
Experimental Evaluation of Approximation and
Heuristic Algorithms for Maximum
Distance-Bounded Subgraph Problems

著者 Asahiro Yuichi, Kubo Tomohiro, Miyano Eiji
journal or
publication title

The Review of Socionetwork Strategies

volume 13
number 2
page range 143-161
year 2019-04-16
URL http://hdl.handle.net/10228/00007708

doi: info:doi/10.1007/s12626-019-00036-2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyutacar : Kyushu Institute of Technology Academic Repository

https://core.ac.uk/display/304692217?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Noname manuscript No.
(will be inserted by the editor)

Experimental Evaluation of Approximation
and Heuristic Algorithms for Maximum
Distance-Bounded Subgraph Problems .

Yuichi Asahiro · Tomohiro Kubo · Eiji
Miyano

Received: date / Accepted: date

Abstract In this paper we consider two distance-based relaxed variants of the
maximum clique problem (Max Clique), named Max d-Clique and Max
d-Club for positive integers d. Max 1-Clique and Max 1-Club cannot be
efficiently approximated within a factor of n1−ε for any real ε > 0 unless
P = NP since they are identical to Max Clique [17,36]. Also, it is NP-hard
to approximate Max d-Clique and Max d-Club to within a factor of n1/2−ε

for any fixed integer d ≥ 2 and any real ε > 0 [6,3]. As for approximability
of Max d-Clique and Max d-Club, a polynomial-time algorithm, called
ReFindStard, that achieves an optimal approximation ratio of O(n1/2) for
Max d-Clique and Max d-Club was designed for any integer d ≥ 2 in [3,4].
Moreover, a simpler algorithm, called ByFindStard, was proposed and it was
shown in [6,4] that although the approximation ratio of ByFindStard is much
worse for any odd d ≥ 3, its time complexity is better than ReFindStard.

In this paper we implement those approximation algorithms and evaluate
their quality empirically for random graphs. The experimental results show
that (i) ReFindStard can find larger d-clubs (d-cliques) than ByFindStard
for odd d, (ii) the size of d-clubs (d-cliques) output by ByFindStard is the
same as ones by ReFindStard for even d, and (iii) ByFindStard can find the

A preliminary version of this paper appeared in Proceedings of the Joint 8th International
Conference on Soft Computing and Intelligent Systems and the 17th International Sympo-
sium on Advanced Intelligent Systems, 892-897, 2016 [5]

Y. Asahiro
Department of Information Science, Kyushu Sangyo University, Fukuoka 813-8503, Japan.
E-mail: asahiro@is.kyusan-u.ac.jp

T. Kubo
Department of Systems Design and Informatics, Kyushu Institute of Technology, Fukuoka
820-8502, Japan.

E. Miyano
Department of Systems Design and Informatics, Kyushu Institute of Technology, Fukuoka
820-8502, Japan.
E-mail: miyano@ces.kyutech.ac.jp

2 Yuichi Asahiro et al.

same size of d-clubs (d-cliques) much faster than ReFindStard. Furthermore,
we propose and implement two new heuristics, Hclubd for Max d-Club and
Hcliqued for Max d-Clique. Then, we present the experimental evaluation
of the solution size of ReFindStard, Hclubd, Hcliqued and previously known
heuristic algorithms for random graphs and Erdős collaboration graphs.

Keywords Maximum distance-bounded subgraph problems · d-clique ·
d-club · Approximation algorithms · Heuristic algorithms

1 Introduction

1.1 Background

Social network analysis (SNA) is the process of investigating social structures
by using the network and graph theories. In SNA, undirected graphs are uti-
lized to represent relationships or friendships between members of a social
network. In those graphs, vertices represent the members of the network, and
then edges represent some “positive” relationships between the members. In
the following, an undirected graph is denoted by G = (V,E), where V and E
denote the set of vertices and the set of edges, respectively. V (G) and E(G)
also denote the vertex set and the edge set of G, respectively. In this paper we
assume that |V (G)| = n and |E(G)| = m.

An important task in SNA is to detect as large a community as possible,
where the community is formed by members such that those within a cohe-
sive group interact with each other more frequently than with those outside
the group. The clique concept to model the notion of a cohesive group is in-
troduced by Luce and Perry in 1949 [21], where a clique in a graph G is a
subset of pairwise adjacent vertices. This concept of clique and the associated
maximum clique problem (Max Clique) have been studied extensively from
different perspectives in various fields including graph theory, operations re-
search, and theoretical computer science. Especially, the decision version of
the Max Clique was one of Karp’s original 21 problems shown to be NP-
complete in [18]. Although a lot of different problems have been modeled using
cliques, one common observation is that they are extreme cohesive groups in
which every member is connected with each other. This constraint might be
too restrictive in some applications. For example, we can accept a situation
such that any vertex in a group is reachable in at most d hops from any ver-
tex, while direct connection between any two vertices is required in a clique.
Therefore, the clique concept is relaxed into various forms in order to fit in
settings of several problems and applications [1,31,32].

