extracted from the target cell lines using QIAamp DNA mini kit, according 

to the manufacturer’s instructions (Qiagen). Exome libraries were generated, as 

previously described [15]. Data was deposited in the sequence read archive: BioProject 

(awaiting ID number). 

 

ChIP-seq 

ChIP-seq was performed, as previously described [14, 16] using ER antibody (HC-20 

(sc-543 Santa Cruz)) or IgG (Dako). Statistical tests and cut-offs were selected based 

on published recommendations [17].  

 

Dimethyl labelling and phosphoproteomics 

Dimethyl labelling was carried out, as reported previously [18]. Samples were run 

through LC-MS/MS using LTQ Velos Orbitrap MS (Thermo Scientific). Raw data were 

processed using MaxQuant 1.5.1.0. Ti4+-IMAC phosphopeptide enrichment was 

performed, as previously described [19]. LC-MS/MS measurements were performed, 

by coupling an Agilent 1290 Infinity II LC system to a QExactive Plus mass 

spectrometer (Thermo Scientific). Phosphoproteomic raw spectra were processed with 

MaxQuant (version 1.5.2.8). Quantified phosphodata were processed using PaDua [20], 

a custom Python in house-package and network reconstruction and pathway 

identification were conducted using Photon [21] and PhosphoPath [22], respectively. 

Phosphoproteomics [PRIDE PXD005514] and Proteomics data [PRIDE PXD005611] 

have been deposited in the ProteomeXchange. 
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Human tumour xenografts modelling relapse on AI therapy  

In vivo studies were carried out in ovariectomized 8- to 12-week-old female BALB/c- 

nude mice in accordance with Home Office guidelines and approved by the Institute of 

Cancer Research Ethics Committee. Xenografts modelling patients resistant to AI 

(MCF7 LTED) were treated with 100mg/kg palbociclib administered daily by oral 

gavage or vehicle control. The study operator was blinded to the treatments. Overall 

statistical differences were calculated using the Wilcoxon signed-rank test if the 

variance was not equal and failed the normality test otherwise paired t-tests were used.  

 

In vivo PDX efficacy studies 

Palbociclib resistant PDX (see star file) were generated and transplanted into female 8-

week-old Swiss nude mice in accordance with institutional guidelines and the rules of 

the French Ethics Committee (project authorization no. 02163.02). Mice were 

randomly assigned to the control or treated groups (4 to 7 mice per group). Palbociclib 

was administered orally twice per week at 50 mg/kg. Everolimus was administered 

orally at a dose of 2.5 mg/kg, 3 days per week. Fulvestrant was administered by 

intramuscular injection at a dose of 50 mg/kg once a week.  AZD1775 and neratinib 

were administered orally at 90 mg/kg and 40 mg/kg, 5 days per week, respectively. 

Treatments were administered for 60 days. The statistical significance was determined 

by unpaired t-test 

 

RNAi kinome library screen 

MCF7PalboR, MCF7 LTEDPalboR, T47DPalboR and T47D LTEDPalboR cell lines were 

transfected using the ON-TARGETplus siRNA Library-Human Tyrosine Kinases 
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(Dharmacon) targeting 709 protein kinases. After 6 days, cell viability was assessed 

using CellTiterGlo assay (Promega). A library screen for each cell line was performed 

in duplicate and repeated 2-3 times. The dynamics of each library screen was assessed 

by calculating Z prime values. The threshold of acceptance was set as Z’>0.3 [23]. 

 

Data Availability 

The data supporting the finding from this manuscript have been deposited as follows. 

Data have been deposited with the NCBI gene expression omnibus (GEO) 

(http://ncbi.nlm.nih.gov/geo/): Gene expression (GSE98987), Exome sequence and 

ChIP-seq analysis (PRJNA604231). Phosphoproteomics (PRIDE PXD005514) and 

Proteomics data (PRIDE PXD005611) have been deposited in the ProteomeXchange. 

 

 

Results 

Effect of palbociclib on cell growth of endocrine-sensitive and long-term estrogen 

deprived BC cell lines  

A panel of endocrine-sensitive and long-term estrogen deprived (LTED) BC cell lines 

modeling relapse on an AI, were evaluated for their sensitivity to the CDK4/6 inhibitor 

palbociclib: MCF7, SUM44, T47D, ZR75.1 and HCC1428 cell lines along with their 

LTED derivatives were assessed both in the presence and absence of 17−estradiol 

(E2).  

The cell lines showed varying degrees of sensitivity to palbociclib (Supplementary Fig. 

S1a). MCF7, SUM44, T47D, ZR75.1 and HCC1428 showed a dose-dependent decrease 

in proliferation in the presence of E2 with GI50 values ranging between 100-300nM. In 

http://ncbi.nlm.nih.gov/geo/
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the absence of E2, modeling the effect of an AI, proliferation dropped significantly in 

all cell lines and the addition of palbociclib at concentrations between 500-1000nM 

showed a further reduction of approximately 50%. This suggested that in the absence 

of E2, palbociclib targeted those cells which had partial resistance to E2-deprivation.  

