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a b s t r a c t

Histone deacetylases (HDACs) as the promising therapeutic targets for the treatment of cancer and other
diseases, modify chromatin structure and contribute to aberrant gene expression in cancer. Inhibition of
HDACs is emerging as an important strategy in human cancer therapy and HDAC inhibitors (HDACIs)
enable histone to maintain a high degree of acetylation. In this work, molecular modeling studies,
including CoMFA, CoMFA-RF, CoMSIA and HQSAR and molecular docking were performed on a series of
coumarin-based benzamides as HDAC inhibitors. The statistical qualities of generated models were
justified by internal and external validation, i.e., cross-validated correlation coefficient (q2), non-cross-
validated correlation coefficient (r2ncv) and predicted correlation coefficient (r2pred), respectively. The
CoMFA (q2, 0.728; r2ncv, 0.982; r

2
pred; 0.685), CoMFA-RF (q2, 0.764; r2ncv, 0.960; r

2
pred; 0.552), CoMSIA (q2,

0.671; r2ncv, 0.977; r
2
pred; 0.721) and HQSAR models (q2, 0.811; r2ncv, 0.986; r

2
pred; 0.613) for training and test

set of HDAC inhibition of HCT116 cell line yielded significant statistical results. Therefore, these QSAR
models were excellent, robust and had better predictive capability. Contour maps of the QSAR models
were generated and validated by molecular docking study. The final QSAR models could be useful for the
design and development of novel potent HDAC inhibitors in cancer treatment. The amido and amine
groups of benzamide part as scaffold and the bulk groups as a hydrophobic part were key factors to
improve inhibitory activity of HDACIs.

© 2019 Published by Elsevier B.V.
1. Introduction

In cancer, the uncontrolled, rapid and pathological proliferation
of abnormal cells, epigenetics has been found to play an important
role in the origin, development, and metastasis [1]. Epigenetic
writer, eraser, and reader enzymes as well as histone deacetylases
(HDACs), DNA methyl transferases (DNMTs), and hidtone methyl
transferases (HMTs) are being increasingly used as targets for drug
Histone Acetyl Transferases;
e hydroxamic acid; TSA, Tri-
ct Unit; QSAR, Quantitative
imensional QSAR; CoMFA,
FA region focusing; CoMSIA,
QSAR, Hologram QSAR; AD,

deh).
design and discovery in cancer and other diseases including dia-
betes and neuro-degenerative and inflammatory disorders [2,3].

Among the epigentic modifications, acetylation/deacetylation of
histones is the most common mechanism which used by cells in
regulating the normal cellular processes like cell differentiation,
proliferation, angiogenesis, and apoptosis [4]. Dysregulation of the
acetylation has been associated with diverse cellular events in
cancer pathologies. Global hypoacetylation of the H4 is one such
common feature of human tumors [5].

Acetylation of histones and non-histones proteins is regulated
by two antagonistic families of enzymes, histone acetyl transferases
(HATs) and histone deacetylases (HDACs) [6].

HATs neutralized the positive charge of lysine residues of his-
tones by adding an acetyl group and leads to the relaxation of
chromatin and activates transcription [7].

HDACs are a family of ubiquitous enzymes found in bacteria,
fungi, plants, and animals [8,9] that HDACs remove acetyl groups
from ε-nitrogens of lysine residues within core histones and non-
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histone proteins (e.g. tubulin, p53, ERa, HSP 90, NF-g and GATA-1)
during post-translational protein modification [10].

The human HDAC enzyme consists of 18 isoforms, which are
divided into four classes according to their homology to yeast
models, subcellular distribution and enzymatic activity [11]. Class 1
(HDAC 1, 2, 3 and 8), class IIa (HDAC 4, 5, 7 and 9), class IIb (HDAC 6
and 10) and class IV (HDAC 11) enzymes are zinc-dependent
HDACs, whereas class III HDACs (sirtuins 1e7) are NADþ depen-
dent as a cofactor foe activity [12].

Class I HDACs are homologus to yest Rpd3 protein and are
mainly located in the nucleus, while class II HDACs are structurally
related to yeast Hda2 and shuttle between nucleus and cytoplasm.
Class III have sequence homology to yeast sir2 and class IV, also
shuttle between nucleus and cytoplasm and shows the character-
istics of both class I and II HDACs [13].

Zn2þ-dependent HDACs, especially class I enzymes are involved
with cell cycle progression, metastasis, angiogenesis and invasion
[14]. Class I HDAC isoforms show a key role in the development of
cancer and overexpressed in various human cancers such as
Scheme 1. Pharmacophore model and structures of
prostate, breast, ovarian, leukemia, colon and pancreas [15,16].
HDAC enzyme inhibition can abolish abnormal epigenetic

changes associated with different diseases such as cancer [17]. The
classification of HDAC inhibitors (HDACIs) in clinical studies de-
pends on their chemical structures and categorized into four class:
hydroxamic acid (Trichostatine A (TSA) [18], Vorinostat (SAHA)
[19], Panobinostat (LBH-5890 [20], Belinostat (PXD-101) [21]),
benzamides (Entinostate (MS-275) [22,23], Mocetinostat (MGCD-
0103) [24], Chidamide (CS-055) [25], Tacedinaline (CI-994) [26]),
short-chain fatty acids (Valproic acid) [27] and depsipeptides
(Romidepsin (FK-228) [28].

To date, four HDACIs have been approved by the FDA: vor-
inostate (cutaneous T-cell lymphoma; CTCL), romidepsin (CTCL and
peripheral T-cell lymphoma; PTCL), belinostat (relapsed or re-
fractory PTCL), and panobinostat (multiple myeloma; MM) [29].
The molecular views of several approved and clinical HDACIs are
shown in Scheme 1.

Most hydeoxamate HDACIs are pan inhibitors that target broad-
spectrum of HDAC isoforms with unwanted side effects while 2-
approved and in clinical trials HDAC inhibitors.
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amino benzamides display specific inhibiting effects on HDAC 1, 2, 3
enzymes [30,31].

Thus, understanding the structural regions of HDACIs is essen-
tial to design and discover potent and selective inhibitors. Despite
the huge variety of structural motifs, the HDACIs share a common
pharmacophore model: a zinc binding group (ZBG) that chelates
with the catalytically Zn2þ ion at the bottom of the active site, a
hydrophobic linker region, plus a polar connecting unit (CU),
interacting with hydrophobic residues of the narrow tunnel and
connect the ZBG and the CAP group, surface recognition moiety
(CAP) that interacts with residues at the entry point of the active
site of HDAC [32,33].

The CAP moiety is essential for recognizing and binding to the
residues in the enzyme active site [34]. Molecular views of enti-
nostat and coumarin benzamides as HDACIs are shown in Scheme
2.

Quantitative structure-activity relationship (QSAR) is a tech-
nique that is used in computer-assisted rational drug design and
predicts the protein-ligand interaction and to explore the correla-
tion between biological activity and molecular structure [35e37].
Three-dimensional QSAR (3D-QSAR) is a broad term encompassing
all those QSAR methods which are utilized to calculate the highly
specific interactions and a molecule, how far and with how much
power can be connected to the active site of an enzyme or protein
[38e40]. Recently, comparative molecular field analysis (CoMFA),
CoMFA region focusing (CoMFA-RF), comparative molecular simi-
larity index analysis (CoMSIA) and hologram QSAR (HQSAR) are
especially effective methods of QSAR based on statistical tech-
niques [34e36]. The CoMFA model proposed by Cramer et al. de-
scribes the molecular properties by steric (Lennard-Jones) and
electrostatic (Coulomb) energy fields of important regions of a set
of aligned compounds that predict their biological activity over a
lattice of point [41,42]. In CoMFA-RF model, steric and electrostatic
fields are calculated for aligned fragments by creating specific grid
space at the specific lattice points [43]. In CoMSIA model, proposed
by Klebe et al., a probe atom is used to calculate similarity indices,
at regularly placed grid points for the aligned molecules. Compared
to CoMFA, CoMSIA uses a Gaussian-type distance-dependent
function to assess five fields of different physicochemical properties
(i.e., steric, electrostatic, hydrophobic, hydrogen bonding donor and
acceptor [44]. Also, CoMSIA is differentiated by Gaussian functions
and no arbitrary definitions of cut off limits should be used.