1.2 Distance-bounded subgraph problems

In this paper, we consider the maximum distance-d clique problem (Max d-
Clique) and the maximum diameter-d club problem (Max d-Club) for a

Maximum Distance-Bounded Subgraph Problems 3

positive integer d [22,2,25]. A distance-d clique (d-clique for short) in a graph
G is a subgraph S of G such that for pairs of vertices u, v ∈ S, the distance
between u and v is at most d in G. A diameter-d club (d-club for short) in
a graph G is a subgraph S′ of G such that for pairs of vertices u, v ∈ S′,
the distance between u and v is at most d in S′, i.e., the diameter of S′ is
at most d. Max d-Clique (Max d-Club, resp.) is the problem of finding a
maximum d-clique (maximum d-club, resp.) in a given graph G. For d = 1,
Max 1-Club is the same problem as Max 1-Clique, i.e., Max 1-Club
is simply Max Clique. Therefore, Max d-Clique and Max d-Club are
distance-based generalizations of Max Clique.

1.3 Previous results

As mentioned above, the original Max Clique is one of the most important
and most investigated hard computational problems and thus considerable ef-
fort has been devoted to the development of various exact (exponential-time)
algorithms and heuristic ones to solve Max Clique. An early and well-known
exact algorithm was developed by Carraghan and Pardalos [11], which is based
on the branch-and-bound (BB for short) strategy. Afterwards, a huge num-
ber of “refined” BB methods have been designed. For example, Östergȧrd [27]
proposed the BB based on solving sub-clique problems, Tomita and Seki [34]
and Tomita, Sutani, Higashi, Takahashi, and Wakatsuki [35] the BB based on
subgraph coloring, and Maslov, Batsyn, and Pardalos [24] the BB based on
MaxSAT using the local search method. Also, many greedy-based and local-
search-based heuristics have been proposed, e.g., [16,19].

It is well known that Max Clique, Max d-Clique and Max d-Club
are hard even to approximate; since Max 1-Clique and Max 1-Club are
identical to Max Clique, they cannot be efficiently approximated within a
factor of n1−ε for any ε > 0 unless P = NP [17,36]. For any ε > 0 and
a fixed d ≥ 2, it can be shown that it is NP-hard to approximate Max
d-Club to within a factor of n1/3−ε by using the gap preserving reduction
provided by Marinc̆ek and Mohar [23] (although they assumed that NP 6=
ZPP in their original proof). Then, [6] improved the inapproximability from
Ω(n1/3−ε) to Ω(n1/2−ε). As for approximability of Max d-Clique and Max
d-Club, [3,4] presented a polynomial-time algorithm, called ReFindStard,
which achieves an optimal approximation ratio of O(n1/2) for Max d-Clique
and Max d-Club for any integer d ≥ 2. Furthermore, they proposed a simpler
algorithm, called ByFindStard, and proved that although the approximation
ratio of ByFindStard is much worse for any odd d ≥ 3, its theoretical time
complexity is better than ReFindStard in [3,4].

For Max d-Club (d ≥ 2), several heuristic algorithms are also known.
Bourjolly, Laporte, and Pesanto [10] proposed three heuristic algorithms, named
CONSTELLATION, DROP, and k-CLIQUE&DROP and showed their experimental
evaluation. Shahinpour and Butenko [33] provided a variable neighborhood
search heuristic algorithm and an exact one.

4 Yuichi Asahiro et al.

1.4 Our contributions

Max d-Clique and Max d-Club on several restricted graphs, such as bipar-
tite and chordal graphs, are very difficult even to approximate. Actually, the
approximation ratios of ByFindStard and ReFindStard are very large, O(n1/2)
as described above. That is, from the theoretical view point, it is hard to de-
sign good algorithms running in polynomial time for those problems. On the
other hand, however, ByFindStard and ReFindStard might work much bet-
ter for more practical situations since the approximation ratios are only the
worst-case guarantees. Thus one of the goals of this paper is to implement
those approximation algorithms and to evaluate their quality empirically for
random graphs Gn,p, which have n vertices and each edge appears with prob-
ability 0 ≤ p ≤ 1.

The other goal is to implement simple heuristic algorithms, called Hcliqued
and Hclubd, for Max d-Clique and Max d-Club, respectively. Then, we
compare the solution sizes and the execution times of ReFindStard, Hcliqued
and Hclubd with the sizes of the previously known two heuristics,
PowerAndCliqueHeud and DROPd [10] for random graphs and Erdős collabo-
ration graphs [15,7], where PowerAndCliqueHeud is designed to find d-cliques
by modifying MAXCLIQUEHEU proposed for Max Clique in [29].

The contributions of this paper are summarized as follows:

– We implement two approximation algorithms, ByFindStard and
ReFindStard, and four heuristic algorithms, Hcliqued, Hclubd,
PowerAndCliqueHeud and DROPd, then examine the sizes of d-clubs (d-
cliques) found for random graphs [12] and Erdős collaboration
graphs [15,7], and compare their running times.

– The experimental results show that ReFindStard of approximation ratio
O(n1/2) can find larger d-clubs (d-cliques) than ByFindStard of approxi-
mation ratio O(n2/3) for both diameters d = 3 and d = 5, similarly to the
approximation ratios theoretically guaranteed.

– We verify empirically that the sizes of d-clubs (d-cliques) output by
ReFindStard are the same as ones by ByFindStard for d = 2 and 4.

– Although ByFindStard and ReFindStard have the same approximation
ratio for even d, the experimental comparisons of the running time show
that ByFindStard can find the same size of d-clubs (d-cliques) much faster
than ReFindStard.

– The experimental evaluation shows that, generally speaking, the perfor-
mance of ReFindStard is worse for dense graphs, but better for sparse
graphs than the performance of the heuristic algorithms.

The remainder of this paper is organized as follows: In Section 2 we intro-
duce the notation and the definitions of d-cliques and d-clubs. Section 3 shows
the approximation algorithms proposed in [6,3,4]. Section 4 presents our new
and previously known heuristic algorithms. Section 5 provides experimental
evaluation.