LTED cell line derivatives showed sensitivity to escalating concentrations of 

palbociclib in the absence and presence of E2 with GI50 values ranging between 100 to 

700nM (Supplementary Fig. S1a). Furthermore, the antiproliferative effect was 

confirmed in MCF7 LTED spheroids (Supplementary Fig. S1b). The combination of 

palbociclib with either 4-hydroxytamoxifen (4OHT) or fulvestrant (Fulv) showed 

enhanced antiproliferative activity compared to either agent alone (Supplementary Fig. 

S1c). Immunoblot analysis of MCF7 LTED cells treated with palbociclib alone or in 

combination with 4OHT or fulvestrant (Supplementary Fig. S1d), showed a decrease 

in CDK4/6 targets (phosphorylated and total RB, p107 and FOXM1) and increased 

expression of p130, matching previous reports suggesting that p130 is found 

predominantly in quiescent cells [24]. The combination of CDK4/6 inhibition with 

endocrine therapy further reduced phosphorylation of RB and p107. Assessment of 

down-stream signalling targets of ER showed a slight but noticeable accumulation of 

cyclin D1 and cyclin D2, but decreased abundance of cyclin D3. A marked increase in 

cyclin E1 upon palbociclib treatment, was evident. The CDK inhibitor p21 increased 

with palbociclib treatment demonstrating accumulation following cell cycle inhibition.  

Taken together, these data indicate palbociclib markedly enhances inhibition of RB 

phosphorylation by anti-estrogens and estrogen deprivation, reducing key signalling 

mediators and targets involved in cell proliferation. 
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Resistance to CDK4/6 inhibition results via multiple mechanisms 

In order to identify the pathways associated with resistance to palbociclib, we treated a 

panel of cell lines with varying phenotypic backgrounds (MCF7, MCF7 LTED, T47D, 

T47D LTED, SUM44, SUM44 LTED, HCC1428 and HCC1428 LTED) long-term in 

the presence of palbociclib (1M). Of the 8 cell lines, 5 palbociclib-resistant models 

were successfully generated, three of which, were also resistant to E-deprivation 

(MCF7PalboR, MCF7 LTEDPalboR, T47DPalboR, T47D LTEDPalboR and HCC1428 

LTEDPalboR). Resistance was authenticated by culturing the resistant cell lines with 

escalating concentrations of palbociclib in comparison with their wild-type progenitor 

(Fig. 1a). Furthermore, assessment of key cyclins and CDKs required for S, G2 and M 

phase entry were evaluated in MCF7 LTEDPalboR and shown to be elevated compared 

to the drug-treated parental cell line (Supplementary Fig. S2a). 

 

In order to test the stability of the resistant phenotype, cell lines were cultured in the 

absence of palbociclib for up to 4 weeks (Fig. 1a). Washout of MCF7PalboR and MCF7 

LTEDPalboR derivatives partially re-sensitised them to the antiproliferative effect of 

palbociclib, an observation confirmed in vivo (Supplementary Fig. S2b) suggesting the 

phenotype was plastic. In contrast, the T47DPalboR, T47D LTEDPalboR and HCC1428 

LTEDPalboR cell lines remained resistant.   

 

To identify molecular features associated with palbociclib resistance, we carried out 

assessments of gene copy number (CN) alterations using exome sequencing (Fig. 1b). 

Initially, we focussed on genes associated with cell cycle. Similar to our previous 

finding [25], T47DPalboR and T47D LTEDPalboR both showed CN loss of one of the two 

RB1 alleles and an acquired mutation at the splice site of the second allele in T47DPalboR, 
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and an acquired frameshift deletion in the second allele in T47D LTEDPalboR. These 

alterations were accompanied with reduced transcript and protein abundance, the latter 

remaining reduced after drug washout (Supplementary Fig. S2c & d). In contrast, 

HCC1428 LTEDPalboR cells showed no change in RB1 CN, but loss of both mRNA 

transcript and protein. As yet, the mechanism by which this occurs is unclear. MCF7 

LTEDPalboR showed no RB1 CN change and expression at both the transcript and protein 

level was similar to the parental cell line. MCF7PalboR showed partial CN loss of RB1 

when taking the triploid status of chromosome 13 into consideration [26] and a 

concordant reduction in both RB1 transcript and protein. Of note, upon drug washout, 

RB increased although not to the level seen within the parental cell line. This increase 

in RB may account for the partial re-sensitisation to palbociclib in this model (Fig. 1a 

and Supplementary Fig. S2d). No other genetic changes that could be associated with 

resistance to palbociclib could be identified.   