HQSAR study is a comparatively new 2D-QSAR method which
employs the fragment fingerprints of molecular holograms and
other molecular descriptors to predict the biological activity of a
series of molecules [45e47]. In these models, all regression ana-
lyses performed in two steps using the partial least squares (PLS)
method [48e51].

In the present study, we performed a molecular modeling study
by combined 2D- and 3D-QSAR and molecular docking techniques.
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Scheme 2. Chemical structures of Entinostat an
2D-QSAR, using HQSAR method, and 3D-QSAR, using CoMFA,
CoMFA-RF and CoMSIA methods, were used to identify the key
structural factors influencing on inhibitory activity. Molecular
docking was used to identify some key amino acid residues at the
active site of HDAC protein and investigate the binding modes be-
tween HDAC and the selected inhibitors. The obtained results can
apply to the further structural modification, design and develop-
ment new and more potent anti-cancer drugs.
2. Materials and methods

2.1. Data set

QSAR studies were performed on a set of 21 coumarin-based
benzamides as a new class of anti-cancer agents and HDAC in-
hibitors with their biological activities (IC50 values) that recently
reported by our group [52].

These activity values (IC50 in mM) were converted to corre-
sponding pIC50 (-log IC50) values and used as a dependent variable
in CoMFA, CoMFA-RF, CoMSIA and HQSARmodels. The data set was
randomly divided into a training set (15 compounds, 70%) for QSAR
model generation and a test set (6 compounds, 30%) for external
validation of the models (Fig. 1.).
2.2. Molecular modeling and alignment

The QSAR models including CoMFA, CoMFA-RF, CoMSIA and
HQSARwere performed using the SYBYL-X 1.2. molecular modeling
software (Tripos, Inc, St. Louis, MO). Before modeling with these
primary methods, the 3D structures of compounds were drawn
using Chemoffice Bio 3D Ultra (version 12.0, Cambridge Soft Cor-
poration, Cambridge, UK, 2010). All the compounds were energy
minimized using the standardmolecular mechanics force field with
a distance dependent dielectric and the powell conjugate gradient
algorithmwith a convergence criterion of 0.05 kcal/molÅ using the
maximum iteration set to 5000 [53]. Partial atomic charges of the
compounds for electrostatic interactions were calculated by the
Gasteiger-Hückel method. Structure alignment was one of the most
important input variables in 3D-QSAR analysis and the accuracy of
the prediction power of the models was reliability dependent on
contour maps according to the structural alignment of the mole-
cules. In this study, rigid body alignment of molecules in a Mol2
database was performed using maximum common substructures
defined by Distill alignment. Compound 11 was selected as tem-
plate because the most active compound of the data set and other
compounds were aligned according to the common structure. The
molecular view and molecular structure of compound 11with bold
red common substructure and final super imposition of compounds
are shown in Fig. 2a and b, respectively.
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d a coumarin-based benzamide as HDACIs.



Fig. 1. Distribution of experimental inhibitory activities (pIC50) for the training and test sets compounds in the QSAR models.

Fig. 2. Compound 11 used as the template molecule for database alignment and Common substructure in Distill alignment shown in the bold red (a) and aligned compounds in the
training and test sets (b).
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2.3. CoMFA and CoMSIA analysis

In CoMFA method, the aligned molecules in optimal orientation
were located in a 3D cubic lattice with grid spacing of 2 Å in the x, y,
and z directionwhich extended 4.0 Å around the align molecules in
all Cartesian directions. The CoMFA steric and electrostatic fields
were calculated for each molecule using a hybridized sp3 carbon
probe atom with a Van Der Waals radius of 1.52 Å and a charge
of þ1.0. The Coulomb and Lennard-Jones potential functions were
used to estimate the electrostatic and steric interactions, respec-
tively. The energy cut off values for both steric and electrostatic
fields were set at 30 kcal/mol. In order to reduce noise and improve
efficiency, column filtering was tested in the range of 0.0e2.0 kcal/
mol and a threshold column filtering value of 2.0 kcal/mol. CoMFA-
RF in the “Advanced CoMFA”module is a technique of application of
weight to the lattice point in a CoMFA region to increase or decrease
the contribution of these points to subsequent analysis. “StDev*-
Coefficients” values as different weighting factors were employed
in addition to grid spacing for getting the better models. This in-
creases the resolution and predictive capability (q2, cross validated
r2) of a followed PLS analysis.
The CoMSIAmethod calculates the similarity indices descriptors
with the same lattice box used in CoMFA. Five physicochemical
properties of steric, electrostatic, hydrophobic, hydrogen bonding
donor and acceptor fields were evaluated using a probe atom to
charge þ1.0, radius 1 Å, hydrophobicity þ1.0, hydrogen bonding
donor þ1.0, hydrogen bonding acceptor þ1.0, attenuation factor a
of 0.3 and grid spacing 2.0 Å. A distance-dependent Gaussian type
was used between the probe atom and eachmolecule atom [53,54].
2.4. HQSAR analysis

HologramQSAR study is a 2D-QSAR techniquewhich certain the
relationship between the biological activity with the structural
fragments. This method eliminates the need for 3D structure, the
ability to achieve molecular alignment and conformational speci-
fication [55,56] by transforming the chemical representation of a
molecule into its corresponding molecular hologram. 2D chemical
database storage and searching technologies rely on linear nota-
tions that define chemical structures [Wiswesser line-formula no-
tation (WLN), simplified molecular input line entry system
(SMILES); SLN-SYBYL line notation]. The process involves the
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generation of fragments that are hashed into the array is called
molecular hologram and bin occupancies are the descriptor vari-
able [57e59].

The HQSAR method employs different parameters for the mo-
lecular hologram generation, such as hologram length (HL) values
(53, 59, 61, 72, 83, 97, 151, 199, 257, 307, 353 and 401), a fragment
distinction (atom (A), bonds (B), connections (C), hydrogen atoms
(H), chirality (Ch), and donor and acceptor (DA), and the fragment
size (2e5, 3e6, 4e7, 5e8, 6e9, 7e10).

2.5. Partial least-square (PLS) analysis

In 3D-QSAR studies, PLS method [56] an extension of multiple
regression analysis was used for the model building. Calculated
CoMFA and CoMSIA descriptors as independent variables were
used with the pIC50 values as dependent variables in the PLS
regression analysis, respectively. Before the PLS analysis, the CoMFA
and CoMSIA columns were filtered by using column filtering value
equal to 2.0 kcal/mol. The predictive ability of the models was
evaluated by leave-one-out (LOO) and leave-ten-out (L-10-O)
methods. LOO cross-validation method was used as an internal
validation to generate the optimal number of components (ONC)
with the lowest standard error of prediction (SEP) and the highest
cross-validated coefficient q2 (r2cv) that was calculated by Equation
(1):

q2 ¼ 1�
P∞

n¼1ðbyi � yiÞ2P∞
n¼1ðyi � yÞ2

(1)

whereas, byi and yi are predicted, observed activity values, and y
and by are observed and predicted mean activity values of the

training set, respectively [60]. The
P∞
n¼1

ð byi � yiÞ2 is the predictive

residual sum of squares (PRESS).
After cross validation, the final PLS analysis was carried out

using the optimal number of components with no validation to
generate the final QSAR model. The non-cross-validated analysis
performed by the conventional correlation coefficient r2(r2ncv)
(Equation (2)), standard error of estimation (SEE) and F values
calculated with the same column filtering set. High q2 and r2

(q2> 0.5, r2> 0.6) values are regarded as a proof of high predictive
ability of the built model and also r2 � q2 for a good model should
not be more than 0.3 [56].

r2 ¼ ½Pðyi � yiÞðbyi � byÞ�2Pðyi � yiÞ2 �
Pðbyi � byÞ2 (2)

Bootstrapping analysis was performed for 100 runs to assess the
statistical confidence of the derived models [42,61e63]. Contour
maps were generated graphically after models were developed in
CoMFA/CoMFA-RF and CoMSIA using the field type “StDev*Coeff”
and the contour levels were set to default values.

In HQSAR, LOO cross-validation was applied to determine the
number of components that yields a good predictive model. PLS
then yields a mathematical equation that related the molecular
hologram bin values to the inhibitory activity of the compounds in
the database.

