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Abstract. In this study, a FSI design of an insect–like micro flapping wing is proposed. 
Similar to actual insects, the proposed design actively uses the FSI to create the passive wing 
motions. Each design solution has a 2.5–D structure for the MEMS technology. The 3–D 
unsteady monolithic FSI equation system is solved to find the satisfactory design solutions 
using a projection method in a parallel computation environment. An area of satisfactory 
design solutions in a design parameter space or Design Window (DW) is presented. Each 
design solution in the present DW can generate the thrust sufficient to support the weight of 
the model insect. Therefore, the insect–like MEMS–based MAVs are possible. 

 
1 INTRODUCTION 

In this study, a FSI design of an insect–like micro flapping wing is proposed. Similar to 
actual insects, the proposed design actively uses the FSI to create the pitching motion of the 
wing. The proposed design will decrease the mechanical complexity of MAVs. The proposed 
design requires the accurate and stable analysis for the strong interaction.  Furthermore, the 
speedup of computation is required for the parametric study. Therefore, a projection method 
using the algebraic splitting [1, 2] is used to solve the 3–D unsteady monolithic FSI equation 
system in a parallel computation environment. 

Each design solution has a 2.5–D structure for the MEMS processing. The initial design 
parameters are determined based on a model insect. An area of satisfactory design solutions in 
a design parameter space or Design Window (DW) is presented. DW is convenient for 
decision-making in MEMS structural design [3]. Each solution in the present DW can generate 
the thrust sufficient to support the weight of the model insect. These results show the 
possibility of insect–like MEMS–based MAVs. It follows from the present results that the 
artificial micro system mimicking the organisms can use the coupled problem to create its 
function, and the 2.5–D structure can be designed with the aid of recent progress in coupled 
analysis [4, 5] such that it can be fabricated using the MEMS technology. 
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2 FLUID–STRUCTURE INTERACTION DESIGN 

2.1 Concept 
Fig. 1 shows the conceptual view of the insect–like MEMS–based MAV, where the insect 

flapping flight mechanics and the MEMS technology are combined. Following actual insets, 
the insect–like MAV can be minimized from 1mm to 1cm in size. At these size scales, the 
MEMS technology would be most promising. The FSI design is proposed to develop it. 

The main design concept is the active use of the FSI to create the function in micro system: 
Similar to actual insects, an insect–like micro flapping wing actively uses the FSI to create the 
pitching motion. It will decrease the mechanical complexity of MAVs. Furthermore, the 2.5–
D structure is used such that it can be fabricated using the MEMS technology. 

2.2 FSI cause of pitching motion 
The wing motion consists of the flapping and the pitching as shown in Fig. 2. The 

interaction between the flapping flexible wing and the surrounding air can create the 
characteristic pitching motion and the enough lift for the insect to hover [6–9]. 

2.3 Insect–like micro flapping wing 
Fig. 3 shows the schematics of the insect–like micro flapping wing based on the proposed 

FSI design. As shown in this figure, the 2.5–structure is adopted: The flexible wing is 
fabricated using the membrane. The beam is used as the leading edge to support the wing 
membrane. Taking into account micro actuator, the plate spring at the base amplifies the 
stroke angle using the resonance. 

 

 
Figure 1:  Insect–like MEMS–based MAV. Figure 2:  Schematics of insect flapping flight. 

 

 
Figure 3:  Schematics of the insect–like micro flapping wing based on the proposed FSI design. 
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3 FLUID–STRUCTURE INTERACTION ANALYSIS 

3.1 Governing equations for FSI 
The equilibrium equation for the elastic body and the incompressible Navier–Stokes 

equations are considered to describe the motion of the deformable model wing and the fluid 
flow surrounding the wing, respectively. The arbitrary Lagrangian–Eulerian method is used to 
describe the motion of the fluid–structure interface. The interface conditions to describe the 
interaction between the wing and the surrounding fluid are considered. 

3.2 Monolithic equation system for FSI 
Applying finite element discretization to the total Lagrangian formulation of the equation 

of the elastic body, the nonlinear equilibrium equation system can be obtained in matrix form. 
Similarly, the nonlinear equation system of the incompressible viscous fluid can be obtained 
in matrix form. Applying the interface conditions to these spatially discretized governing 
equations, the monolithic equation system can be obtained as 

 
gGpuqNCvMa  )(L , 0Gv τ ,     (1a, b) 

 
where M, C, and G are the mass, diffusive, and divergence operator matrices, N, q, g, a, v, u, 
and p are the convective term, elastic internal force, external force,  acceleration, velocity, 
displacement, and pressure vectors, respectively, the subscripts L and τ indicate the lumping 
of the matrix and the transpose of the matrix, respectively. 

Eq. (1) is linearized using the state variable increments to obtain the following equations: 
 

gpGaM * , hpGaG  ετt ,     (2a, b) 
 
where the pressure and elastic interior force terms are evaluated implicitly, M* is the 
generalized mass matrix, Δ denotes the increment, t denotes the current time, Δg and Δh are 
the residual vectors of Eq. (1), respectively, Gε is come from the pressure stabilization [10], 
and the relations among the state variables are Δu = βΔt2Δa and Δv = γΔtΔa based on 
Newmark’s method. The predictor–multicorrector algorithm is used for the time integration. 