 

To characterize the resistant phenotype further, we assessed alterations in global gene 

expression by comparing the parental and palbociclib-resistant MCF7 isogenic cell 

lines together with T47DPalboR, as a comparator based on their overall RB1 CN loss. As 

expected, pathway analysis (Fig. 1c and Supplementary File S1) showed that the 

T47DPalboR model was dominated by cell cycle pathways and enriched for genes such 

as CDK2, CCNE1 and CHEK1 associated with the G1/S, S-phase entry and 

chromosomal replication. The MCF7 LTEDPalboR cells displayed decreased expression 

of proliferation-associated pathways, irrespective of their resistant phenotype, and 

concordant with their slower proliferation rate (Supplementary Fig. S3a & b). Pathway 

analysis showed that resistance in both MCF7PalboR and MCF7 LTEDPalboR cells was 

associated with altered growth factor signalling such as IGF1, PDGF, ERBB2-ERBB3, 
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ERBB4, neuregulin, EGF and ERK/MAPK. Common genes within these pathways 

included HRAS, MAPK1 and those encoding subunits of PI3K (Fig. 1c). Further 

interrogation using gene set enrichment analysis (GSEA) showed a reduction in genes 

negatively regulating EGFR and ERBB signalling and an increase in those associated 

with enhanced activity (Supplemental Fig. S3c). In order to further validate this 

observation, we conducted RT-qPCR of target genes and showed that expression was 

concordant with the global gene analysis (Supplemental Fig. S4). 

 

Phosphoproteomic analysis identifies changes in cell cycle and growth factor 

signalling pathways associate with resistance to palbociclib 

In order to investigate changes in global protein abundance and phosphorylation 

associated with the palbociclib-resistant phenotype, we used mass-spectrometry based 

approaches. Comparison of dimethyl labelling of MCF7 and MCF7PalboR cells showed 

increased abundance of cyclin D3, cyclin D1, cyclin E1 and CDK4 largely concordant 

with our gene expression data. MCF7 LTEDPalboR cells showed increased abundance of 

cyclin D1 and CDK5 (Supplementary File S2). Immunoblot analysis confirmed that all 

palbociclib-resistant cell lines showed increased abundance of cyclin E1 despite the 

absence of CN alteration, in contrast to our previous findings [25].  

Both HCC1428 LTEDPalboR and T47D LTEDPalboR showed a decrease in cyclin D1 

abundance compared to the other cell lines. CDK4 was elevated in all palbociclib-

resistant cell lines with the exception of the HCC1428 LTEDPalboR (Fig. 2a). Assessment 

of ER levels showed no change in ESR1 transcript in MCF7 versus MCF7PalboR but a 

slight decrease in protein abundance was evident in both the dimethyl labelling and 

immunoblot (Fig. 2a, Supplementary Fig. S5a and Supplementary File S2). MCF7 

LTEDPalboR showed a slight increase in ESR1 transcript, although this was not reflected 
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at the protein level. HCC1428 LTEDPalboR and T47DPalboR models showed a similar 

reduction in ESR1 transcript. This was reflected as a decrease in protein abundance in 

the T47DPalboR but not HCC1428 LTEDPalboR. As expected, T47D LTED and 

palbociclib-resistant derivative showed negligible ESR1 transcript or protein.   

 

To identify differential phosphorylation events in the MCF7PalboR and MCF7 

LTEDPalboR derivatives compared to their parental cell lines, we used two visualisation 

tools Phosphopath [22] and Photon [21]. These revealed pathways associated with cell 

cycle progression, EGFR, MAPK and PI3K/AKT/mTOR, concordant with the gene 

networks identified previously in these resistant cell lines (Fig. 1c, Fig. 2b and 

Supplementary File S2). RB was shown to be similarly phosphorylated in MCF7 

LTEDPalboR compared to their parental cell line. In contrast, the MCF7PalboR showed a 

reduction in both phosphorylation and abundance in keeping with the CN loss identified 

in our exome analysis (Fig. 1b). In order to validate some of the key observations, 

related to ERBB signalling, immunoblot analysis was carried out and shown to be 

concordant (Supplementary Fig. S5b). Taken together, these data suggest tumour 

rewiring leading to increased ERBB/MAPK signalling influences sensitivity to 

CDK4/6 inhibition. 

 

Resistance to palbociclib associates with down-regulation of ER-classical activity 

ChIP-seq 

As previous studies have provided evidence that increased ERBB activity can alter the 

ER-genomic binding pattern [27], we carried out comparative ChIP-seq analysis of ER 

in both the parental MCF7 LTED and MCF7 LTEDPalboR cells. Whilst the majority of 

ER-binding sites were similar between the palbociclib-sensitive and -resistant MCF7 
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LTED (Fig. 3a & b) some differences were apparent. For instance, motif analysis 

showed enrichment of ESR1, FOXA1 and CREB1 binding sites in the MCF7 LTED 

compared to the resistant cell line. In contrast, the MCF7 LTEDPalboR cells showed 

enrichment of AP2B, SP1, E2F7 and E2F4 motifs (Fig. 3c). Further analysis of the gene 

expression data showed an increase in early estrogen response signalling and a decrease 

in late estrogen response signalling in the MCF7 LTEDPalboR (Supplementary Fig. S6a). 