Maximum Distance-Bounded Subgraph Problems 5

2 Preliminaries

Let G = (V,E) be a connected undirected graph. An edge with endpoints u
and v is denoted by {u, v}. ∆(G) and δ(G) respectively represent the maximum
and minimum degree of a graph G. The set of vertices adjacent to a vertex
v in G, i.e., the open neighborhood of v is denoted by NG(v). Then, NG[v]
denotes the (closed) neighborhood of v, i.e., NG[v] = NG(v) ∪ {v}.

A graph S is a subgraph of a graph G if V (S) ⊆ V (G) and E(S) ⊆ E(G).
For a subset of vertices U ⊆ V , G[U] denotes a subgraph of G induced by U .
If every pair of two vertices in a graph S is adjacent, then S is called a clique.

For a pair of vertices u and v in G, the distance between u and v is defined
as the length of the shortest path from u and v, and is denoted by distG(u, v).
Let Nd

G[v] = {u | distG(u, v) ≤ d} be the distance-d neighborhood of v. The
diameter of G, denoted by diam(G), is defined as maxu,v∈V (G){distG(u, v)}.

For a positive integer d ≥ 1 and a graph G, the d-th power of G is the graph
in which all pairs of vertices u, v ∈ V (G) with distG(u, v) ≤ d are adjacent.
The d-th power of G is denoted by Gd.

Definition 1 A subgraph S of G is a d-clique if distG(u, v) ≤ d holds for
every pair of u, v ∈ V (S).

The diameter of a d-clique may be greater than d. A d-clique whose diam-
eter is at most d is called d-club:

Definition 2 A subgraph S of G is a d-club if diam(S) ≤ d, i.e., distS(u, v) ≤
d holds for every pair of u, v ∈ V (S).

Although in [25], d-club (or d-clique) is originally defined as a maximal
subgraph, i.e., no super set of vertices forms a d-club (or d-clique), we do not
restrict our attention to maximal ones in this paper since it is known to be
coNP-complete to answer whether a given d-club is maximal or not [28].

An algorithm ALG is called an α-approximation algorithm and ALG’s ap-
proximation ratio is α if OPT (G)/ALG(G) ≤ α holds for every input graph
G, where OPT (G) and ALG(G) are the numbers of vertices in obtained sub-
graphs by an optimal algorithm and ALG, respectively.

3 Approximation algorithms

3.1 Optimal approximation algorithm in [3,4]

In this section we give a brief explanation on the O(n1/2)-approximation algo-
rithm ReFindStard proposed in [3,4]. Note that its approximation ratio is the
best possible in the sense that the lower bound of the approximation ratio is
Ω(n1/2−ε) for any positive ε as shown in [6]. The algorithm ReFindStard works
for both Max d-Clique and Max d-Club and its main idea is as follows:
Given a graph G, ReFindStard first inserts an extra vertex into each edge

6 Yuichi Asahiro et al.

and obtains a new graph, say, H. Then it constructs the d-th power graph
Hd of the newly obtained graph H by a simple polynomial-time algorithm
PowerOfGraph, i.e., PowerOfGraph first computes distG(u, v) for any pair of
vertices u, v ∈ V , and then adds an edge {u, v} if 2 ≤ distG(u, v) ≤ d. Finally
the algorithm outputs a 2-club in Hd corresponding to a d-club in the original
G, which is also a d-clique. The following is a description of ReFindStard.

Algorithm ReFindStard
Input: An undirected graph G = (V,E)
Output: A subset of vertices S ⊆ V
Step 1. Insert one vertex wu,v into each edge {u, v}. The newly

inserted vertices are called white vertices and the set of white
vertices is denoted by VW , while the original vertices in V are
called black vertices. The obtained graph is denoted by H =
(V ∪ VW , EH), where EH = {{u,wu,v}, {v, wu,v} | {u, v} ∈ E}.

Step 2. Obtain the d-th power Hd of the graph H by applying
PowerOfGraph(H, d).

Step 3. For Hd, find a star T = (V ′, E′) having the maximum
number of black vertices.

Step 4. Output S = V ′∩V , i.e., the set of the black vertices in V ′.

One can see that for an input graph G having n vertices and m edges,
ReFindStard first constructs a graph H having n+m vertices and 2m edges,
and then computes the all-pairs-shortest-paths of H in order to obtain the
d-th power Hd of H in Step 2. Thus, the dominant part in the running time
of ReFindStard is due to executing Step 2. Step 2 can be implemented in
O((n + m)2.3729) by merging the algorithm shown by Galil and Margalit [13,
14] and Seidel [30] and the one shown by Le Gall [20]. That is, if m = Ω(n2),
the running time grows up to O(n4.7458). However, a simpler implementation
can be done by breadth-first-searches from each vertex, whose running time
is O((n + m)2) since H has only 2m edges. If m = Ω(n2), this running time
grows up to O(n4) which is smaller than O(n4.7458) above.

As for the approximation ratio of ReFindStard, the following theorem
holds [3,4]:

Theorem 1 ([3,4]) Given an n-vertex graph and a fixed integer d ≥ 2,
ReFindStard is a polynomial-time dn1/2e-approximation algorithm with a run-
ning time of O((n+m)2) for Max d-Club and Max d-Clique.