2.6. Validation of the QSAR model

A good internal validation showed only a high q2 in the training
set of compounds, but it did not indicate the high predictive ability
of the established models, therefore external validation was
essential. The predictive ability of 3D-QSAR models was validated
by calculating biological activities of the compounds which were
not included in the training set and used as a test set. Test set was
marked with * in Tables 1 and 2.

The predictive correlation coefficient r2pred (r
2
pred>0.6) [64], based

on the test set was calculated using Equation (3):

r2pred ¼
�
SD� PRESS

SD

�
(3)

SD is the sum of squared deviation between the biological ac-
tivities of the test set molecules and the mean activity of the
training set molecules. PRESS is the sum of squared derivations
between the predicted and actual activities of the test set
molecules.

The performance of the regression models constructed herewas
evaluated using the root mean squared error (RMSE), mean abso-
lute error (MAE) (RMSE and MAE close to zero), residual sum of
squares (RSS) and concordance correlation coefficient (CCC;
CCC� 0.85) of the training and validation sets [65]. The RMSE and
the MAE are calculated for the data set as Equations (4)e(7):

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðyi � byiÞ2
n

s
(4)

MAE ¼
Pn

i¼1jyi � byi j
n

(5)

RSS ¼
Xn
i¼1

ðyi � byiÞ2 (6)

CCC ¼ 2
Pn

i¼1ðyi � yÞðbyi � byÞPn
i¼1ðyi � yÞ2 þPn

i¼1ðbyi � byÞ2 þ nðy� byÞ2 (7)

To obtain the best predictive model for the test set, additional
validation of model, the following Parameters [64] were used (Eqs.
(8)e(12)):

r2o ¼1�
Pðyi � k� byiÞ2Pðyi � yiÞ2

(8)

r
�2
o ¼1�

P�byi � k�� yi
�2Pð byi � byÞ2 (9)

k ¼
Pðyi � byiÞPðbyiÞ2 (10)

k�¼
Pðyi � byiÞP ðyiÞ2

(11)

�
r2 � r2o

�
r2

<0:1 or

�
r2 � r�2o

�
r2

<0:1 (12)

0:85� k � 1:15 or 0:85 � k0 � 1:15r20 and r
02
0 are squared

correlation coefficients of determination for regression lines
through the origin between predicted (y) and observed (x) activ-
ities and vice versa. The values of k and k

0
are the slopes of their

models, respectively.
To further assess the models, another validation statistical pa-

rameters r2m and Dr2m were determined by following Equations (13)
and (14):



Table 1
Molecular view and the Corresponding Experimental and Predicted pIC50 Values by QSAR models (HCT116).

Predicted pIC50

Compd R Experimental pIC50 CoMFA CoMFA-RF CoMSIA HQSAR

1 4.942 4.969 5.061 4.952 4.933

2 5.286 5.295 5.227 5.284 5.251

3a 5.690 5.407 5.690 5.524 5.552

4 5.511 5.495 5.49 5.508 5.463

5 5.636 5.642 5.585 5.646 5.662

6a 5.962 5.842 5.629 5.684 5.915

7 5.177 5.152 5.148 5.169 5.248

8 5.603 5.617 5.594 5.639 5.547

9a 5.853 5.647 5.723 5.760 5.847

10 5.882 5.893 5.808 5.86 5.864

11 6.602 6.592 6.583 6.587 6.623

12 5.030 5.072 5.07 5.011 5.027

13 5.428 5.426 5.364 5.431 5.343

14a 5.609 5.513 5.533 5.526 5.6

15 5.322 5.278 5.268 5.288 5.37

R. Abdizadeh et al. / Journal of Molecular Structure 1199 (2020) 1269616



Table 1 (continued )

Predicted pIC50

Compd R Experimental pIC50 CoMFA CoMFA-RF CoMSIA HQSAR

16 5.752 5.938 6.011 5.965 5.833

17 6.376 6.286 6.362 6.252 6.284

18a 6.00 6.011 5.937 6.014 6.06

19 5.212 5.195 5.334 5.242 5.268

20 5.371 5.409 5.175 5.414 5.125

21a 6.097 5.928 5.854 5.917 5.745

a Test set.
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r2m ¼ r2
�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��r2 � r2o
��q �

(13)

Dr2m ¼
���r2m � r

�2
m

��� (14)

r2m value more than 0.5 (r2m>0.5) and Dr2m<0.2 show good external
predictability of the models.
2.7. Molecular docking study

Molecular docking as one of the most frequently methods in
drug design was used to investigate the mode of interaction of
small molecules with the appropriate target binding sites. The
docking study was performed using Operation Environment (MOE)
software (www.chemcomp.com) between themost and least active
compounds with HDAC1 enzyme. For the preparation of ligands
prior to docking, the 2D structures of ligands were prepared by
Chemoffice ultra (version 12.0, Cambridge Soft Corporation, Cam-
bridge, UK, 2010) and converted to 3D format by Hyper Chem7
(Hyper cube Inc, USA) using AM1 semi-empirical method. The li-
gands in our data set were docked in the active site of HDAC1 (PDB
ID: 4BKX) by MOE software. The docking was performed by the
triangle matcher placement algorithm in combinationwith London
dG scoring function and force field as refinement method and the
conformation of compounds were further analyzed by LigXmodule
in MOE software.
3. Results and discussion

3.1. CoMFA and CoMFA-RF statistical results

The statistical results of CoMFA and CoMFA-RF models of HDAC
inhibitory activity of HCT116 and A2780 are summarized in Tables 3
and 4. The CoMFA analysis was carried out with steric and elec-
trostatic fields at column filtering of 2.0 kcal/mol.

PLS analysis of CoMFA of training set of HTC-116 and A2780 cell
lines including leave-one-out (LOO) and leave-ten-out (L-10-O)
cross validation with ONC 6 and 4 showed q2 values of 0.728 and
0.721, r2cv (L-10-O) values of 0.750 and 0.711 and SEP of 0.309 and
0.224, respectively. These statistical results showed that the model
had a better predictive capability.

The non-cross-validated PLS analysis gave r2ncv of 0.982 and
0.961 with standard error of estimate (SEE) of 0.081 and 0.084, F
values of 79.930 and 67.786, r2 � q2 of 0.254 and 0.240 and Rpearson
of 0.954 and 0.936 for HCT116 and A2780 cell lines, respectively
which supported the statistical validity of the developed model.
The contributions from steric and electrostatic field descriptors
explained 0.557 and 0.414; 0.586 and 0.443 of the total variance,
respectively, that indicated steric effect was more important than
the electrostatic fraction.

After using region focusing, a new model of CoMFA-RF was
created in the statistical parameters. The cross-validation and non-
cross-validated PLS calculation results were similar to CoMFA
model. This approach showed the q2 values of 0.764 and 0.665 with
ONC of 4 and r2cv (L-10-O) of 0.758 and 0.679 and SEP of 0.245 and
0.261 for HCT116 and A2780 cell lines, respectively. The non-cross-
validated PLS analysis resulted in high r2ncv values of 0.960 and 0.842
with low SEE values of 0.108 and 0.144, F values of 65.274 and
21.082, r2 � q2 values of 0.196 and 0.220 and Rpearson values of 0.925
and 0.912 for HCT116 and A2780 cell lines, respectively. The
contribution of steric and electrostatic field descriptors was 0.563
and 0.437; 0.730 and 0.270, respectively in CoMFA-RF.

The bootstrapped results were shown in r2bs and SEEbs values of
1.00 and 0.998; 0.00 and 0.002 (CoMFA) and 0.997 and 0.995; 0.004
and 0.006 (CoMFA-RF), for HCT116 and A2780 cell lines, respec-
tively, that suggesting a good internal consistency and the absence
of systematic errors of the models within the training data set.

http://www.chemcomp.com


Table 2
Molecular view and the Corresponding Experimental and Predicted pIC50 Values by QSAR models (A2780).