A core set of genes associated with both early and late response were interrogated 

further. Strikingly, ER-regulated genes associated with cell cycle were down-regulated 

in the palbociclib-resistant cells and there was a shift towards dependence on SP1 

transcription factors (Supplementary Fig. S6b & c). This suggested a trend towards loss 

of ER binding at “classically” E-regulated genes, which was confirmed by ChIP-qPCR 

analysis of ER-recruitment to the promoter regions of the TFF1, PDZK1 and CCND1 

in the palbociclib-resistant cell line (Fig. 3d). This was concordant with decreased 

expression of TFF1 and PDZK1. However, the loss of ER-binding at the CCND1 

promoter had no impact on CCND1 expression in the palbociclib-resistant cells 

suggesting its increased expression, together with both CCNE1 and CCNE2, resulted 

from alternate mitogenic cues (Fig. 3e). This reduction in expression of classical E-

regulated genes was recapitulated in MCF7PalboR cell line. Assessment of the 

antiproliferative effect of fulvestrant and 4OHT revealed a significant reduction in 

sensitivity in all palbociclib-resistant cell lines harbouring ER compared to their 

respective parental cell lines and was most pronounced in those with decreased or lost 

RB1 expression (Fig. 3f and Supplementary Fig. S7a). Nonetheless, these data suggest 

that whilst ER remains important in the resistant phenotype, its transcriptional 

programme may be altered as a result of chromatin remodelling in response to 

prolonged exposure to CDK4/6 blockade.  
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Increased ERBB signalling results from sustained CDK4/6 blockade 

As increased EGFR and ERBB2 were evident in the MCF7 isogenic palbociclib-

resistant cell lines, we assessed sensitivity to the anti-proliferative effect of the pan-

ERBB inhibitor neratinib. All cell lines showed a significant reduction in proliferation 

in response to the drug. Noteworthy, with the exception of T47DPalboR and HCC1428 

LTEDPalboR, all palbociclib-resistant cell lines showed enhanced sensitivity to neratinib 

compared to their respective parental model (Fig. 4a). This observation was confirmed 

with a second EGFR/ERBB inhibitor, AZD8931 (Supplementary Fig. S7b). As EGFR 

and ERBB2 are known to alter ER-function, we hypothesised that perturbation of these 

growth factors may re-sensitise the palbociclib-resistant cell lines to fulvestrant (Fig. 

4b). Indeed, a shift in sensitivity in response to fulvestrant was evident in the presence 

of neratinib in the MCF7 isogenic models and to a lesser degree in the T47DPalboR cell 

line but not the HCC1428 LTEDPalboR. As expected, the T47D LTEDPalboR, which no 

longer expresses ER, showed no response to fulvestrant.  

 

CDK4/6 blockade leads to increased EGFR/ERBB expression resulting in down-

regulation of ER-signalling. 

Cross-talk between EGFR/ERBB, mTOR and CDK4 signalling is well documented 

[28] [29] [30]. We hypothesised that blockade of CDK4 leads to the reduction of 

phosphorylation of TSC2 together with a reduction in S6 kinase thereby negating the 

negative feedback loop between TSC2 and EGFR (Fig. 4c). To address this, we 

investigated the expression of these target proteins over a long and short time course 

(Fig. 4d and Supplementary File S3). MCF7 LTEDPalboR cells were serum-starved and 

treated with palbociclib alone or in combination with neratinib. Addition of palbociclib 
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resulted in an increase in total EGFR abundance accompanied with an increase in 

phosphorylation after 30 minutes exposure to palbociclib. Phosphorylated RET showed 

a marked increase as early as 10 minutes post palbociclib treatment. Contrastingly, 

pTSC2 was significantly reduced at the earliest time point post addition of palbociclib 

compared to vehicle. As expected, the combination of palbociclib and neratinib reduced 

pTSC2 and both pEGFR and pERBB2, which remained ablated for the duration of the 

time course. Surprisingly, RET phosphorylation was also significantly reduced. 

Assessment of cyclin abundance showed maintenance of cyclin A2 in the presence of 

palbociclib demonstrating resistance to therapy. However, addition of neratinib reduced 

cyclin A2, cyclin D1 and cyclin E2. Most noteworthy, assessment of the ER-regulated 

gene products TFF1, PGR, GREB1 and c-MYC showed a reduction in the presence of 

palbociclib, which was rescued by the addition of neratinib. Further assessment of the 

impact of palbociclib on nuclear ER content showed no effect compared to vehicle 

control or the combination with neratinib suggesting nuclear shuttling was not the cause 

of reduced classical ER-activity (Fig. 4e). In summary, these data suggest that 

prolonged treatment with palbociclib induces tumour re-wiring leading to increased 

expression of growth factor signalling which provides an alternate mitogenic cue in RB 

competent models which is sensitive to EGFR/ERBB inhibition. 