3.2 Faster approximation algorithms for even d in [6,4]

For d ≥ 2, the following simpler and faster algorithm called ByFindStard
was proposed in [6,4], in which the bd/2c-th power of the input graph G is
constructed. The running time of ByFindStard is O(min{n2.3729, nm}), where

Maximum Distance-Bounded Subgraph Problems 7

again the dominant part is due to computing all-pairs-shortest-paths on the
input graph G with n vertices and m edges in Step 1; the first term n2.3729

comes from the implementation based on [13,14,30,20] and the second term,
nm, comes from doing breadth-first-searches as above.

Algorithm ByFindStard

Input: An undirected graph G = (V,E).
Output: A subset of vertices S ⊆ V .
Step 1. Obtain the bd/2c-th power Gbd/2c of the graph G by ap-

plying PowerOfGraph(G, bd/2c).
Step 2. Find a vertex v having the maximum degree ∆(Gbd/2c),

and then obtain the subgraph NGbd/2c [v], that is, the vertex v
and its ∆(Gbd/2c) many neighbors.

Step 3. Output S = NGbd/2c [v].

It was shown that the approximation ratio of ByFindStard for even d is
O(n1/2):

Theorem 2 ([6,4]) For a fixed even integer d ≥ 2 and a graph with n vertices
and m edges, ByFindStard is an (n1/2+O(1))-approximation algorithm with a
running time of O(min{n2.3729, nm}) for Max d-Club and Max d-Clique.

Unfortunately, however, the approximation ratio of ByFindStard becomes
worse for odd d.

Theorem 3 ([6,4]) For a fixed odd integer d ≥ 3 and a graph with n vertices
and m edges, ByFindStard is an (n2/3 + O(n1/3))-approximation algorithm
with a running time of O(min{n2.3729, nm}) for Max d-Club and Max d-
Clique.

4 Heuristic algorithms for Max d-Clique and Max d-Club

In this section, we briefly explain newly proposed and previously known heuris-
tic algorithms for the problems Max d-Clique and Max d-Club. First we
propose simple heuristic algorithms for Max d-Clique and Max d-Club,
respectively in Sections 4.1 and 4.2, based on the following simple observa-
tion. Then, Section 4.3 gives a heuristic algorithm for Max d-Clique based
on a heuristic algorithm for Max Clique proposed in [29]. In Section 4.4, a
heuristic algorithm for Max d-Club proposed in [10] is introduced.

Proposition 1 If v is a vertex in a d-clique (or d-club), then the d-clique (or
the d-club) includes vertices only from Nd

G[v].

8 Yuichi Asahiro et al.

4.1 A simple heuristic algorithm for Max d-Clique

Now we propose a simple heuristic algorithm; the following is a detailed de-
scription of our heuristic algorithm for Max d-Clique, called Hcliqued, based
on Proposition 1, i.e., the algorithm applies the intuition that a vertex having
many neighbors would be included in a solution.

Algorithm Hcliqued

Input: An undirected graph G = (V,E).
Output: A subset of vertices S ⊆ V .
Step 1. For every vertex v, obtain the distance-d neighbor Nd

G[v].
Step 2. Let u = arg maxv∈V {|Nd

G[v]|}, and then let M = Nd
G[u].

Step 3. If Nd
G[v] ∩M = M holds for every v ∈ M , then output

S = M .
Step 4. Let V ′ = {v | v ∈ M, |Nd

G[v] ∩M | < |M |}. Then choose
a vertex u such that u = arg maxv∈V ′{|Nd

G[v] ∩M |}. Set M =
Nd

G[u] ∩M and then goto Step 3.

We can guarantee that the output of the above algorithm must be a d-
clique as follows. In Step 3, we check whether Nd

G[v]∩M = M holds for every
v ∈ M . This is equivalent to checking whether G[M] is a d-clique, because if
there exists a vertex w ∈M with dG(v, w) > d, then Nd

G[v] ∩M 6= M holds.

Now we bound the running time of Hcliqued. For each vertex v, Nd
G[v] is

constructed in O(m) time, and so Step 1 can be done in O(nm) time. Then,
Step 2 requires O(n) time. Since |Nd

G[v]| ≤ n and |M | ≤ n, Steps 3 and 4 can
be done in O(n2) time. Since the size of M decreases by the update in Step 4,
the number of iterations of Steps 3 and 4 is at most O(n). In total, the running
time of Hcliqued is O(n3).

4.2 A simple heuristic algorithm for Max d-Club

Next, we consider a heuristic algorithm Hclubd for Max d-Club. The dif-
ference from Hcliqued is that G[M] is used instead of G when checking the
neighbors of a vertex in Steps 3 and 4.

Maximum Distance-Bounded Subgraph Problems 9

Algorithm Hclubd

Input: An undirected graph G = (V,E).
Output: A subset of vertices S ⊆ V .
Step 1. For every vertex v, obtain the distance-d neighbor Nd

G[v].
Step 2. Let u = arg maxv∈V {|Nd

G[v]|}, and then let M = Nd
G[u].

Step 3. If Nd
G[M][v] ∩M = M holds for every v ∈ M , then output

S = M .
Step 4. Let V ′ = {v | v ∈M, |Nd

G[M][v] ∩M | < |M |}. Then choose

a vertex u such that u = arg maxv∈V ′{|Nd
G[M][v] ∩ M |}. Set

M = Nd
G[M][u] ∩M and then goto Step 3.

The output of Hclubd is a d-club which is observed by a similar argument
to the one for Hcliqued. Hclubd also runs in O(n3) time by the very similar
estimation to the one for Hcliqued.