Predicted pIC50

Compd R Experimental pIC50 CoMFA CoMFA-RF CoMSIA HQSAR

1 4.260 4.338 4.385 4.438 4.364

2 4.397 4.407 4.339 4.444 4.374

3a 4.483 4.367 4.304 4.411 4.567

4 4.665 4.637 4.714 4.565 4.62

5 4.768 4.75 4.783 4.631 4.823

6a 4.829 4.864 4.839 4.729 4.977

7 4.560 4.494 4.448 4.476 4.477

8 4.892 5.02 4.913 5.097 5.00

9a 4.681 4.836 4.754 4.895 4.803

10 4.996 4.957 4.841 5.146 4.987

11 5.686 5.602 5.478 5.334 5.609

12 4.761 4.764 4.877 4.825 4.69

13 4.802 4.768 4.896 4.785 4.803

14a 5.012 4.958 5.02 5.046 5.031

15 4.996 4.858 4.754 4.814 4.833

R. Abdizadeh et al. / Journal of Molecular Structure 1199 (2020) 1269618



Table 2 (continued )

Predicted pIC50

Compd R Experimental pIC50 CoMFA CoMFA-RF CoMSIA HQSAR

16 5.219 5.245 5.257 5.22 5.172

17 5.267 5.416 5.423 5.324 5.287

18a 5.186 5.152 5.205 5.29 5.303

19 4.533 4.636 4.669 4.566 4.629

20 4.622 4.879 4.907 4.837 4.426

21a 5.310 5.197 5.153 5.271 5.157

a Test set.

Table 3
Statistical parameters of QSAR models (HCT116).

Parameters CoMFA CoMFA-RF CoMSIA HQSAR

PLS analysis
q2 0.728 0.764 0.678 0.811
r2ncv(L-10-O) 0.750 0.758 0.678 0.808

ONC 6 4 6 5
SEP 0.309 0.261 0.386 0.245
r2ncv 0.982 0.960 0.977 0.986

SEE 0.081 0.108 0.102 0.067
R pearson 0.954 0.925 0.931 0.967
F 79.930 65.274 37.118 138.870
r2bs 1.00 0.997 0.997 0.999

SEEbs 0.00 0.004 0.006 0.001
Contribution
Steric 0.586 0.563 0.206 e

Electrostatic 0.414 0.437 0.311 e

Hydrophobic e e 0.383 e

Donor e e 0.043 e

Acceptor e e 0.057 e

q2: cross-validated correlation coefficient after the leave-one-out procedure; ONC:
optimal number of principal components; r2ncv : non-cross-validated correlation
coefficient; SEE: standard error of estimate; F: the value of F statistic; r2bs: the
average r2 value from a bootstrapping analysis for 100 runs; SEEbs: the average SEE
value from a bootstrapping analysis for 100 runs; r2cv :(mean) the average rcv from
ten times tenfold cross-validation.

Table 4
Statistical parameters of QSAR models (A2780).

Parameters CoMFA CoMFA-RF CoMSIA HQSAR

PLS analysis
q2 0.721 0.665 0.634 0.829
r2cv(L-10-O) 0.711 0.679 0.565 0.743

ONC 4 4 2 4
SEP 0.224 0.245 0.235 0.224
r2ncv 0.961 0.885 0.842 0.992

SEE 0.084 0.144 0.155 0.093
R pearson 0.936 0.912 0.910 0.940
F 67.786 21.082 34.520 54.800
r2bs 0.998 0.995 1.00 0.998

SEEbs 0.002 0.006 0.00 0.004
Contribution
Steric 0.557 0.730 0.227 e

Electrostatic 0.443 0.270 0.355 e

Hydrophobic e e 0.318 e

Donor e e 0.041 e

Acceptor e e 0.059 e

q2: cross-validated correlation coefficient after the leave-one-out procedure; ONC:
optimal number of principal components; r2ncv: non-cross-validated correlation
coefficient; SEE: standard error of estimate; F: the value of F statistic; r2bs: the
average r2 value from a bootstrapping analysis for 100 runs; SEEbs: the average SEE
value from a bootstrapping analysis for 100 runs; r2cv :(mean) the average rcv from
ten times tenfold cross-validation.

R. Abdizadeh et al. / Journal of Molecular Structure 1199 (2020) 126961 9
3.2. CoMSIA statistical results

The CoMSIA technique deals with direct correlation of ligand
affinities to changes in molecular properties [66]. The CoMSIA
model was generated using combinations of five steric (S), elec-
trostatic (E), hydrophobic (H), hydrogen bonding acceptor (A) and
hydrogen bonding donor (D) fields. The statistical parameters of
CoMSIA model were summarized in Tables 3 and 4. In PLS analysis,
the q2 values of 0.678 and 0.634 with ONC of 6 and 2, SEP of 0.386
and 0.235 and r2cv (L-10-O) of 0.678 and 0.586 was obtained with
column filtering of 2.0 kcal/mol for HCT116 and A2780 cell lines,
respectively. The non-cross-validated PLS analysis gave r2ncv values
of 0.977 and 0.842 with SEE values of 0.102 and 0.155, F values of
37.118 and 34.520, r2 � q2 values of 0.306 and 0.208 and Rpearson
values of 0.931 and 0.910 for HCT116 and A2780 cell lines,
respectively.

High bootstrapped r2 values of 0.997 and 1.00 and SEEbs of 0.006
and 0.00 suggest a high degree of confidence in the analysis. For



Table 5
HQSAR analysis of various fragment distinctions on the key statistical parameters
using fragment size (4e7) (HCT116).

model Fragment distinction q2 SEP r2 SEE HL N

1e1 A 0.390 0.385 0.739 0.252 307 2
1e2 A/B 0.468 0.375 0.890 0.170 257 3
1e3 A/C 0.573 0.336 0.914 0.151 199 3
1e4 A/H 0.779 0.241 0.965 0.096 307 3
1e5 A/Ch 0.390 0.385 0.739 0.252 307 2
1e6 A/DA 0.386 0.403 0.876 0.181 83 3
1e7 A/B/C 0.522 0.355 0.903 0.160 401 3
1e8 A/B/H 0.760 0.242 0.890 0.164 61 2
1e9 A/B/Ch 0.466 0.375 0.890 0.171 257 3
1e10 A/B/DA 0.522 0.371 0.933 0.138 257 4
1e11 A/C/H 0.745 0.259 0.959 0.104 199 3
1e12 A/C/Ch 0.573 0.336 0.914 0.151 199 3
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CoMSIA, the contribution of the steric, electrostatic, hydrophobic,
hydrogen bond donor and hydrogen bond acceptor field descriptors
were 0.206 and 0.227; 0.311 and 0.355; 0.383 and 0.318; 0.0.043
and 0.041; 0.057 and 0.0.059, for HCT116 and A2780 cell lines,
respectively. These molecular fields were not completely inde-
pendent of each other and could form 31 combinations (Fig. 3.).

Among the first five models, hydrophobic field with high q2

values (q2¼ 0.615 and 0.739 for HCT116 and A2780) was more
important than the other four fields.

In CoMSIA model, the combination of hydrophobic and
hydrogen bond donor (HD) was found to be the best. CoMSIA (HD)
combination gave q2 values of 0.675 and 0.779 for HCT116 and
A2780 cell lines, respectively. In the model CoMSIA, this combina-
tion shared the large part and indicated that internal prediction of
HD combination was good.