 

Identification of kinases associated with resistance to CDK4/6 inhibitions 

Based upon our previous findings, we hypothesised that elucidation of kinase re-wiring 

events may identify new therapeutic “Achilles heels” associated with resistance to 

CDK4/6 inhibition. To address this, we assessed cell viability in response to a kinome 

knockdown screen (siRNA) targeting 709 kinases in the palbociclib-resistant cell lines 

(Fig. 5a and Supplementary File S4). T47DPalboR and T47D LTEDPalboR, which showed 
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loss of RB function as their governing mode of resistance, were sensitive to loss of 

PIK3CA, RET and G2/M checkpoint regulator WEE1. MCF7PalboR and MCF7 

LTEDPalboR models showed susceptibility to loss of ERBB3 and dependency on 

multiple CDKs, which appeared cell line specific. Similar to the T47D, the MCF7 

LTEDPalboR showed susceptibility to WEE1 loss. To address this further, proliferation 

assays targeting the key kinases identified were carried out in the parental and 

palbociclib-resistant cell lines (Fig. 5b). Perturbation of PI3K/mTOR signalling with 

pictilisib and everolimus, respectively, showed enhanced sensitivity in all palbociclib-

resistant models compared to their corresponding parental cell lines. Inhibition of 

WEE1 with AZD1775 effectively suppressed proliferation in all cell lines tested, and 

similarly showed enhancement of sensitivity in the palbociclib-resistant cells compared 

to parental with the exception of MCF7 LTEDPalboR which was less pronounced. 

Noteworthy, whilst CDK7 was highlighted as a potential target, both parental and 

palbociclib-resistant cell lines appeared equally sensitive with the exception of T47D 

LTEDPalboR (RB-loss, ER loss), which showed almost a 10-fold shift in sensitivity. 

Inhibition of CDK9 had no significant impact in the palbociclib-resistant lines tested 

(Supplementary Fig. S7c). 

 

Taken together, these data confirm our finding that growth factor receptor signaling 

associates with resistance to CDK4/6 inhibition and highlights the potential to target 

this, CDK7 or G2/M checkpoint proteins such as WEE1 upon progression on 

palbociclib.  

 

Effect of everolimus, neratinib and AZD1775 in PDX models of palbociclib 

resistance 
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To validate the results obtained in our in vitro experiments, we tested the anti-tumour 

activity of AZD1775, neratinib or everolimus in the presence or absence of fulvestrant 

in an in vivo PDX model of metastatic ER+ CCND1-driven BC with acquired resistance 

to palbociclib (HBCx-134 palbo-R31) (Fig. 6). Palbociclib was maintained in all 

treatment arms. After 60 days of treatment, neratinib alone or in combination with 

fulvestrant arrested tumour growth with TGI of 92 and 94%, respectively (p<0.0001). 

Treatment by AZD1775 inhibited tumour growth with a TGI of 70% (p =0.0025) and 

54% when combined to fulvestrant (p=0.046). Everolimus alone or in combination with 

fulvestrant inhibited tumour growth with TGI of 75% (p=0.0006) and 78% (p=0.0004), 

respectively. 

Taken together, these data highlight the potential of targeting upstream growth factor 

signalling receptors, downstream signalling pathways such as PI3K/mTORC and G2/M 

associated checkpoint proteins such as WEE1 in palbociclib resistant tumours.  

 

 

Discussion 

De-regulation of cell cycle leading to uncontrolled proliferation is a hallmark of cancer 

[31]. The cell cycle is tightly controlled by interplay between cyclins, CDKs and their 

respective inhibitors. Direct targeting of cell cycle with CDK inhibitors has provided 

an attractive proposition but until recently few have shown specificity and associated 

clinical toxicities have been unacceptable [32]. The CDK4/6-RB axis is critical for cell 

cycle entry and not surprisingly most cancers subvert this axis to promote proliferation; 

for instance, 19% of BC show amplification of CDK4 and CCND1 amplification is 

associated with endocrine resistance (reviewed by [33]). Recently, inhibitors such as 

palbociclib, ribociclib and abemaciclib [34] that target CDK4/6 have shown significant 
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clinical efficacy in metastatic ER+ BC by prolonging progression-free survival when 

given in combination with either the AI letrozole as first-line therapy in endocrine 

sensitive BC [11, 12], or with the selective ER downregulator fulvestrant, as second-

line therapy in endocrine resistant disease [13]. While this represents a major 

improvement in clinical outcome, patients still relapse with disease that is resistant to 

CDK4/6 inhibitors, and the pressing clinical question has become whether the disease 

is then still endocrine responsive post CDK4/6 inhibitors and/or what therapies would 

then be appropriate to use thereafter. 