4.3 A heuristic algorithm for Max d-Clique based on [29]

For Max Clique (i.e., d = 1), Pattabiraman, Patwary, Gebremedhin, Liao,
and Choudhary proposed a heuristic algorithm MAXCLIQUEHEU in [29]. More
precisely, it outputs only the size of the obtained clique, but it can be trans-
formed to output the set of vertices in the obtained clique. It is not difficult to
see that for a graph G the vertex set of a d-clique in G forms a clique in the
d-th power Gd of G. Hence, we can use the algorithm for Max Clique as a
subroutine in an algorithm for Max d-Clique after constructing Gd from the
original graph G. Our heuristic algorithm PowerAndCliqueHeud implements
those ideas. The following is a description of MAXCLIQUEHEU and its subrou-
tine CLIQUEHEU proposed in [29], assuming that V = {v1, v2, . . . , vn}. Note
that max is a global variable used in both of MAXCLIQUEHEU and CLIQUEHEU,
where CLIQUEHEU updates the value of max.

10 Yuichi Asahiro et al.

Algorithm MAXCLIQUEHEU

Input: An undirected graph G = (V,E)
Output: The size of a (found) clique in G
Step 1. Set max = LB if a lowerbound LB of the size of a max-

imum clique in G is known; otherwise, set max = 0. Then set
i = 1.

Step 2. If |NG(vi)| ≥ max, then proceed to Step 3; otherwise goto
Step 6.

Step 3. Set U = ∅.
Step 4. For each vj ∈ NG(vi), if |NG(vj)| ≥ max then U = U ∪
{vj}.

Step 5. Apply CLIQUEHEU to (G,U, 1) as input.
Step 6. Set i = i + 1 if i < n; otherwise, i.e, if i = n, then output

max.

Algorithm CLIQUEHEU

Input: An undirected graph G = (V,E), a subset U ⊆ V , and an
integer size

Goal: Update max
Step 1. If U = ∅, then proceed to Step 2; otherwise, goto Step 3.
Step 2. If size > max, then set max = size. Then halt.
Step 3. Select a vertex u ∈ U of maximum degree in G, and update

U = U \ {u}.
Step 4. Let N ′(u) = {w | w ∈ N(u), |NG(w)| ≥ max}. Then apply

CLIQUEHEU to (G,U ∩N ′(u), size+ 1) as input.

The following is a detailed description of PowerAndCliqueHeud, which finds
a clique in the d-th power Gd of the input graph G:

Algorithm PowerAndCliqueHeud

Input: An undirected graph G = (V,E)
Output: A subset of vertices S ⊆ V .
Step 1. Construct the d-th power graph Gd from G.
Step 2. Find a clique Q in Gd by applying MAXCLIQUEHEU to Gd.
Step 3. Output S = V (Q).

One can see that the running time of PowerAndCliqueHeud is O(n3) since
PowerOfGraph and MAXCLIQUEHEU run in O(n2) time and O(n · (∆(G))2) =
O(n3) time, respectively.

Maximum Distance-Bounded Subgraph Problems 11

4.4 A heuristic algorithm for Max d-Club proposed in [10]

In this section, we give a brief description of the previously known heuristic
algorithm DROPd for Max d-Club proposed in [10]:

Algorithm DROPd

Input: An undirected graph G = (V,E)
Output: A subset of vertices S ⊆ V .
Step 1. Compute the shortest path length between every pair of

vertices, and let V ′ = V .
Step 2. Compute for each vertex vi of V ′ the number qi of vertices

of V ′ whose shortest path to vi has a length of at least d + 1.
If qi = 0 for every vertex vi, then G[V ′] is a d-club and output
S = V ′.

Step 3. Let W be the set of vertices for which qi is maximized. De-
termine a vertex v∗i ∈W of the minimum degree in V . Remove
v∗i from V ′.

Step 4. Update the shortest path lengths between pairs of vertices
in the modified graph G[V ′] and goto Step 2.

The running time of DROPd is O(n3m).

5 Experimental results

This section is devoted to showing the experimental evaluations of the per-
formances of two approximation algorithms, ByFindStard and ReFindStard,
and four heuristic algorithms, Hcliqued, Hclubd, PowerAndCliqueHeud, and
DROPd. All the experimental evaluations are conducted on a computer equipped
with Intel(R) Xenon(R) CPU X5460 3.16GHz, 16GB of memory, and Win-
dows10.

5.1 Random graphs

In the following, by random graph we mean the Erdős-Rényi [12] random
graph, which is defined as follows:

Definition 3 ([12]) Given a positive integer n and a probability value 0 ≤
p ≤ 1, we define a random graph Gn,p to be the undirected graph on n vertices
whose edges are chosen as follows: For all the

(
n
2

)
pairs of vertices u, v ∈

V (Gn,p), there exists an edge (u, v) with probability p independently of all
other edges.

12 Yuichi Asahiro et al.

That is, we first create a set of n vertices, and for each possible pair of
vertices we flip a (biased) coin to determine if we should add an edge connecting
them. One can see that Gn,p follows a probability distribution over the set of
all possible graphs on n vertices. It is known that there is a close relationship
between the maximum size of a clique and a pair of n and p. For example, an
expected value of the sizes of the maximum clique on random graphs increases
drastically when the probability p exceeds a certain value, which is known as
phase transition [26]. If p is small, it is known that the expected size of the
maximum clique on random graphs can be estimated by the following [8]:

2 log1/p n− 2 log1/p log1/p n+ 2 log1/p(e/2) + 1 + o(1).