3.3 Projection method using algebraic splitting 
The monolithic method solves Eq. (2) and satisfies the interface conditions to avoid 

spurious numerical power on the interface, which yields numerical instability. However, the 
formulation leads to an ill–conditioned equation system. Therefore, the projection method 
using the algebraic splitting [2] is used to avoid this difficulty. The present method was first 
proposed in [1], and modified in [2]. The present method is briefly described as follows: 

The state variables is predicted as the intermediate state variables from Eq. (1a) for the 
known pressure, which is linearized as 

 
gaM ˆ* ,         (3) 
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where â  is the intermediate acceleration. Subtracting both sides of (3) from (2a) gives, 
 

)ˆ(* vvMpG t ,        (4) 
 
where v̂  is the intermediate velocity. Left multiplying both sides of (4) by τGLM−1, 
 

)ˆ(ˆ *1
L

1
L vvMMGvGGvpGMG  

 t      (5) 
 
is obtained, where *M  equals MM L

* . If the following pressure Poisson equation (PPE) 
 

vGpGMG ˆ1
L   t         (6) 

 
is solved, then Eq. (5) is reduced as 
 

0vvMMGGv   )ˆ(*1
L .       (7) 

 
Since the linear convergence of the state variables is expected for the present definition of M*, 
v̂  agrees with v asymptotically in the nonlinear iterations. Therefore, the second term of (7) 
will vanish asymptotically, and Eq. (1b) for the unknown fluid velocity is satisfied. 

It follows from the above formulation that the monolithic equation system is split into the 
equilibrium equations (2a) and (3) and the PPE (6), and, different from the other studies using 
the algebraic splitting, the Schur complement is never produced. The proposed method is 
summarized as follows: In the nonlinear iterations, Eq. (3) is solved to derive the intermediate 
velocity, Eq. (6) is solved to determine the current pressure such that the current velocity 
satisfies the incompressibility constraint, and Eq. (2a) is solved to derive the current velocity. 

3.4 Parallel computation 
The matrix–vector products provide the most expensive computations in iterative solvers. 

Therefore, the parallel solution procedure is employed based on the mesh decomposition as 
follows: The matrix–vector product is computed using a subdomain mesh at each 
computational node using the element–by–element method, and the nodal data on the domain 
interface is transferred to complete the corresponding nodal data. 

4 NUMERICAL EXAMPLE 

4.1 Problem Setup 
Mimicking the small fly, the span length Lw and the chord length cw of the wing are  

2.5mm and 0.8mm, respectively. The material properties of air are ρ = 1.18×10-3g/cm3 and the 
viscosity μ = 1.82×10-4g/(cm s). Taking into account the surface micromachining, the 
following setup is used: The wing membrane is made of the polyimide (the mass density ρ = 
1.43g/cm3, the Young’s modulus E = 3GPa, and the Poisson’s ratio ν = 0.4), and the thickness 
tw is 1–2μm. The leading edge is made of the single crystal silicon (ρ = 2.383g/cm3, E = 
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180GPa, and ν = 0.3), and the dimension of the cross section is 100μm (width) ×50μm 
(thickness). The plate spring is made of the same material of the wing membrane, and the 
length ls is larger than 50μm for the bending motion. 

The amplitude u0 and the flapping frequency fφ of the micro actuator is assumed as follows: 
u0 is smaller than 100μm based on the actual micro actuator in the MEMS technology, and fφ 
is from 100Hz to 1,000Hz based on the actual insects. The design objective is to find the 
solution that can generate the lift FL larger than 7μN, which is the weight of the small fly. 

4.2 Analysis Setup 
The leading edge, the plate spring, and the wing plane are modeled using mixed 

interpolation of tensorial components shell elements [11] (Fig. 4A, number of nodes: 225, 
number of elements: 196), while the fluid domain is modeled using stabilized linear equal–
order–interpolation velocity–pressure elements [10] (Figs. 4B and C, number of nodes: 46,911, 
number of elements: 254,352). Δt is set at 1/fφ/5,000. The computational environment is a 
multiple core processor (10 core Xeon 2.8GHz×2CPU, 32GB memory).  

 
A 

 

B C 

Figure 4:  The present finite element meshes. A: yz–plane view of the shell mesh. B: xy–plane view of the fluid 
mesh. C: yz–plane view of the fluid mesh.  

4.3 Results and discussion 
In this study, the satisfactory design solutions were found from the parametric study. The 

dimensional parameters u0, ls, and tw were set at 80μm, 50μm, and 1.6μm, respectively, and fφ 
= 428Hz, which is chosen as the design and control parameter, gave the average lift larger 
than the weight of the small fly (7μN). The time histories of the displacement in this case 
were given in Fig. 5. As shown in this figure, the wing tip displacement was about 19 times 
larger than the wing base displacement due to the resonance. The lift variation for flapping 
frequency is shown in Fig. 6. As shown in this figure, the satisfactory design solutions exist 
from about 410 to 460Hz (DW). 

5 CONCLUDING REMARKS 
In this study, the FSI design of the insect–like micro flapping wing was proposed. The 

concept can be summarized as the FSI–cause of the pitching motion, the 2.5D–structure, and 
the amplification of the stroke angle using the resonance. The design problem was set taking 
into account the parameters of the model insect and the constraints from the MEMS 
technology. The projection method for the monolithic FSI equations was used for the strongly 
coupled FSI analysis. The existence of the DW shows the possibility of the insect–like 
MEMS–based MAVs. 
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Figure 5:  Time histories of the displacement. The 
black line indicates the wing tip displacement, while 
the gray line indicates the wing base displacement.

Figure 6: Area of the satisfactory design solutions in 
the design parameter space or the Design Window 
(DW).
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