 

In this study, we sought to answer some of these issues by addressing the mechanisms 

involved in the development of resistance to CDK4/6 inhibition. We initially showed 

that CDK4/6 inhibition in combination with endocrine therapy targets de novo ligand-

independent proliferation providing further justification for the use of these agents to 

target intrinsic endocrine resistance earlier. Indeed, this notion is supported by the 

recent NeoPalAna study, which showed patients with Ki67 >10% gained benefit from 

the combination of an AI and palbociclib, resulting in complete cell cycle arrest 

(Ki67<2.7%) [35].  Additionally, our previous studies suggest that the use of an “on-

treatment’’ E2F signature, prior to surgery may provide utility in identifying those 

patients most likely to benefit from such combinations [36, 37] and may conversely, be 

useful at identifying patients likely to relapse on CDK4/6 inhibitors later in their course 

of treatment, discussed in more detail below.  

 

We showed that few genetic changes other than loss of RB1 CN were associated with 

resistance to palbociclib in ER+ BC models and this appeared restricted to one isogenic 

cell line. Furthermore, the genetic make-up of the parental cell lines did not inform on 
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the mechanism of resistance to CDK4/6 inhibition. This observation is in keeping with 

our previous studies [25], in which a PDX model partially resistant to ribociclib after 

long-term exposure to the drug showed expansion of a pre-existing RB-null population. 

The parental tumour, which was isolated from a patient previously treated with 

endocrine therapy harbouring an ESR1Y537S, TP53 mutation and loss of genes encoding 

p16INK4A, p15INK4B and p14ARF, was shown to be initially sensitive to palbociclib 

treatment suggesting that these genetic alterations do not impact on response to CDK4/6 

perturbation and that long-term exposure led to the expansion of the pre-existing RB-

null sub-population. In our current study, despite the primary tumour from which our 

palbociclib resistant PDX was derived harbouring a TP53 mutation, the resultant 

CDK4/6 resistant tumour maintained RB1 expression. This suggests, loss of TP53 does 

not influences RB1 expression and does not determine sensitivity to CDK4/6 inhibition. 

Clinical studies from PALOMA-3 indicate that loss of RB1 is a rare event, occurring 

in only 4.7% of patients, whilst TP53 mutations were shown to be maintained from day 

one. In conclusion, the genetic make-up of the primary tumour appears insufficient to 

determine sensitivity or resistance to CDK4/6 inhibition [38].   

 

Further interrogation using transcriptomic and phosphoproteomic profiling showed cell 

lines retaining RB used kinase re-wiring to circumvent perturbation of CDK4/6. 

Noteworthy, an increase in growth factor signalling and downstream activation of 

MAPK was evident, pathways previously associated with resistance to endocrine 

therapy. As preceding studies have highlighted the ability of altered MAPK [27] and 

AKT [39] to impact on the ER-cistrome, we interrogated the ER-genomic binding 

pattern in MCF7 LTEDPalboR cells.  ChIP-seq analysis showed a loss of ER-binding to 

ESR1 and FOXA1 motifs and enrichment at SP1 and AP2 motifs, which were 



 23 

concomitant with a decrease in the expression of classical E-regulated genes PDZK1 

and TFF1 but not CCND1. Further interrogation of the transcriptome showed a 

reduction in dependence on ER for cell cycle progression and a shift towards 

dependence on SP1 transcription factors, which have been associated with modulation 

of EGFR expression [40].  Taken together, these data suggested the resistant cell line 

had undergone long-term adaptation via cell plasticity leading to chromatin 

remodelling. 

 

In keeping with an earlier report, those CDK4/6 resistant cell lines that maintained ER 

expression, showed a reduction in sensitivity to fulvestrant and tamoxifen compared to 

their respective parental cell lines [41]. However, in contrast to the previous study, no 

change in CDK6 CN was evident in our cell line models. We therefore hypothesised 

that signalling via EGFR/ERBB may provide the dominant mitogenic drive accounting 

for the enhanced sensitivity to the pan-ERBB inhibitors neratinib and AZD8931. 

Mechanistically, we showed that blockade of cyclin D1/CDK4 reduced the 

phosphorylation of tuberous sclerosis 2 (TSC2), relieving the negative feedback loop 

and increasing expression of EGFR family members [30] which in turn reduced reliance 

on ER-driven proliferation. Addition of the pan-ERBB inhibitor neratinib decreased 

phosphorylation of EGFR and ERBB2 and associated with re-expression of E-regulated 

genes and enhanced sensitivity to fulvestrant. Blockade of EGFR also caused a 

reduction in phosphorylation of RET another receptor tyrosine kinase associated with 

resistance to AI-therapy [42]. Previous studies have shown that EGFR mediates 

activation of RET and that the two receptors may form an activation complex leading 

to enhanced down-stream signalling via MAPK [43]. 
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Taken together these data suggest altered growth factor signalling pathways, which 

have previously been associated with endocrine resistance appear further enhanced in 