5.2 Comparisons between ByFindStard and ReFindStard on Random Graphs

In this section we show the detailed experimental comparisons between the per-
formances of two approximation algorithms, ByFindStard and ReFindStard,
i.e., the sizes of d-clubs/d-cliques that the algorithms find, and their run-
ning times for random graphs. Although the experimental results for Max
d-Clique are omitted, they are quite similar to the results for Max d-Club.

5.2.1 Experimental setup

We conduct mainly the following two experiments: (1) As mentioned in Sect. 3,
if d is odd, then ReFindStard is superior to ByFindStard from the point of
view of approximability for Max d-Club (and Max d-Clique). In this paper
we evaluate their practical performances; we first examine the sizes of d-clubs
that ByFindStard and ReFindStard find for random graphs of n vertices,
where d = 3, 5 and n = 50, 100. For each pair of n and p, we generate 1000
random graphs and calculate the average size of d-clubs output in the 1000
trials. (2) If d is even, the approximability of ByFindStard is the same as
the approximability of ReFindStard. Here, we evaluate the running time of
ByFindStard and ReFindStard for 2 ≤ d ≤ 5 and random graphs Gn,p.

Remark that ByFindStard (or ReFindStard) intermediately makes a bd/2c-
th (or d-th) power of a graph, which implies that we have to compute distG(u, v)
for any pair of vertices u, v ∈ V . Here, we use Johnson’s algorithm imple-
mented by the Boost Graph Library [9] to compute it. This algorithm has a
time complexity of O(|V ||E| log |V |).

5.2.2 Results

Figures 1 through 3 show the experimental results of the sizes of d-clubs in
random graphs. The horizontal axis and the vertical axis denote the probability
p and the average sizes of obtained d-clubs for each p, respectively.

Figure 1 shows the sizes of 3-clubs obtained by ByFindStard and
ReFindStard in random graphs with 50 and 100 vertices, respectively, in the

Maximum Distance-Bounded Subgraph Problems 13

Fig. 1 The sizes of 3-clubs. (Left) n = 50, p ≤ 0.26. (Right) n = 100, p ≤ 0.18.

left chart and the right one. Similarly, Figure 2 shows the sizes of obtained
5-clubs in random graphs with 50 and 100 vertices. The experimental results
show that ReFindStard works better than ByFindStard for both diameters
d = 3 and d = 5, similarly to the approximation ratios theoretically guaran-
teed. As the numbers of vertices get larger, the gaps between them get larger.
One of the remarkable results is that the output size of ReFindStard is approx-
imately 1.78 times larger than the output size of ByFindStard when d = 3,
n = 100, and p = 0.08. For d = 3, as the probability p becomes higher, the
sizes of the obtained 3-clubs get bigger (in other words, ”linearly increase”).
For d = 5, however, it is shown that the sizes of the obtained 5-clubs increase
slowly when the probability p becomes larger than a certain value.

For even d = 2 and 4, we show the experimental results on the sizes of the
obtained d-clubs and running times by ByFindStard and ReFindStard. First,
these two algorithms output the same d-clubs in the experiments as shown in
Figure 3. Figures 4 and 5 show the experimental results of the running times.
The horizontal axis also denotes the probability p. The vertical axis denotes
the running time to find d-clubs for all random graphs. Note that the number
of random graphs generated is 1000 for each pair of n and p, and the unit of
the running time is second. For d = 2, Figure 4 shows the results for graphs
with 50 and 100 vertices. Similarly, Figure 5 shows the results for the case
d = 4 and graphs with 50 and 100 vertices.

There is a large gap between the running time of the two algorithms. As
the probability p becomes higher, the running time of ReFindStard shows
a drastic increase. This is because ReFindStard inserts an extra vertex into
each edge of the input graph G = (V,E) (making a graph H). The graph
H has |V | + |E| vertices and 2|E| edges, thus, Johnson’s algorithm runs in
O(2(|V |+ |E|)|E| log |V |+ |E|). It can be seen that as the larger the number
of edges of an input graph becomes, the running time of ReFindStard increases
quartically. That is, although the two algorithms have the same approximation
ratio, ByFindStard could find d-clubs much faster than ReFindStard for even
d. As a result, we should use ReFindStard only for odd d; on the other hand,
ByFindStard should be used for even d.

14 Yuichi Asahiro et al.

Fig. 2 The sizes of 5-clubs. (Left) n = 50, p ≤ 0.2. (Right) n = 100, p ≤ 0.1.

Fig. 3 (Left) The sizes of 2-clubs, n = 100, p ≤ 0.4. (Right) The sizes of 4-clubs, n = 100,
p ≤ 0.12.

Fig. 4 The running time to obtain 2-clubs by ByFindStar and ReFindStar. (Left) n = 50.
(Right) n = 100.

5.3 Comparisons between ReFindStard and heuristics

In this section, we compare ReFindStard with other heuristic algorithms. First,
in Sect. 5.3.1, random graphs are given as input to the algorithms as in the
previous section. Next, Sect. 5.3.2 shows the experimental results using Erdős
collaboration graphs.

Maximum Distance-Bounded Subgraph Problems 15

Fig. 5 The running time to obtain 4-clubs by ByFindStar and ReFindStar. (Left) n = 50.
(Right) n = 100.