In the CoMFA model, the steric field contribution and in the
CoMSIA model, the hydrophobic and H-donor and hydrogen bond
donor contributions shared the large part. In docking studies, it was
also recognized that the steric and hydrophobic effects and H-bond
network around the key residues in the active site played a sig-
nificant role in the binding of ligand to HDAC1. It was also
demonstrated that the hydrophobic and steric properties were
important in the design of new HADC1 inhibitors.
1e13 A/C/DA 0.493 0.382 0.938 0.134 199 4
1e14 A/H/Ch 0.771 0.246 0.961 0.101 307 3
1e15 A/H/DA 0.705 0.291 0.959 0.109 199 4
1e16 A/Ch/DA 0.361 0.411 0.868 0.187 83 3
1e17 A/B/C/H 0.764 0.250 0.964 0.098 151 3
1e18 A//C/Ch 0.522 0.355 0.903 0.160 401 3
1e19 A/B/C/DA 0.478 0.388 0.934 0.137 401 4
1e20 A/B/H/Ch 0.811 0.245 0.986 0.067 61 3
1e21 A/B/H/DA 0.725 0.295 0.977 0.085 61 5
1e22 A/B/Ch/DA 0.507 0.377 0.933 0.139 257 4
1e23 A/C/H/Ch 0.742 0.261 0.958 0.105 199 3
1e24 A/H/Ch/DA 0.715 0.286 0.968 0.101 97 4
1e25 A/C/H/DA 0.793 0.270 0.991 0.055 53 6
1e26 A/C/H/Ch/DA 0.696 0.310 0.978 0.084 53 5
1e27 A/B/H/Ch/DA 0.772 0.268 0.979 0.081 61 5
1e28 A/B/C/Ch/DA 0.521 0.371 0.921 0.151 307 4
1e29 A/B/C/H/DA 0.661 0.320 0.941 0.130 151 4
1e30 A/B/C/H/Ch 0.765 0.249 0.964 0.097 151 3
1e31 A/B/C/H/Ch/DA 0.664 0.311 0.938 0.134 151 4

q2, cross-validated correlation coefficient; r2, non-cross-validated correlation coef-
ficient; SEE, standard estimated error; HL, hologram length; N, optimal number of
components. Fragment distinction: A, atom; B, bond; C, connections; H, hydrogen
atom; Ch, chirality; D, donor and acceptor.
The model chosen for analysis is highlighted in bold fonts.
3.3. HQSAR statistical results

The HQSAR is a technique for QSAR analysis that is useful in
exploring the combination of each molecule under study to the
biological activity and eliminates the need of alignment, generation
of 3D structures and putative binding conformation. The perfor-
mance of the HQSAR model was affected by three parameters,
including the fragment size, the fragment type (fragment distinc-
tion) and hologram length. The HQSAR models with statistical pa-
rameters are shown in Tables 3 and 4.

The best statistical results of HQSAR model were obtained with
q2 values of 0.811 and 0.829, ONC of 5 and 4, SEP of 0.245 and 0.224
and r2cv (L-10-O) of 0.808 and 0.743, r2ncv of 0.986 and 0.992 with SEE
of 0.067 and 0.093, F values of 138.870 and 54.800, r2� q2 of 0.175
and 0.163, r2bs of 0.999 and 0.998 with SEEbs of 0.001 and 0.004 and
Rpearson of 0.967 and 0.940 using a relevant hologram length (HL) of
61 and 353, fragment distinction (atom (A), bonds (B), hydrogen
atoms (H) and chirality (Ch), and atoms (A), hydrogen atoms (H),
Fig. 3. The results of the distribution of q2 values that were obtained from 31 combinations
bond donor; a, H-bond acceptor.
chirality (Ch) and donor and acceptor (DA), and the fragment size of
4e7 (Tables 5e8) for HDAC inhibitory activity of HCT116 and
A2780 cell lines, respectively. All the results demonstrated that the
HQSAR model was also highly predictive.

3.4. Validation of QSAR models

The predictive abilities of the QSAR models were externally
of CoMSIA fields of HCT116 and A2780. s, steric; e, electrostatic; h, hydrophobic; d, H-



Table 6
The statistical results of QSAR model using the model 1e20 (including fragments A/
B/H/Ch) with different fragment sizes (HCT116).

model Fragment size q2 SEP r2 SEE HL N

2e1 1e4 0.382 0.338 0.639 0.297 353 2
2e2 2e5 0.694 0.297 0.955 0.114 61 4
2e3 3e6 0.573 0.336 0.914 0.151 199 3
2e4 4e7 0.807 0.226 0.954 0.110 61 3
2e5 5e8 0.776 0.243 0.948 0.117 71 3
2e6 6e9 0.741 0.261 0.940 0.126 71 3
2e7 7e10 0.758 0.264 0.982 0.071 257 4
2e8 8e11 0.682 0.278 0.821 0.209 199 2
2e9 9e12 0.571 0.323 0.821 0.209 199 2

q2, cross-validated correlation coefficient; r2, non-cross-validated correlation coef-
ficient; SEE, standard estimated error; HL, hologram length; N, optimal number of
components. Fragment distinction: A, atom; B, bond; C, connections; H, hydrogen
atom; Ch, chirality; D, donor and acceptor.
The model chosen for analysis is highlighted in bold fonts.

Table 7
HQSAR analysis of various fragment distinctions on the key statistical parameters
using fragment size (4e7) (A2780).

model Fragment distinction q2 SEP r2 SEE HL N

1e1 A 0.399 0.291 0.576 0.244 401 1
1e2 A/B 0.525 0.279 0.913 0.119 53 3
1e3 A/C 0.398 0.302 0.761 0.190 61 2
1e4 A/H 0.792 0.185 0.965 0.076 61 3
1e5 A/Ch 0.399 0.291 0.576 0.244 401 1
1e6 A/DA 0.404 0.290 0.566 0.247 307 1
1e7 A/B/C 0.375 0.297 0.571 0.246 353 1
1e8 A/B/H 0.737 0.217 0.967 0.077 61 4
1e9 A/B/Ch 0.598 0.268 0.974 0.068 53 4
1e10 A/B/DA 0.572 0.306 0.979 0.068 53 6
1e11 A/C/H 0.755 0.210 0.975 0.067 97 4
1e12 A/C/Ch 0.398 0302 0.761 0.190 61 2
1e13 A/C/DA 0.460 0.298 0.760 0.199 61 3
1e14 A/H/Ch 0.760 0.198 0.966 0.075 257 3
1e15 A/H/DA 0.821 0.198 0.991 0.044 353 6
1e16 A/Ch/DA 0.581 0.287 0.956 0.094 151 5
1e17 A/B/C/H 0.758 0.218 0.978 0.066 151 5
1e18 A//C/Ch 0.374 0.297 0.571 0.246 353 1
1e19 A/B/C/DA 0.524 0306 0.960 0.089 401 5
1e20 A/B/H/Ch 0.743 0.206 0.950 0.091 61 3
1e21 A/B/H/DA 0.815 0.201 0.986 0.055 61 6
1e22 A/B/Ch/DA 0.329 0.307 0.524 0.259 353 1
1e23 A/C/H/Ch 0.754 0.210 0.975 0.068 97 4
1e24 A/H/Ch/DA 0.829 0.224 0.992 0.093 353 6
1e25 A/C/H/DA 0.750 0.234 0.985 0.058 71 6
1e26 A/C/H/Ch/DA 0.785 0.217 0.971 0.079 53 6
1e27 A/B/H/Ch/DA 0.783 0.207 0.976 0.069 61 5
1e28 A/B/C/Ch/DA 0.528 0.305 0.970 0.077 401 5
1e29 A/B/C/H/DA 0.730 0.231 0.982 0.059 151 5
1e30 A/B/C/H/Ch 0.762 0.217 0.979 0.065 151 5
1e31 A/B/C/H/Ch/DA 0.528 0.305 0.970 0.077 401 5

q2, cross-validated correlation coefficient; r2, non-cross-validated correlation coef-
ficient; SEE, standard estimated error; HL, hologram length; N, optimal number of
components. Fragment distinction: A, atom; B, bond; C, connections; H, hydrogen
atom; Ch, chirality; D, donor and acceptor.
The model chosen for analysis is highlighted in bold fonts.

Table 8
The statistical results of QSAR model using the model 1e24 (including fragments A/
H/Ch/DA) with different fragment sizes (A2780).

model Fragment size q2 SEP r2 SEE HL N

2e1 1e4 0.471 0.273 0.604 0.236 59 1
2e2 2e5 0.468 0.274 0.603 0.236 61 1
2e3 3e6 0.820 0.198 0.993 0.040 97 6
2e4 4e7 0.829 0.194 0.992 0.042 353 6
2e5 5e8 0.816 0.182 0.964 0.080 307 4
2e6 6e9 0.819 0.180 0.954 0.090 53 4
2e7 7e10 0.797 0.191 0.937 0.106 83 4
2e8 8e11 0.748 0.212 0.960 0.084 307 4
2e9 9e12 0.743 0.225 0.973 0.073 83 5

q2, cross-validated correlation coefficient; r2, non-cross-validated correlation coef-
ficient; SEE, standard estimated error; HL, hologram length; N, optimal number of
components. Fragment distinction: A, atom; B, bond; C, connections; H, hydrogen
atom; Ch, chirality; D, donor and acceptor.
The model chosen for analysis is highlighted in bold fonts.