CDK4/6 resistant cell lines that retain functional RB. This altered signalling network 

leads to increased expression of CDK4, CCNE1 and CCNE2. The Cyclin E1/CDK2 

complex inactivates RB by quantum hyper-phosphorylation [44] leading to 

transcription of the E2F S-phase entry program and transcription of CCNA2. Moreover, 

increases in cyclin D1 can aid in cyclin E1/CDK2 complex formation by sequestering 

CDK2 negative regulators p21CIP1 and p27KIP1 promoting aberrant RB-phosphorylation 

and cell cycle progression [45].  In turn, enhanced growth factor signalling reduces the 

requirement for the classical ER-driven transcriptional programme. 

Clinical support for this hypothesis comes from the NeoPalAna study, where 

association between palbociclib resistance and persistent on-treatment expression of 

E2F targets (CCND3, CCNE1 and CDKN2D) was evident, indicating that continued 

activation of E2F transcription in resistant tumours, equates to loss of the RB-regulon 

[35]. 

In order to take a global view of kinases associated with the palbociclib-resistant 

phenotype, and to identify new therapeutic targets, we carried out siRNA kinome 

knockdown studies. Not surprisingly, PIK3CA loss caused a marked drop in 

proliferation of all cell lines irrespective of RB status. The mTORC1 inhibitor 

everolimus and PI3K inhibitor pictisilib suppressed proliferation of all palbociclib-

resistant models, suggesting that sequencing of these agents after resistance to CDK4/6 

inhibition may provide clinical utility. 

Multiple CDKs were highlighted as potential targets including CDK9. However, the 

CDK9 inhibitor LDC000067 had little impact on cell proliferation. One explanation is 
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that kinases can have both catalytic and structural modalities [46]. CDK9 can regulate 

transcription by interacting with transcription factors such as STAT3, c-Jun, and B-

Myb in a manner that does not depend on catalytic activity [47]. Noteworthy, CDK7, 

which was upregulated at the transcript level was also identified as a potential 

therapeutic target. CDK7 has two functions. Firstly, forming a trimer with cyclin H1 

and MAT1 to generate the CDK-activating complex (CAK) which phosphorylates 

CDK1, 2, 4 and 6 within the activation segment (T-Loop); and secondly, as a 

component of the general transcription factor TFIIH, which is involved in transcription 

initiation and DNA repair, providing the link between transcription and cell cycle [48]. 

However, comparison of sensitivity to CDK7 inhibition between parental and 

palbociclib-resistant derivatives showed no alteration with the exception of T47D 

LTEDPalboR cells, which lose expression of both ER and RB. Interestingly, THZ1 has 

been proposed to be effective in triple negative BC [49]. Nonetheless our data suggests 

inhibition of CDK7 may prove an effective therapy prior to or after CDK4/6 inhibitor 

relapse and number of drugs targeting CDK7 are currently under investigation [50] 

[51].   

In summary, the majority of common kinases associated with resistance were connected 

with growth factor signalling, PI3K/mTOR and G2/M checkpoint including WEE1, 

which is required for phosphorylation and inactivation of CDK1 and determines cell 

size prior to mitosis [52].  In confirmation of these observations, the palbociclib-

resistant cell lines showed enhanced sensitivity to drugs targeting these signalling axes, 

and as previously noted [53][54][55][56]. 

Taken together, these data suggest that multiple mechanisms of resistance to CDK4/6 

inhibitors can occur leading to deregulation of RB1-regulon either by CN loss, 
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methylation or increased growth factor signalling. We show pathways associated with 

endocrine resistance can be further up-regulated in RB competent yet CDK4/6 resistant 

cell lines suggesting that some tumours may remain hardwired to the RB/E2F 

transcriptional axis and use flexibility in kinase signalling to circumvent the G1/S 

checkpoint by increasing expression of CCNE1 leading to hyperphosphorylation of RB 

and reducing dependence on ER-signalling as a mitogenic driver. This data highlights 

the high degree of adaptability to CDK4/6 inhibition and the need to screen patients 

prior to and after relapse on these inhibitors in order to inform on effective drug 

sequencing. 
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Figure Legends 

Figure 1. Generation and characterization of palbociclib resistance models. (a) 

Antiproliferative effect of palbociclib in several palbociclib-resistant (PalboR, blue 

lines) and -sensitive (PalboS, black lines) cell lines. For washout experiments, 

palbociclib was omitted from the growth medium for a period of 2 weeks (short, red 

line) and 4 weeks (long, green line) and then re-challenged with escalating 

concentrations of palbociclib (n=3 biological and n=8 technical replicates). Data 

represents % viable cells compared to vehicle control for each cell line. Error bars 

represent mean ± SEM. (b) Copy number variation comparing palbociclib resistance 

versus sensitivity in MCF7, MCF7 LTED, T47D, T47D LTED and HCC1428 LTED 

cell lines. (c) Identification of pathways and genes associated with resistance to 

palbociclib in MCF7, MCF7 LTED and T47D cell models (n=3 biological replicates).  