5.3.1 Results on random graphs

(Max d-Clique) Figures 6 and 7 show the experimental results on the sizes
of obtained d-cliques in random graphs with 100 vertices for d = 2, 3, 4, and 5.
The heuristic algorithms Hcliqued and PowerAndCliqueHeud obtain almost
the same results, and they are better than ReFindStard. Only for d = 2
and p ≤ 0.08, are the results of ReFindStard better than the two heuristic
algorithms.

In Figure 8 we show the running times of Hcliqued, ReFindStard and
PowerAndCliqueHeud to find d-cliques in random graphs with 100 vertices for
d = 2 and 4. Recall that the running time of ReFindStard heavily depends on
the number of edges in the intermediately constructed graphH (orHd). There-
fore, its running time increases as p gets larger. On the other hand, Hcliqued
and PowerAndCliqueHeud need longer running times for sparse graphs than
for dense graphs.

(Max d-Club) As for Max d-Club, Figures 9 and 10 show the experimental
results of the sizes of obtained d-cliques in random graphs with 100 vertices
for d = 2, 3, 4, and 5. Similarly to the above experiments for Max d-Club,
the heuristic algorithms Hclubd and DROPd obtain almost the same results,
and they are better than ReFindStard. Only for d = 2 and p ≤ 0.16, are the
results of ReFindStard better than the two heuristic algorithms.

In Figure 11 we show the running times of Hcliqued, ReFindStard and
DROPd to find d-clubs in random graphs with 100 vertices for d = 2 and 4.
One can see that it is harder for Hcliqued and DROPd to find d-clubs in sparse
random graphs.

5.3.2 Results on Erdős collaboration graphs

In the Erdős collaboration graph, Erdős, the researchers who collaborated with
Erdős (they have Erdős number 1), and their coauthors (they have Erdős num-
ber 2) are included as vertices, and then edges represent collaborations [15].
Namely, the diameter of every Erdős collaboration graph is (at most) four. We
use this Erdős collaboration graph [7] as inputs; we prepare 6 graphs named

16 Yuichi Asahiro et al.

Fig. 6 The sizes of (Left) 2-cliques and (Right) 3-cliques in random graphs with 100 vertices.

Fig. 7 The sizes of (Left) 4-cliques and (Right) 5-cliques in random graphs with 100 vertices.

Fig. 8 The running time for n = 100. (Left) 2-cliques. (Right) 4-cliques.

erdos-x-y, where x ∈ {97, 98, 99} and y ∈ {1, 2}. The graph erdos-x-1 includes
the researchers with the Erdős number of at most 1 at year x (excluding Erdős
himself). The graph erdos-x-2 includes the researchers with Erdős numbers 1
and 2.

Tables 1 and 2 show the sizes of the d-cliques and the d-clubs obtained
by the algorithms for d = 2, 3, and 4, respectively. The values with ∗-marks
are the largest ones for each Erdős collaboration graph. Generally speaking,
PowerAndCliqueHeud and DROPd respectively obtain larger d-cliques and d-
clubs, compared to other two algorithms. However, for most of the sparse

Maximum Distance-Bounded Subgraph Problems 17

Fig. 9 The sizes of (Left) 2-clubs and (Right) 3-clubs in random graphs with 100 vertices.

Fig. 10 The sizes of (Left) 4-clubs and (Right) 5-clubs in random graphs with 100 vertices.

Fig. 11 The running time for n = 100. (Left) 2-clubs. (Right) 4-clubs.

graphs erdos-x-2’s and d = 4, ReFindStard obtains the largest 4-cliques and
4-clubs.

Acknowledgements This work was partially supported by JST CREST JPMJR1402 and
the Grants-in-Aid for Scientific Research of Japan (KAKENHI) Grant Numbers JP17K00016
and JP17K00024.

18 Yuichi Asahiro et al.

Table 1 The sizes of the obtained d-cliques for Erdős collaboration graphs

instance #vertices density d Hcliqued ReFindStard PowerAndCliqueHeud
erdos-97-1 472 0.012 2 42* 42* 42*

3 109 73 114*
4 233* 214 232

erdos-97-2 5488 0.0006 2 144 258* 258*
3 451 364 473*
4 1281 1500* 1411

erdos-98-1 485 0.012 2 42 43* 42
3 122* 75 121
4 244* 225 241

erdos-98-2 5822 0.0006 2 162 274* 274*
3 357 381 481*
4 1403 1593* 1456

erdos-99-1 492 0.012 2 42 43* 42
3 123* 75 122
4 246* 227 244

erdos-99-2 6100 0.0005 2 168 277* 277*
3 364 388 483*
4 1386 1642* 1503

Table 2 The sizes of the obtained d-clubs for Erdős collaboration graphs

instance #vertices density d Hclubd ReFindStard DROPd
erdos-97-1 472 0.012 2 42* 42* 35

3 97 73 117*
4 232 214 235*

erdos-97-2 5488 0.0006 2 144 258* 258*
3 427 364 517*
4 1289 1500 1504*

erdos-98-1 485 0.012 2 42 43* 36
3 91 75 121*
4 243* 225 243*

erdos-98-2 5822 0.0006 2 162 274* 274*
3 348 381 547*
4 1368 1593* 1581

erdos-99-1 492 0.012 2 42 43* 37
3 108 75 125*
4 245* 227 245*

erdos-99-2 6100 0.0005 2 168 277* 277*
3 456 388 562*
4 1343 1642* 1631

References

1. Abello, J., Resende, M.G., Sudarsky, S.: Massive quasi-clique detection. In: Proc of
LATIN 2002, pp. 598–612. Springer (2002)