Table 9
Statistical parameters of validation method for QSAR models (HCT116).

Parameters CoMFA CoMFA-RF CoMSIA HQSAR

r2pred 0.685 0.552 0.721 0.613

r2o 0.765 0.629 0.804 0.798

r�2o
0.817 0.631 0.890 0.726

(r2-r2o)/r
2 0.064 0.053 0.082 0.050

(r2-r�2o)/r
2 0.001 0.051 0.052 0.045

k 0.974 0.972 0.979 0.972
k' 1.031 1.027 1.026 1.027
r2m 0.629 0.540 0.640 0.612

r�2m
0.792 0.543 0.772 0.620

Dr2m 0.163 0.003 0.132 0.008

RMSEtrain 0.097 0.104 0.094 0.107
RMSEtest 0.035 0.101 0.091 0.024
MAEtrain 0.053 0.068 0.062 0.060
MAEtest 0.014 0.063 0.044 0.011
RSStrain 0.199 0.227 0.134 0.239
RSStest 0.026 0.213 0.175 0.011
CCCtrain 0.948 0.945 0.966 0.937
CCCtest 0.979 0.850 0.985 0.993

r2pred: predicted correlation coefficient for the test set of compounds.
r2o : correlation coefficient of regression through the origin for predicted versus
observed activities (test set).
r�2o : correlation coefficient of regression through the origin for observed versus
predicted activities (test set).
r2m: modified squared correlation coefficient (test set); RMSE: root mean squared
error; MAE: mean absolute error; RSS: residual sum of squares; CCC: concordance
correlation coefficient.
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validated using the independent test set that was not used for the
model generation [64]. q2 and r2 parameters, obtained from inter-
nal validation, were used for confirming the stability and the pre-
dictive ability of the models. The results of external validation
parameters are listed in Tables 9 and 10. The QSAR models for the
whole test set includes six compounds gave the r2pred and r2m values

of 0.685 and 0.737; 0.629 and 0.574 (CoMFA), 0.552 and 0.680;
0.540 and 0.532 (CoMFA-RF), 0.721 and 0.756; 0.640 and 0.720
(CoMSIA), and 0.613 and 0.730; 0.612 and 0.552 (HQSAR) and high
slope regression lines with k and k

0
values of 0.947 and 1.080; 1.031
and 0.990 (CoMFA), 0.972 and 1.00; 1.027 and 0.998 (CoMFA-RF),
0979 and 1.008; 1.026 and 0.998 (CoMSIA), and 0.972 and 1.001;
1.027 and 0.997 (HQSAR) for HDAC inhibitory activity of HCT116

and A2780, respectively. r2o and r�2o values of 0.765 and 0.689; 0.817
and 0.735 (CoMFA), 0.629 and 0.628; 0.631 and 0.648 (CoMFA-RF),
0.804 and 0.739; 0.890 and 0.757 (CoMSIA), and 0.798 and 0.662;
0.726 and 0.705 (HQSAR) for HDAC inhibitory activity of HCT116
and A2780 cell lines, respectively, were used to calculate the rela-

tionship between r2, r2o and r�2o that (r
2-r2o)/r

2 and (r2-r�2o)/r
2 values of

0.064 and 0.068; 0.001 and 0.005 (CoMFA), 0.053 and 0.064; 0.051
and 0.034 (CoMFA-RF), 0.082 and 0.034; 0.052 and 0.010 (CoMSIA),
and 0.050 and 0.072; 0.045 and 0.011 (HQSAR), respectively were
obtained.

The QSAR models yielded RMSE, MAE and CCC values of 0.097
and 0.089, 0.053 and 0.058, 0.948 and 0.940; 0.035 and 0.126, 0.014
and 0.045, 0.979 and 0.959 (CoMFA); 0.104 and 0.109, 0.068 and
0.077, 0.945 and 0.913; 0.101 and 0.076, 0.063 and 0.030, 0.850 and



Table 10
Statistical parameters of validation method for QSAR models (A2780).

Parameters CoMFA CoMFA-RF CoMSIA HQSAR

r2pred 0.737 0.680 0.756 0.730

r2o 0.689 0.628 0.739 0.662

r�2o
0.735 0.648 0.757 0.705

(r2-r2o)/r
2 0.068 0.064 0.034 0.072

(r2-r�2o)/r
2 0.005 0.034 0.010 0.011

k 1.080 1.00 1.008 1.001
k' 0.990 0.998 0.990 0.997
r2m 0.574 0.532 0.720 0.552

r�2m
0.692 0.570 0.640 0.649

Dr2m 0.118 0.038 0.080 0.097

RMSEtrain 0.089 0.109 0.107 0.078
RMSEtest 0.126 0.076 0.093 0.061
MAEtrain 0.058 0.077 0.075 0.053
MAEtest 0.045 0.030 0.038 0.029
RSStrain 0.170 0.250 0.241 0.126
RSStest 0.334 0.121 0.180 0.078
CCCtrain 0.940 0.913 0.913 0.952
CCCtest 0.959 0.878 0.857 0.937

r2pred: predicted correlation coefficient for the test set of compounds.
r2o : correlation coefficient of regression through the origin for predicted versus
observed activities (test set).
r�2o : correlation coefficient of regression through the origin for observed versus
predicted activities (test set).
r2m: modified squared correlation coefficient (test set); RMSE: root mean squared
error; MAE: mean absolute error; RSS: residual sum of squares; CCC: concordance
correlation coefficient.

Fig. 4. The plot of predicted pIC50 versus experimental pIC50 values f
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0.878 (CoMFA-RF); 0.094 and 0.107, 0.062 and 0.075, 0.966 and
0.913; 0.091 and 0.093, 0.044 and 0.038, 0.985 and 0.857 (CoMSIA);
0.107 and 0.078, 0.060 and 0.053, 0.937 and 0.952; 0.024 and 0.061,
0.011 and 0.029, 0.993 and 0.937 (HQSAR) for Training and test set
of HCT116 and A2780 HDAC inhibitory activity, respectively.

From the values of the performance criteria parameters yielded
by the QSARs in training and test data (Tables 9 and 10), it is evident
that all of the models yielded considerably low RMSE and MAE
values and high CCC values which show that models built by
training set could be used for the prediction of these chemotypes.

These results confirm that the QSAR models, especially QSAR
model results from HDAC inhibitory activity of HCT116 could be
used to predict the biological activities of newcompounds and their
derivatives.

The correlation plots between the predicted and experimental
activities for HCT116 and A2780 are shown in Figs. 4 and 5,
respectively. Most of the compounds were located on or near to the
trend line in the QSAR models and these results confirm that these
models had good predictive ability for new compounds.

The residual values of the QSAR models for HCT116 and
A2780 cell lines are shown in Figs. 6 and 7, respectively. The CoMSIA
and HQSAR models showed smaller residuals than the CoMFA and
CoMFA-RF models and were the better models.

3.5. Evaluation of the Y -randomization test and application
domain (AD) of model

The QSAR models were further validated by applying the Y-
or training and test sets compounds by QSAR models (HCT116).



Fig. 5. The plot of predicted pIC50 versus experimental pIC50 values for training and test sets compounds by QSAR models (A2780).

Fig. 6. Residual plots between experimental and predicted values for QSAR models (HCT116).

R. Abdizadeh et al. / Journal of Molecular Structure 1199 (2020) 126961 13



Fig. 7. Residual plots between experimental and predicted values for QSAR models (A2780).
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randomization test to assess the robustness of the models and to
avoid chance correlation [67,68]. Thus, for every original model,
several random shuffles of the dependent variable (biological ac-
tivity) were performed and a new QSAR model was developed
using the original independent variable matrix and the results are
shown in Table 11. The low q2 and r2ncv values (q2< 0.5 and r2ncv <
0.6) show that the good results obtained in the formulation of the
final models were not by chance.

For a new compound with no experimental data, a predicted
Table 11
q2 and r2ncv values after several Y-randomization tests.