 

Figure 2. Assessment of global changes in phosphorylated proteins upon 

palbociclib resistance. (a) Abundance of ER and cell cycle markers in palbociclib-
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sensitive and -resistant in MCF7, MCF7 LTED, T47D, T47D LTED and HCC1428 

LTED cell lines (n=3 biological replicates). (b) Schematic representation of 

phosphorylation networks using Photon comparing parent and palbociclib-resistant 

(PalboR) derivatives followed by identification of pathways associated with resistance 

using PhosphoPath (n=3 biological replicates). RB1 marked with red circle. 

 

Figure 3. Resistance to palbociclib associates with down-regulation of ER-classical 

activity assessed by ChIP-seq. (a) MA plot showing the differential binding affinity 

of ER. The x-axis shows log concentration of sequenced tags per peak; y-axis represents 

log2 fold change of MCF7 LTED/ MCF7 LTEDPalboR (n=3 biological replicates). (b) 

Heatmap depicting binding peak intensities, which are common or different between 

the two cell lines. The window represents ± 1Kb regions from the centre of the binding 

event. (c) Motif analysis of common and augmented ESR1 peaks from MCF7 LTED 

versus MCF7 LTEDPalboR. (d) Effect of palbociclib resistance in recruitment of the ER 

to TFF1, PDZK1 and CCND1 promoters. Error bars represent means ± SEM. (n=2 

biological replicates). (e) Effect of palbociclib resistance on expression of TFF1, 

PDZK1, CCND1, CCNE1 and CCNE2 in MCF7 and MCF7 LTED cell lines. Error bars 

represent means ± SEM. (f) Effect of escalating concentrations of fulvestrant on the 

proliferation of MCF7, MCF7 LTED, T47D, T47D LTED and HCC1428 LTED and 

their corresponding palbociclib (PalboR) resistant cell lines. Data represents % viable 

cells compared to vehicle control for each cell line. Error bars represent mean ± SEM. 

 

Figure 4. Increased ERBB signalling following sustained palbociclib resistance. (a) 

Antiproliferative effect of neratinib in MCF7, MCF7 LTED, T47D, T47D LTED and 

HCC1428 LTED and their corresponding palbociclib-resistant (PalboR) derivatives. 
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Data represents % viable cells compared to vehicle control for each cell line. Error bars 

represent mean ± SEM. (b) Effect of escalating concentrations of fulvestrant both in 

the presence or absence of neratinib (500nM) in MCF7, MCF7 LTED, T47D, T47D 

LTED and HCC1428 LTED and their corresponding palbociclib-resistant (PalboR) cell 

lines. Data represents % viable cells. Error bars represent mean ± SEM. (c) Schematic 

representation of the effect of CDK4/6 inhibition and cross-talk with receptor tyrosine 

kinase signalling pathway. (d) Immunoblotting showing expression levels of several 

cell cycle, growth factor signalling and ER-regulated markers in MCF7 LTEDPalboR cell 

lines following single treatment with palbociclib (1uM) or in combination with 

neratinib (500nM) over a time course of 24h.  (e) Immunobloting showing abundance 

of nuclear ER in MCF7 LTEDPalboR cell lines after treatment with palbociclib (1uM), 

neratinib (500nM) or the combination of both.  

 

Figure 5. siRNA kinome knockdown identified several kinases associated with 

palbociclib resistance. (a) siKinome identified targets involved in palbociclib 

resistance (PalboR) (n=2 biological and n=3 technical replicates). (b) Effect of 

escalating doses of pictilisib (PI3K inhibitor), everolimus (mTORC1 inhibitor), 

AZD1775 (WEE1 inhibitor) and THZ1 (CDK7 inhibitor) in MCF7PalboR, MCF7 

LTEDPalboR, T47DPalboR and T47D LTEDPalboR versus their corresponding parental cell 

lines (n=3 biological and n=8 technical replicates). Data represents % viable cells 

compared to vehicle control for each cell line. Error bars represent means ± SEM. 

 

Figure 6.  Effect of everolimus, neratinib and AZD1775 on tumour progression in 

palbociclib resistant PDX models. Long-term study assessing changes in relative 

tumour volumes over 60 days of treatment with palbociclib alone (50mg/kg) or in 
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combination with everomilus (2.5mg/kg), neratinib (40mg/kg) and AZD1775 

(90mg/kg) in the presence or absence of fulvestrant (50mg/kg) in a PDX model of 

resistant to palbociclib (HBCx-134 palbo-R31). Statistical significance was calculated 

using unpaired t-test. Data was available for 4 to 7 animals per group. *p<0.05; 

**p<0.01; ***p<0.001. Error bars represent means ± SEM. 

 

 