2. Alba, R.D.: A graph-theoretic definition of a sociometric clique. Journal of Mathematical
Sociology 3(1), 113–126 (1973)

3. Asahiro, Y., Doi, Y., Miyano, E., Shimizu, H.: Optimal approximation algorithms for
maximum distance-bounded subgraph problems. In: Proc of COCOA, pp. 586–600.
Springer (2015)

4. Asahiro, Y., Doi, Y., Miyano, E., Shimizu, H.: Optimal approximation algorithms for
maximum distance-bounded subgraph problems. Algorithmica 80(6), 1834–1856 (2018)

Maximum Distance-Bounded Subgraph Problems 19

5. Asahiro, Y., Kubo, T., Miyano, E.: Experimental evaluation of approximation algo-
rithms for maximum distance-bounded subgraph problems. In: Proc of SCIS & ISIS,
pp. 892–897 (2016)

6. Asahiro, Y., Miyano, E., Samizo, K.: Approximating maximum diameter-bounded sub-
graphs. In: Proc of LATIN 2010, pp. 615–626. Springer (2010)

7. Batagelj, V., Mrvar, A.: Graph files in bajek datasets. http://vlado.fmf.uni-lj.si/

pub/networks/pajek/data/gphs.htm

8. Bollobás, B.: Random Graphs. Cambridge Univ (2001)
9. boost C++ Libraries – johnson all pairs shortest paths: http://www.boost.org/doc/

libs/1_60_0/libs/graph/doc/johnson_all_pairs_shortest.html

10. Bourjolly, J.M., Laporte, G., Pesant, G.: Heuristics for finding k-clubs in an undirected
graph. Computers & Operations Research 27, 559–569 (2000)

11. Carraghan, R., Pardalos, P.: An exact algorithm for the maximum clique problem.
Operations Research Letters 9(6), 375–382 (1990)

12. Erdős, P., Rényi, A.: On Random Graphs I. Publicationes Math 6, 290–297 (1959)
13. Galil, Z., Margalit, O.: All pairs shortest distances for graphs with small integer length

edges. Inf. Comput. 134, 103–139 (1977)
14. Galil, Z., Margalit, O.: All pairs shortest paths for graphs with small integer length

edges. J. Comput. Syst. Sci. 54, 243–254 (1977)
15. Grossman, J., Ion, P., Castro, R.: Erdős number project. https://oakland.edu/enp/

16. Grosso, A., Locatelli, M., Croce, F.: Combining swaps and node weights in an adaptive
greedy approach for the maximum clique problem. J. Heuristics 10(2), 135–152 (2004)

17. H̊astad, J.: Clique is hard to approximate within n1−ε. In: Acta Mathematics, vol. 182
(1), pp. 105–142 (1999)

18. Karp, R.: Reducibility among combinatorial problems. Complexity of Computer Com-
putations pp. 85–103 (1972)

19. Katayama, K., Hamamoto, A., Narihisa, H.: An effective local search for the maximum
clique problem. Information Processing Letters 95(5), 503–511 (2005)

20. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proc of ISAAC, pp.
296–303 (2014)

21. Luce, R., Perry, A.: A method of matrix analysis of group structure. Psychometrika 14,
95–116 (1949)

22. Luce, R.D.: Connectivity and generalized cliques in sociometric group structure. Psy-
chometrika 15(2), 169–190 (1950)

23. Marinček, J., Mohar, B.: On approximating the maximum diameter ratio of graphs.
Discrete Math 244, 323–330 (2002)

24. Maslov, E., Batsyn, M., Pardalos, P.: Speeding up branch and bound algorithms for
solving the maximum clique problem. J. Global Optimization 59(1), 1–21 (2014)

25. Mokken, R.J.: Cliques, clubs and clans. Quality and Quantity 13, 161–173 (1979)
26. Moore, C., Mertens, S.: The Nature of Computation. Oxford (2011)
27. Östergȧrd, P.: A fast algorithm for the maximum clique problem. Discrete Applied

Mathematics 120(1), 197–207 (2002)
28. Pajouh, F.M., Balasundaram, B.: On inclusionwise maximal and maximum cardinality

k-clubs in graphs. Descrete Optimization 9, 84–97 (2012)
29. Pattabiraman, B., Patwary, M.M.A., Gebremedhin, A.H., Liao, W.k., Choudhary, A.:

Fast algorithms for the maximum clique problem on massive graphs with applications
to overlapping community detection. Internet Mathematics 11(4-5), 421–448 (2015)

30. Seidel, R.: On the all-pairs-shortest-path problem in unweighted undirected graphs. J.
Comput. Syst. Sci 51, 400–403 (1995)

31. Seidman, S.B.: Network structure and minimum degree. Social Networks 5(3), 269–287
(1983)

32. Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept.
Journal of Mathematical Sociology 6(1), 139–154 (1978)

33. Shahinpour, S., Butenko, S.: Algorithms for the maximum k-club problem in graphs. J.
Comb Optim 26, 520–554 (2013)

34. Tomita, E., Seki, T.: An efficient branch-and-bound algorithm for finding a maximum
clique. In: Proc of DMTCS, pp. 278–289 (2003)

20 Yuichi Asahiro et al.

35. Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M.: A simple and faster
branch-and-bound algorithm for finding a maximum clique. In: Proc of WALCOM, pp.
191–203 (2010)

36. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique and
chromatic number. In: Theory of Computing, vol. 3, pp. 103–128 (2007)