Y-random Iteration HCT116

CoMFA CoMSIA

q2 r2ncv q2

1 �0.210 0.371 �0.353
2 �0.321 0.430 �0.320
3 �0.172 0.332 �0.182
4 �0.175 0.307 �0.186
5 �0.092 0.341 �0.155
6 �0.120 0.307 �0.137
7 �0.117 0.330 �0.401
8 �0.240 0.362 �0.256
9 �0.190 0.343 �0.193
10 �0.111 0.321 �0.117
11 �0.237 0.353 �0.248
12 �0.260 0.380 �0.248
13 �0.193 0.334 �0.198
14 �0.172 0.320 �0.183
15 �0.203 0.332 �0.220
16 �0.281 0.370 �0.273
17 �0.227 0.361 �0.237
18 �0.250 0.374 �0.260
19 �0.220 0.335 �0.240
20 �0.245 0.373 �0.242
Non-Random 0.728 0.982 0.678
value of QSAR models without an idea of reliability of the value is
not useful. Therefore, for evaluating new compounds, a very
important step in QSAR model development is the definition of the
applicability domain of regression or classification models [69].

The Williams plot, the plot of the standardized residuals (d) vs.
leverage values (hi), was used to illustrate the predictive and ex-
press the applicability domain of the models for each chemical
compound [70,71].

The standardized residuals (d) value is calculated by Equation
(15) [72]:
A2780

CoMFA CoMSIA

r2ncv q2 r2ncv q2 r2ncv

0.228 �0.221 0.375 �0.352 0.237
0.344 �0.342 0.441 �0.226 0.350
0.275 �0.201 0.334 �0.164 0.289
0.330 �0.189 0.321 �0.144 0.342
0.346 �0.111 0.352 �0.189 0.355
0.166 �0.127 0.320 �0.162 0.172
0.380 �0.120 0.332 �0.435 0.390
0.271 �0.251 0.369 �0.227 0.283
0.332 �0.187 0.347 �0.184 0.341
0.173 �0.105 0.335 �0.117 0.180
0.348 �0.224 0.372 �0.262 0.368
0.282 �0.235 0.383 �0.195 0.276
0.328 �0.175 0.335 �0.203 0.348
0.338 �0.169 0.316 �0.190 0.357
0.359 �0.184 0.352 �0.255 0.373
0.372 �0.286 0.374 �0.249 0.381
0.330 �0.253 0.368 �0.230 0.346
0.352 �0.236 0.373 �0.268 0.369
0.381 �0.221 0.333 �0.241 0.392
0.334 �0.258 0.380 �0.122 0.340
0.977 0.721 0.961 0.634 0.842
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d ¼ yi � byiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðyi�byi Þ2
ðn�A�1Þ

r (15)

where yi; byi are the observed and predicted values for i-th the
compound, respectively, n is the number of compounds and A is the
number of descriptors. Also, the leverage value (hi) is defined by
Equation (16):

hi¼ XT
i ðXTXÞ�1

Xi ði ¼ 1; nÞ (16)

where xi is the descriptor-row vector of the i-th the compound, XT
i

is the transpose of xi, X is the descriptor matrix of the training set
compounds and XT is the transpose of X.

The warning leverage value (h*), as a prediction tool, is
expressed as:

h* ¼ 3ðkþ 1Þ
n

where k is the number of model descriptors and n is the number of
training compounds.

The Williams plot illustrates the distribution of data and its
restricting rang termed cutoff lines which all data should be be-
tween ±3 units (horizontal dotted line) for standardized residuals
and the leverage value (hi) should be less than warning leverage
(hi < h*). The Williams plot for the training set is used to identify
molecules with the greatest structural influence (hi < h*) in
developing the QSAR models. Molecules with hi > h* are evaluated
to be unreliably predicted by the models due to substantial
extrapolate.

Cook's distance is used to estimate the influence of a single
Fig. 8. Williams plot describing the applicability domain of the CoMFA model for the traini
observation of the model [73], and is defined by Equation (17):

Di ¼
e2i

pþ 1
*

hi
1� hi

(17)

where e2i is the standard residual of the i-th the compound, p is the
number of descriptors, and hi is the leverage value of the i-th the
compound. The cutoff of the Cook's distance is defined as 4

ðn�p�1Þ ,

and the compounds with Cook's distance higher than the cutoff
value are marked as highly influential points of the model.

In this work, for CoMFA and CoMSIA models, most of the com-
pounds fall into their corresponding application domain. These
results indicated that our QSAR models had achieved a reliable
activity prediction for the compounds.

As shown in the Williams plot of CoMFA model for data set
(Fig. 8a), only one compound (8) of the training set for HCT116 had
greater value than the warning leverage (h*) value of 0.567. This
compound had low standard residual value and could be consid-
ered as influential in fitting the model performance, but not
necessarily outlier to be deleted from the training set. The test
compounds were within the applicability domain (AD) of HCT116
and A2780 indicating that their predicted activity values were
reliable. Also, at the Cook's plot (cutoff¼ 0.333) of CoMFAmodel for
HCT116 (Fig. 8b); therewas not any highly influential compound for
training and test set and one highly influential compound for
A2780 may slightly distort the regression. In addition, the histo-
grams of the residuals distribution for HCT116 and A2780 were
confirmed with histogram plots as shown in Fig. 9c and c*.

Also, at the Williams plots of CoMSIA model for a data set of
HCT116 and A2780 (Fig. 10a and a*); there was not any outlier
compound for training and test set (h* ¼ 1.153). Otherwise, ac-
cording to the Cook's distances (cutoff ¼ 0.444) of the compounds
in the data set, two highly influential compounds for HCT116 and
ng and test sets of HCT116 and A2780 (h* ¼ 0.567) (a, a*); Cook's distance plot (b, b*).



Fig. 9. Histogram of model CoMFA residuals (c, c*).

Fig. 10. Williams plot describing the applicability domain of the CoMFA model for the training and test sets of HCT116 and A2780 (h* ¼ 0.567) (a, a*); Cook's distance plot (b, b*).
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one highly influential compound for A2780 may slightly distort the
regression (Fig. 10b and b*), also, the histograms of the residuals
distribution were confirmed with histogram plots as shown in
Fig. 11c and c* and prediction of CoMSIA models is reliable.

3.6. Interpretation of CoMFA and CoMSIA contour maps

The QSAR contour maps were used as an informative tool to
visualize the effects of the different fields on the target compound
3D grid orientation of the models. The CoMFA and CoMSIA results
were graphically interpreted by field contribution maps using the
standard deviation (StDev) at each grid point and the coefficient
from the PLS analysis (StDev*Coefficients).

The CoMFA contour maps of the steric and electrostatic fields for
the best HDAC inhibitors (compound 11) are shown in Fig. 12a and
b. The field steric is shown by favorable groups (80% contribution)
in green color and unfavorable ones (20% contribution) in yellow
where the introduction of bulky groups may enhance or diminish
the activity.

In the CoMFA steric maps, there was a green contour covering
the methylene of benzyloxy group at C-7 position of coumarin ring.
The bulky groups in this position of compound improved activity
and had the highest activity. The compounds 8e21and 4e6 with
bulky substituents (e.g. methoxy, ethoxy, propoxy) at this region
exhibited more potency, while compounds 1e2 and 7 due to the
absence of this group had relatively low activity. Substituting the
electron-donating or electron-withdrawing at the ortho and meta
positions of benzyloxy ring in compounds 9e10 and 12e13, 15 and



Fig. 11. Histogram of model CoMSIA residuals of HCT116 and A2780 (c, c*).

Fig. 12. CoMFAStDev*coeff. Contour plots with the combination of compound 11. (a) Steric contour maps: Green contours indicate regions where bulky groups increase activity and
yellow contours indicate regions where bulky groups decrease activity. (b) Electrostatic contour maps: Blue contours indicate regions where positive charges increase activity and red
contours indicate regions where negative charges increase activity.
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19 decreased activity because these substituents were located at
disfavored yellow contours. Therefore, these positions of benzyloxy
ring should be occupied by the steric moderate and low crowed
substituents.

In CoMFA electrostatic contour maps (Fig. 12b), the blue region
(80% contribution) is favorable for electropositive groups and red
region (20% contribution) is favorable for electronegative groups.
The blue contour near the 2 position of benzyloxy ring of com-
pound 11 indicated the introduction of electropositive groups, e.g.
methyl in this position could improve the biological activity
(compounds 12< 15<9). Besides, a red contour near to the oxygen
atom of benzyloxy ring showed that the electronegative substitu-
ent was beneficial to activity (e.g. compounds
1< 7<2< 4<8< 5<3< 6<11).

In CoMSIA model, the steric and electrostatic, hydrophobic,
hydrogen bonding (H-bond) donor and acceptor contour maps of
compound 11 are shown in Fig. 15. In the CoMSIA steric maps, the
substituents at green region were next to the yellow contours
(Fig. 13a). This position should not be occupied by very large
groups, so that the substituted methyl in the para position of
benzyloxy ring was acceptable (compounds 14< 16<18< 17<11).
The blue contours near benzyloxy ring of compound 11 indicated
the introduction of electropositive groups, e.g. methyl andmethoxy
in these positions could improve the biological activity (com-
pounds 9e11 and 18). Besides, a red contour near to the oxygen
atom of benzyloxy ring showed that the electronegative substitu-
ent was beneficial to activity (e.g. compounds
1< 7<2< 4<8< 5<3< 6<11) (Fig. 13b).

Therefore, the CoMSIA steric and electrostatic contours were
nearly similar to that of CoMFA contours, the hydrophobic inter-
action and hydrogen bond fields were described here. In the hy-
drophobic contour map, the yellow region is favorable (80%
contribution) for the hydrophobic group while white region (20%
contribution) is favorable for the hydrophilic group.



Fig. 13. CoMSIAStDev*Coeff contour plots with the combination of compound 11. (a) Steric contour maps: Green contours indicate regions where bulky groups increase activity;
yellow contours indicate regions where bulky groups decrease activity; (b) Electrostatic contour maps: Blue contours indicate regions where positive charges increase activity; red
contours indicate regions where negative charges increase activity; (c) Hydrophobic contour maps: yellow contours indicate regions where hydrophobic substituents enhance
activity; white contours indicate regions where hydrophobic groups decrease activity; (d) Hydrogen bond donor contour maps: Cyan contours indicate regions where H-bond donor
groups increase activity and purple contours indicate the unfavorable regions for hydrogen bond donor substituents; (e) H-bond acceptor contour maps: Magenta contours indicate
regions where an H-bond acceptor substituents increase activity; red contours indicate the disfavor regions for H-bond acceptor groups.
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A white region near ortho and meta positions of benzyloxy ring
showed that the introduction of hydrophilic groups into these po-
sitions might be beneficial for inhibitory activity (Fig. 13c). The
yellow contour in the para position of benzyloxy ring indicated that
hydrophobic groups such as methyl in this region could be
increasing the activity of the compounds. These results confirm
that the yellow contour of hydrophobic mapwas in agreement with
green contour of steric map.

The CoMSIA H-bond donor and acceptor contour maps corre-
lated with hydrogen bond interactions of the ligand with target.
The cyan and purple contour maps of H-bond donor indicated
favorable (80% contribution) and unfavorable (20% contribution)
interactions and the magenta and red contour maps indicated
favorable (80% contribution) and unfavorable (20% contribution) H-
bond acceptor groups (Fig. 13d and e). However, no favorable cyan
and magenta contours were observed for H-bond donor and
acceptor contour maps. There were purple and red contours near to
amide and amine groups of CU and ZBG regions of coumarin-based
benzamides that changing the amide and amine groups and
introducing other functional groups significantly decreased HDAC
inhibition activity because these groups are pharmacophore of
HDAC inhibitors [52].

3.7. Interpretation of HQSAR contribution map

HQSAR calculations are based on the contributions of molecular
fragments to the biological activity for eachmolecule. The results of
the HQSAR contribution maps can be graphically shown as a color-
coded structure diagram which the color of each atom reflects its
contribution to the molecule's overall activity. The red end of the
spectrum (red, red orange and orange) reflects negative contribu-
tion to the activity, while the green end (yellow, blue, green-blue
and green) represents positive effect and intermediate contribu-
tions are colored in white. The individual atomic contributions of
the most active HDAC inhibitory analogues (compounds 11 and 1)
were displayed in Fig. 14.

The (4-(2-aminophenyl) benzamide) benzyl) carbamoyl scaffold
as maximal common structural fragment represented by green and
yellow color codes in themost active compound (11) because it was
a common fragment to all molecules and contributed in the same
way to all inhibitors. The coumarin portion was highlighted in
green and yellow colors, indicating the importance of this fragment
Fig. 14. The HQSAR contribution map of the most active compound (11) and the less ac
contributions, while colors with red, red-orange or orange represent negative contribution
to enhance the biological activity. The C-2 position of benzyloxy
ring was colored in yellow that may contribute moderately to the
inhibitory activity. The atoms of methyl at position 4 of benzyloxy
ring was colored in yellow and made a positive contribution to
increase activity. Compound (1) (compound with the lowest ac-
tivity) has green and yellow colors in the coumarin ring that indi-
cating favorable contribution to the inhibitory activity. Moreover,
phenyl ring and amine group of compound (1) were colored red
orange, demonstrating their intermediate or negative contribution
to the inhibitory activity. Finally, the structure-activity relationship
and binding features obtained by present QSAR models and mo-
lecular docking analysis are summarized in Scheme 3.

3.8. Molecular docking studies

In order to gain functional and structural insight into the
bindingmode of all of the compounds and the HDAC1 enzyme (PDB
ID: 4BKX) and also, to validate the results of QSAR contour maps,
docking studies were carried out using MOE software (Fig. 15).

Analysis of docking results revealed high docking scores
(�15.43-12.75 kcal/mol) for all of the compounds. All of the com-
pounds were well stabilized in the active site of HDAC1 and had
significant interactions with the key amino acid residues of the
enzyme (Fig. 16).

HDAC1 is a zinc dependent enzyme and its active site consisted
of a long, narrow tunnel leading to a cavity that contains the cat-
alytic Zn ion. Studying interaction mode of all of the compounds
with HDAC1 by LigXmodule of MOE software revealed that the zinc
atom was penta-coordinated with Asp176, His178 and Asp264 as
well as the carbonyl and NH2 groups of benzamide region. The
amidic NH, NH2 and carbonyl groups of all of the compounds could
also form hydrogen bonding with His140, His141, Gly149 and
Tyr303 (Fig. 16.).

The aryl linker region of compounds was located in lipophilic
tube including hydrophobic amino acids of Leu271, Phe150, Phe205
and Met30. This linker had hydrophobic and p-p staking in-
teractions with benzene group of Phe150 which improved the
binding affinity of ligands to HDAC1.

The surface recognition and hydrophobic amino acids of the
lipophilic tube are shown in Figs. (15 and 16), that hydrophobic
residues (e.g. Pro29, Leu271) in active site were significant and
should be considered in developing potent HDAC inhibitors.
tive compound (1). The colors in yellow, blue, green-blue or green indicate positive
s and intermediate contributions are colored in white.



Fig. 16. The best pose of the compounds obtained from docking study in the active site of HDAC1.

Fig. 15. 3D representation of docked ligands into binding site of HDAC1.

Scheme 3. Structure-activity relationship revealed by QSAR and molecular docking studies.
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4. Conclusion

The 2D- (HQSAR) and 3D-QSAR (CoMFA, CoMFA-RF and CoM-
SIA)methodswere employed to study coumarin-based benzamides
as histone deacetylase inhibitors. The CoMFA, CoMFA-RF, CoMSIA
and HQSAR models for HDAC inhibitory activity of HCT116 cell line
provided statistically significant results for internal and external
validations including q2 Values of 0.728, 0.764, 0.671, and 0.811, r2ncv
values of 0.982, 0.960, 0.977, and 0.986, r2pred values of 0.685, 0.552,

0.721, and 0.613 and r2m values of 0.629, 0.540, 0.640, and 0.612,
respectively. The CoMFA and CoMSIA contour maps and the HQSAR
fragment contribution map were explained structure-activity
relationship of this series of HDAC inhibitors. Also, molecular
docking studies were carried out to confirm the rationality of the
derived models. The amido and amine groups of benzamide part as
scaffold and the bulky groups in the heterocyclic moiety as a hy-
drophobic part were key factors to improve inhibitory activity of
HDAC. These results showed good predictive models for the
rational design of novel HDAC inhibitors for the treatment of cancer
disease.
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